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Abstract
Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of
a network flow X on directed graph G into weighted source-to-sink paths whose superposition equals
X. We focus on a common formulation of the problem where the path weights must be non-negative
integers and also on a new variant where these weights can be negative. We show that, for acyclic
graphs, considering the width of the graph (the minimum number of s-t paths needed to cover all of
its edges) yields advances in our understanding of its approximability. For the non-negative version,
we show that a popular heuristic is a O(log |X|)-approximation (|X| being the total flow of X)
on graphs satisfying two properties related to the width (satisfied by e.g., series-parallel graphs),
and strengthen its worst-case approximation ratio from Ω(

√
m) to Ω(m/ log m) for sparse graphs,

where m is the number of edges in the graph. For the negative version, we give a (⌈log ∥X∥⌉ + 1)-
approximation (∥X∥ being the maximum absolute value of X on any edge) using a power-of-two
approach, combined with parity fixing arguments and a decomposition of unitary flows (∥X∥ ≤ 1)
into at most width paths. We also disprove a conjecture about the linear independence of minimum
(non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful
implication (polynomial-time assignments of weights to a given set of paths to decompose a flow)
holds for the negative version.
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1 Introduction

Minimum flow decomposition (MFD) is the problem of finding a smallest sized decomposition
of a network flow X on directed graph G = (V, E) into weighted source-to-sink paths whose
superposition equals X. We focus on the case where path weights are restricted to be integers.
It is a textbook result [1] that if G is acyclic (a DAG) a decomposition using no more than
m = |E| paths always exists. However, MFD is strongly NP-hard [25], even on DAGs, and
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even when the flow values come only from {1, 2, 4} [12]. Recent work has shown that the
problem is FPT in the size of the minimum decomposition [14] and that it can be formulated
as an ILP of quadratic size [7].

While difficult to solve, MFD is a key step in many applications. For example, MFD on
DAGs is used to reconstruct biological sequences such as RNA transcripts [18, 23, 11, 3, 22, 26]
and viral strains [2]. MFD can also be used to model problems in networking [25, 12, 15]
and transportation planning [16], although in some of these applications there may be cycles
in the input. Despite the ubiquity of the MFD problem, the gap in our knowledge about
the approximability of MFD is large, even when restricting to DAGs. It is known [12] that
MFD (even on DAGs) is APX-hard (i.e., there is some ϵ > 0 such that it is NP-hard to
approximate within a (1 + ϵ) factor), so in particular, MFD does not admit a PTAS, unless
P=NP. Furthermore, it can be approximated with a factor of λlog ∥X∥ log ∥X∥ [15], where
λ is the length of the longest source-to-sink path and ∥X∥ is the largest flow value in the
network. In this work, we attempt to fill in some of the gaps between these results.

A natural lower bound for the size of an MFD of a DAG is the size of a minimum path
cover of the set of edges with non-zero flow (i.e., the minimum number of paths such that
every such edge appears in at least one path) – this size is called the width of the network.
This trivially holds because every flow decomposition is also such a path cover. These two
notions are analogies of the more standard notions of path cover and width of the node set.
The node-variants are classical concepts, with algorithmic results dating back to Dilworth
and Fulkerson [8, 10]. Despite this, the width has not been given any attention in the MFD
problem, and in particular it has never been used in approximation algorithms. In this paper,
we show that the width can play a key role both in the analysis of popular heuristics, and in
obtaining the first approximation algorithm for a natural variant of MFD.

We start with a relaxation of MFD in which flow decomposition may also use negative
integer weighs on flow paths, rather than strictly positive weights as has traditionally been
considered [25, 12, 14]. An important observation that we leverage for this variant (unlike
the positive-only version) is that “the width does not increase” as flow paths are chosen and
removed. Using this, we give a (⌈log ∥X∥⌉+ 1) approximation algorithm for this variant. To
differentiate both versions, we use MFDN and MFDZ throughout the paper. While MFDZ is
a natural version of the problem, to our knowledge it has not been previously considered
in the MFD literature. However, it can also have natural applications, since by applying
MFDZ on the difference between two flows, one can minimally explain the differences between
them, e.g. to explain the differences in RNA expression between two tissue samples with the
fewest number of up/down regulated transcripts, which is often the goal of RNA sequencing
experiments [21]. Our approximation follows a power-of-two approach where the weights of
the paths chosen are (positive or negative) powers of two. More specifically, observe that if
all flow values are even, then one can divide them by 2 and obtain a flow X with smaller
∥X∥ whose decomposition can be transformed back into a decomposition of X. In order to
obtain such an even flow, we prove a basic property that can be of independent interest:
given any integer flow X, there exists a unitary flow (its values are 0, +1, or −1) Y , such
that X + Y is even on every edge (Lemma 5). In addition, given a unitary flow Y , we show
that Y can be decomposed into k paths of weight +1 or −1, such that k is at most the width
of the graph (Corollary 8). We obtain the (⌈log ∥X∥⌉+ 1) approximation ratio (Theorem 11)
by iteratively removing the unitary flow, dividing all flow values by 2, and preprocessing the
graph so that its width is a lower bound on the size of the MFDZ.
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In Section 4 we consider connections between the width and a popular heuristic algorithm
for MFDN which we call greedy-weight1 [25], which builds a flow decomposition by successively
choosing the path that can carry the largest flow. Greedy-weight is commonly used in
applications (see e.g., [23, 2, 18] among many), and it seems to be mentioned in nearly every
publication addressing flow decomposition. First, on sparse graphs we improve (i.e., increase)
the worst-case lower bound for the greedy-weight approximation factor from Ω(

√
m) [12] to

Ω(m/ log m), showing for the first time that greedy-weight can be exponentially worse than
the optimum. For this we use a class of sparse graphs where the optimum flow decomposition
has size O(log m) whereas the greedy-weight algorithm returns a solution of size Ω(m), only
a constant factor away from the trivial decomposition. The key to this new bound is to
design an input where the width increases exponentially when a path is greedily removed.
We also show that the same bound also holds for other greedy heuristics choosing instead
the longest or shortest paths. Second, we show that if the input satisfies the properties
that its width does not increase as source-to-sink paths are removed (Property 15) and
that it is possible to remove a path of large weight (Property 16), then greedy-weight is a
O(log |X|)-approximation, where |X| is the flow value (i.e., total flow out of s). A notable
class of graphs satisfying these properties is the class of series-parallel graphs; see [9, 24] for
fast recognition algorithms and pointers to other NP-hard problems that are easier on this
class of graphs. Series-parallel graphs are also of great interest for network flow problems
(see, e.g., [13, 4]).

Finally, in Section 5 we consider a closely related problem, called k-Flow Weight Assign-
ment [14]. In addition to the flow X, in this problem we are also given a set of k paths, and
we need to decide if there is an assignment of weights to the paths such that they form a
decomposition of X. If the weights belong to N, this was shown to be NP-complete in [14].
In this work, we first observe that in the same way that allowing negative integer weights
simplifies the approximability of MFD, allowing weights to belong to Z fully changes the
complexity of the k-Flow Assignment Problem, making it polynomial. This is due to the
fact that the linear system defined by the given paths loses its only inequality of restricting
the weights to positive integers. It thus transforms an ILP to a system of linear Diophantine
equations, which can be solved in polynomial time (see e.g. [19]). Second, we consider a
conjecture from [14] stating that if the weights belong to N, and k is the size of a MFDN
for X, then the problem admits a unique solution (i.e., a unique assignment of weights to
the given paths). If true, this would speed up the FPT algorithm of [14] for MFDN, because
a step solving an ILP could be executed by solving a standard linear program returning a
rational solution and checking if the (supposedly unique) solution to this system is integer.
Moreover, the same conjecture (with the same implication) was also a motivation behind the
greedy algorithm of [20] for MFDN. In this paper, we disprove the conjecture of [14], further
corroborating the gap between MFDN and MFDZ.

2 Preliminaries

We are given a directed graph G = (V, E). Without loss of generality, we assume a unique
source s and a unique sink t with no in-edges and no out-edges respectively; otherwise, the
graph can be converted to such a graph by adding a pseudo source and sink and connecting
them to all sources and sinks respectively with appropriately weighted edges. We also assume

1 Previous work has consistently referred to this algorithm as greedy-width. To avoid confusion with the
width of the graph, we introduce the name greedy-weight in this work.

ESA 2022
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(a) If negative weights are allowed, the four
paths decompose the flow with weights 4, 5, 8,
and −3 (dark blue).
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(b) With positive weights only, five paths are
needed, since the edge (v1, v2) must be decom-
posed by a weight 1 path, leaving 4 edges that
must be covered separately. The paths shown
are one such decomposition.

Figure 1 A positive flow admitting a decomposition into four paths only if negative weights are
allowed.

that every node is on some s-t path. We use n and m to denote the number of nodes and
edges of G, respectively. Additionally, we assume that G is a DAG throughout the paper.
While the problem is also studied for graphs with cycles (see, e.g., [25, 12]), the task is still to
decompose into simple paths, and so our inapproximability result on DAGs also applies for
graphs with cycles. We call functions X : E → Y pseudo-flows, where Y is some set of allowed
flow values (numbers). We treat pseudo-flows as vectors over E and use the notation X + Y

and aX to denote the (element-wise) sum of pseudo-flows and multiplication by a scalar,
respectively. The numbers 0 and 1 also denote (depending on context) pseudo-flows that are
0 (resp. 1) everywhere. We write X ≤ Y (and similarly <) to mean X(u, v) ≤ Y (u, v) for
every (u, v) ∈ E.

Given G, a flow is a pseudo-flow satisfying conservation of flow (incoming flow equal to
outgoing flow) on internal nodes V \ {s, t}. It is known that the sum of two flows X + Y ,
the multiplication of a flow with a scalar aX, and the empty flow 0 are themselves flows.
Let |X| denote the total flow out of s (or into t) for flow X. Given an s-t path P , let P

also denote the flow defined by setting 1 to every edge in P and 0 elsewhere. With these
definitions, we are ready to formally define MFD.

▶ Definition 1. Given a flow X, a flow decomposition of (G, X) of size k is a family of s-t
paths P = (P1, . . . , Pk) with weights (w1, . . . , wk) ∈ Yk such that X = w1P1 + · · ·+ wkPk.

▶ Definition 2. Given a flow X, let mfdY(G, X) be the smallest size of a flow decomposition
of (G, X) with weights in Y.

We omit Y if it is clear from the context. We call the problem of producing a flow
decomposition of (G, X) of minimum size the minimum flow decomposition (MFD) problem.
In this paper, we study two integer versions of the problem, MFDN (0 ∈ N) and MFDZ. Note
that the reduction showing MFDN to be strongly NP-hard from [25] also holds for MFDZ.
However, a positive flow may admit a decomposition using fewer paths if negative weights
are allowed, as shown in Figure 1. We explore further differences between MFDN and MFDZ
in Sections 3 and 5.

Let ∥X∥ = max(u,v)∈E |X(u, v)| denote the infinity norm on flows. In particular, notice
that if Y ⊆ Z, then ∥X∥ ≤ 1 means that X(u, v) ∈ {0,±1} for every (u, v) ∈ E. Let X ≡2 Y

if X and Y have the same parity everywhere, i.e., for every (u, v) ∈ E, we have that X(u, v)
is odd iff Y (u, v) is odd.

▶ Definition 3. Given S ⊆ E, we define widthS(G) as the minimum number of s-t paths in
G needed to cover all edges of S. If S = E we just write width(G).
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Just like its more common node variant, width(G) can be computed in O(mn) time. As
described by, e.g., [1, 6], this is done by reduction to a min-flow instance with demand one
on every edge; the minimum flow of this instance is width(G), and the flow can be found by
reduction to a max-flow instance. Moreover, the problem can be relaxed to only require the
coverage of S ⊆ E and solved in the same running time by setting the demands only on the
edges of S.

▶ Lemma 4 ([1, 17]). Let G = (V, E) be a DAG, and S ⊆ E. A flow C : E → N can be
computed in O(mn) time, such that C(e) ≥ 1 for all e ∈ S and |C| = widthS(G).

The flow C with total flow widthS(G) suffices in this paper, and we do not need to
calculate a path cover achieving that minimum. However, we note that it can be directly
computed given the flow C. We can think of this path cover as a flow decomposition of C

into widthS(G) weight-one paths, which can be found by greedily removing such paths from
C until it is completely decomposed. Since each path has no more than n − 1 edges and
since widthS(G) ≤ m, the overall runtime of finding the path cover is O(mn).

3 Width helps solve MFDZ

The idea behind our approximation algorithm for MFDZ is that a flow X : E → Z on DAG G

can always be decomposed into (⌈log ∥X∥⌉+ 1) ·width(G) paths. We show this using two key
facts: first, that X can be decomposed into (⌈log ∥X∥⌉+ 1) flows with a particular structure,
and, second, that each of these flows can be decomposed into width(G) paths. A key step in
proving both these facts is a subroutine which, given an input flow X, finds another flow Y

with only values from {0,±1} (a unitary flow) that matches the parity of X on all the edges.
Intuitively, given an input flow X, such a unitary flow Y can be added to X to “fix” its odd
edges to be even, with only a small change to X.

▶ Lemma 5. For any flow X : E → Z on G = (V, E), there exists a flow Y : E → Z such
that X ≡2 Y and ∥Y ∥ ≤ 1.

Proof. Consider the undirected graph Godd = (V, Eodd) where Eodd = {{u, v} | (u, v) ∈
E and X(u, v) is odd}.

Notice that every node of Godd, except possibly s and t, has even degree, due to
conservation of flow. Thus, Godd can be written as the edge-disjoint union of cycles and s-t
paths. Assign an arbitrary orientation to each cycle and s-t path, and let E+

odd be the set of
edges oriented in this way. Define

Y (u, v) =


+1 if (u, v) ∈ E+

odd

−1 if (v, u) ∈ E+
odd

0 if {u, v} /∈ Eodd

Notice that Y is a flow decomposed as a sum of flows, each along one of the edge-disjoint
cycles and s-t paths. Moreover, X ≡2 Y and ∥Y ∥ ≤ 1 by construction. ◀

Repeatedly applying Lemma 5 and dividing the resulting even flow by 2, we obtain the
the first key ingredient of the approach (proof in [5, Appendix B]).

▶ Corollary 6. Any (non-zero) flow X : E → Z can be written as X =
∑⌈log ∥X∥⌉

i=0 2i · Yi,
where Yi : E → Z is a flow with ∥Yi∥ ≤ 1 for all i.

ESA 2022
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(a) Unitary flow X on a graph
G and a decomposition of it into
four paths, two of weight 1 in or-
ange (see (e)), and two of weight
−1 in blue (see (f)).
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(b) Flow C covering all edges of
G, of size |C| = width(G) = 4
(Lemma 4).
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(c) Flow X + C.
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(d) Unitary flow D matching the
parity of X+C, i.e., D ≡2 X+C
(Lemma 5).
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(e) Flow A = (C − D + X)/2
and a decomposition of it into
two paths of weight 1.

1 1

1

-1
-1

3 2

1

1
1 2

2
1
1 4 3

2
2

2
1
1

1
-1
1 2 1

1
1

1
1

1

1
1 1

1
1

(f) Flow B = (C − D − X)/2
and a decomposition of it into
two paths of weight 1.

Figure 2 Example of Lemma 7 and Corollary 8 applied to a unitary flow X on a graph G

(for clarity, 0 flow values are not shown). Positive flows A and B can be constructed so that
|A| + |B| ≤ width(G) holds. Flows A and B can be trivially decomposed into |A| and |B| paths,
respectively. We obtain a decomposition of X by taking the paths of A with weight 1 and the paths
of B with weight −1.

The following result is the second key ingredient of our approach. It guarantees (together
with Corollary 8) that any unitary flow can be decomposed into at most width(G) paths of
weight ±1 (see Figure 2 for an example). This is by no means obvious since, among other
problems, a unitary flow may contain positive and negative values which merge and cancel
each other out (as in Figure 2a). The proof is based on another application of Lemma 5,
along with some algebra on flows.

▶ Lemma 7. For any flow X : E → Z, ∥X∥ ≤ 1, there exist flows A, B : E → Z such that:
1. A, B ≥ 0
2. X = A−B

3. |A|+ |B| ≤ width(G)

Proof. Take C such that C ≥ 1 and |C| = width(G), according to Lemma 4. Take D such
that D ≡2 X + C and ∥D∥ ≤ 1, according to Lemma 5. Also, assume |D| ≥ 0 without loss
of generality (otherwise, take −D, which satisfies the same properties).

Since D ≡2 X + C, we have C −D ±X ≡2 0. So we can take A = (C −D + X)/2 and
B = (C −D −X)/2.
1. Notice that C −D ±X ≥ C − 2 since ∥D∥, ∥X∥ ≤ 1. So, C −D ±X ≥ −1, since C ≥ 1.

But C −D ±X ≡2 0 so C −D ±X ≥ 0, whence A, B ≥ 0.
2. A−B = C−D+X

2 − C−D−X
2 = X.

3. |A|+ |B| = |A + B| =
∣∣ C−D+X

2 + C−D−X
2

∣∣ = |C −D| = |C| − |D| ≤ |C| since |D| ≥ 0,
and |C| = width(G). ◀

▶ Corollary 8. For any flow X : E → Z with ∥X∥ ≤ 1, there exist paths P1, . . . , Pk with
k ≤ width(G) such that X = P1 + · · ·+ Pℓ − Pℓ+1 − · · · − Pk (for some 0 ≤ ℓ ≤ k).
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Proof. Take A, B according to Lemma 7, with A, B ≥ 0, X = A−B and |A|+|B| ≤ width(G).
Since A, B ≥ 0, there exist paths P1, . . . , P|A|+|B| such that A = P1 + · · · + P|A| and
B = P|A|+1 + · · · + P|A|+|B| [1]. Since X = A − B, we can write X = P1 + · · · + P|A| −
P|A|+1 − · · · − P|A|+|B|. Finally, recall that |A|+ |B| ≤ width(G), concluding the proof. ◀

Finally, expressing any flow as a sum of at most ⌈log ∥X∥⌉+ 1 unitary flows (Corollary 6),
and decomposing each unitary flow into at most width(G) positive or negative paths (Co-
rollary 8), we can decompose the flow into at most ⌈log ∥X∥⌉+ 1 paths whose weight are
positive and negative powers of two.

▶ Theorem 9. Given a DAG G = (V, E), for any flow X : E → Z, there exist paths
P1, . . . , Pk and weights {w1, . . . , wk} ⊆ {±2i | i ∈ N}, with k ≤ (⌈log ∥X∥⌉ + 1) · width(G)
such that X = w1P1 + · · ·+ wkPk.

Proof. Combine Corollaries 6 and 8, getting

X =
⌈log ∥X∥⌉∑

i=0
2i · Yi =

⌈log ∥X∥⌉∑
i=0

2i · (P1i + · · ·+ Pℓi − Pℓi+1 − · · · − Pki)

where ki ≤ width(G). ◀

The proof of Theorem 9 suggests a straightforward algorithm for MFDZ, which we detail
in Algorithm 2 and describe at a high level here. First, iteratively decompose X, yielding
log⌈∥X∥⌉ + 1 unitary flows. Then use Lemma 7 to decompose each into width(G) paths.
However, as we explained at the beginning of this section, width(G) is not a lower bound on
MFDZ, and thus this approach does not directly derives an approximation. To overcome
this issue, we instead find a flow decomposition of a spanning subgraph G′ of G whose width
lower bounds mfdZ(G, X). Namely, we first find a minimum path cover flow in G of the
subset S of edges with non-zero flow in O(mn) time (according to Lemma 4), and then
remove from G any edge not covered by the flow, obtaining G′. By construction, the size
of this path cover is a lower bound of mfdZ(G, X). Moreover, the size of this path cover is
exactly width(G′), since every path cover of G′ is also a path cover of S in G.

To prove the correctness of Algorithm 2, we first define a a subroutine implementing
Lemma 5.

▶ Lemma 10. Algorithm 1 returns a unitary flow from input flow Y such that X ≡2 Y , as
in Lemma 5, in O(m) time.

Proof. The correctness of the algorithm is given by Lemma 5. Finally, the first 3 subroutines
as well as the entire for-loop takes O(m) time. ◀

▶ Theorem 11. Algorithm 2 is a log⌈∥X∥⌉ + 1-approximation for MFDZ with runtime
O(m(log ∥X∥ ·mfdZ(G, X) + n)) = O(m2 log ∥X∥).

Proof. By Theorem 9 and our previous discussion, Algorithm 2 returns a flow decomposition
for X with no more than (⌈log ∥X∥⌉) + 1 · width(G′) = (⌈log ∥X∥⌉+ 1) ·mfdZ(G, X) paths.
We analyze the runtime line by line. Lines 2 and 5 take O(mn) time by Lemma 4. The
call to Algorithm 1 on line 6 takes O(m) time by Lemma 10, and checking the flow of
D and flipping signs (if necessary) also takes O(m) time. By Corollary 6, the while loop
on line 8 executes at most log⌈∥X∥⌉ + 1 times, meaning that the entire execution takes
O(m log ∥X∥) time since line 9 takes O(m) time by Lemma 10. Since there are at most
log⌈∥X∥⌉ + 1 Yi’s, the for loop on line 14 executes at most log⌈∥X∥⌉ + 1 times. Each
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Algorithm 1 Produces a unitary flow Y from input flow X such that X ≡2 Y , as in Lemma 5.

1: procedure Unitary(G, X)
2: Eodd ← odd edges of G, undirected
3: C ← a decomposition of Godd = (V, Eodd) into cycles, oriented arbitrarily
4: E+

odd ← directed edges of C

5: for (u, v) ∈ E do
6: if (u, v) ∈ E+

odd then
7: Y (u, v)← +1
8: else if (v, u) ∈ E+

odd then
9: Y (u, v)← −1

10: else
11: Y (u, v)← 0
12: end if
13: end for
14: return Y

15: end procedure

execution of the for-loop naively finds width(G′) paths, each of which can be found in O(m)
time, so the whole loop takes O(log ∥X∥ · width(G′) ·m) time. Thus, the overall runtime is
O(m log ∥X∥ · width(G′) + n) = O(m log ∥X∥ ·mfdZ(G, X) + n). ◀

A theorem analogous to Theorem 9 for MFDN is desirable, but cannot be achieved directly
with the previous methods. Lemma 5 makes use of negative weights, and yields positive
weights only if the flow graph solely consists of s-t paths. However, the approach can be
adapted for MFDN if the input flows are stable (Property 15), and if it is possible to “fix”
the odd flows to be even with only width(G) paths, which we leave as an open question.

4 Width matters for greedy approaches

Since the difference of two flows is still a flow, it is very natural to consider successively
removing the most obvious type of flow – that is to say, paths – as an algorithmic strategy
for MFDN. Indeed, the particular greedy path removal strategy of finding the heaviest path
(greedy-weight) is commonly used as a heuristic in applications (e.g., [18, 2, 23, 12]) and it
seems to be mentioned in nearly every paper addressing flow decomposition. More formally,
a path P is said to carry flow p if X(u, v) ≥ p for all edges (u, v) of P . The heaviest path is
an s-t path carrying the largest flow. Such a path can be easily found in linear time in the
size of the DAG by dynamic programming (see, e.g., [25]).

4.1 Width hinders greedy on MFDN

We define a family of MFDN instances (Gℓ, Xℓ,B), depending on two parameters ℓ ∈ N \ {0}
and B ∈ N. The family is defined recursively on ℓ. The base case (G1, X1,B) for ℓ = 1 is
shown in Figure 3a. For ℓ > 1, we build (Gℓ, Xℓ,B) from two disjoint copies of (Gℓ−1, Xℓ−1,B),
by adding 5 extra edges and flow values as shown in Figure 3b. We call the edge connecting
the two copies of Gℓ−1 a central edge. Edges whose flow value depends on B are called
backbone edges, and they form a s-t path. Choosing B = 2ℓ+1, we show that the flow Xℓ,2ℓ+1

can be decomposed using a number of paths linear in ℓ, thanks to the heavy backbone
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Algorithm 2 Finds the flow decomposition of Theorem 9.

1: procedure Path-Decomposition(G, X)
2: Compute a minimum path cover flow of {(u, v) ∈ E | X(u, v) ̸= 0} ▷ Lemma 4
3: Remove from G any edge not covered by this path cover to obtain G′

4: P ← [], w ← [] ▷ length-zero vectors
5: C ← flow of value width(G′), C ≥ 1 ▷ Lemma 4
6: D ← Unitary(G′, C); if |D| < 0 set D = −D ▷ Algorithm 1
7: i← 0
8: while ∥X∥ > 1 do
9: Yi ← Unitary(G′, X) ▷ Algorithm 1

10: X ← (X − Yi)/2
11: i← i + 1
12: end while
13: Yi ← X

14: for j ∈ {0, . . . , i} s.t. Yj ̸= 0 do
15: A← C −D + Yj , B ← C −D − Yj

16: Naively decompose A into |A| paths and B into |B| paths; concatenate A, B to P
17: Concatenate |A| copies of 2j and |B| copies of −2j to w

18: end for
19: return (P, w)
20: end procedure

edges, whereas the greedy-weight algorithm fully saturates the central edges with its first
path and is left with a remaining flow requiring 2ℓ+1 paths to be decomposed (proofs in [5,
Appendix B]).

▶ Lemma 12. Let Gℓ with flow Xℓ,2ℓ+1 be constructed as described before. Greedy-weight
uses 1 + 2ℓ+1 paths to decompose Xℓ,2ℓ+1 .

▶ Lemma 13. Let Gℓ with flow Xℓ,2ℓ+1 be constructed as described before. It is possible to
decompose Xℓ,2ℓ+1 using 2ℓ + 2 paths.

▶ Theorem 14. The approximation ratio for greedy-weight on MFDN is Ω(m/ log m) for
sparse graphs, in the worst case.

Proof. By Lemmas 12 and 13, greedy-weight uses Θ(2ℓ) paths to decompose the flow Xℓ,2ℓ+1

described above, whereas it is possible to decompose the flow with only Θ(ℓ) paths. It can be
easily verified by induction that the number of edges of Gℓ is 7 · 2ℓ − 5. So the ratio between
greedy-weight and optimal for this instance is Ω( m

log m ). ◀

While greedy-weight is most commonly used in applications, the approach was first
presented as part of a general framework [25]: pick any optimality criteria for s-t paths
that is saturating (i.e., fully decomposes at least one edge), and successively remove optimal
paths. Since each path is saturating, the algorithm must decompose the flow in m or fewer
paths. Another optimality criterion sometimes used in DNA assembly (e.g., in vg-flow [2])
is the longest path (with its maximum possible flow so that it is saturating). To adapt
our construction of (Gℓ, Xℓ,2ℓ+1) so that this approach has the same approximation ratio,
consider (G∗

ℓ , X∗
ℓ,2ℓ+1), constructed as in (Gℓ, Xℓ,2ℓ+1) except that we replace every backbone

edge (u, v) with two edges, (u, w) and (w, v). See [5, Figure 6] for an example. Then a path
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(a) The base case (G1, X1,B)
(ℓ = 1). Backbone edges (bold)
carry flow at least B.

 Gℓ−1

 Gℓ−1

 2ℓ + B

 2ℓ + B

 B
 2ℓ

 2ℓ

(b) Building (Gℓ, Xℓ,B) from
two copies of (Gℓ−1, Xℓ−1,B)
(ℓ > 1). The 5 new edges
connect the source and sink of
(Gℓ, Xℓ,B) with the sources and
sinks of (Gℓ−1, Xℓ−1,B). The
central edge has flow B and
is part of the backbone (bold
edges).

 2 + B

 2

 1

 1

 1 + B

 2

 2 + B

 B

 1 + B

(c) Decomposing the base case
(G1, X1,B) (ℓ = 1), for B =
2ℓ+1. All non-backbone edges
can be decomposed with 2ℓ+1 =
3 paths. The orange path has
weight 1 and dark and light blue
paths have weight 2. A fourth
path (of weight 3) along the
backbone is required to fully de-
compose the flow.

Figure 3 Construction for (Gℓ, Xℓ,B). Setting B = 2ℓ+1 gives MFD instances where greedy-weight
uses Θ( m

log m
) times more paths than optimal to decompose the flow.

along the backbone edges will be the longest from s to t and the above asymptotic analysis
holds, since we no more than doubled the number of edges. Yet another optimality criterion,
studied in [12] for its application to network routing, is the shortest path (again with its
maximum possible flow). (G∗

ℓ , X∗
ℓ,2ℓ+1) will also force this approach to take an exponential

number of paths, since first the algorithm will take all 2ℓ+1 weight-1 edges with 2ℓ+1 different
paths.

4.2 Greedy approximation for series-parallel graphs
As exploited in Section 4.1, one sticking point for greedy path removal algorithms is the fact
that the width of a graph can increase after an edge is fully decomposed. We now show that
if, in a particular instance, a graph does not increase its width during the execution of the
algorithm, and greedy-weight can decompose “enough” flow at each step, then greedy-weight
is a O(log |X|)-approximation for MFDN.

If G is a directed graph and X ≥ 0 a flow on G, we write G|X (G restricted to X) to mean
the spanning subgraph of G made up of the edges e ∈ E such that X(e) ̸= 0. Conversely, if
S is a subgraph of G, we write X|S (X restricted to S) to mean the pseudo-flow X only on
the edges of S. In the case of MFDN, once an edge is fully decomposed, it cannot be used
in future paths, possibly increasing the width of the graph that can be used to decompose
the rest of the flow and sometimes triggering an increase of the size of a minimum flow
decomposition as well. We call a graph stable if it does not have this issue.

▶ Property 15 (Stable graph). We say that G is stable if, for any non-negative flow X on G,
it holds that width(G|X) ≤ width(G).

Many useful MFDN instances do in fact satisfy Property 15. For example, the first proof
of MFD’s NP-hardness [25] was a reduction to a very simple graph of this form; this means
that MFDN restricted to stable graphs is also NP-hard.

The second property that we need is that there is always, during the execution of the
algorithm, a path carrying “enough” flow from s to t.

▶ Property 16 (Paths of large weight). We say that G has paths of large weight if, for any
flow X ≥ 0 on G, there exists an s-t path in G|X carrying at least |X|/width(G) flow.
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Note that this property does not hold in general; see [5, Figure 7].

▶ Lemma 17. Let G = (V, E) be a graph, width(G) ≥ 2, satisfying Properties 15 and 16.
Greedy-weight uses at most ⌊log |X|/ log width(G)

width(G)−1⌋+ 1 paths to decompose any flow X : E →
N.

Proof. Let b = width(G). Since G satisfies Properties 15 and 16, greedy-weight removes
a path of weight at least |X ′|/b at every step, where X ′ is the remaining flow of the
corresponding step. As such, after c steps |X ′| ≤ |X|

(
b−1

b

)c. If |X|
(

b−1
b

)c
< 1, then

|X ′| = 0, since |X| and the weights of the removed paths belong to N. Solving for c we obtain
c > log |X|/ log b

b−1 . Therefore, greedy-weight takes (uses) at most c = ⌊log |X|/ log b
b−1⌋+ 1

steps (paths). ◀

▶ Theorem 18. Let G = (V, E) be a graph satisfying Properties 15 and 16 and X : E → N
a flow. Greedy-weight is a O(log |X|)-approximation for MFDN on (G, X).

Proof. Assume X > 0 (otherwise, replace G with G|X). Thus, b = width(G) ≤ mfdN(G, X),
since any flow-decomposition of X induces a path cover of E. If b ≤ 1 greedy-weight finds
an optimal solution. Otherwise b ≥ 2, and Lemma 17 implies that greedy-weight is a
O( log |X|

b log b
b−1

) =O(log |X|)-approximation for MFDN (b log b
b−1 = O(1) for b ≥ 2). ◀

Finally, we define series-parallel graphs, and apply Theorem 18 to them, by proving (in
[5, Appendix B]) that they satisfy Properties 15 and 16.

▶ Definition 19 (Series-parallel graph [9]). A graph is a two-terminal series-parallel ( series-
parallel for short) graph with terminal nodes s and t if:

it consists of a single edge directed from s to t, and no other nodes, or
it can be obtained from two (smaller) two-terminal series-parallel graphs G1 and G2, with
terminal nodes s1, t1, and s2, t2, respectively, by either

identifying s = s1 = s2 and t = t1 = t2 (parallel composition of G1 and G2), or
identifying s = s1, t1 = s2, and t = t2 ( series composition of G1 and G2).

▶ Corollary 20. Greedy-weight is a O(log |X|)-approximation for MFDN on series-parallel
graphs.

5 Solving the k-Flow Weight Assignment Problem

In this section, we consider a restriction of MFD from [14] (see Figure 4 for an example).

▶ Definition 21 (k-Flow Weight Assignment). Given a flow X : E → Y on a graph G = (V, E)
and a set of s-t paths {P1, . . . , Pk}, the problem of finding an assignment of weights to
the paths, such that they form a flow decomposition of (G, X), is called k-Flow Weight
Assignment (k-FWA). We write k-FWAY if we require the path weights to belong to Y.

Given k s-t paths, k-FWA can be solved by a linear system defined by Lw = X, where
Xj ∈ Y is equal to the flow X(ej) of the edge ej (we identify flows X : E → Y with vectors
X ∈ Ym) and L is the m× k 0/1 matrix with Li,j = 1 if and only if path Pj crosses edge
ei. The resulting solution w ∈ Yk is the weight assignment to each path. For a flow graph
(G, X), we denote by LY = LY(P1, . . . , Pk) = {w ∈ Yk|X =

∑k
j=1 Pkwk} the linear system

corresponding to the paths P1, . . . , Pk.
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Figure 4 Paths Ai and Bi (i ∈ {0, 1, 2, 3}), each edge being labeled with the paths it appears in.
Assign to each path Ai weight ai, and to each path Bi weight bi, such that a0 = b0 = 3, and ai = 62i+1
and bi = 62i+1 + 5 for i = 1, 2, 3. Define the flow X on G as X =

∑3
i=0 aiAi +

∑3
i=0 biBi. Note that

these weights are a solution of k-FWAN on input (G, X) with given paths Ai, Bi (i ∈ {0, 1, 2, 3}).

We shortly discuss how to solve k-FWAZ. It is possible to find an integer-weighted
solution or decide that it does not exist in polynomial time. The reason for this is that,
having no non-negativity constraint, the linear system defined by the paths is a system of
linear Diophantine equations. It is well known that integer solutions to such systems can be
found in polynomial time; see, e.g., [19, Chapter 5].

On the other hand, solving k-FWAN turns out to be more difficult. Here, the linear
system contains the inequality w ≥ 0. In fact, it was shown [14] that k-FWAN is NP-hard.
The program Toboggan [14] implements a linear FPT algorithm for MFDN. One step of the
algorithm is to solve k-FWAN using an ILP [14]. The authors state the following conjecture.

▶ Conjecture 22 ([14]). If (P1, . . . , Pk) are the paths of a minimum flow decomposition of
(G, X), then the linear system LN(P1, . . . , Pk) has full rank k.

As mentioned in the introduction, if the conjecture turned out to be true, then Toboggan
could avoid resorting to solving an ILP, since just solving the standard linear system at
hand would return its unique solution. As observed by the authors, this would decrease the
asymptotic worst case upper bound of Toboggan.

We show that this conjecture is false using a counterexample. Consider the input for
k-FWAN from Figure 4 and the solution therein. We now give another solution for k-FWAN on
this input, namely the following path weights: a0 = 5, b0 = 1, and ai = 62i + 2, bi = 62i+1 + 4,
for i = 1, 2, 3. One can easily verify that this is another solution to k-FWAN on the input in
Figure 4, thus proving that the rank of the corresponding linear system is strictly less than 8.

To disprove Conjecture 22, it remains to show that any flow decomposition contains at
least 8 paths. Due to the technicality of this proof (and its exhaustive case-by-case analysis),
in this paper we only explain the intuition behind the construction in Figure 4 and behind
the correctness proof. However, as an additional check we also ran both Toboggan [14] and a
recently developed ILP solver for MFDN [7] on this instance, both returning mfdN(G, X) = 8.

The intuition is as follows. The graph can be divided into two parts: the graph induced
by the first 5 vertices in topological order (left part) and the one induced by the last 5
(right part). The exponential growth of the paths Ai and Bi for growing i, together with
the different permutations of the paired labels AiBj on the left part, fix the choice of the
paths Ai and Bi for i = 1, 2, 3. This allows us to interpret flow decompositions of less than 8
paths as decompositions with 8 paths, where either A0 or B0 carries weight 0. Consider a
flow decomposition where we assign two paths of weights λ1 and λ2 on the edges labeled
A0B0. For any δ ≥ 0, (λ1 − δ) + (λ2 + δ) = a0 + b0 and equivalently for all other edges on
the left part. If we decrease λ1 by some δ > 0, the weights of B1 and B2 each increase by
δ/2. And thus, δ must be even. Due to the parity of a0 and b0, they can never reach 0.
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6 Conclusions

In this paper we have shown for the first time that width, a natural lower bound for MFD,
is also useful when investigating its approximability. On the one hand, using width is a key
insight in understanding where greedy path removal heuristics fail. On the other hand, graphs
where width is well-behaved (e.g., series-parallel graphs) have a guaranteed approximation
factor. Moreover, when combined with parity arguments, i.e., about parity fixing unitary flows,
and a width-sized decomposition of such flows, it guarantees an even better approximation
factor for MFDZ for all DAGs. Finally, we have corroborated the complexity gap between the
positive integer and the full integer case by disproving a conjecture from [14] (also motivating
the heuristic in [20]), which would have had sped up their FPT algorithm for MFDN.

Our results open up new avenues for further research on MFD. For example, can the
width help find larger classes of graphs for which some greedy path removal (or even some
sort of greedy path cover removal) algorithms have a guaranteed approximation factor?
Can we get Ω(n) worst case approximation ratio of greedy-weight for dense graphs without
parallel edges? Can the power-of-two decomposition approach be applied with other factors
besides two? Can better path cover-like lower bounds help (e.g., path covers which cannot
use an edge more times than its flow value, also computable in polynomial time)? How do
our algorithms perform in practice?
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11 Thomas Gatter and Peter F Stadler. Ryūtō: network-flow based transcriptome reconstruction.
BMC bioinformatics, 20(1):1–14, 2019.

ESA 2022

https://doi.org/10.1287/opre.2013.1200
https://doi.org/10.48550/ARXIV.2207.02136
https://doi.org/10.1137/1.9781611977073.18
http://arxiv.org/abs/2201.10923
http://www.jstor.org/stable/1969503
https://doi.org/10.1016/0890-5401(92)90041-D


31:14 Width Helps and Hinders Splitting Flows

12 Tzvika Hartman, Avinatan Hassidim, Haim Kaplan, Danny Raz, and Michal Segalov. How to
split a flow? In 2012 Proceedings IEEE INFOCOM, pages 828–836. IEEE, 2012.

13 A. Jain and N. Chandrasekharan. An efficient parallel algorithm for min-cost flow on directed
series-parallel networks. In Proceedings Seventh International Parallel Processing Symposium,
pages 188–192, 1993. doi:10.1109/IPPS.1993.262879.

14 Kyle Kloster, Philipp Kuinke, Michael P O’Brien, Felix Reidl, Fernando Sánchez Villaamil,
Blair D Sullivan, and Andrew van der Poel. A practical fpt algorithm for flow decomposition
and transcript assembly. In 2018 Proceedings of the Twentieth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 75–86. SIAM, 2018.

15 Brendan Mumey, Samareh Shahmohammadi, Kathryn McManus, and Sean Yaw. Parity
balancing path flow decomposition and routing. In 2015 IEEE Globecom Workshops (GC
Wkshps), pages 1–6. IEEE, 2015.

16 Nils Olsen, Natalia Kliewer, and Lena Wolbeck. A study on flow decomposition methods for
scheduling of electric buses in public transport based on aggregated time–space network models.
Central European Journal of Operations Research, 2020. doi:10.1007/s10100-020-00705-6.

17 James B. Orlin. Max flows in O(nm) time, or better. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 765–774. ACM, 2013. doi:10.1145/2488608.2488705.

18 Mihaela Pertea, Geo M Pertea, Corina M Antonescu, Tsung-Cheng Chang, Joshua T Mendell,
and Steven L Salzberg. StringTie enables improved reconstruction of a transcriptome from
RNA-seq reads. Nature biotechnology, 33(3):290–295, 2015.

19 Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
1986.

20 Mingfu Shao and Carl Kingsford. Theory and a heuristic for the minimum path flow de-
composition problem. IEEE/ACM transactions on computational biology and bioinformatics,
16(2):658–670, 2017.

21 Mingxiang Teng, Michael I Love, Carrie A Davis, Sarah Djebali, Alexander Dobin, Brenton R
Graveley, Sheng Li, Christopher E Mason, Sara Olson, Dmitri Pervouchine, et al. A benchmark
for rna-seq quantification pipelines. Genome biology, 17(1):1–12, 2016.

22 Alexandru I Tomescu, Travis Gagie, Alexandru Popa, Romeo Rizzi, Anna Kuosmanen, and Veli
Mäkinen. Explaining a weighted DAG with few paths for solving genome-guided multi-assembly.
IEEE/ACM transactions on computational biology and bioinformatics, 12(6):1345–1354, 2015.

23 Alexandru I Tomescu, Anna Kuosmanen, Romeo Rizzi, and Veli Mäkinen. A novel min-cost
flow method for estimating transcript expression with RNA-Seq. In BMC bioinformatics,
volume 14, pages S15:1–S15:10. Springer, 2013.

24 Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series parallel
digraphs. SIAM Journal on Computing, 11(2):298–313, 1982. doi:10.1137/0211023.

25 Benedicte Vatinlen, Fabrice Chauvet, Philippe Chrétienne, and Philippe Mahey. Simple
bounds and greedy algorithms for decomposing a flow into a minimal set of paths. European
Journal of Operational Research, 185(3):1390–1401, 2008.

26 Lucia Williams, Gillian Reynolds, and Brendan Mumey. RNA Transcript Assembly Using
Inexact Flows. In 2019 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 1907–1914. IEEE, 2019.

https://doi.org/10.1109/IPPS.1993.262879
https://doi.org/10.1007/s10100-020-00705-6
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1137/0211023

