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Abstract
Aims/hypothesis Enteroviral infection has been implicated consistently as a key environmental factor correlating with the
appearance of autoimmunity and/or the presence of overt type 1 diabetes, in which pancreatic insulin-producing beta cells are
destroyed by an autoimmune response. Genetic predisposition through variation in the type 1 diabetes risk gene IFIH1 (interferon
induced with helicase C domain 1), which encodes the viral pattern-recognition receptor melanoma differentiation-associated
protein 5 (MDA5), supports a potential link between enterovirus infection and type 1 diabetes.
Methods We used molecular techniques to detect enterovirus RNA in peripheral blood samples (in separated cellular compart-
ments or plasma) from two cohorts comprising 79 children or 72 adults that include individuals with and without type 1 diabetes
who had multiple autoantibodies. We also used immunohistochemistry to detect the enteroviral protein VP1 in the pancreatic
islets of post-mortem donors (n=43) with type 1 diabetes.
Results We observed enhanced detection sensitivity when sampling the cellular compartment compared with the non-cellular
compartment of peripheral blood (OR 21.69; 95% CI 3.64, 229.20; p<0.0001). In addition, we show that children with autoim-
munity are more likely to test positive for enterovirus RNA than those without autoimmunity (OR 11.60; 95% CI 1.89, 126.90;
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p=0.0065). Furthermore, we found that individuals carrying the predisposing allele (946Thr) of the common variant in IFIH1
(rs1990760, Thr946Ala) are more likely to test positive for enterovirus in peripheral blood (OR 3.07; 95% CI 1.02, 8.58;
p=0.045). In contrast, using immunohistochemistry, there was no correlation between the common variant in IFIH1 and detection
of enteroviral VP1 protein in the pancreatic islets of donors with type 1 diabetes.
Conclusions/interpretation Our data indicate that, in peripheral blood, antigen-presenting cells are the predominant source of
enterovirus infection, and that infection is correlated with disease stage and genetic predisposition, thereby supporting a role for
enterovirus infection prior to disease onset.

Keywords Autoimmunity .Enterovirus .Geneticrisk . IFIH-1 . InterferoninducedwithhelicaseCdomain1 .MDA5 .Melanoma
differentiation-associated protein 5 . Pancreatic islets . rs1990760 . Type 1 diabetes

Abbreviations
APC Antigen-presenting cell
EV Enterovirus
mAAb Multiple autoantibodie(s)
MDA5 Melanoma differentiation-associated protein 5
mDC Myeloid dendritic cell
PBMC Peripheral blood mononuclear cell
pDC Plasmacytoid dendritic cell
VP1 Viral protein 1

Introduction

Type 1 diabetes is caused by progressive loss of the insulin-
producing beta cells in pancreatic islets. Genetic factors are

important in the predisposition to disease development [1].
However, a concordance rate of only around 50% in monozy-
gotic twins [2] and the steadily increasing incidence rate [3],
particularly in those individuals with lower genetic predispo-
sition [3, 4], suggest that environmental factors also play a
crucial role.

A prominent candidate environmental factor is virus infec-
tion [5], particularly infection with Coxsackievirus, a
subgroup of the genus Enterovirus (EV) (Picornaviridae
family) that has been extensively studied and linked to type
1 diabetes [6, 7]. EV is detectable at a higher frequency in
stool samples [8, 9], pancreatic biopsies [10–12] and the
peripheral blood [13, 14] of individuals with type 1 diabetes
compared to those without, while the presence of neutralising
antibodies against Coxsackievirus correlates with beta cell
autoimmunity [15]. Studies have shown that EV is found
more often in both the serum/plasma and peripheral blood
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mononuclear cells (PBMCs) [14, 16, 17] of individuals with
type 1 diabetes and those with islet autoimmunity. Similarly,
EV infection is detected in the pancreatic tissue of approxi-
mately 70% of post-mortem donors with recent-onset type 1
diabetes compared with less than 10% of similarly aged post-
mortem donors without type 1 diabetes [10].

Mechanistically, there is an interaction between EV infec-
tion and the genetic variation that predisposes to type 1 diabe-
tes. Several risk-determining variants have been identified in
the gene IFIH1 (interferon induced with helicase C domain 1),
which encodes the cytoplasmic viral pattern-recognition
receptor melanoma differentiation-associated protein 5
(MDA5) [18, 19]. MDA5 is essential for the detection of
members of the Picornaviridae family [20, 21], and its acti-
vation leads to production of type I IFN and proinflammatory
cytokines [22]. Most informatively, four rare SNPs exist that
reduce or abrogate the function of MDA5, and these variants
all provide protection against type 1 diabetes [19, 23]. For the
common variant SNP rs1990760 (Thr946Ala) in IFIH1,
946Thr is the predisposing allele [18]. In PBMCs, the
disease-protective allele (946Ala) is associated with reduced
expression of IFIH1 either under basal conditions [24] or after
stimulation with IFNβ or polyinosinic-polycytidylic acid [25,
26]. Functionally, however, a greater degree of divergence has
been reported, with one study finding that protection corre-
lates with reduced type I IFN response [26], while this was not
seen in other studies [23, 27]. Another study observed reduced
type III IFN responses, but not reduced type I IFN responses,
in virus-infected pancreatic islets from donors homozygous
for the predisposing allele in IFIH1 [28].

Whether these functional consequences of variants in
IFIH1 affect the rate of virus infection and clearance is still
under investigation, and the studies that have investigated the
relationship between detection of EV and variants in IFIH1
have yielded inconclusive results [8, 29]. Here we investigated
whether detection of EV infection in peripheral blood and
pancreatic tissue correlated with the predisposing allele
(946Thr) of the common variant in IFIH1 (rs1990760,
Thr946Ala).

Methods

Cohorts We analysed two distinct cohorts: the ‘children
cohort’, which included 79 children (median age 119 months,
range 17–192 months, 54% female); and the ‘adult cohort’,
which included 72 adults (median age 29 years, range 18–51
years, 61% female). Ethics approval was obtained from the
Bromley National Research Ethics Service Committee (refer-
ence number 08/H0805/14) for the adult cohort, and from the
Ethics Committee of Pirkanmaa Hospital District, Tampere,
Finland, for the children cohort.Written informed consent was
obtained from all participants or their legal guardians.

The children cohort included 49 case children who
repeatedly tested positive for multiple biochemical islet
autoantibodies (referred to as mAAb-positive) (i.e. combi-
nations of insulin autoantibodies (IAA), GAD autoanti-
bodies (GADA) and tyrosine phosphatase IA-2 autoanti-
bodies (IA-2A)) and 30 autoantibody-negative control chil-
dren who were matched for age (all <13 years old), sex and
place of birth (city). Among the children who were positive
for mAAb, 24 later progressed to type 1 diabetes, diagnosed
according to the WHO recommendations [30]. Both case
and control children carried HLA genotypes that confer
increased risk for type 1 diabetes, and had been followed
from birth in the Finnish Type 1 Diabetes Prediction and
Prevention study described previously [31]. PBMCs and
plasma were isolated by density gradient centrifugation
(Ficoll-Paque PLUS, GE Healthcare BioSciences,
Sweden). PBMCs were pelleted and stored in RLT buffer
(Qiagen, Germany). Both PBMCs and plasma were stored
at -80°C for subsequent RNA extraction.

The adult cohort (all >18 years old) included 37 individuals
with recent-onset type 1 diabetes (within 3 months of diagno-
sis) and 35 individuals without type 1 diabetes, of similar age
and matched for sex, and with no family history of autoim-
mune disease. PBMCs were isolated by density gradient
centrifugation (Lymphoprep; Axis-Shield, Norway). PBMCs
were treated with FcR blocking reagent (Miltenyi Biotec,
Germany), and PBMC subsets were subsequently enriched
using magnetic bead cell separation by autoMACS (Mitenyi
Biotec) in the following order: B cells (using CD19
MicroBeads), monocytes (using CD14MicroBeads), myeloid
dendritic cells (mDCs) (using a CD1c [BDCA-1] dendritic
cell isolation kit), plasmacytoid dendritic cells (pDCs) (using
a CD304 [BDCA-4/neuropilin-1] MicroBead kit). All
reagents for cell separation were obtained from Miltenyi
Biotec, and the post-separation enrichment was >90%,
according to the manufacturer. Samples were pelleted and
stored at -80°C until RNA extraction.

For both cohorts, individuals who reported or showed
symptoms of systemic ‘virus-like’ illness were not recruited
to the study or did not undergo blood sampling. In the children
cohort, none of the individuals were excluded from blood
sampling due to ‘virus-like’ illness.

RNA extraction and detection of EV-RNA RNA was extracted
using a QIAamp viral RNA kit (Qiagen) and TRIzol reagent
(Life Technologies, USA), in the adult and children cohorts,
respectively, according to the manufacturer’s instructions.
Detection of EV-RNA was performed by RT-PCR and
liquid-phase hybridisation using a primer pair (forward: 5′-
CGGCCCCTGAATGCGGCTAA-3′; reverse: 5′-GAAA
CACGGACACCCAAAGTA-3′) from the highly conserved
5′ non-coding region as previously described [32]. PCR
amplicons were hybridised using a europium-labelled EV-

1703Diabetologia (2022) 65:1701–1709



specific probe (5′-TAITCGGTTCCGCTGC-3′) in a liquid-
phase assay on a microtitre plate [33]. All positive samples
were confirmed as positive by repeated RT-PCR and
hybridisation assay.

IFIH1 genotyping In the adult cohort, DNA was extracted
from whole blood collected using the QIamp blood mini kit
(Qiagen) according to the manufacturer’s instructions, and
genotyping for the SNP rs1990760 was performed by
TaqMan assay (Applied Biosystems, USA). In the children
cohort, DNA was extracted from EDTA-treated blood
samples by a salting-out protocol [34], and genotyping was
performed either using a Sequenom platform (San Diego,
USA) at the Genome Center of Eastern Finland, University
of Eastern Finland (Kuopio), or by TaqMan assay (Applied
Biosystems) in samples that were not included in the previous
Sequenom-based study [35]. For each pancreas, sample DNA
was extracted from 2 × 4 μm formalin-fixed, paraffin-
embedded (FFPE) tissue curls using the QIAamp DNA
FFPE tissue kit (Qiagen) according to the manufacturer’s
instruct ions. SNP genotyping was performed by
Kompetitive allele-specific PCR (KASP) (LGC Biosearch
Technologies, UK) using 1 μl DNA amplified in a 5 μl
KASP reaction. DNA was amplified and fluorescence detect-
ed using the QuantStudio 12K Flex Real-Time PCR system
(ThermoFisher). Genotypes were called using QuantStudio
12K Flex software version 1.2.2 (ThermoFisher). We were
unable to isolate pure and good-quality DNA from formalin-
fixed, paraffin-embedded tissue for all donors, and therefore
obtained IFIH1 genotypes for 43 of the previously reported 72
post-mortem donors with type 1 diabetes [10].

Immunohistochemistry Formalin-fixed, paraffin-embedded
pancreatic tissue from 43 individuals (median age 13.5 years,
range 1–42 years, 69% female) with recent-onset type 1 diabe-
tes, whose pancreatic histology has been described previously
[36], was used for the immunohistochemical study. Data for
the staining of the enteroviral protein VP1, and representative
staining images, have been reported previously [10]. As previ-
ously described, VP1 positivity was assigned when at least
one intensely stained endocrine cell was present in any islet
within any given section [10]. All samples were used with
ethical permission from the West of Scotland Research
Ethics Committee (reference 20/WS/0074; Integrated
Research Application System project ID 28362015/WS/
0258). Sections were processed and labelled using a stan-
dard immunoperoxidase technique for paraffin sections,
using heat-induced epitope retrieval. Sections to be
labelled with Dako anti-vp1 (5D8/1; Dako Cytomation,
UK) were heated in 1 mmol/l EDTA, pH 8.0. Primary
antibodies were applied for 30 min at room temperature,
and a Dako REAL EnVision detection system was used
for antigen detection [10].

Statistical analysis Sample size calculation with a power of 0.8
predicted that a sample size of 69 was required to detect a
threefold increase in EV detection sensitivity from a propor-
tion in population 1 (p1)=0.1 to p2=0.3. Statistical analysis
was performed using GraphPad Prism (version 8, GraphPad
Software, USA). Odds ratios and p values were calculated
using two-sided Fisher’s exact test, and 95% confidence inter-
vals were computed using the Baptista–Pike method [37]. A p
value <0.05 was considered statistically significant. Power
analysis (post hoc and a priori) was performed using
G*Power (version 3.1.9.7) [38].

Results

Enhanced detection of EV-RNA in the cellular compartment of
peripheral blood The presence of EV-RNA was evaluated in
various peripheral blood fractions in individuals with type 1
diabetes, mAAb-positive individuals and individuals with neither
type 1 diabetes nor autoantibody. We first aimed to establish
which compartment in peripheral blood provides the highest
sensitivity for detection of EV-RNA. We tested plasma and
PBMCs isolated by density gradient centrifugation from the same
blood drawn on 101 occasions from a total of 79 children in our
children cohort. We found superior sensitivity to detect EV-RNA
in the cellular compartment (i.e. PBMCs), in which 18 of 101
samples (17.8%) tested positive for EV-RNA, compared with the
non-cellular compartment (i.e. plasma) in which 1 of 101 samples
(1.0%) tested positive for EV-RNA (OR 21.69; 95% CI 3.64,
229.20; p<0.0001) (Fig. 1a). In the one instance where positivity
was seen in the plasma sample, the PBMC sample also tested
positive for EV-RNA. To further pinpoint the cellular compart-
ment that harbours EV-RNA, we tested four immune cell subsets
in addition to whole PBMCs for the presence of EV-RNA in a
cohort of adults with and without type 1 diabetes. These subsets
were B cells, monocytes, mDCs and pDCs, all representing
antigen-presenting cells (APCs).

We detected EV-RNA in a higher proportion of individuals
when analysing APC subsets combined (26.4%, 19/72) than
when analysing whole PBMCs from the same individuals
(5.6%, 4/72) (OR 6.09; 95% CI 2.10, 17,17; p=0.0011) (Fig.
1b). Individuals who tested positive for EV-RNA in whole
PBMCs also tested positive for EV-RNA in at least one subset
of APCs. Two of these individuals tested positive in the mono-
cyte subset, one in the B cell subset, and one in all APC subsets.
Among all individuals who tested positive for EV-RNA, EV-
RNA was detected in the B cell subset for eight individuals, in
the monocyte subset for eight individuals, in the mDC subset
for four individuals, in the pDC subset for six individuals, and
in whole PBMCs for four individuals. We did not find a differ-
ence in the sensitivity for detection of EV-RNA between the
different subsets of APCs. Overall, we detected EV-RNA in the
cellular compartment (i.e. PBMCs) of 15/79 individuals in the
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children cohort (19.0%) and 19/72 individuals in the adult
cohort (26.4%) (Fig. 1d and b, respectively).

EV-RNA detection correlates with autoimmunity and disease
in children but not in adults Next we investigated whether
positivity for EV-RNA in PBMCs correlates with defined
stages of type 1 diabetes, i.e. adults with recently diagnosed
type 1 diabetes (<3 months) and children positive for mAAb
with an ongoing autoimmune reaction.

In the adult cohort, we detected EV-RNA in nine of 37
individuals with type 1 diabetes (24.3%) compared with 10
of 35 individuals without type 1 diabetes (28.6%) (p=0.79)
(Fig. 1c). In the children cohort, EV-RNA was detected in

PBMCs in 14 of 49 children with mAAb (with or without type
1 diabetes) (28.6%) compared with one of 30 matched control
children (without autoantibody or type 1 diabetes) (3.3%) (OR
11.60; 95% CI 1.89, 126.90; p=0.0065) (Fig. 1d).

Increased detection of EV-RNA in peripheral blood but not
tissue in individuals carrying the common type 1 diabetes-
predisposing allele in IFIH1 We next investigated whether
detection of EV infection (by detecting EV-RNA or VP1) in
individuals correlates with the predisposing allele (946Thr) of
the common variant in IFIH1 (rs1990760, Thr946Ala). The
distribution of the common variant in IFIH1 in cohorts, and
detection of EV-RNA according to subgroup and genotype, is
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Fig. 1 Detection of EV-RNA in peripheral blood. In the children cohort,
the presence of EV-RNA was assessed in plasma and PBMCs (a) and in
PBMCs from specific subgroups (d). In the adult cohort, the presence of
EV-RNAwas assessed in defined peripheral blood cell subsets (b) and in
individuals with and without type 1 diabetes (c). Red shading indicates

EV-RNA-positive; white indicates EV-RNA-negative. Differences
between groups were statistically significant as indicated: *p<0.05;
**p<0.01; ***p<0.001 (Fisher’s exact test, two-sided). T1D, type 1
diabetes

Table 1 Detection of EV-RNA
and IFIH1 genotype in the chil-
dren and adult cohorts

Cohorts and subgroups IFIH1 variants Total

946Ala/Ala 946Ala/Thr 946Thr/Thr EV-RNApos/ total

Children

No islet autoantibody 0/9 (0.0) 0/13 (0.0) 1/8 (12.5) 1/30 (3.3)

mAAb

With T1D 1/9 (11.1) 4/12 (33.3) 2/3 (66.7) 7/24 (29.2)

Without T1D 2/8 (25.0) 4/12 (33.3) 1/5 (20.0) 7/25 (28.0)

Sub-total 3/17 (17.7) 8/24 (33.3) 3/8 (37.5) 14/49 (28.6)

All children 3/26 (11.5) 8/37 (21.6) 4/16 (25.0) 15/79 (19.0)

Adult

With T1D 0/5 (0.0) 3/17 (17.7) 6/15 (40.0) 9/37 (24.3)

Without T1D 1/7 (14.3) 6/17 (35.3) 3/11 (27.3) 10/35 (28.6)

All adults 1/12 (8.3) 9/34 (26.5) 9/26 (34.6) 19/72 (26.4)

Children and adult combined 4/38 (10.5) 17/71(23.9) 13/42 (31.0) 34/151 (22.5)

Data are shown as EV-RNA-positive individuals/total individuals (frequency of EV-RNA positivity
expressed as %)

T1D, type 1 diabetes

1705Diabetologia (2022) 65:1701–1709



summarised in Table 1. We found that homozygosity for the
protective allele (946Ala) significantly reduced the OR to detect
EV-RNA in both the recessive model (homozygous protective
vs homozygous risk: OR 0.26; 95% CI 0.087, 0.84; reciprocal
of OR 3.81; 95% CI 1.19, 11.46; p=0.031) and the additive
protective model (homozygous protective vs homozygous risk
and heterozygous: OR 0.33; 95% CI 0.12, 0.98; reciprocal of
OR 3.07; 95% CI 1.02, 8.58; p=0.045), when analysing the
children and adult cohorts in combination (Table 2). In the adult
and children cohorts, respectively, EV-RNA was detected in
34.6% (9/26) and 25.0% (4/16) of individuals who were homo-
zygous for the predisposing allele, 26.5% (9/34) and 21.6%
(8/37) of individuals who were heterozygous, and 8.3% (1/12)
and 11.5% (3/26) of individuals who were homozygous for the
protective allele of the common variant in IFIH1 (Table 1).

We then explored whether the correlation between the
protective allele (946Ala) and reduced detection of EV infec-
tion in the cellular compartment of peripheral blood also
extends to pancreatic islets studied in situ. To this end, we
assessed the presence of the EV capsid subunit viral protein

1 (VP1) in pancreatic tissue sections recovered from 43
donors with type 1 diabetes and held within the Exeter
Archival Diabetes Biobank (data reported previously by
Richardson et al [10]). VP1 was detected in the pancreatic
islets of 72.1% of the donors (31/43). Detection of VP1 did
not correlate with predisposing allele (946Thr) of the
common variant (rs1990760, Thr946Ala) in IFIH1. VP1
was detected in the pancreatic islets of 70.0% (7/10),
76.2% (16/21) and 66.7% (8/12) of donors with the homo-
zygous risk variant, those who were heterozygous, and
those with the homozygous protective common variant
(rs1990760, Thr946Ala) in IFIH1, respectively (Fig. 2).

Discussion

Our data from the children cohort show a significantly
increased sensitivity for detection of EV-RNA within the
cellular compartment of peripheral blood compared with plas-
ma. Additionally, using the adult cohort, we found that EV
infection was detected in more individuals when APC subsets
(B cells, monocytes, mDCs and pDCs) were analysed for EV-
RNA, compared with whole PBMCs. These observations had
statistical power (post hoc) of >0.9. Hence, our data indicate
that APCs are ‘carriers’ of EV-RNA in peripheral blood as
every individual that tested positive for EV-RNA in the
PBMC sample also tested positive for EV-RNA in at least
one subset of APCs. Similar observations, that EV-RNA is
foundmore frequently in PBMCs than serum, have beenmade
previously, albeit in a smaller cohort [14]. We postulate that
APCs are carriers of EV-RNA because they pick up enterovi-
rus in infected tissues or because these cells are sites of active
viral replication, as suggested previously [39, 40]. EV infec-
tion in APCs may markedly modulate their function and effi-
cacy of viral and autoantigen presentation. InfectedAPCsmay
also serve as a carrier to transport virus to uninfected tissues.

Our analysis shows that positivity for EV-RNA is associ-
ated with islet autoimmunity. Children positive for mAAb
were more likely to test positive for EV-RNA than those with-
out mAAb (post hoc statistical power 0.85). In children

Table 2 OR for detection of EV-RNA according to IFIH1 variants

Combined Adult Children

IFIH1 946 variant OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Ala/Ala vs Thr/Thr 0.26 (0.087, 0.84) 0.031* 0.17 (0.015, 1.22) 0.13 0.39 (0.089, 1.69) 0.40

Ala/Ala vs Ala/Thr 0.37 (0.13, 1.18) 0.13 0.25 (0.021, 1.71) 0.25 0.47 (0.13, 1.91) 0.50

Ala/Ala + Ala/Thr vs Thr/Thr 0.53 (0.23, 1.21) 0.13 0.53 (0.18, 1.56) 0.27 0.64 (0.19, 2.08) 0.49

Ala/Ala vs Ala/Thr + Thr/Thr 0.33 (0.12, 0.98) 0.045* 0.21 (0.019, 1.47) 0.16 0.45 (0.13, 1.73) 0.36

OR were calculated using the Baptista–Pike method

p values are for EV-RNA-positive vs EV-RNA-negative (Fisher’s exact test, two-sided); *p<0.05
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Fig. 2 Detection of EV capsid protein VP1 in pancreatic islet sections.
EV capsid protein VP1 was detected by immunohistochemistry in tissues
from 43 donors with type 1 diabetes, with the defined variant in IFIH1
(rs1990760, Thr946Ala). Red shading indicates EV-RNA-positive; white
indicates EV-RNA-negative. Differences between groups were not statis-
tically significant (Fisher’s exact test, two-sided)
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positive for mAAb, we found a similar frequency of EV-RNA
positivity among children who later progressed to type 1
diabetes and those who have not yet progressed. In the adult
cohort, we did not detect a correlation (p=0.79) between posi-
tivity for EV-RNA and type 1 diabetes, potentially due to the
increased sensitivity of detection of EV-RNA in PBMC
subsets. Overall, our findings are in line with the results of
previous studies summarised in meta-analyses by Yeung et al
andWang et al [6, 7], the majority of which reported increased
detection of EV infection in individuals with autoimmunity
and/or type 1 diabetes compared to those without.

Given the ‘snapshot’ nature of this and previous studies
[14, 41] and the fact that EV viraemia lasts for only up to
two weeks in peripheral blood [13], we suggest that larger
study cohorts, longitudinal sampling, and improved sensitivi-
ty of viral detection (as shown here) are likely to be needed to
reveal significant differences. This may be achieved using
cohort studies such as the Finnish Type 1 Diabetes
Prediction and Prevention study, which regularly sample chil-
dren longitudinally. It is also probable that genetic variation,
rather than disease stage, defines the effectiveness of the anti-
viral response, the rate of viral clearance and the level and
spread of any EV infection, and therefore influences the detec-
tion of EV-RNA.

To obtain a larger cohort, we combined our two cohorts,
and found that individuals carrying the predisposing allele
(946Thr) of the common variant in IFIH1 (rs1990760,
Thr946Ala) were more likely to test positive for EV-RNA
than those without the predisposing allele (in both the additive
and protective recessive models). However, our results are
based on a limited sample size and low statistical power (post
hoc) (0.62 and 0.54 for the recessive and additive protective
models, respectively). In the few studies reported so far, no
correlation was found between IFIH1 (rs1990760,
Thr946Ala) homozygous genotypes and EV-RNA detection
in peripheral blood [14, 29] or faecal samples [8]. Our results,
and the proposed methodology for improved EV-RNA detec-
tion, suggests that further studies, with an increased sample
size (power of 0.8 predicted at n=68 per homozygous group,
based on our reported proportions of EV-RNA detection per
group) should allow definition of the relationship between the
IFIH1 Thr946Ala genotype and EV infection detected in
peripheral blood.

A potential limitation of our study is that symptoms
observed in individuals with recent-onset type 1 diabetes
(particularly children) may overlap with those of a virus infec-
tion. This overlap in symptomsmay introduce a sampling bias
between study groups (i.e. individuals without type 1 diabetes
and individuals with recent-onset type 1 diabetes) if symptoms
observed in individuals with recent-onset type 1 diabetes are
misinterpreted as the exclusion criterion, or vice versa.
However, we did not observe a sampling bias with regard to
the exclusion criterion ‘virus-like’ illness in the children

cohort. In the adult cohort, none of the sampled participants
exhibited symptoms of ‘virus-like’ illness at the time of
recruitment and sampling. However, we do not have data on
individuals that were not recruited to the study due to meeting
the exclusion criterion. Therefore, we cannot state whether
such a sampling bias occurred in the adult cohort. Thus, while
we think it unlikely that a sampling bias occurred between the
study groups of individuals without type 1 diabetes and with
recent-onset type 1 diabetes in the adult cohort, we cannot
exclude this.

We then further tested whether our finding of an associa-
tion between the predisposing allele of the common variant
and increased EV-RNA detection in peripheral blood extends
to pancreatic tissue of post-mortem donors with type 1 diabe-
tes. As previously reported, we detected the EV capsid protein
VP1 in pancreatic islets in the majority (>70%) of donors with
type 1 diabetes [10, 12]. Here we report that we did not detect
a correlation between the predisposing allele (946Thr) of the
common variant in IFIH1 (rs1990760, Thr946Ala) and the
presence of EV infection (i.e. positivity for VP1) in pancreatic
islets. This probably reflects the fact that most individuals with
type 1 diabetes display signs of EV infection in pancreatic
islets, and that the effect of the variant in IFIH1 may be more
nuanced than simply the presence or absence of VP1 positiv-
ity in islets.

Our finding of a significantly increased prevalence of EV-
RNA in children positive for mAAb, regardless of their IFIH1
genotype, suggests that a dysregulated immune response and
ongoing autoimmunity may interfere with the control and/or
clearance of EV infection. We cannot exclude the possibility
that infection of pancreatic islet cells by enterovirus is influ-
enced by genetic predisposition. Our analysis focused solely
on detection of immunopositivity for the capsid protein VP1.
Future analysis of the level of expression of VP1 within islet
cells and/or the frequency of VP1-positive cells within pancre-
atic islets may provide further insights into the effects of
genetic predisposition to type 1 diabetes by the common vari-
ant in IFIH1 (rs1990760, Thr946Ala).

In summary, our results indicate a correlation between
the ability to detect EV-RNA in the cellular compartment of
peripheral blood and the presence of the predisposing allele
(946Thr) of the common variant (rs1990760, Thr946Ala) in
the type 1 diabetes risk gene IFIH1. We also show that
enterovirus is detected more often in children with islet
autoimmunity compared to those without. Our data further
support the view that analysis of APCs increases the sensi-
tivity for detection of EV infection in peripheral blood, and
that EV infection is part of the aetiology of type 1 diabetes.
Ongoing studies for development of vaccines against
Coxsackievirus strains to prevent type 1 diabetes will also
be informative [42], and may require consideration of
genotype/phenotype information for stratification of partic-
ipants in trials.
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