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Abstract

Background: Viruses are among the shortest yet highly abundant species that harbor minimal instructions to infect cells, adapt,
multiply, and exist. However, with the current substantial availability of viral genome sequences, the scientific repertory lacks a
complexity landscape that automatically enlights viral genomes’ organization, relation, and fundamental characteristics.

Results: This work provides a comprehensive landscape of the viral genome’s complexity (or quantity of information), identifying
the most redundant and complex groups regarding their genome sequence while providing their distribution and characteristics
at a large and local scale. Moreover, we identify and quantify inverted repeats abundance in viral genomes. For this purpose, we
measure the sequence complexity of each available viral genome using data compression, demonstrating that adequate data com-
pressors can efficiently quantify the complexity of viral genome sequences, including subsequences better represented by algorithmic
sources (e.g., inverted repeats). Using a state-of-the-art genomic compressor on an extensive viral genomes database, we show that
double-stranded DNA viruses are, on average, the most redundant viruses while single-stranded DNA viruses are the least. Contrarily,
double-stranded RNA viruses show a lower redundancy relative to single-stranded RNA. Furthermore, we extend the ability of data
compressors to quantify local complexity (or information content) in viral genomes using complexity profiles, unprecedently pro-
viding a direct complexity analysis of human herpesviruses. We also conceive a features-based classification methodology that can
accurately distinguish viral genomes at different taxonomic levels without direct comparisons between sequences. This methodol-
ogy combines data compression with simple measures such as GC-content percentage and sequence length, followed by machine
learning classifiers.

Conclusions: This article presents methodologies and findings that are highly relevant for understanding the patterns of similarity
and singularity between viral groups, opening new frontiers for studying viral genomes’ organization while depicting the complexity
trends and classification components of these genomes at different taxonomic levels. The whole study is supported by an exten-
sive website (https://asilab.github.io/canvas/) for comprehending the viral genome characterization using dynamic and interactive
approaches.
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� We provide a comprehensive landscape of viral
genomes’ complexity.

� We demonstrate that data compressors can efficiently
quantify the complexity of viral genome sequences, in-
cluding subsequences better represented by algorithmic
sources.

� We identify and quantify inverted repeats abundance in
viral genomes.

� We use minimal bidirectional complexity profiles as lo-
cal measures of the viral genome.

� We present an in-depth complexity analysis of the hu-
man herpesviruses.

� We show that the viral genome redundancy, GC-content,
and size are efficient features to accurately distinguish
between viral genomes at different taxonomic levels.

� Our work opens new frontiers for studying viral
genomes’ complexity while depicting complexity trends
in viral genomes.

Introduction
Viruses are a strong driving force of life and evolution. They are
the shortest and most abundant life realm, estimated at around
1031 particles [1]. Likewise, viruses occupy almost every ecosystem
[2–4] and infect all types of life forms [5, 6].

Viruses depend on the host’s cell for replication. This depen-
dence has forced viruses to interact with cellular pathways to
successfully hijack and customize the host cell machinery for vi-
ral production. This interaction generated a long-standing effect
of adaptation and counteradaptation between host and viruses
for gene expression and nucleic acid synthesis. Furthermore, dur-
ing their replication, viruses can perform horizontal gene transfer,
which increases the host species’ genetic diversity analogously to
the process of sexual reproduction [7].

Despite the significant impact that viruses have on the evo-
lution of living beings and the ecosystem, our understanding of
viruses is still relatively limited compared with other realms of
life. In particular, the complexity landscape of viruses is unknown.
For example, what are the most redundant and complex viral
DNA/RNA sequences? Which viruses contain more genomic inver-
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sions? How does the complexity distribution of viruses describe
their morphology and behavior? What can be uncovered by an-
alyzing the complexity of the viral genomes regarding viral pro-
cesses? Moreover, is the information uncovered shared between
the same viral groups? By studying the complexity of viral se-
quences and performing information quantification, one might be
able to answer some of these questions.

Complexity analysis of the genome sequences is not new and
is frequently performed by data compressors, which serve as an
upper bound to Kolmogorov complexity. Many examples of these
studies appeared after creating the first compressor for DNA se-
quences [8]. Specifically, data compression has been used to de-
tect repeated sequences in the Plasmodium falciparum DNA, and
observed patterns were related to large-scale chromosomal orga-
nization and gene expression control [8]. The XMAligner tool [9]
was created for pairwise genome local alignment, which consid-
ers a pair of nucleotides from 2 sequences related if their mutual
information in context is significant. To measure the information
content of nucleotides in sequences, they used a lossless compres-
sion method. Graph compression was used for comparing large bi-
ological networks [10]. This method was done by compressing the
original network structure and then measuring the similarity of
the 2 networks using the compression ratio of the concatenated
networks. The method was applied to several organisms, show-
ing an efficient capability to measure the similarities between
metabolic networks. Data compression was used to approximate
the Kolmogorov complexity and applied to data derived from se-
quence alignment data [11]. This process identified a novel way
of predicting 3 different aspects of protein structure: secondary
structures, interresidue contacts, and the dynamics of switching
between different protein states. An analysis of the complexity
of different DNA genomes was performed, demonstrating various
evolution-related findings linked with complexity, notably that ar-
chaea have a higher relative complexity than bacteria and eukary-
otes on a global scale. Furthermore, viruses have the most com-
plex sequences according to their size [12]. Metagenomic compo-
sition analysis of a sedimentary ancient DNA sample was per-
formed using relative compression of whole-genome sequences
[13]. The results showed that several viruses and bacteria ex-
pressed high levels of similarity relative to the samples. Finally, an
alignment-free tool was created to accurately find genomic rear-
rangements of DNA sequences following previous studies, which
took alignment-based approaches or performed fluorescence in
situ hybridization (FISH) [14].

Given the applicability of compression methods in the analysis
of genomic sequences and intending to better understand viruses,
in this article, we perform an extensive complexity analysis of
the viral world through the automatic computational analysis of
its genome complexity and associated characteristics. Specifically,
we use a genomic compressor to analyze the complexity across
viral taxonomies and quantify the algorithmic information em-
bedded in viral genome sequences better represented by small
programs. Several questions arise when addressing this problem:
How much information is present in a viral genome? What is the
best way to quantify the information in a viral genome? What
type of information can we retrieve from analyzing the complex-
ity of the viral genome? We use unsupervised probabilistic and al-
gorithmic information quantification of viral genomes to answer
these questions. We use a high-quality database using the NCBI
reference database with 12,168 complete reference genomes from
9,605 viral taxa.

Since studying the complexity of a DNA/RNA sequence re-
quires efficient data compressors that take into account the prob-

abilistic and algorithmic characteristics of the data, we compared
several state-of-the-art genomic data compressors and another
approximation of the Kolmogorov complexity besides data com-
pression. This comparison was made to evaluate their ability to
detect inverted repeats (IRs) with increasing levels of mutations.
The results show that GeCo3 could detect and compress IRs, un-
like other programs, using appropriate computational resources.

Consequently, GeCo3 was used to analyze viruses’ complexity
and overall abundance of inverted repeats and construct clado-
grams. The results of our study show several insights into patterns
between the complexity and viral groups and that these measure-
ments can perform viral genome authentication and classifica-
tion with high accuracy without directly comparing the sequences
but instead using the individual features.

The following section describes the article’s background and
related work. A description of the methods follows and the results
obtained. Finally, we discuss the significant results obtained, draw
conclusions, and point out possible future work lines.

Background
This article shows that the efficient use of specific data compres-
sors to quantify data complexity (Kolmogorov complexity) pro-
foundly impacts viral genomes identification, classification, and
organization. For introducing several concepts, this section pro-
vides an overview of the viral nature, Kolmogorov complexity and
data compression, and the role of inverted repeats in the genome
sequence.

Viruses’ microbiology
Viruses are submicroscopic biological infectious agents that re-
quire living cells of an organism to be active for replication [15]
(for more information regarding viral morphology and genome,
see the supplementary material of this article).

They have a vast size variation, ranging from around 10 nm
with small genomes to viruses with similar dimensions and
genome sizes to bacteria and archaea [16, 17]. These viruses are
called giant viruses and contain many unique genes currently not
found in other life forms.

There can also be hybrid viruses [18], making it difficult to iden-
tify species [19]. There are several possible combinations for the
creation of a hybrid virus. One possible way is the infection of
a host’s cell by 2 or more related viruses and consequential ex-
change of sequences between viruses. The result is the creation of
a new variant derived from the parental genomes. Another possi-
ble way is the recombination of RNA viral genomes with the host’s
RNA. Finally, there is evidence that small DNA viruses could have
been created by recombination events between RNA viruses and
DNA plasmids [18].

Although the origin of viruses is still uncertain, they play an
essential role in the evolution of living organisms since they are
horizontal gene transfer vehicles. This biological phenomenon in-
creases genetic diversity. Furthermore, it occasionally allows viral
genetic material to integrate into the host genomes, transferred
vertically to its offspring. This property is so preponderant in evo-
lution that the origin of the eukaryotic nucleus might be related
to this process [20–22].

Additionally, viral genomic integration allows us to infer the
evolutionary distance between hosts by observing the shared
virus integrated into their genomes. For instance, in humans,
viruses frequently establish persisting infections [23] and imprint
their genetic material in the tissues throughout life, displaying
phylogeography patterns. These can be used as markers to under-
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stand the human population history and migrations better and
provide new insights into unidentified individuals’ origins on both
global and local scales [24]. In this respect, the JC polyomavirus
is one of the most comprehensively studied viruses. Its genotype-
specific global spread has been suggested to indicate the origins of
modern [25] and ancient humans [26–28]. Furthermore, a world-
wide study supported the co-dispersal of this virus with major
human migratory routes and its co-divergence with human mi-
tochondrial and nuclear markers [29].

Thus, computer analysis of viral and host DNA sequences
is fundamental to understanding the evolutionary relationships
between different viruses and their hosts, identifying modern
viruses’ ancestors, and better understanding their behavior and
function. Also, the genomic sequences encode the production of
proteins and their high-dimensional folding structure [30, 31].
Therefore, the direct study of viral genome sequences also devel-
ops knowledge of the viral mechanism of protein formation and
assembly.

Inverted repeats
IRs are nucleotide sequences with a downstream reverse comple-
ment copy, causing a self-complementary base-pairing region [32].
Consequently, IRs usually fold into different secondary structures
(hairpin- and cruciform-like structures, pseudoknots) that partic-
ipate or interfere in many cellular processes in all forms of life,
including DNA replication [33, 34]. Due to these traits, IRs play
an essential role in genome instability [35], contributing to muta-
bility. This mutability can create diseases in the short term [36]
but across long periods leads to cellular evolution and genetic
diversity [37]. In many viruses, IRs in pseudoknots are involved
in ribosomal frameshifting. This translational mechanism allows
the production of different proteins encoded by overlapping open
reading frames (ORFs) of the same messenger RNA (mRNA) [38,
39]. This feature allows them to encode a more significant amount
of genetic information in small genomes and constitutes another
level of gene regulation [40].

The genomes of some viruses, such as parvovirus, are flanked
by inverted terminal repeats (ITRs) that form hairpin structures
functioning as a duplex origin of replication sequence [33, 41].
Therefore, these ITRs contain most of the cis-acting information
needed for viral replication and viral packaging [41]. In adeno-
associated viruses, ITRs are essential for intermolecular recombi-
nation and circularization of genomes [42]. IRs can also function
as termination transcription signals, especially in giant viruses
[43, 44].

Kolmogorov complexity and data compression
Solomonoff, Kolmogorov, and Chaitin [45–48] described the notion
of data complexity by showing that there is at least 1 minimal al-
gorithm among all the algorithms that decode strings from their
codes. For all strings, this algorithm allows codes as short as any
other, up to an additive constant that depends only on the strings
themselves. Concretely, algorithmic information is a measure that
quantifies the information of a string x by determining its com-
plexity K(x) by

K(x) := min
p

{l(p) : U(p) = x}, (1)

where K(s) is defined by a shortest length l of a binary program p
that computes the string x on a universal Turing machine U and
halts [47]. This notion that the complexity of a string can be de-
fined as the length of a shortest binary program that outputs that

string was universally adopted and is the standard to perform
information quantification. It differs from Shannon’s entropy be-
cause it recognizes that the source creates structures that follow
algorithmic schemes [49, 50], rather than regarding the machine
as generating symbols from a probabilistic function.

While the Kolmogorov complexity is noncomputable, it can be
approximated with programs for such purpose. A possible approx-
imation is the coding theorem method (CTM) [51] and its improved
version, the block decomposition method (BDM) [52], which ap-
proximate local estimations of algorithmic complexity, providing
a closer relationship to the algorithmic nature. This approxima-
tion decomposes the quantification of complexity for segmented
regions using small Turing machines [51]. For modeling the statis-
tical nature, such as noise, it commutes into a Shannon entropy
quantification. This approach has shown encouraging results for
many distinct purposes [53–55]. However, it has also shown un-
derestimation issues related to side information [56].

The classical approximation of the Kolmogorov complexity is
performed using data compressors with probabilistic and algo-
rithmic schemes [57]. Data compressors are a natural solution to
measure complexity since, with the appropriate decoder, the bit-
stream produced by a lossless compression algorithm allows the
reconstruction of the original data and, therefore, can be seen as
an upper bound of the algorithmic complexity of the sequence.
For a definition of safe approximation, see Bloem et al. [58].

In genomics, sequences can be codified as messages using a
4-symbol alphabet (� = {A, C, G, T} for DNA sequences and � =
{A, C, G, U} for RNA sequences). These messages contain instruc-
tions for survival and replication of the organism, its morphol-
ogy, and historical marks from previous generations [59]. Initially,
genomic sequences were compressed with general-purpose data
compressors such as gzip [60], bzip2 [61], or LZMA [62]. However,
this paradigm shifted toward using a specific compression algo-
rithm after introducing BioCompress [63]. Genomic compressors
can outperform general-purpose compressors since they are de-
signed to consider specific genomic properties such as the pres-
ence of a high number of copies and substitutional mutations and
multiple rearrangements, such as inverted repeats [64, 65].

Given this advantage of using specific compressors for the com-
pression of genomic data, several algorithms have emerged to
model these genomic data behaviors [66]. Specifically, several al-
gorithms have been created to model repetitions and inverted rep-
etitions in the genome regions through simple bit encoding, dic-
tionary approaches, and context modeling [67–77].

Currently, state-of-the-art compressors have different objec-
tives, such as optimizing for compression strength or prioritizing
a balance between compression speed and compression capabil-
ity. Examples of the latter are NAF (Nucleotide Archival Format)
[78, 79] and MBGC (Multiple Bacteria Genome Compressor) [80],
which are more suitable for collections of data and frequently
used by computational biologists. Compressors focused on com-
pressibility at the expense of more computational resources, on
the other hand, generally apply statistical and algorithmic model
mixtures combined with arithmetic encoding. Among the best
compressors regarding compression ratio performance for vari-
ous genomic sequences, the best results are provided by cmix
[81], XM [82], Jarvis [83], and Geco3 [84]. For additional informa-
tion regarding data compressors’ compressibility capacity of ge-
nomic sequences, see Kryukov et al. [85]. Cmix [81] is a general-
purpose lossless data compression program that optimizes com-
pression ratio at the cost of high CPU/memory usage. It is based on
PAQ compressors [86, 87] but dramatically increases the amount
of processing per input bit and computational memory. Current
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updates include LSTM (Long Short-Term Memory)–based mod-
els [88]. The XM compressor [82] uses 3 types of experts: repeat
models, a low-order context model, and a short-memory context
model. On the other hand, Jarvis [83] uses a competitive prediction
model that estimates for each symbol the best class of models to
be used. There are 2 classes of models: weighted context mod-
els and weighted stochastic repeat models, where both classes of
models use specific subprograms to handle inverted repeats ef-
ficiently. Finally, GeCo3 [84], currently one of the best-performing
reference-free data compressors, uses neural networks to improve
upon the results of specific genomic models of GeCo2 [89]. Specif-
ically, the neural networks are used in mixing multiple contexts
and substitution-tolerant context models of GeCo2. Furthermore,
GeCo3 has embedded subprograms capable of detecting genome-
specific patterns, such as inverted repeats.

Methods
This section describes the measures used in this article. Specifi-
cally, we first define information-based measures: the normalized
block decomposition method (NBDM), the normalized compres-
sion (NC) with different subprograms, the normalized compres-
sion capacity (NCC), the difference between NCs, and the min-
imal bidirectional complexity profiles. Afterward, we define the
GC-content and the compression benchmark performed. Finally,
we describe the classification pipeline—specifically, the features
and classifiers used and the metrics utilized for evaluating the
model’s performance.

Information-based measures
This section describes 2 approximations of the Kolmogorov com-
plexity, one based on the decomposition of a string into blocks
and their approximation based on the output of small Turing ma-
chines (BDM) and another based on data compression. The data
compression approach was utilized to compute the NC and con-
struct the minimal bidirectional complexity profiles. Therefore,
in this subsection, we describe the NC, the minimal bidirectional
complexity profiles, and the NBDM.

NBDM

A possible approximation of the Kolmogorov complexity is given
by using small Turing machines (TMs), which approximate the
components of a broader representation. The CTM uses the algo-
rithmic probability between a string’s production frequency from
a random program and its algorithmic complexity. The more fre-
quent a string is, the lower its Kolmogorov complexity, and the
lower frequency strings have, the higher Kolmogorov complexity
is. The BDM increases the capability of a CTM, approximating lo-
cal estimations of algorithmic information based on Solomonoff-
Levin’s algorithmic probability theory. In practice, it approximates
the algorithmic information, and when it loses accuracy, it ap-
proximates the Shannon entropy. Since in this article we use BDM
to perform a comparison with the NC, we considered the normal-
ization of the BDM (NBDM) according to Silva et al. [56]. In this
case, the NBDM is computed as

NBDM(x) = BDM(x)
|x| log2 |�| = BDM(x)

2 × |x| . (2)

where x is a string, BDM(x) is the BDM value of the string, |�| is
the number of different elements in x (size of the alphabet), and
|x| is the length of x. Since we have a 4-symbol alphabet (� = {A, C,
G, T} for DNA sequences and � = {A, C, G, U} for RNA sequences),
|�| = 4, log2(4) = 2. Although BDM has difficulty dealing with full-

information quantification due to the block representability, it has
proven to be a helpful tool for measuring and identifying data con-
tent similar to simple algorithms [56].

NC

An efficient compressor provides an upper-bound approximation
for the Kolmogorov complexity. Specifically, K(x) < C(x) ≤ |x|log2|�|,
where K(x) is the Kolmogorov complexity of the string x in bits, C(x)
is the compressed size of x in bits, and |x| is the length of string x.
This relation neglects the constant that asymptotically becomes
irrelevant. Usually, an efficient data compressor is a program that
approximates both probabilistic and algorithmic sources using af-
fordable computational resources (time and memory). Although
the algorithmic nature may be more complex to model, data com-
pressors can have embedded subprograms to handle this nature.
The normalized version, known as the NC, is defined by

NC(x) = C(x)
|x| log2 |�| = C(x)

2 × |x| . (3)

Given the normalization, the NC enables to compare the pro-
portions of information contained in the strings independently
from their sizes [12]. If the compressor is efficient, then it can ap-
proximate the quantity of probabilistic-algorithmic information
in data using affordable computational resources. In our work, to
determine the NC, we made use of the state-of-the-art genome
compressor GeCo3 [84], with the level 16 that yielded the best av-
erage results (benchmark provided in the Results section).

Besides the computation of the NC using the standard configu-
ration of this model, we also computed the NC using GeCo3 with 3
subprogram configurations. These subprogram configurations ad-
dress the use or absence of inverted repetitions, namely:

� IR0 → uses the regular context model without IR detection,
� IR1 → uses IR detection simultaneously with the regular con-

text model, and
� IR2 → uses IR detection subprogram without regular context

models.

There was a need to determine the sequences with the high-
est NCC in some cases. When the compressor was only using
the subprogram IR2, NCC was computed as NCCIR2 (x) = 1 − NCIR2 .
Only positive values were considered to filter computations where
the compressor could not compress the sequence sufficiently. An-
other measure used to quantify inverted repeats was the differ-
ence between NCIR0 and NCIR1 .

Minimal bidirectional complexity profiles

A complexity profile is a numerical sequence describing for each
symbol (xi) of a sequence x the number of bits required for its com-
pression, assuming a causal order [90]. A minimal bidirectional
complexity, B(x), profile assumes the minimal representation of
compressing the sequences using both directions independently,
namely,

−→
C (xi ) as from the beginning to the end of the sequence

and
←−
C (xi ) as from the end to the beginning [91]. Accordingly, these

profiles are defined as

B(xi ) = min{−→C (xi ),
←−
C (xi )}. (4)

The construction of these profiles follows a pipeline formed of
many transformations, including reversing, segmenting, invert-
ing, and using specific low-pass filters after data compression to
achieve better visualization. For computing these profiles, we use
the GTO toolkit [92].
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The generation of these profiles is robust to localize specific
features in the sequences, namely, low- and high-complexity se-
quences, inverted repeat regions, and duplications, among others.

Other measures
The 2 other measures used to perform viral analysis and classifi-
cation are the GC-content (GC) and the length of the viral genome
|x|.

GC-content (GC) represents the proportion of guanine (G) and
cytosine (C) bases out the quaternary alphabet (� = {A, C, G, T/U}).
This includes thymine (T) in DNA and uracil (U) in RNA. The GC
percentage is given by the number of cytosine (C) and guanine (G)
bases in a viral genome x with length |x| according to

GC(x) = 100
|x|

|x|∑

i=1

N (xi||xi ∈ �), (5)

where xi is each symbol of x (assuming causal order), � is a subset
of the genomic alphabet containing the symbols {G, C}, and N is
the program that counts the numbers of symbols in �.

GC-content is variable between different organisms and corre-
lates with the organism’s life-history traits, genome size [93], and
GC-biased gene conversion [94]. Furthermore, in RNA viruses, ex-
cess C to U substitutions accounted for 11–14% of the sequence
variability of viruses, indicating that a decrease in GC-content is a
potent driver of RNA viruses’ diversification and longer-term evo-
lution [95]. As such, this measure helps perform viral classifica-
tion.

On the other hand, it was shown that the number of base
stackings (typical arrangement of nucleobases found in the 3-
dimensional structure of nucleic acids) is one of the most critical
elements contributing to the thermal stability of double-stranded
nucleic acids. Furthermore, due to the relative locations of exo-
cyclic groups, GC pairings have higher stacking energy than AT or
AU pairs [96]. This energy accumulation in the GC pair in an organ-
ism’s genome makes the DNA more prone to mutation. Thus, over
time, a species tends to decrease its GC-content to become more
stable [97], giving us further information regarding viral charac-
terization.

Data description
The data set is composed of 12,163 complete reference genomes
from 9,605 viral taxa retrieved from the NCBI database on 22 Jan-
uary 2021.1 The download was performed in a custom manner to
retrieve the taxonomic ID, host, and geolocation of each reference
genome. The metadata header was removed from each sequence
using the GTO toolkit [92], where any nucleotide outside the qua-
ternary alphabet {A, C, G, T/U}, was replaced by a random nu-
cleotide from the quaternary alphabet. Notice that the sequences
with symbols outside the alphabet are scarce. Finally, the type of
genome and the taxonomic description of each sequence were re-
trieved using Entrez-direct [98].

Then, the retrieved NCBI sequences were filtered to remove
possibly contaminated or poorly sequenced sequences. First, us-
ing the taxonomic metadata, sequences that did not hold com-
plete taxonomic information down to the genus rank and any se-
quences that maintained a taxonomic description of unclassified
were removed. Second, we applied a filter to remove outlier se-
quences. Specifically, after computing all sequences’ length, GC-
content, and normalized complexities, sequences whose measure

1 https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=N
ucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=RefSe
q&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:00:
00.00Z%20TO%202021-01-22T23:59:59.00Z

fell outside μ ± 3 × σ (approximately 0.03% of all sequences) of
any measure were removed. A total of 182 sequences were re-
moved since they most likely have errors in the assembly process
or contamination. After filtering, we kept 6,091 of the initial 12,163
sequences.

Data compressors and level selection benchmark
First, we tested cmix and GeCo3 regarding compression ratio and
time required per sequence compression. This was followed by se-
lection of a total of 19 levels of models in GeCo3 to determine the
best level configuration to compress the viral sequences. These
levels correspond to the default 13 levels of the GeCo3 compressor
and 6 others built for this task. The list of the levels used is shown
in Supplementary Table S1, and the description of parameters can
be found in Supplementary Table S2. The 13 default levels of the
compressor have increasingly higher complexity and take longer
to run since they use higher-context models. Therefore, since the
first and lightest level performed best, the other 6 custom-built
levels were also built with lightweight models.

Classification
We tested several machine learning algorithms to perform the ge-
nomic and taxonomic classification task—namely, the classifiers
used were linear discriminant analysis (LDA) [99], Gaussian naive
Bayes (GNB) [100], K-nearest neighbors (KNN) [101], support vector
machine (SVM) [102], and XGBoost classifier (XGB) [103].

Linear discriminant analysis is a generalization of Fisher’s lin-
ear discriminant, a method used in statistics and other fields to
find a linear combination of features that separates classes of ob-
jects. The resulting combination can be used as a linear classi-
fier [99]. Gaussian naive Bayes is defined as a supervised machine
learning classification algorithm based on the Bayes theorem fol-
lowing Gaussian normal distribution [100]. K-nearest neighbors
is another approach to data classification, taking distance func-
tions into account and performing classification predictions based
on the majority vote of its neighbors [101]. Support vector ma-
chines are supervised learning models with associated learning
algorithms that construct a hyperplane in a high-dimensional
space using data and perform classification [102]. Finally, XGBoost
[103] is an efficient open-source implementation of the gradient
boosted trees algorithm. Gradient boosting is a supervised learn-
ing algorithm that predicts a target variable by combining the es-
timates of a set of simpler models. Specifically, new models are
created that predict the residuals or errors of prior models and
then added together to make the final prediction. This task uses
a gradient descent algorithm to minimize the loss when adding
new models. XGBoost can use this method in both regression and
classification predictive modeling problems.

The accuracy and weighted F1-score were used to select and
evaluate the classification performance of the measures. Accu-
racy is the proportion between correct classifications and the total
number of cases examined, while the F1-score is computed using
the precision and recall of the test. We utilized the weighted ver-
sion of the F1-score due to the presence of imbalanced classes.

For comparison of the obtained results, we assessed the out-
comes obtained using a random classifier. For that purpose, for
each task, we determined the probability of a random sequence
being correctly classified (phit) as

phit =
n∑

i=0

[p(ci ) ∗ pcorrect (ci )], (6)
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where p(ci) is the probability of each class, determined as

p(ci ) = |samplesclass|
|samplestotal |

.

On the other hand, pcorrect(ci) is the probability of that class being
correctly classified. In the case of a random classifier,

pcorrect (ci ) = 1
|classes| .

Results
The results reported in this article can be computed using the
minimal characteristics described in the supplementary subsec-
tion entitled Software and Hardware recommendations and us-
ing the procedures described in the supplementary subsection
entitled Reproducibility. The following subsections describe the
data, the compression level selection benchmark, the synthetic
sequence benchmark, the viral genome analysis and cladograms,
and the viral classification application.

Data compressors and level selection benchmark results
Viral genomes have specific characteristics, for example, short
length, high average complexity, and specific structures, that re-
quire the proper optimization of the data compressor to provide
higher modeling adaptability and efficiency. Cmix and GeCo3 are
state-of-the-art genomic compressors. To assess the viability of
each compressor, we tested their computational time and NC val-
ues on a small sample consisting of 8 medium-size viral genomes.
The results, presented in Supplementary Figure S2, show that the
compression ratio of GeCo3 is, on average, slightly better, with a
much more reasonable computational time (on average, 3 orders
of magnitude faster than cmix). As such, for the remaining of the
work, we consider the GeCo3 compressor.

On the other hand, GeCo3 contains many types of compression
levels [84]. Therefore, we applied GeCo3 to each viral genome from
the data set using 19 different levels and computed its NC.

We evaluated the frequency where each level yielded the lowest
NC (provided the best compression for a given sequence; Fig. 1A)
and determined the sum of the NC from the compression of all
reference genomes for each model (Fig. 1B). Overall, we selected
level 16 because it provided the lowest NC on average (28.38% as
the best compression level) and the lowest NC sum from com-
pressing all reference genomes. This level is constituted by a mix-
ture using a neural network with the following models:

� Model 1 → context order of 1, alpha parameter of 1 (without
inverted repeats), and gamma parameter of 0.7

� Model 2 → context order of 12, alpha parameter of 1/50 (with
inverted repeats), and gamma parameter of 0.97

The chosen level is constituted by 2 models with a small and av-
erage context model. This configuration performed better because
most viral genomes are small and compact, where a small ge-
nomic space usually separates repetitions and IRs. Therefore, the
depth of the models is more adapted to provide higher efficiency
to the average of the viral genomes than, for example, a higher-
context model (higher than 13) that can perform marginally better
in more extensive and repetitive sequences but that loses sensi-
tivity in the average of the genomes.

Synthetic sequence benchmark
Viral genomes can contain IRs whose subsequences are better de-
scribed using simple algorithmic approaches. To benchmark the
capability of different programs to quantify IRs accurately, we cre-

Figure 1: Selection of a level for GeCo3 from a pool of 19 levels. (A)
Frequency where each level provided the best NC results. (B) The sum
for each level of the NC from the compression of all reference genomes.
For better visualization, please visit the website
https://asilab.github.io/canvas/.

ated a genomic sequence of 10,000 nucleotides in which the last
5,000 were inverted repeats of the first 5,000. This size was cho-
sen since the median size of the viral genomes is 9,836 bases,
which is close to the total size of the synthetic sequence gener-
ated. This sequence was mutated incrementally from 0% to 10%,
meaning that the number of IRs decreases with the increase of nu-
cleotide substitutions. For each sequence, the NC was computed
with (Fig. 2) (i) GeCo3, without and with the IR detection program
(IR0 and IR2, respectively); (ii) PAQ8; and (iii) Cmix. Additionally,
the NBDM was also computed as a more prone measure of algo-
rithmic nature quantification. Results show that GeCo3 with the
IR2 subprogram compresses the sequences better than the other
programs since its NC is lower at a 0% mutational rate (Fig. 2).
All other compressors (cmix and PAQ8) could not detect IRs and
compress the sequence. Furthermore, NBDM also cannot detect
the IRs because it provides the same high value across sequences
with various mutation rates. It is also evident that GeCo3 with IR2

can detect IRs even in the presence of substantial mutations (5%
of mutation) and takes into account different levels of nucleotide
substitutions because it increases with the increase of the muta-
tional rate (i.e., decrease of IRs). The difference between NCIR0 and
NCIR1 , both computed with GeCo3, was also analyzed. Its profile
is inverse to the IR2 and confirms that nucleotide substitutions’
accumulation decreases the number of IRs in the sequence.

Viral genome analysis and cladograms
The core of the viral genomes was analyzed in terms of complex-
ity landscape, including the trends, singularities, and patterns for
both the use or absence of IRs. The NC, using GeCo3, with IR0, IR1,
and IR2 subprograms, was determined and the NCCIR2 was calcu-
lated. The outcome was interpreted according to the genome type
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Figure 2: Plot describing the variation of normalized compression (NC)
and normalized block decomposition method (NBDM) with an increase
of mutation rate of a sequence (0–10%). The NC was computed using the
state-of-the-art genomic compressor (GeCo3 [84]) and a general-purpose
compressor (PAQ8 [104]). The NBDM (red line), the NC value using cmix
(brown line), and PAQ8 (purple line) are depicted. Furthermore, the
GeCo3 compressor with (IR2) and without (IR0) the IR detection
subprogram is shown with orange and blue lines, respectively. Finally,
the green line shows the difference between NCIR0 − NCIR1 .

or the taxonomic group, together with the average of their genome
sizes (Fig. 3 and Supplementary Table S3). Notice that the NC en-
ables to compare proportions of the absence of redundancy inde-
pendently from the sizes of the genomes. This value is comple-
mentary to the normalized redundancy. Specifically, consider the
redundancy (R) of a sequence x as R(x) = log2(A)|x| − C(x), where |x|
is the length of the sequence, A is the cardinally of the sequences’
alphabet, and C(x) is the compressed size of x in bits, and the nor-
malized redundancy (NR) as NR(x) = 1 − (C(x)/(log2(A)|x|)).

Complexity landscape according to genome type

According to NCBI, the virus’s genomes herein analyzed are of 5
types: double-stranded DNA (dsDNA), single-stranded DNA (ss-
DNA), double-stranded RNA (dsRNA), single-stranded RNA (ss-
RNA), and mixed DNA. Results show that ssDNA, followed by
mixed-DNA and dsRNA viruses, are the genomes with higher NC,
whereas dsDNA genomes have the lowest (Fig. 3A; Supplementary
Table S3). In general, smaller genomes are less complex and are
more likely to contain fewer repeats and, hence, less redundancy,
and the ssDNA, mixed-DNA, and dsRNA genomes have smaller
average sequence lengths (3,282 bp, 3,258 bp, and 8,377 bp; Sup-
plementary Table S3).

According to the NCC and the NCIR0 − NCIR1 difference results,
dsDNA and ssDNA have the most significant quantities of IRs
than the other genome types. This can be due to ITRs present
at the ends of some dsDNA viruses, such as adenovirus and am-
pullaviruses, and ssDNA virus as parvoviruses or other important
IR structures that perform ribosomal frameshifting.

Complexity landscape according to taxonomic level

In complexity analysis of viral genomic sequences, when con-
sidering the realm taxonomic level (Fig. 3B), the lowest NC val-
ues were obtained for Adnaviria, Varidnaviria, and Duplodnaviria
(Supplementary Tables S4 and S5). These results are consistent

with the genomic grouping since they are composed exclusively
of dsDNA viruses and have the highest sequence lengths. Thus,
generally, an inverse correlation between genome size and NC
was also observed as with the genome type analysis (Figs. 3A and
B) and occurs across all taxonomic levels (Supplementary Table
S5). However, within these 3 realms, Adnaviria has the lowest se-
quence length and presented a higher compressibility than Varid-
naviria and Duplodnaviria, suggesting that the last are highly
complex.

Regarding IRs, Adnaviria was the realm where the highest com-
pression was obtained using the IR2 subprogram (highest rate
of IRs; Supplementary Table S6). Consequently, its only recog-
nized kingdom, Zilligvirae, has also one of the highest NCC val-
ues (Supplementary Table S6). Adnaviria is a realm constituted
of mostly A-form dsDNA viruses, and the ends of their genomes
contain ITRs [105]. A-form is proposed to be an adaptation allow-
ing DNA survival under extreme conditions since their hosts are
hyperthermophile and acidophile microorganisms from the ar-
chaea domain [105, 106]. The fact that Adnaviria presented the
lowest NC might indicate that their genomes require redundancy
to survive such extreme environments. The kingdom Trapavirae,
belonging to the realm Monodnaviria, is also composed by ds-
DNA viruses that infect halophilic archaea. Together with king-
dom Zilligvirae, Trapavirae presented the highest difference be-
tween IRs and standard compression (Supplementary Table S7).
These results also support the fact that IRs can stabilize the
DNA of viruses that exist in extreme environments. It has already
been demonstrated that archaeal viruses with linear genomes use
diverse solutions for protection and replication of the genome
ends, such as including covalently closed hairpins and terminal
IRs [107].

At the family level, Botourmiaviridae presented the highest
complexity, followed by Alphasatellitidae and Tolecusatellitidae
families (Supplementary Table S5). Botourmiaviridae is composed
of ssRNA viruses that infect plants and filamentous fungi [108].
Curiously, plants and fungi have higher redundancy despite the
lower redundancy of their pathogens. Alphasatellitidae and Tole-
cusatellitidae are families of satellite viruses that depend on
the presence of another virus (helper viruses) to replicate their
genomes. These satellite viruses have minimal genomes, making
sense that they possess very low redundancy. Regarding IRs, Mala-
coherpesviridae, Herpesviridae, and Rudiviridae contained the
highest NCIR0 − NCIR1 difference (Supplementary Table S7). Mala-
coherpesviridae and Herpesviridae are dsDNA viruses evolution-
arily close since they belong to the order Herpesvirales [109]. Mala-
coherpesviridae encompasses the genera Aurivirus and Ostreav-
irus, which infect molluscs. Herpesviridae are also known as her-
pesviruses and have reptiles, birds, and mammals as hosts. This
family will be discussed in more detail in the following subsec-
tion. Rudiviridae is a family of viruses with linear dsDNA genomes
that also infect archaea. The virus of these families is highly ther-
mostable and can act as a template for site-selective and spatially
controlled chemical modification. Furthermore, the 2 strands of
the DNA are covalently linked at both ends of the genomes, which
have long ITRs [110]. Again, these IRs could be an adaptation to
stabilize the genome.

Complexity landscape of the family Herpesviridae

Here we analyzed the complexity landscape of the genera of
the family Herpesviridae in more detail, and results show a sig-
nificant variation between them (Fig. 4A). Mardivirus had the
highest NCIR0 − NCIR1 difference among all viruses, and only 3
other genera (out of 13) of herpesviruses were within the 10
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Figure 3: Average normalized compression (ANC) and average sequence length per viral group. The values were obtained for genome type (A) and
realm (B). To view all boxplots by groups of realm, kingdom, phylum, class, order, family, and genus, please visit the website
https://asilab.github.io/canvas/.

Figure 4: Average normalized compression (ANC) and average sequence length per the genera of the Herpesviridae family (A) and for various human
herpesviruses (B). In the boxplot where the genera of the Herpesviridae family are displayed, 2 genera were selected, one with a low level of inverted
repeats (Lymphocryptovirus) and one with a high level (Mardivirus). Then, a representative reference sequence was selected (Lymphocryptovirus—human
herpesvirus 4 or Epstein–Barr virus, NCBI Reference Sequence: NC_024450.1; Mardivirus—Falconid herpesvirus 1 strain S-18, NCBI Reference Sequence:
NC_009334.1) and minimal bidirectional complexity profiles were created (C).

highest differences list (Supplementary Table S7). Indeed, the
genus Mardivirus had the highest compression, whereas the genus
Lymphocryptovirus possessed very low compression with the IR2

subprogram. We performed the minimal bidirectional complex-
ity profiles of 1 sequence of each virus to visualize their dis-
tribution of complexity locally (Fig. 4C). As we can see, hu-
man herpesvirus 4 (also known as Epstein–Barr virus [EBV]) has

more internal repeats (Fig. 4C, IR0 profile) detected and fewer
IRs (Fig. 4B; IR2 profile). The opposite occurs with the Falconid
herpesvirus 1 strain S-18, where IRs are more prominent than
internal repetitions. Furthermore, notice that these regions de-
termined with compression profiles coincide with actual re-
gions detected in the genome with other methods (Fig. 4C; first
profile).
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A particular group of family Herpesviridae are the human her-
pesviruses (HHVs). These viruses are involved in globally preva-
lent infections and cancers and characterized by lifelong per-
sistence with reactivations that can potentially manifest life-
threatening conditions [111]. Globally, the HHVs present a higher
redundancy relative to other viruses (Fig. 4B). These viruses are di-
vided into (i) the alpha-subfamily members, namely, herpes sim-
plex virus types 1 and 2 (HSV-1 and HSV-2) and varicella-zoster
virus (VZV); (ii) the beta-subfamily of human cytomegalovirus
(HCMV) and human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-
6B, and HHV-7); and (iii) the gamma-subfamily of EBV and Ka-
posi’s sarcoma–associated herpesvirus (KSHV). Specifically, EBV,
one of the most potent cell transformation and growth-inducing
viruses known, capable of immortalizing human B lymphocytes,
contains a higher redundancy than the other HHVs (Fig. 4B). The
other gamma-herpesvirus, KSHV, is the genome with the high-
est NCIR1 (Fig. 4B). Unlike the beta- and gamma-subfamilies, the
alpha-subfamily is characterized by a substantial quantity of IRs,
as suggested by the NCs with IR1 and IR2 configurations (Fig. 4B).
The VZV has the shortest genome and the highest NC within
this group. These differences might be justified by the different
rates of evolution within these genomes [112]. Considering the
beta-subfamily members, HCMV contains a small proportion of
IRs while having a substantially high NC relative to other HHVs
being analyzed. Since the HCMV has the largest genome, this
was surprising because the NC typically has an inverse corre-
lation with the genome size and the quantity of IRs. The other
beta-subfamily members are the human herpesviruses 6A, 6B,
and 7, which produced lower NCs (with IR1 and IR2 configura-
tions) compared to the other HHVs, with a low quantity of IRs,
an effect that their integrating function might favor. For instance,
HHV-6A and 6B can integrate their genomes into the telomeres
of latently infected cells [113, 114]. Thus, their genomes con-
tain subsequences similar to the human telomere regions that
can be formed by internal nucleotide repetitions [115]. As such,
these are sequences with very low complexity and, hence, highly
compressible.

Alternative visualization methods of the viral complexity
landscape

Cladograms were generated depicting the redundancy (NC;
Fig. 5A) and the prevalence of inverted repeats (NCC; Fig. 5B) on
each taxonomic branch. In addition, we performed the same anal-
ysis to portray the relation between inverted and internal repeti-
tions (Supplementary Fig. S3). These cladograms show the broad
picture of the regions with more complex and less redundant
sequences, regions rich in inverted repeats, and regions with a
higher prevalence of inverted repeats relative to standard repe-
titions in the genomes.

Another way to analyze the results is by producing 3-
dimensional scatterplots of randomly sampled values obtained
from computing the features’ sequence length (SL), NC, and GC-
content (GC; Fig. 6A) or 2-dimensional scatterplots of their pro-
jections (Fig. 6B and C), both concerning a particular taxonomic
level (herein realm). Analyzing the sequence length projections
(Fig. 6B), it is evident that there is a logarithmic downtrend of the
NC with the increase in sequence length. Thus, although longer
sequences have, on average, greater complexity (absolute quan-
tities), they have higher redundancy, which the data compressor
takes advantage of to perform a better compression. On the other
hand, the NC versus the GC-content displays a normal distribu-
tion around the 0.5 GC-mark, with higher complexities associ-
ated with similar frequency of occurrence of the 4 bases A, C, G,

and T/U (Fig. 6C). This result also makes sense since, in principle,
a well-distributed frequency of bases makes more complex se-
quences to compress. More importantly, the NC, GC, and SL seem
to discriminate between different taxonomic groups (Fig. 6). As
such, in the following section, we analyze the classification capa-
bility of these features.

Viral classification
Although sequence alignment is essential for genomic analysis,
the fact that pairwise and multiple alignment methods are of-
ten slow methods led to the popularization of fast alignment-free
methods for sequence comparison. Most alignment-free meth-
ods are based on word frequencies for words of a fixed length
or word-matching statistics. Others use the length of maximal
word matches, and others rely on spaced-word matches (SpaM).
These inexact word matches allow mismatches at certain pre-
defined positions and can accurately estimate phylogenetic dis-
tances between DNA or protein sequences using a stochas-
tic model of molecular evolution [116]. This approach has also
been updated as the multiple spaced-word matches (multi-SpaM)
method, which is based on multiple sequence comparison and
maximum likelihood [117]. Regarding viral sequences, many stud-
ies were performed on alignment-free sequence comparison and
classification. For instance, Garcia et al. [118] developed a dy-
namic programming algorithm for creating a classification tree
using metagenome viruses. For the classification tree creation, k-
mer profiles of each metagenome virus were created, and propor-
tional similarity scores were generated and clustered. Using the
JGI metagenomic and NCBI databases, the authors were able to
identify the correct virus (including its parent in the classification
tree) 82% of the time. Zhang et al. [119] created an alignment-free
method that employed k-mers as genomic features for a large-
scale comparison of complete viral genomes. After determining
the optimal k for all 3,905 complete viral genomes, a dendrogram
was created, which shows consistency with the viral Taxonomy of
Viruses (ICTV) and the Baltimore classification of viruses. He et al.
[120] proposed an alignment-free sequence comparison method
for viral genomes based on the location correlation coefficient.
When applied to the evolutionary analysis of the common hu-
man viruses, including severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), dengue virus, hepatitis B virus, and hu-
man rhinovirus, it achieves the same or even better results than
alignment-based methods. Finally, Huang et al. [121] proposed a
classification method based on discriminant analysis employing
the first and second moments of positions of each nucleotide of
the genome sequences as features, performed classification of
genomes regarding their Baltimore classification and family (12
families), and obtained a maximum value of accuracy of 88.65%
and 85.91%, respectively.

With these considerations in mind, we created an alignment-
free feature-based classification method in this section. We per-
formed 8 different classification tasks for each viral sequence
from the data set. Specifically, the sequences were classified re-
garding their genome type, realm, kingdom, phylum, class, order,
family, and genus.

We conducted a random 80–20 train–test split on the data set
to perform viral classification. Due to classes being imbalanced
in the data set, we performed several actions. First, we did not
consider classes with fewer than 4 samples. As such, depending
on the classification task, the number of samples decreased from
6,091 to the values shown in Supplementary Table S8 (N. Classes
column). Second, we performed the train–test split in a stratified
way to ensure the representability of each label in the train and
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Figure 5: Cladograms showing average normalized compression (NC) of each viral group (A) and the normalized compression capacity (NCC) (B). NCC
results were obtained by NCC = 1 − NCIR2 > 0. The red color depicts the highest complexity and the blue the lowest. The first cladogram describes the
NC of each taxonomic branch. Red color shows genomes with less redundancy and blue ones with more redundancy. On the other hand, the second
cladogram depicts the prevalence of inverted repeats on each taxonomic branch. Red indicates branches with genomes with a high percentage of
inverted repeats, whereas blue shows branches with a low percentage. For better visualization, please visit the website https://asilab.github.io/canvas/.

test sets. Finally, instead of performing k-fold cross-validation, we
performed the random train–test split 50 times, and we retrieved
the average of the evaluation metrics. Then, we computed the ac-
curacy and the weighted F1-score to select the best-performing
method.

Considering these works, herein we perform feature-based
classification. As described in the Method section, we applied 5
types of classifiers: LDA [99], GNB [100], KNN [101], SVM [102], and
XGB [103].

Furthermore, we performed classification using 7 different fea-
tures: SL, GC-content (GC), the NC values for the best-performing
model, and the NC of the same model with IR configuration to 0,
1, and 2.

These 7 features were fed to all the classifiers, and the accu-
racy and weighted F1-score were measured to determine which
classifier was best suited for this task.

Supplementary Tables S8 and S9 depict the accuracy and
weighted F1-score values obtained for each classifier. For all clas-
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Figure 6: Scatterplots of normalized compression versus sequence
length and GC-content (A), scatterplots of normalized compression
versus sequence length (B), and normalized compression versus
GC-content (C).

sification tasks, the best-performing classifier was the XGBoost
classifier.

Following this, we analyzed if all features were necessary. For
that purpose, the XGBoost classifier was used with only the NC
feature, the NC with SL and GC, and, finally, using all features.
The obtained accuracies are shown in Table 1, and the weighted
F1-score results are shown in Supplementary Table S10. The best
results are obtained when using all features. This improvement
increased when the number of classes was higher, demonstrating
that the different compression subprograms (IR0, IR1, and IR2) are
more helpful in classifying more specific taxonomic groups.

The results show a decrease in accuracy and F1-score when
there is an increase in the number of classes. Specifically, we ob-
tained the best performance in the realm classification of the
virus (accuracy, 92.57%; F1-score, 0.9234) and our lowest perfor-
mance in genus classification (accuracy, 68.71%; F1-score, 0.6561).
This decrease is mainly because the average number of samples
per class decreases as the number of classes increases. As such,
many classes may still have an insufficient number of samples to
be accurately classified. Supplementary Figure S4 represents the
number of samples (genome sequences) per viral genus. Further-
more, part of the classification inaccuracies can be explained by
possible errors in the assembly process of the original sequence
or eventual subsequence contamination of parts of the genomes.
Moreover, other inaccuracies could be due to several genomes be-
ing reconstructed using older methods that have been improved
since then [122].

Despite being pertinent, the alignment-free studies are not
directly comparable due to sample size, absence of classifica-
tion metrics, and source code. Furthermore, the method pro-
posed in this work is not only alignment free but also fea-
ture based, providing a higher level of flexibility since it does
not resort directly to the reference genomes but instead to fea-
tures that the biological sequences share. Therefore, we com-
pared our results with the outcome obtained using a random
classifier as a measure of comparison. Specifically, for each task,
we determined the probability of a random sequence being cor-
rectly classified (phit). Overall, there is a vast improvement rela-
tive to the random classifier, showing the importance of the fea-
tures used in the classification process. These classification re-
sults seem promising, showing that this metric can be utilized
for viral taxonomic classification if enough sequence samples are
provided.

Discussion
The usage of a specialized compressor is crucial to accurately
quantify the complexity present in a genome and detect the in-
trinsic algorithmic nature of the data. Genomic data are highly
heterogeneous and have high substitution mutations and data
rearrangements, such as fusions, translocations, and inversions
[64, 65]. Therefore, the ability of a genomic data compressor to
adapt to these heterogeneous data, being able to perform an
accurate structure modeling and detect repetitions in the pres-
ence of the high substitutional mutations and rearrangements
in genomic data, is fundamental to achieve high compressibil-
ity of the genome sequence. This article evaluates the capacity
to identify data-specific patterns in genomic sequences by com-
paring the potential of 3 methods to recognize IRs. Precisely, the
NBDM was estimated, and the NC was computed using a ge-
nomic compressor (GeCo3 [84]) and a general-purpose data com-
pressor (cix and PAQ8 [86, 87]). When GeCo3 had the subpro-
gram activated that detects IRs (NCIR2 ), it showed substantially
higher compression than general-purpose because cmix and PAQ
use models that do not consider these specific properties of the
genomic sequences. The same occurs when comparing GeCo3
(NCIR2 ) with NBDM, showing that despite NBDM being able to de-
tect small subprograms in synthetic data [56], it cannot detect
IRs in genomic data. Moreover, GeCo3 compression capability was
resistant to substitutional mutation up to 10%, showing that it
can also deal with this extreme nature of genomic data, namely,
approximate IRs.

On average, RNA viruses mutate faster than DNA viruses,
double-strand viruses mutate slower than single-stranded
viruses, and genome size correlates negatively with mutation
rate [123]. In this article, we have shown that the redundancy of
dsDNA is higher than ssDNA, but for RNA viruses, the opposite
occurs. The sequences used in this study to measure a lower NC
(higher normalized redundancy) of the ssRNA to dsRNA have
approximately the same length. However, the data set of dsRNA
has less than 1 order of magnitude in the number of sequences.
This difference is natural since the ssRNA is much more abun-
dant than dsRNA. Nevertheless, this discrepancy could justify
the higher normalized redundancy of ssRNA in the first instance.
However, although the lower average NC values of ssRNA are
similar to dsRNA, the dsRNA has higher NC extremes. Therefore,
we argue that this difference in the number of sequences in the
dsRNA is not significant in changing the lower average of the
ssRNA. Also, ssRNA are more prone to mutation than dsRNA
[124]. On the other hand, extensive C to U mutations have been
reported in many mammalian RNA viruses [95]. This behavior
was detected during a much faster evolution of the SARS-CoV-2,
an ssRNA virus [125]. Therefore, the faster average decrease of
GC-content in ssRNA viruses explains a decrease in the ssRNA
entropy and, hence, average NC. A higher GC-content (approxi-
mately 2%) of the dsRNA over ssRNA strengthens these outcomes
(Supplementary Table S3).

We performed an analysis of the human herpesvirus regard-
ing their genome complexity and IR abundance. Specifically, we
analyzed the various behaviors of their subfamilies and identified
that different complexities could be representative of the differ-
ent rates of evolution within these genomes. Finally, we suggest
that maybe a higher compressibility and abundance of inversions
present in herpesvirus are associated with viral genome integra-
tion.

Lastly, we evaluated the capability of using complexity mea-
sures to perform viral classification at different taxonomic levels.
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Table 1. Results obtained for viral taxonomic classification task regarding the genome type, realm, kingdom, phylum, class, order, family,
and genus using XGBoost classifier. The features used were the genome’s sequence length (SL), the GC-content (GC), and the normalized
compression (NC) values for the best model, the same model with IR configuration to 0, 1, and 2. The results correspond to the accuracy
(ACC) and the probability of a random sequence being correctly classified (phit) using a random classifier (phit(CRandom)).

Classification N. Classes N. Samples phit (CRandom ) ACCNC ACCNC+GC ACCNC+SL+GC ACCAll without SQ ACCAll Features

Genome 5 6089 20.00 75.57 80.60 87.11 81.24 87.25
Realm 5 5799 20.00 77.90 84.56 92.25 86.16 92.57
Kingdom 10 5788 10.00 76.44 82.51 90.82 84.06 90.96
Phylum 17 5778 5.88 63.97 70.69 82.36 73.21 83.41
Class 34 5845 2.94 59.83 65.90 79.05 68.66 80.23
Order 48 5838 2.08 58.44 65.08 78.20 67.88 79.62
Family 102 5990 0.98 43.35 54.06 72.46 58.34 74.46
Genus 360 4673 0.28 35.59 50.02 67.32 54.23 68.71

Notably, results showed that we can automatically and accurately
distinguish between viral genomes at different taxonomic levels
using the XGBoost classifier with all features (NC with different
configurations, GC-content, and SL). However, a decrease in accu-
racy when approaching the lowest taxonomic levels was observed,
which can be increased with future entries to the database. Fur-
thermore, when analyzing viral sequences from environmental
samples or integrated genome samples, the length of the original
viral genome is often not known. Therefore, we computed the ac-
curacy of a model that does not include this feature. Although we
obtained a lower accuracy and F1-score, the results indicate that
the method is still reliable for fast and efficient viral taxonomic
identification in these scenarios.

Finally, despite the high accuracy results obtained, further im-
provement of the results may be possible in the classification by
adding the transcribed viral proteome information.

Conclusion
This article shows that the efficient approximation of the Kol-
mogorov complexities of viral sequences as measures that quan-
tify the absence of redundancy have a profound impact on
genome identification, classification, and organization.

For computing an upper bound of the sequence complexity, we
benchmark a specific data compressor (GeCo3), after optimiza-
tion, against other approaches. Specifically, GeCo3 was compared
with high compression ratio general-purpose data compressors
(PAQ and cmix) and a measure that combines small algorith-
mic programs and Shannon entropy (BDM). Unlike the other ap-
proaches, we show that GeCo3 can efficiently address and quan-
tify regions properly described by simple algorithmic sources,
namely, inverted repeats (exact and approximate), among other
characteristics.

Using an optimized compression level of GeCo3 in an extensive
viral data set, we provide a comprehensive landscape of the viral
genome’s complexity, comparing the viral genomes at several tax-
onomic levels while identifying the genome regarding the lowest
and highest proportion of complexity. Specifically, on average, ds-
DNA viruses are the most redundant (less complex) according to
their size, and ssDNA viruses are the less redundant. Contrarily,
dsRNA viruses show a lower redundancy relative to ssRNA viruses.

We have performed an in-depth analysis of the human her-
pesvirus regarding their genome complexity and abundance of
IRs. We suggest that a higher compressibility and abundance of
inversions in herpesvirus may be associated with viral genome
integration.

We describe and use minimal bidirectional complexity profiles
of one sequence of each virus to visualize the distribution of com-

plexity of these sequences locally. These profiles can describe ac-
tual regions detected in the genome with other methods, prov-
ing the description capability of data compression at a structural
level.

We reveal the importance of efficient data compression in
genome classification tasks, explicitly showing that the complex-
ity, when combined with simple measures (GC-content and size),
is efficient in accurately distinguishing between viral genomes at
different taxonomic levels without using direct comparisons be-
tween sequences.

The methods and results presented in this work provide new
frontiers for studying viral genomes’ complexity while magnifying
the importance of developing efficient data compression methods
for automatic and accurate viral analysis.

Availability of source code and requirements
� Project name: C.A.N.V.A.S. (Complexity ANalysis of VirAl Se-

quences)
� Project home page: https://github.com/jorgeMFS/canvas
� Operating system(s): Linux
� Programming language: Bash; Python
� Other requirements: Python v3.6; Conda v4.3.27
� License: MIT License
� RRID:SCR_022552
� biotools:canvas1

The reproduction guidelines are available in the Reproducibility
section of the supplementary material.

Additional Files
Supplementary Table S1. Depiction of the parameters used in the
6 custom levels.
Supplementary Table S2. Depiction of the parameters used in the
template of a target context model.
Supplementary Table S3. Depiction of the genome type by the
highest normalized compression (NC), normalized compression
capacity (NCC), and difference. NCC is computed by NCC = 1 −
NCIR2 > 0, and the difference as di f ference = NCIR0 − NCIR1 . Fur-
thermore, the table shows the genomes’ average sequence length
(SL) and GC-content (GC).
Supplementary Table S4. Depiction of the top NC values by taxo-
nomic group. Three main groups separate the table. The first rep-
resents the highest 10 NC values using standard settings NC (best-
performing model); the second group shows the top 10 lowest NC
values obtained using the IR2 subprogram. Finally, the third group
shows the top 10 highest values of the difference between NC us-
ing IR0 and IR1 subprograms.
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Supplementary Table S5. Depiction of the taxonomic groups with
the highest NC values. The table shows each group’s average nor-
malized compression, sequence length, and GC-content.
Supplementary Table S6. Depiction of the taxonomic groups with
the highest normalized compression capacity (NCC) using only
the inverted repeats subprogram IR2. The top results were ob-
tained by NCC = 1 − NCIR2 > 0. Besides the normalized compres-
sion capacity, the table shows each group’s average sequence
length and GC-content.
Supplementary Table S7. Depiction of the taxonomic groups with
the highest difference of values between NCIR0 − NCIR1 . The table
shows each group’s average di f ference = NCIR0 − NCIR1 , sequence
length, and GC-content.
Supplementary Table S8. Accuracy (ACC) results obtained for vi-
ral taxonomic classification tasks regarding genome type, realm,
kingdom, phylum, class, order, family, and genus. The classifiers
used were linear discriminant analysis (LDA), Gaussian naive
Bayes (GNB), K-nearest neighbors (KNN), support vector machine
(SVM), and XGBoost classifier (XGB).
Supplementary Table S9. F1-score (F1) results obtained for vi-
ral taxonomic classification tasks regarding genome type, realm,
kingdom, phylum, class, order, family, and genus. The classifiers
used were linear discriminant analysis (LDA), Gaussian naive
Bayes (GNB), K-nearest neighbors (KNN), support vector machine
(SVM), and XGBoost classifier (XGB).
Supplementary Table S10. F1-score (F1) obtained for the viral tax-
onomic classification task regarding genome type, realm, king-
dom, phylum, class, order, family, and genus. The features used
were the genome’s sequence length (SL), the GC-content (GC) and
the normalized compression (NC) values for the best model, the
same model with IR configuration to 0, 1, and 2.
Supplementary Fig. S1. Illustrations of types of virus morphology.
Virus (A) is a helical virus, where the capsoid has a helical shape
that envelops the genomic material; virus (B) is icosahedral fol-
lowing cubic symmetry; virus (C) depicts a complex virus, namely,
a bacteriophage with a prolate capsid protecting the genomic ma-
terial; and (D) is virus covered by a viral envelop.
Supplementary Fig. S2. Comparison between cmix and GeCo3
when applied to various human herpesviruses regarding compu-
tational time and compression ratio obtained (NC).
Supplementary Fig. S3. Cladogram showing average difference
(NCIR0 − NCIR1 > 0). Red depicts the branches where, on aver-
age, the genome possesses more inverted repetitions than inter-
nal repetitions (higher difference), whereas blue represents the
branches with fewer inverted repetitions than internal repetitions
(smaller difference).
Supplementary Fig. S4. Frequency of genome sequences per viral
genus.

Website
The website of this article is available at https://asilab.github.io/c
anvas/. This site showcases, among other things, the pipeline of
this study, the compressor’s model selection, the detection of in-
verted repeats in synthetic genomic sequences, the viral genome
characterization with regards to genome and type of taxonomic
group, and the computed cladograms with a magnifier to allow a
better observation of the normalized complexity results with il-
lustrative examples of viruses. Snapshots of our code and other
data further supporting this work are openly available in the Gi-
gaScience respository, GigaDB [126].

Abbreviations
A: adenine; ANC: average normalized compression; BDM: block
decomposition method; C: cytosine; CTM: coding theorem
method; dsDNA: double-stranded DNA; dsRNA: double-stranded
RNA; EBV: Epstein–Barr virus; G: guanine; GC: GC-content; GNB:
Gaussian naive Bayes; HCMV: human cytomegalovirus; HHV: hu-
man herpesvirus; HSV-1: herpes simplex virus 1; HSV-2: herpes
simplex virus 2; IR: inverted repeat; K: Kolmogorov complexity;
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varicella-zoster virus; XGB: XGBoost.
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