
https://helda.helsinki.fi

Can Students Review Their Peers?: Comparison of Peer and

Instructor Reviews

Pirttinen, Nea

ACM

2022-07

Pirttinen , N & Leinonen , J 2022 , Can Students Review Their Peers?: Comparison of Peer

and Instructor Reviews . in ITiCSE '22: Proceedings of the 27th ACM Conference on on

Innovation and Technology in Computer Science Education Vol. 1 . ACM , New York , pp.

12-18 , ITiCSE '22: Proceedings of the 27th ACM Conference on on Innovation and

Technology in Computer Science Education , Dublin , Ireland , 11/07/2022 . https://doi.org/10.1145/3502718.3524762

http://hdl.handle.net/10138/348177

https://doi.org/10.1145/3502718.3524762

unspecified

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Can Students Review Their Peers? Comparison of Peer and
Instructor Reviews

Nea Pirttinen
University of Helsinki

Helsinki, Finland
nea.pirttinen@helsinki.fi

Juho Leinonen
University of Helsinki

Helsinki, Finland
juho.leinonen@helsinki.fi

ABSTRACT
Having students peer review each other’s exercises is a common
task in modern computing classrooms. In large classes, peer review
might even partly replace traditional instructor-led review – and
prior work has found some indications that the quality of peer
reviews can be close to that of instructor reviews. In this work,
we explore the difference between instructor and peer reviews of
student-created programming exercises. One task in an introduc-
tory programming course was to have students design their own
programming exercises – including an exercise description, model
solution, and test cases – which were then reviewed by peers. After
the course, we had two instructors review the same student-created
exercises. We compare the scores given by the instructors and the
students to analyze potential differences. Our results suggest that
agreement between instructors and students as measured by inter-
rater reliability is low, although differences between instructor and
student review score distributions are not statistically significant.
Additionally, instructors have more fluctuation in their reviews
compared to students. Due to the rising popularity of peer reviews,
more research is needed to examine to what extent they could
complement traditional instructor-led review of exercises.

CCS CONCEPTS
• Social and professional topics → Computing education; • Ap-
plied computing→ Interactive learning environments; • Informa-
tion systems → Crowdsourcing.

KEYWORDS
peer review, inter-rater reliability, crowdsourcing, learnersourc-
ing, contributing student pedagogy, crowdsourced programming
assignments

ACM Reference Format:
Nea Pirttinen and Juho Leinonen. 2022. Can Students Review Their Peers?
Comparison of Peer and Instructor Reviews. In Proceedings of the 27th ACM
Conference on Innovation and Technology in Computer Science Education Vol
1 (ITiCSE 2022), July 8–13, 2022, Dublin, Ireland. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3502718.3524762

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524762

1 INTRODUCTION
As enrollments to computing are rising, the number of students
attending courses is also increasing. However, this has not always
necessarily meant that those organizing the course get more re-
sources for assessment. One way how instructors have approached
this challenge is by introducing more peer review into their classes,
where students review each other’s answers.

The rising enrollments have called for large exercise pools, espe-
cially if the instructor wishes to vary which exercises students work
on in different course iterations, for example, to avoid students pla-
giarizing answers from those in prior iterations. Crowdsourcing –
sometimes called learnersourcing in the context of education [14] –
is one potential way to create large exercise pools. In learnersourc-
ing, students participate in the creation of course materials, for
example, by creating exercises that can then be given to their peers
(or used in future course iterations) as practice.

In this work, we study students’ peer reviews of programming
exercises created by other students. Specifically, the students are re-
viewing exercises designed and created by others, and not answers
to instructor-created exercises. We compare students’ peer reviews
to reviews given by two instructors to analyze both where students
and instructors agree, and where they disagree. If peer reviews
given by students are found to be reliable enough and reasonable
in quality, it would be possible to use a crowd of students to both
create exercises and review them, which would leave more time
for the instructor for e.g. supporting struggling students. Previous
work has found that students can review exercises well [8], that
novice programmers are able to give as good reviews as more ex-
perienced students to learnersourced programming exercises [22],
that students tend to create exercises that cover a variety of course
topics [2], and that students tend to follow instructions when creat-
ing learnersourced exercises [24]; although a previous comparison
of peer and tutor feedback found that feedback given by tutors was
more specific [7].

This article is organized as follows. In Section 2, we provide
an overview of previous research on peer reviewing, especially in
the context of computer science education and learnersourcing. In
Section 3, we present our research methods and questions. Then,
in Section 4, we go over the results and discuss them in Section 5.
Lastly, we conclude the article in Section 6.

2 RELATEDWORK
2.1 Peer Review
In the educational context, peer review is often used as a collabora-
tive learning activity. By assessing their peers’ work, students can
not only hone their social and collaborative skills, but also gain new
viewpoints and ideas into the course material through their peers’

Session: Assessment and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

12

https://orcid.org/0000-0001-5249-5162
https://orcid.org/0000-0001-6829-9449
https://doi.org/10.1145/3502718.3524762
https://doi.org/10.1145/3502718.3524762

answers [4]. They can also learn to identify mistakes in both their
own and others’ work, and learn to both give and receive feedback
[28]. Peer review can also ease instructors’ workload, as utilizing
peer reviews can greatly increase the quantity of feedback students
receive, especially during the course [7].

Multiple studies indicate that peer reviews can be accurate and
provide valid feedback for the students. One aspect of peer review
that is unique to computing education is the peer review of other
students’ code. In an extensive literature review of peer code review
in higher education, Indriasari et al. [10] report both common ben-
efits and difficulties, such as development of programming-related
skills and low student engagement, respectively. Hamer et al. [7]
note that while tutors were more specific in their feedback and
wrote longer comments, differences between tutor and peer feed-
back was not significant in other valuable respects, such as giving
advice. They also argue that the effect of peer reviewing does not
depend on the feedback produced, but that the primary value is
in the process of writing a review. In another study by Hamer et
al. [8], it was noted that based on a lexical sophistication analysis,
student feedback can be as good or even better than tutor feedback.

2.2 Peer Review in Learnersourcing
Contributing Student Pedagogy (CSP) [6] encourages students to
contribute into the learning of other students, and to value the
contributions of others. A closely related idea, learnersourcing [14],
is a form of crowdsourcing where the crowd consists of students,
and the sourced artefacts are used somehow by peers either on the
same or a future course iteration. In computer science education,
learnersourcing appears in many forms, such as student-created
multiple-choice questions [1, 13], programming exercises [3, 21],
SQL exercises [17], and open-ended questions [18, 26].

Many learnersourcing systems use peer review at some point
of the artefact creation or usage process to evaluate the validity
and quality of the student-created artefacts. In CrowdSorcerer [21],
which is a programming exercise learnersourcing tool, students
peer review each other’s programming exercises, and Pirttinen et
al. have reported in a study that novice students can be as good
reviewers as more experienced students [22]. Denny et al. inspected
the coverage of course topics in a student-generatedmultiple-choice
question repository collected with PeerWise [1], and reported that
despite having the freedom to choose any topic on the course for
their exercises, the students created a repository that covered all
the major topics on the course.

The accuracy of peer reviews has also been studied extensively.
Studies have reported both tendencies to overrate [20, 27] and un-
derrate [8, 25] scoring in peer assessment. Regarding self-assessment,
Stefani [27] found that high-achieving students tend to underesti-
mate, and low-achieving students overestimate their performance.

The accuracy of peer assessment can be adjusted in a multitude
of ways. Panadero and Alqassab [20] report the use of a rubric as a
support tool for peer review. In their study, all students overrated
their peers’ performance, but those using a rubric gave more valid
review scores. The number of peers can also affect peer review
accuracy. Reily et al. [25] aggregated the final peer review scores,
collected from multiple students, and reported accurate results
when compared to tutor scoring.

3 METHODS
3.1 Learnersourcing Tool
In this study, we used CrowdSorcerer [21], a computing education
tool similar to CodeWrite [3], for learnersourcing. In CrowdSorcerer,
students can create programming exercises according to instruc-
tions given by the instructor of the course. The tool, embedded
into online course materials, guides students through full program-
ming exercise creation with exercise description, code template and
model solution, and test cases. Model solution is the full, completed
code. Code template contains the basic structure of the program,
such as class and main method declarations, and possible example
input lines that the person completing the programming exercise
can see before finishing their answer. The created exercises are
submitted to a test server that checks if the given program compiles
and passes the student-created tests. Any possible error messages
are relayed back to the student, or, if all tests pass, the student re-
ceives information that their exercise has been successfully finished.
One particular feature of CrowdSorcerer is the focus on teaching
testing [12, 23].

The tool also supports peer review features. In the peer review
phase, students are given a created exercise in full, and a set of
review statements, as well as an open feedback form. Students are
not required to try and complete the programming exercise they
are reviewing themselves, though the tool does allow downloading
the exercise being reviewed as a ZIP file.

3.2 Context and Data
This study was conducted on an introductory Java programming
course in the spring of 2019. The course consists of a total of 14
weeks, and teaches the typical introductory Java programming top-
ics, such as variables, conditionals, loops, functions, objects, and
object-oriented programming. The course uses an online textbook
which contains integrated programming exercises and other prac-
tices, the tool described in Section 3.1 included. The programming
exercises are generally small, so the students complete some tens of
exercises eachweek, as opposed to completing fewer, larger projects.
This iteration of the course was organised both as a MOOC, avail-
able for anyone interested in programming fully free of charge, and
as a regular university course with weekly lectures and walk-in
laboratories. All the participating students used the same materials.

The programming exercises were created on week 12 of the
course, and peer reviewed onweek 13. Students were asked to create
a programming exercise according to the following instructions:

Create a programming exercise that can be used to practice hashmaps,
for example, how to find information from a hashmap. The person
completing the exercise should be required to program one or more
class methods in their answer.

Write an exercise description, model solution and at least three tests.
Your method will be placed in the class Submission, which means that
the class methods will be in format Submission.method(). Mark the
model solution lines that will be hidden from the programmer by
using the checkboxes on the left.

When creating the exercise description, try to be as precise as
possible. The programmer needs to know what the name of the method
they are programming should be, what the method should return, and

Session: Assessment and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

13

what parameters are given to the method. In addition, you can give
example code or example inputs that can be used to test the program.

In addition to these instructions, students were provided with
an example of a method and accompanied unit tests that were
done according to the instructions. Creating an exercise was not
mandatory, but awarded students the same number of points as
completing a typical programming exercise on the course.

During the peer review, students were given ten review state-
ments that they answered on a five-point Likert-like scale consisting
of faces ranging from frowning to neutral to smiling. The review
statements were as follows:

• The model solution corresponds to the exercise description
• The code is clean
• The model solution and the code template are separated
correctly

• The exercise is creative
• The exercise is suitably difficult
• The exercise description corresponds to the instructions
• The exercise description is clear
• The test cases are reasonable
• The test coverage is on the expected level
• The test names are descriptive

Students were given three exercises for review, two of their peers’
and their own. If a student did not create an exercise during the
previous week, they were given an additional exercise created by
a peer to review instead. As with the exercise creation process,
the peer review was not mandatory, and contrary to creating an
exercise, no points were awarded for reviewing. All the reviews
were submitted separately, so the students could also choose to
complete fewer than three reviews.

3.3 Research Questions and Approach
Our research questions are as follows:
RQ1. How many students participated in the creation and peer

review of crowdsourced exercises?
RQ2. To what extent do instructors and students agree with each

other in their reviews?
RQ3. What characteristics are there in exercises that are highly

rated by...
– RQ3.1 ...only students?
– RQ3.2 ...only instructors?

For RQ1, we compare the number of students on the course to
the number of students who completed the programming exercise
creation task, as well as the number of students who reviewed
exercises.

For RQ2, 50 student-created exercises were chosen at random
for two instructors to review. These exercises were all finished,
meaning that the exercise compiles and the given model solution
passes the student-provided unit tests. The reviews were completed
using the same review statements that the students used for peer
review, presented in Section 3.2. All of the analysis for RQ2 and
RQ3 focuses on these randomly selected 50 exercises.

Before reviewing, the instructors discussed some of the criteria
that could affect the grading of the statements, but all the reviews
were done independently. After reviewing the first 10 exercises, the
instructors also had a discussion about some edge cases and other

noteworthy observations. Neither of the instructors reviewing the
exercises in this work were the course instructor on the course in
which this study was conducted.

After the instructors had reviewed each of the 50 student-created
exercises, we calculated the average of the scores they had given for
individual review statements (see the end of Section 3.2) for each
exercise, resulting in a single score per exercise for both instructors.
For the students, we first calculated the average for the review
statement individually for each student, and then an average of
these averages per exercise. In the end, for each exercise, we had
three scores: instructor #1 score, instructor #2 score, and peers’
score.

In our case, the concrete aim in learnersourcing is to create a pool
of exercises that are of good enough quality to include in future
course iterations. Thus, for both the instructors and the students, we
consider exercises that they would “include” with two thresholds:
average score greater than 3.0 (>3) and average score greater than
4.0 (>4) on a scale of 1-5. The threshold of >3 was chosen because the
instructors hypothesized that these exercises may be reasonably
good, and could be included as small exercises in future course
iterations with some modifications. Exercises rated higher than the
second threshold of >4 are hypothesized to be excellent exercises
that could likely be included in future course iterations with either
no or very minor modifications.

To evaluate agreement between the instructors and students,
we calculate inter-rater reliability for their “include” decisions for
both thresholds separately using Krippendorff’s alpha [15]. Krip-
pendorff’s alpha measures the extent of agreement between any
number of reviewers, 1 ≥ 𝛼 ≥ −1. We inspect the alpha agreement
to the review score averages between the two instructors, and be-
tween students and instructors separately (students and instructor
#1, students and instructor #2).

The results are evaluated using the guidelines by Krippendorff
[16] where it is outlined that an 𝛼 ¡ 0.667 can be used to draw
tentative conclusions, while 𝛼 ¡ 0.800 is required for stronger con-
clusions. We also applied the Mann–Whitney U test to examine
whether differences between reviewers’ score averages are statis-
tically significant. We chose Mann-Whitney U as the data being
compared is ordinal (can be ordered) but not interval (difference
between values is not necessarily equal).

For RQ3, we inspect some of the student-created exercises for
qualitative analysis, aiming to find some common features these
exercises may have. Specifically, we examined exercises that only
students or instructors would include with the thresholds explained
above (>3 and >4 average review score). For both thresholds, we
examine four categories: both (students and instructors) include,
only instructors include, only students include, and neither include.
For the instructors, we considered an exercise to be included by the
instructors only if both instructors included it based on the above
criteria.

4 RESULTS
4.1 Student Participation
In total, 9707 students were enrolled on the course. Out of these,
1358 were active on week 12 (the week of exercise creation prompt),
and 1299 on week 13 (the respective peer reviews). A student is

Session: Assessment and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

14

Figure 1: Distribution of review scores for peers (students)
and the two instructors.

Table 1: The number of exercises that both students and
instructors, only instructors, only students, or neither would
include with an inclusion threshold of peer review average
greater than 3.0.

Both include: 39 Only instructors include: 0
Only students include: 7 Neither include: 4

Table 2: The number of exercises that both students and
instructors, only instructors, only students, or neither would
include with an inclusion threshold of peer review average
greater than 4.0.

Both include: 12 Only instructors include: 7
Only students include: 11 Neither include: 20

considered active during a week if they collected at least one point
from the week’s exercises.

Out of the active students on week 12, 405 students (29.8%) tried
creating an exercise, meaning that they submitted it to the test
server for evaluation. Out of these, 333 students (82.2%) finished the
exercise, meaning that they eventually submitted an exercise that
compiled and passed student-created unit tests. Those who did not
had some errors in their submission, such as non-compiling code,
a model solution that did not pass the tests, or a timeout occurred
due to an infinite loop.

Out of the active students on week 13, 807 students (62.1%) re-
viewed at least one exercise. In total, the exercises from week 12 re-
ceived 2290 reviews, meaning that on average each student-created
exercise received approximately seven peer reviews.

4.2 Student and Instructor Agreement
We report the agreement using two review score average thresh-
olds: exercises that received an average greater than 3.0 (>3), and
exercises that received an average greater than 4.0 (>4). How many
exercises are included in the set using this criteria is summarized

Table 3: The inter-rater reliability between instructors and
peers with review score average thresholds of greater than
3.0 and greater than 4.0.

Inclusion
threshold

Instructor #1 –
instructor #2

Instructor #1 –
peers

Instructor #2 –
peers

>3 𝛼 = 0.88 𝛼 = 0.51 𝛼 = 0.51
>4 𝛼 = 0.76 𝛼 = 0.12 𝛼 = 0.36

in Tables 1 and 2, and inspected in more detail in Section 4.3. The
distribution of the review score averages of both peer and instruc-
tor reviews is summarized in Figure 1. The Krippendorff’s alphas
between the instructors and the peer reviewers are outlined in
Table 3.

When measured with Krippendorff’s alpha, the inter-rater reli-
ability between the two instructors with average review score >3
was 𝛼 = 0.88, and with >4, 𝛼 = 0.76, where the both are consid-
erably over the threshold of 𝛼 ¡ 0.667 outlined by Krippendorff
for making tentative conclusions about content [16]. When com-
paring the average review scores, the Mann-Whitney test results
are 𝑈 = 1153.5 and 𝑝 = 0.25. The average difference between the
average scores for exercises between the instructors was 0.28 (on a
1-5 scale).

The inter-rater reliability between the students’ peer reviews and
instructor #1 when average review score >3 was 𝛼 = 0.51, and with
>4, 𝛼 = 0.12. Both 𝛼 values are noticeably lower than the 𝛼 ¡ 0.667
threshold suggested by Krippendorff [16]. For the Mann-Whitney
test, 𝑈 = 1246.0 and 𝑝 = 0.49. The average difference between
the average scores between students’ peer reviews and the first
instructor’s reviews was 0.51.

The inter-rater reliability between students and instructor #2
with average review score >3 was 𝛼 = 0.51, and with >4, 𝛼 = 0.36.
Both 𝛼 values are noticeably lower than the 𝛼 ¡ 0.667 threshold
suggested by Krippendorff [16]. For the Mann-Whitney test, 𝑈 =
1113.5 and 𝑝 = 0.17. The average difference between students’ peer
review scores and the second instructor’s reviews was 0.54.

4.3 Exercise Characteristics
In this section, we take a look into the exercises in Tables 1 and
2 that only students or instructors included with either greater
than 3.0 or greater than 4.0 threshold. The purpose was to examine
whether these exercises have any noticeable similarities in, for
example, their contents or structure.

There were seven exercises that only students rated greater than
3.0 on average, and eleven exercises that only students rated greater
than 4.0. Two of these were edge cases where one of the instructors
scored the exercise exactly at 3.0, which excluded the exercise
from the “both include” set, and one additional exercise was an
edge case in the >4 threshold. Since all these exercises share the
same issues, these features are reported as one, regardless of the
threshold. Generally, it seemed that if the exercise description and
model solution are clear and seem functional at a glance, students
tend to grade test-related statements well, regardless of the actual
quality of the test cases.

In cases where there were clear shortcomings in the exercise,
e.g., the model solution and code template were exactly the same,

Session: Assessment and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

15

or the exercise description was noticeably too short and vague, the
instructors were more strict in their scoring. While students tended
to score the statements “The model solution and the code template
are separated correctly” and “The exercise description is clear” in
these types of exercises as 3 (mid-point of the scale), both of the
instructors gave the score of 1 or 2, depending on the case.

In addition, there were seven exercises that only the instructors
included in the >4 set. Most of these exercises were on the more
difficult side of the student-created exercises, at least seemingly.
These exercises had longer, more detailed exercise descriptions,
and in some cases, the code templates had several lines of example
code for testing purposes. Even if the method to be programmed
was not complicated or too difficult for students at this point of
the course, many peer reviewers rated these exercises not suitably
difficult, specifying in the open feedback that the exercise seemed
too hard. Most of these exercises also received lower scores from
the students for the statement “The exercise description is clear”,
even though the instructors did not consider the descriptions to
contain irrelevant information.

5 DISCUSSION
One concern in prior work has been whether students will partic-
ipate in peer review [11], and as such, e.g. gamification has been
proposed as a potential way of increasing peer review participa-
tion [9, 11]. However, in our case, more students participated in the
peer review process than creating a programming exercise (62.1%
and 29.8%, respectively), even though peer reviewing did not award
any course points, unlike creating an exercise. Students might be
curious of their peers’ exercises, even if they did not use the tool
themselves for the creation process. It is also possible that peer
reviewing is seen as a less laborious task, and worth the effort, even
if it does not give any points towards the final grade.

Considering prior work that has examined the use of CrowdSor-
cerer [12], slightly fewer students created exercises in this iteration
of the course (29.8% in this study versus 38% in [12]). We have two
possible hypotheses for this. First, the prior study focused on a
course that was organized locally, whereas our study focuses on a
course offered simultaneously as a MOOC and as a local university
course. It is possible that MOOC participants are less likely to par-
ticipate in learnersourcing compared to local university students.
Second, in this study, we examined data collected later in the course
compared to the prior study (weeks 12 and 13 in this study, weeks
2 to 7 in the earlier study). It is also possible that students are more
likely to participate in learnersourcing if the activity is situated
earlier in the course.

Comparing the distributions of review scores for students and
instructors (Figure 1), one noticeable difference between the stu-
dents and the instructors is that the student review score distri-
bution seems to be slightly bimodal with peaks near 1.5/5.0 and
4.0/5.0 while the distributions for both instructors are unimodal
with peaks near 4.1/5.0. This suggests that students might deal
more in absolutes compared to the instructors. One possible expla-
nation is that students can accurately identify exercises that are
either very good or very poor, but have a harder time reviewing
mediocre exercises. This result potentially explains the findings of

prior work that has found that students tend to both under [8, 25]
and overrate [20, 27] their peers in peer review.

Looking at Figure 1, students seem to have a tendency to rate the
exercises created by their peers as “pretty good” (4/5), but give fewer
very good (5/5) or very bad (1/5) scores compared to the instructors.
These results differ from prior work that found that peers’ gave
harsher ratings compared to tutors or instructors [8]. Overall, we
found that – considering suggested thresholds for “good agreement”
as measured by Krippendorff’s alpha [16] – students and instructors
had low agreement with each other. On the other hand, there were
no statistically significant differences in review score as measured
by a Mann-Whitney U test: this also raises the question about what
methodologies would be the most appropriate for evaluating how
similarly instructors and students review exercises.

Possible ways of increasing agreement between students and
instructors would be to have a better rubric outlining how an exer-
cise should be reviewed [20]. In our case, students (and instructors)
relied on a set of review statements without explicit guidelines for
how to score these individual statements. Another possible improve-
ment suggested by prior work is to aggregate peer reviews [25]
– however, we found poor agreement between instructor reviews
and aggregated student reviews.

Student reviews seemed to give good scores across all the review
statements if the exercise description and model solution were clear
and concise, even if the given test cases were irrelevant for the
model solution or, in some cases, did not test anything. In these
cases, the instructors gave the test-related review statements lower
scores (1-2), while students still gave these statements fairly good
scores (3-4). While testing has been introduced to the students
since week 3 in small steps, students might not see the relevancy
of testing, or be hesitant to review test cases, thinking that they do
not have the skill set to do so.

Many of the exercises in the “only instructors include” category
were reviewed as too difficult by the students. On closer inspection,
these exercises were either very suitable as exercises for this point
of the course, or they were actually very simple, but with more
background information or example input lines than contained in a
typical student-created exercise. It is possible that if students review
the exercises in a hurry, they do not pay close attention to what
the exercise actually asks to implement, but get “frightened” by a
longer description and decide that the exercise is too complicated.

Multiple studies have reported that students review exercises
similarly to tutors or instructors [7, 8, 17], and that novices review
similarly to more experienced students [22]. The results of this
study contradict with these previous findings. It may be that our
review statements affect the results, as they were not intended as a
rigorous review rubric, but to provide some general overview into
what to consider when reviewing the exercises’ content.

5.1 Limitations
As a threat to external validity, we acknowledge that our results
do not necessarily generalize to other contexts. It is possible that
simply the context of learnersourcing affects reviews in a way that
is not applicable for reviewing traditional exercises. Additionally,
as students know that they are reviewing programming exercises
created by other students, they might review differently as opposed

Session: Assessment and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

16

https://juholeinonen.com/assets/img/absolute_sith.gif

to reviewing programming exercises that they would know to have
been created by a teacher.

Regarding internal validity, we acknowledge that we have no
ground truth about the quality of the exercises. However, in this
work, we are only investigating whether students and instructors
agree in their reviews, i.e. perceive the exercises similarly, and do
not address which group is better at recognizing a “good” exercise.
It can be argued that instructors should recognize suitable exercises
more easily, as they likely have more experience and thus should be
well aware of what constitutes a good exercise. However, prior work
has found the possible existence of an “expert blind spot” [5, 19],
meaning that experts can be blind to things that are more apparent
to novices. Similarly, it could easily be argued that students are
better evaluators of their own subjective experiences, e.g. related
to the difficulty of a program – which also was one of the aspects
of the created exercises in which students and instructors had most
differences in their reviews.

Peer reviews are subjective, and the students did not have a
rubric or rigorous guidance to the review process. The instructors,
on the other hand, did discuss the review statements beforehand,
meaning that the reviewing process is not fully comparable. Addi-
tionally, some of the review statements, such as “The exercise is
creative” are likely to be scored very differently by each individual.
While the instructors mostly analyzed whether the exercise was
a direct copy of a programming exercise in the course material as
a measurement of creativity, students could have rated based on
much more subjective factors, such as their sense of humor.

Lastly, we acknowledge that the reviews are Likert-like data,
which is ordinal, but not interval data.When interpreting the results,
it should be acknowledged that we have used averages as a part of
the reporting.

6 CONCLUSION
In this work, we compared the peer reviews of student-created
programming exercises to instructors’ reviews in order to analyze
potential differences in reviewers’ perceptions, and to see where
instructors and students agree and disagree in their reviews. Sum-
marized, our research questions and their answers are as follows:

RQ1. How many students participated in the creation and peer re-
view of crowdsourced exercises? Answer: Over 60% of the
active participants of the course participated in the peer re-
view, which was considerably more compared to the number
of students – about 30% – who participated in the learner-
sourcing of programming exercises. Notably, students were
given course points to participate in the exercise creation,
but not the peer review.

RQ2. To what extent do instructors and students agree with each
other in their reviews? Answer:We found that the agreement
between the instructors was reasonably high. Comparing
student and instructor reviews, however, we found conflict-
ing results. On one hand, agreement measured by inter-rater
reliability was low; but on the other hand, the differences
in review scores between the instructors and students were
not statistically significant.

RQ3. What characteristics are there in exercises that are highly rated
by...
– RQ3.1 ...only students? Answer: The exercises are gener-
ally good, but, for example, have some crucial information
missing in the problem description or poor unit tests.

– RQ3.2 ...only instructors? Answer: The exercises are at
least seemingly more complicated than the average learn-
ersourced exercise, and thus rated as too difficult by the
students, but not by the instructors.

Our results are slightly contradictory to some prior work [8, 17]
that has found students’ reviews to be close to instructor/tutor
reviews. From the instructors’ perspective, this means that as the
agreement between instructors and students reviews was low in
our case, it should be considered carefully whether peer reviews
are valid for all contexts they are currently used in. However, this
low agreement might, at least partially, be explained by the bimodal
distribution of students’ reviews. Considering the bimodal distribu-
tion, peer reviews could still be a valid review method for a coarse
binary evaluation (e.g. “exercise is adequate / exercise needs work”),
even in our context.

Future work should more closely examine potential factors, such
as what is being reviewed and how the review process is conducted,
that could illustrate when and how peer review works best. In ad-
dition, in our future work, we are interested in examining whether
there is a difference in how different student demographics, such as
novices or more experienced students, use learnersourcing tools for
both exercise creation and when reviewing their peers’ creations.
This would also include a closer inspection of student subpopula-
tions: are there, for example, groups that agree with the instructors
significantly more or less? Similarly, we are interested in whether
there are differences between those who attempt the exercises they
review exercises and those who review the exercises without at-
tempting them – for example, are reviews by those who did not
attempt the exercise more inexact?

Regarding the student-given reviews, we are interested in in-
specting the written reviews more closely, for example, by com-
paring textual peer and instructor feedback similarly to a prior
study by Hamer et al. [7]. Additionally, it would be valuable to
study other ways of aggregating student reviews in addition to
averaging. While prior work has found that aggregating student
peer reviews seems accurate [25], it is possible, for example, that
student reviews would correlate more with instructor reviews if
the lowest and highest reviews given by students were removed
before aggregation (similar to a trimmed mean).

Altogether, our results provide novel insights into the types of
exercises that students and instructors might disagree on when
reviewing, and some evidence on peer reviews not necessarily
matching instructor reviews in some contexts.

ACKNOWLEDGMENTS
We are grateful for the doctoral research grant awarded by Jenny
and Antti Wihuri Foundation to the first author.

REFERENCES
[1] Paul Denny, Andrew Luxton-Reilly, and John Hamer. 2008. The PeerWise

System of Student Contributed Assessment Questions. In Proceedings of the

Session: Assessment and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

17

Tenth Conference on Australasian Computing Education - Volume 78 (Wollon-
gong, NSW, Australia) (ACE ’08). Australian Computer Society, Inc., AUS, 69–74.
https://dl.acm.org/doi/10.5555/1379249.1379255

[2] Paul Denny, Andrew Luxton-Reilly, John Hamer, and Helen Purchase. 2009. Cov-
erage of course topics in a student generated MCQ repository. In Proceedings of
the 14th annual ACM SIGCSE conference on Innovation and technology in computer
science education. 11–15. https://doi.org/10.1145/1562877.1562888

[3] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: Supporting Student-Driven Practice of Java. In Proceedings of the
42nd ACM Technical Symposium on Computer Science Education (Dallas, TX, USA)
(SIGCSE ’11). Association for ComputingMachinery, New York, NY, USA, 471–476.
https://doi.org/10.1145/1953163.1953299

[4] Nancy Falchikov. 2007. Rethinking Assessment in Higher Education. Routledge.
Chapter 11: The place of peers in learning and assessment.

[5] Philip J. Guo, Julia M. Markel, and Xiong Zhang. 2020. Learnersourcing at
Scale to Overcome Expert Blind Spots for Introductory Programming: A Three-
Year Deployment Study on the Python Tutor Website. In Proceedings of the
Seventh ACM Conference on Learning @ Scale (Virtual Event, USA) (L@S ’20).
Association for Computing Machinery, New York, NY, USA, 301–304. https:
//doi.org/10.1145/3386527.3406733

[6] John Hamer, Quintin Cutts, Jana Jackova, Andrew Luxton-Reilly, Robert McCart-
ney, Helen Purchase, Charles Riedesel, Mara Saeli, Kate Sanders, and Judithe
Sheard. 2008. Contributing Student Pedagogy. SIGCSE Bull. 40, 4 (nov 2008),
194–212. https://doi.org/10.1145/1473195.1473242

[7] John Hamer, Helen Purchase, Andrew Luxton-Reilly, and Paul Denny. 2015. A
comparison of peer and tutor feedback. Assessment & Evaluation in Higher
Education 40, 1 (2015), 151–164. https://doi.org/10.1080/02602938.2014.893418

[8] John Hamer, Helen C Purchase, Paul Denny, and Andrew Luxton-Reilly. 2009.
Quality of peer assessment in CS1. In Proceedings of the fifth international work-
shop on Computing education research workshop. 27–36. https://doi.org/10.1145/
1584322.1584327

[9] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. 2020. Gam-
ification of student peer review in education: A systematic literature review.
Education and Information Technologies 25, 6 (2020), 5205–5234. https://doi.org/
10.1007/s10639-020-10228-x

[10] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review
of Peer Code Review in Higher Education. 20, 3, Article 22 (sep 2020), 25 pages.
https://doi.org/10.1145/3403935

[11] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. 2021. Improv-
ing Student Peer Code Review Using Gamification. In Australasian Computing
Education Conference. 80–87. https://doi.org/10.1145/3441636.3442308

[12] Vilma Kangas, Nea Pirttinen, Henrik Nygren, Juho Leinonen, and Arto Hellas.
2019. Does creating programming assignments with tests lead to improved
performance in writing unit tests?. In Proceedings of the ACM Conference on
Global Computing Education. 106–112. https://doi.org/10.1145/3300115.3309516

[13] Hassan Khosravi, Kirsty Kitto, and Joseph Jay Williams. 2019. RiPPLE: A Crowd-
sourced Adaptive Platform for Recommendation of Learning Activities. Journal of
Learning Analytics 6, 3 (2019), 91–105. https://doi.org/10.48550/arXiv.1910.05522

[14] Juho Kim. 2015. Learnersourcing: improving learning with collective learner activity.
Ph. D. Dissertation. Massachusetts Institute of Technology. https://dspace.mit.
edu/handle/1721.1/101464

[15] Klaus Krippendorff. 1970. Estimating the Reliability, Systematic Error and Ran-
dom Error of Interval Data. Educational and Psychological Measurement 30, 1
(1970), 61–70. https://doi.org/10.1177/001316447003000105

[16] Klaus Krippendorff. 2004. Content Analysis: An Introduction to Its Methodology.
Sage Publications, Inc.

[17] Juho Leinonen, Nea Pirttinen, and Arto Hellas. 2020. Crowdsourcing Content
Creation for SQL Practice. In Proceedings of the 2020 ACMConference on Innovation
and Technology in Computer Science Education (Trondheim, Norway) (ITiCSE ’20).
Association for Computing Machinery, New York, NY, USA, 349–355. https:
//doi.org/10.1145/3341525.3387385

[18] Andrew Luxton-Reilly, Beryl Plimmer, and Robert Sheehan. 2010. StudySieve:
A Tool That Supports Constructive Evaluation for Free-Response Questions. In
Proceedings of the 11th International Conference of the NZ Chapter of the ACM
Special Interest Group on Human-Computer Interaction (Auckland, New Zealand)
(CHINZ ’10). Association for Computing Machinery, New York, NY, USA, 65–68.
https://doi.org/10.1145/1832838.1832849

[19] Mitchell J Nathan, Kenneth R Koedinger, Martha W Alibali, et al. 2001. Expert
blind spot: When content knowledge eclipses pedagogical content knowledge.
In Proceedings of the third international conference on cognitive science. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.8217

[20] Ernesto Panadero, Margarida Romero, and Jan-Willem Strijbos. 2013. The impact
of a rubric and friendship on peer assessment: Effects on construct validity,
performance, and perceptions of fairness and comfort. Studies in Educational
Evaluation 39, 4 (2013), 195–203. https://doi.org/10.1016/j.stueduc.2013.10.005

[21] Nea Pirttinen, Vilma Kangas, Irene Nikkarinen, Henrik Nygren, Juho Leinonen,
and Arto Hellas. 2018. Crowdsourcing Programming Assignments with Crowd-
Sorcerer. In Proceedings of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (Larnaca, Cyprus) (ITiCSE 2018). ACM,
New York, NY, USA, 326–331. https://doi.org/10.1145/3197091.3197117

[22] Nea Pirttinen, Vilma Kangas, Henrik Nygren, Juho Leinonen, and Arto Hellas.
2018. Analysis of Students’ Peer Reviews to Crowdsourced Programming As-
signments. In Proceedings of the 18th Koli Calling International Conference on
Computing Education Research (Koli, Finland) (Koli Calling 2018). ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3279720.3279741

[23] Nea Pirttinen and Juho Leinonen. 2019. Integrating CrowdSorcerer: Lessons
Learned. In Proceedings of SPLICE 2019 workshop Computing Science Education
Infrastructure From Tools to Data at 15th ACM International Computing Education
Research Conference. National Science Foundation (NSF). https://cssplice.github.
io/ICER19/proc/SPLICE_2019_ICER_paper_9.pdf

[24] Nea Pirttinen and Juho Leinonen. 2021. Exploring the Complexity of Crowd-
sourced Programming Assignments. In Seventh SPLICE Workshop at SIGCSE
2021 “CS Education Infrastructure for All III: From Ideas to Practice”. https:
//cssplice.github.io/SIGCSE21/proc/SPLICE2021_SIGCSE_paper_1.pdf

[25] Ken Reily, Pam Ludford Finnerty, and Loren Terveen. 2009. Two Peers Are
Better than One: Aggregating Peer Reviews for Computing Assignments is
Surprisingly Accurate. In Proceedings of the ACM 2009 International Confer-
ence on Supporting Group Work (Sanibel Island, Florida, USA) (GROUP ’09).
Association for Computing Machinery, New York, NY, USA, 115–124. https:
//doi.org/10.1145/1531674.1531692

[26] Sam Saarinen, Shriram Krishnamurthi, Kathi Fisler, and Preston Tunnell Wilson.
2019. Harnessing theWisdom of the Classes: Classsourcing andMachine Learning
for Assessment Instrument Generation. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
Association for Computing Machinery, New York, NY, USA, 606–612. https:
//doi.org/10.1145/3287324.3287504

[27] Lorraine A.J. Stefani. 1994. Peer, self and tutor assessment: Relative reliabili-
ties. Studies in Higher Education 19, 1 (1994), 69–75. https://doi.org/10.1080/
03075079412331382153

[28] Keith Topping. 1998. Peer Assessment Between Students in Colleges and
Universities. Review of Educational Research 68, 3 (1998), 249–276. https:
//doi.org/10.3102/00346543068003249

Session: Assessment and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

18

https://dl.acm.org/doi/10.5555/1379249.1379255
https://doi.org/10.1145/1562877.1562888
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/3386527.3406733
https://doi.org/10.1145/3386527.3406733
https://doi.org/10.1145/1473195.1473242
https://doi.org/10.1080/02602938.2014.893418
https://doi.org/10.1145/1584322.1584327
https://doi.org/10.1145/1584322.1584327
https://doi.org/10.1007/s10639-020-10228-x
https://doi.org/10.1007/s10639-020-10228-x
https://doi.org/10.1145/3403935
https://doi.org/10.1145/3441636.3442308
https://doi.org/10.1145/3300115.3309516
https://doi.org/10.48550/arXiv.1910.05522
https://dspace.mit.edu/handle/1721.1/101464
https://dspace.mit.edu/handle/1721.1/101464
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1145/3341525.3387385
https://doi.org/10.1145/3341525.3387385
https://doi.org/10.1145/1832838.1832849
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.8217
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.8217
https://doi.org/10.1016/j.stueduc.2013.10.005
https://doi.org/10.1145/3197091.3197117
https://doi.org/10.1145/3279720.3279741
https://cssplice.github.io/ICER19/proc/SPLICE_2019_ICER_paper_9.pdf
https://cssplice.github.io/ICER19/proc/SPLICE_2019_ICER_paper_9.pdf
https://cssplice.github.io/SIGCSE21/proc/SPLICE2021_SIGCSE_paper_1.pdf
https://cssplice.github.io/SIGCSE21/proc/SPLICE2021_SIGCSE_paper_1.pdf
https://doi.org/10.1145/1531674.1531692
https://doi.org/10.1145/1531674.1531692
https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1080/03075079412331382153
https://doi.org/10.1080/03075079412331382153
https://doi.org/10.3102/00346543068003249
https://doi.org/10.3102/00346543068003249

