
https://helda.helsinki.fi

Undulate : A framework for data-driven software engineering

enabling soft computing

Asikainen, Timo

2022-12

Asikainen , T & Männistö , T 2022 , ' Undulate : A framework for data-driven software

engineering enabling soft computing ' , Information and Software Technology , vol. 152 ,

107039 . https://doi.org/10.1016/j.infsof.2022.107039

http://hdl.handle.net/10138/348175

https://doi.org/10.1016/j.infsof.2022.107039

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Information and Software Technology 152 (2022) 107039

A
0

U
c
T
U

A

K
S
M
D
C
D

1

N
c
e
t
t
c
T
t

q
o
c
b
o
o

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ndulate: A framework for data-driven software engineering enabling soft
omputing
imo Asikainen ∗, Tomi Männistö
niversity of Helsinki, Department of Computer Science, Finland

R T I C L E I N F O

eywords:
oft computing
ultilevel modelling
imensional database
ontinuous experimentation
ata-driven software engineering

A B S T R A C T

Context. Especially web-facing software systems enable the collection of usage data at a massive scale. At the
same time, the scale and scope of software processes have grown substantively. Automated tools are needed to
increase the speed and quality of controlling software processes. The usage data has great potential as a driver
for software processes. However, research still lacks constructs for collecting, refining and utilising usage data
in controlling software processes.
Objective. The objective of this paper is to introduce a framework for data-driven software engineering. The
Undulate framework covers generating, collecting and utilising usage data from software processes and business
processes supported by the software produced. In addition, we define the concepts and process of extreme
continuous experimentation as an exemplar of a software engineering process.
Method. We derive requirements for the framework from the research literature, with a focus on papers
inspired by practical problems. In addition, we apply a multilevel modelling language to describe the concepts
related to extreme continuous experimentation.
Results. We introduce the Undulate framework and give requirements and provide an overview of the processes
of collecting usage data, augmenting it with additional dimensional data, aggregating the data along the
dimensions and computing different metrics based on the data and other metrics.
Conclusions. The paper represents significant steps inspired by previous research and practical insight towards
standardised processes for data-driven software engineering, enabling the application of soft computing and
other methods based on artificial intelligence.
. Introduction

Managing software processes has become increasingly complex.
ew features and versions of software-based services are introduced
ontinuously. Consequently, the number of decisions concerning the
volution and content of such services to be made has grown. Ideally,
he decisions should be made based on all the available data, including
he data from both software and business processes. After all, any value
reated by the software is typically created in the business processes.
herefore, the data generated in the business processes can be assumed
o contain more information about the value of software.

Given the large number of decisions that are needed and the re-
uired pace of decisions, there is a dire demand for various forms
f automated decisions and decision support: In cases where the best
ourse of action is clear based on data, we argue that a decision should
e made and executed automatically. However, if the data is ambigu-
us, the relevant data should be presented to a human, and a ticket
r other entity prompting a decision should be created. The approach

∗ Corresponding author.
E-mail addresses: timo.o.asikainen@helsinki.fi (T. Asikainen), tomi.mannisto@helsinki.fi (T. Männistö).

is characteristically an exemplar of soft computing : depending on the
availability and information content of data, different kinds of decisions
can be made. When new data allowing more inferences arrives or new
business rules are encoded, more decisions can be automated flexibly.

Data-driven software engineering has gained some research interest
during the last couple of years [1–3]. In particular related to continuous
experimentation, some models such as the RIGHT model [4] and the
HYPEX model [5] have been suggested. However, these models address
the experimentation process and strategic planning specifically but fall
short of providing generic solutions for driving software processes with
data. Similarly, many authors have applied the data-driven approach to
requirements engineering, another key software engineering process [6,
7].

In recent years, machine learning and other artificial intelligence
techniques have been studied intensively. A typical pattern in artificial
intelligence research is to find the best algorithms and models, often
based on neural networks, to well-defined problems with data sets
vailable online 8 August 2022
950-5849/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2022.107039
eceived 30 November 2021; Received in revised form 26 May 2022; Accepted 4 A
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ugust 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:timo.o.asikainen@helsinki.fi
mailto:tomi.mannisto@helsinki.fi
https://doi.org/10.1016/j.infsof.2022.107039
https://doi.org/10.1016/j.infsof.2022.107039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107039&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö
in a fixed format. Often there are benchmark data sets available to
solve the problem. However, this setting is not as such applicable to
software processes nor the business processes powered by software:
there is too much variety in those processes, primarily due to the fact
that the business process can be almost any conceivable process. This
condition severely hinders the straightforward application of artificial
intelligence to software engineering and driving processes with data.

To better support the application of soft computing and other ar-
tificial intelligence methods in software engineering, we introduce the
Undulate framework. The framework covers (1) the software processes
and their control interfaces, (2) business processes powered by the
software produced in the software engineering processing, (3) collect-
ing and processing data from the above-mentioned processes, resulting
in dimensional data, (4) applying computational methods to the di-
mensional data, thus enabling the control of software processes and
generating stimuli for making decisions.

The framework is extensible: a software process may have a control
interface (or many of them) or not, and its data may be captured or
not. Similarly, the data from the business processes may be available
or not (or something in between). Furthermore, new computational
methods can be added as needed. Also, the dimensional database can
be augmented with new metrics that may be defined in terms of other
metrics or (augmented) raw data.

The remainder of this paper is structured as follows. Next, in Sec-
tion 2, we will discuss previous work, followed by a description of
the research method applied in this paper (Section 3). After that, we
provide an overview of Nivel2 (Section 4), an advanced multilevel mod-
elling language based on our earlier work that will be employed later
in the paper. After that, we proceed to discuss the Undulate framework,
starting with an overview of the related processes in Section 5. We
proceed by giving a declarative description of experimentation concepts
in Nivel2 and describing the experimentation process in the context of
Undulate in Section 6. The part concerning Undulate is concluded by a
discussion of soft computing and decision support enabled by the data.
Discussion and comparison with previous work follow in Section 7.
Conclusions and an outlook for further work round up the paper in
Section 8.

2. Previous work

2.1. Software processes as a mapping from data to data

Table 1 contains a summary of various software processes from
the data processing point of view. The table contains our abstraction
of a number of software engineering processes as they are commonly
defined in textbooks, see e.g. [8]. The table illustrates that even though
two software processes can have independent traditions and identities,
they may resemble each other from the data processing point of view:
processes are controlled using some (meta) data and produce some form
of data as output. The resemblance suggests that the same theoretical
and pragmatic tools can be used to manage the data produced by
software processes, and by the same token, by business processes. Also,
as the processes are controlled by data, the similarities also enable
driving the processes with data.

It is worth noting that although software testing has been largely
based on tests that either pass/fail, information will be lost if the test
outcome is reduced to this dichotomy. For example, in mechanical
engineering, a prominent example of the application of artificial intelli-
gence is related to maintenance: the failure of a device is often preceded
by signals such as extra vibrations, different use of power or similar.
In a similar vein, an increasing trend in the run time of an operation
may imply that failures are about to occur, e.g. due to an impending
2

timeout, and corrective action is needed.
2.2. Data-driven development

Data-driven development has been defined as the ability of a com-
pany to acquire, process, and leverage data in order to create effi-
ciencies, iterate and develop new products, and navigate the com-
petitive landscape [9]. To be useful, the ability should naturally be
accompanied by action.

The setting resembles various forms of process automation in tra-
ditional engineering domains, such as chemical processing and power
generation. In such settings, a human operator is often too slow to
control the process efficiently; hence, automation is needed. Also,
efficiency requires that the control is centralised to a control room
instead of operators staffing various control panels distributed over the
facility.1 In many cases, the data generated within the process itself is
enough to make decisions about continuing the process. This is the case
in, e.g. a customary pipeline. On the other hand, all the available data
should be leveraged when making critical decisions. Also, the data can
be leveraged in making daily decisions once it has been made easily
accessible to all processes.

2.3. Continuous software engineering and experimentation

During recent years, various continuous practices have become a
significant trend both in the practice of and research on software engi-
neering [10]. Simultaneously, experimentation has gained popularity as
a way of acquiring knowledge from real users [11,12]. The continuous
principles have been applied to experimentation as well, leading to con-
tinuous experimentation [3,13,14]. Continuous experimentation has been
studied from various points of view, including conceptual [3,11,15],
adoption [16], deployment [15] and metrics [17,18].

3. Research method

In this paper, we apply the constructive research method. In more
detail, we generalise from previous research on software processes,
data-driven approaches and automating software processes to come
up with a generally applicable framework for data-driven software
engineering.

Although empirical data is essential for keeping software engineer-
ing research aligned with the software engineering practice in the
industry, we believe that constructive research is likewise necessary.
Constructive research enables academia to introduce and elaborate on
new ideas that would be too risky to study in the industry. It may
also be the case that the most innovative ideas are only published as
research or otherwise openly discussed only several years after their
conception.

We base our understanding of the relevant fields, i.e. software
processes, data-driven approaches and automating software processes,
on previous research literature. We have collected no empirical data as
a part of the research being reported. Also, for the research literature,
we apply the classical literature review approach, with the aim to focus
on the most representative papers in each field. In addition, we run a
number of literature searches on relevant keywords in order to identify
additional relevant papers.

The fact that we do not restrict ourselves to specific application
domains or software processes implies that the kind of data we consider
in the Undulate framework is likewise highly general. This, in turn,
implies that the kind of data or even the situations in which decisions
need to be made are unknown. Consequently, it is not possible to
elaborate on specific computing methods.

We use experimentation as an example of a software process that
may benefit from data and be driven by it. Several reasons motivate
this choice. First, experimentation has not yet been thoroughly studied

1 https://en.wikipedia.org/wiki/Process_control.

https://en.wikipedia.org/wiki/Process_control


Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö

t

Table 1
Comparison of the inputs and outputs of different software processes.

Process Input Environment Output Utilisation

Experimentation Minimum viable feature or
product

Production Data on selected metrics Feature backlog (further development), Decide
whether to deploy in production

Testing Test cases (with variable degree
of specification on the results)

Test (unit, integration) (test case × execution)
↦ {pass, fail}

Alerts, tickets for bug fixes

Feature roll-out Schedule of features to be rolled
out

Production Control metrics conferred
with hypothesis

Perform rollouts in a systematic manner, roll
back if necessary

Monitoring Production Metrics on system health etc. React and repair

Simulation Agents (with specified behaviour),
software under study

Production, Offline copy of
product

Execution traces, user graphs Comments on code changes, traces, etc.

Business processes Software Production Usage data, User behaviour Analytics, tactical and strategic decision making
Fig. 1. An example of Nivel2 modelling concepts.
c

in research. Instead, there is room for new conceptions of the process
and data involved in it. Second, experimentation is essentially linked
to data: experimentation is about obtaining and analysing data from
two or more variants. Third, the data is typically generated in a pro-
duction environment, i.e. outside the context of the software processes
themselves, which makes the set-up interesting.

The research questions we set out to answer are as follows:

RQ1 What constituents are necessary to support data-driven software
processes?

RQ2 What concepts and processes are required for extreme continu-
ous experimentation for web-facing software services?

RQ3 How should the data generated by the software and business
processes be processed and analysed to support software devel-
opment?

RQ4 How can soft computing be used to support extreme continuous
experimentation?

4. Nivel𝟐 — a short introduction

We use a variant/extension of a metamodelling language Nivel
hat we have created in our previous work [19]. The idea that a
3

a

model may span an arbitrary number of levels spun by an instance
of relationship is not new; see, e.g. [20], where the authors argue
that such modelling concepts can be used to reduce the accidental
complexity due to restricting to two levels in domain models. Nivel
is based on a core set of conceptual modelling concepts: class, gener-
alisation, instantiation, attribute, value and association. Nivel can be
used to express models spanning an arbitrary number of levels defined
by the instance of relationship: this is in contrast with conventional
conceptual modelling methods, such as object-oriented modelling or
entity-relationship modelling, in which there are only two levels avail-
able: one for types (classes and tables, respectively) and instances
(objects and rows/tuples, respectively). However, in Nivel2 an entity2

can be both an instance of another entity and a type of an entity at the
same time.

The version we use is named Nivel2 and remains still unpublished.
The most important aspect in which Nivel2 is different from Nivel
is that instead of associations, Nivel2 uses references for representing

2 In Nivel, the term class was used instead of entity used in Nivel2: the term
lass implies the role of being a classifier or other entities, which is undesired
s an entity need not be a type of another entity.



Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö

𝑝
b

t

e

5

s
c
e
b
w
o
a

w
t
a

c
d

i
t
a
i
D
u
c

u
n
u
i
e
o
p

e
u
w
(
u
w
p
a

relationships between entities. This is justified by the predominance
of references in modern knowledge representation. E.g. the JSON data
format/language uses a form of references in that an object can include
another object as a named value. The use of references will be discussed
extensively below.

4.1. Concepts

Nivel2 modelling concepts are illustrated in Fig. 1, such as the
concepts of pizza and its toppings at various levels of abstraction. At
the top, the entities Pizza and Topping are defined. The first order in-
stances of Pizza represent pizza recipes or varieties, such as Margherita
shown in the figure. Further, a second-order instance of Pizza repre-
sents physical pizzas, each an instance of a first-order instance, e.g.
the Guido’s Margherita. On the other hand, first-order instances of
Topping are toppings appearing in pizza recipes, such as mozzarella or
tomato sauce, whereas second-order instances of toppings are physical
ingredients in pizzas.

Entities can be characterised using attributes and their manifesta-
tions, values. An attribute has the usual characteristics of identifier,
name, and description and a value type, and in addition a potency, a
positive integer with the semantics as follows: an instance of an entity
containing an attribute of potency p has an attribute of potency 𝑝−1, for
> 1, and may have values with the identifier, name and type defined
y the attribute for 𝑝 = 1. As an example, Pizza defines an attribute

size of potency = 2, which is manifested as values in second order
instances, e.g. physical pizzas: size is a choice that a customer makes
when ordering a pizza. On the other hand, the attribute crust represents
he type of crust in a pizza recipe. As an example, Margherita has crust

type thin.
The relationship between pizzas and toppings is represented by

Pizza having a reference to Topping. The reference has potency = 2:
this implies that the first and second-order instances of Pizza may have
a reference to one or more toppings. In the example of Fig. 1, the
reference toppings of Margherita has Mozzarella and Tomato sauce
as its targets. More generally, each reference target in an instance of
the source must be an instance of one of the targets of the source.

4.2. Implementation

We have implemented Nivel2 as follows. The data is stored in a
relational database (Microsoft SQL Server Azure) using tables for each
basic concept (entity, instance of, reference, reference target, attribute,
value, generalisation). A stored procedure can be used to query the
data related to an entity. The database can be accessed using an
API component datapi implemented in Python.3 A generic interface
component, implemented in React,4 can be used to edit and view Nivel2
ntities.

. Overview of the Undulate framework

In this section, we provide an overview of the Undulate framework
upporting data-driven software engineering. Next, we will describe the
oncepts and process of the experimentation process, a stereotypical
xample of a software process founded on data that would greatly
enefit from the application of soft computing techniques. Thereafter,
e outline how the data produced in experiments and other executions
f software can be refined and made accessible to the experimentation
nd other software processes.

As far as information systems, supported at least partially by soft-
are, implement a significant part of a company’s business processes,

he framework can also be applied to the business processes themselves
nd support the transition towards a data-driven business.

3 https://www.python.org/.
4 https://reactjs.org/.
4

s

Fig. 2. The main processes underlying Undulate. Legend (entity — graphical symbol):
Process — box, arrow — data flow, cylinder — database, grouping of processes —
nested box and overlapping boxes.

Fig. 2 illustrates the general processes underlying the Undulate
framework. A more detailed view of data processing can be found in
Fig. 3. As can readily be seen from the figure, the processes linked by
data flows form a cycle: this cycle demonstrates the fact that data drives
the processes. In the following subsections, we will discuss various parts
of the processes.

5.1. Data generation

Let us start from software (engineering) processes and the information
they produced. First and foremost, software processes produce software
that is later run as a part of business processes. Second, software pro-
esses themselves produce data, such as test reports, ticket data, activity
ata from version control systems etc.

It is assumed that the software produced by the software (engineer-
ng) processes is used in one or more business processes: as an example,
he software could be used to implement a web-facing service, such
s an online store running in a browser or a mobile application, and
ts backend running on a server and connected to various databases.
epending on to what extent the software is instrumented, details of
ser interactions with the software as well as its inner working can be
ollected and sent for further processing and analysis.

While the data produced by the software processes themselves is
ndoubtedly valuable for many purposes, usage data from the busi-
ess processes should, in general, better reflect the behaviour of the
sers of the software and, consequently, the value that the software
s producing. For example, in an online store, the software should
nable a smooth payment process. However, transaction data from the
nline store could reveal that users have difficulties completing their
urchases.

In the software engineering context, particularly related to online
xperiments, data is often assumed to be sent one record at a time
sing, e.g. an HTTP API endpoint or small batches. This is in contrast
ith traditional data warehouses, in which approaches such as ETL

extract, transform, load) based on files and scheduled (e.g. daily)
pdates have been the predominating approach. If the data is received
ith significant delay, it cannot be used for real-time analytics or
rocess control. On the other hand, once the data has been received and
ppropriately incorporated into the database, the majority of analytics
hould remain the same, notwithstanding how the data was received.

https://www.python.org/
https://reactjs.org/


Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö

o

5

c
c

d
o
c
t
e
d
i

r
r
w
e
p
m
w
t
t
b

a
t
a
w
o
s
r
s
t
s
e
c
i

e
r
t
s
a
t
W
r
b

Fig. 3. Data processing in Undulate. Legend (entity — graphical symbol): Process — box, arrow — data flow, cylinder — database, grouping of processes — nested box and
verlapping boxes.
d
v
a
m
d
t
d

t
e
i

r

b
i
s
a
o
s
f
e
o

i
l
d
a
e
r

i
o
s

d

.2. Data processing and dimensional database

Both the data produced by software processes and business pro-
esses enter the dimensional database through the data processing pro-
ess. Data processing is described in more detail in Fig. 3.

The first stage of data processing is receiving and augmenting the
ata, also called preprocessing. Data may be received by an API service
r similar, either one record at a time or, especially where a data
onnection is not continuously available, in batches. Upon receiving
he data, the data may be augmented with additional metadata: for
xample, a user ID may be used to supplement the record with other
imensional data, such as geographical location, age, gender or similar
nformation that can legally and technically be used in further analysis.

After preprocessing, the data is forked into two distinct storages:
aw data storage and dimensional database. As the name suggests, the
aw data storage contains the data in the form in which it was received,
ith no loss of information. The purpose of storing raw data is that it
nables ad hoc analysis, i.e. computing aspects of data that were not
reconceived when implementing the software. As an example, social
edia platforms enable different forms of malicious behaviour, some of
hich may not have been considered by the designers of the platform at

he design time. However, when such behaviour emerges, it is useful
o be able to go back to the data can analyse it with respect to the
ehaviour.

Privacy As the raw data has not been aggregated or otherwise
nonymised, it is possible or even likely, depending on the application,
hat the raw data is personal data: names, user IDs, IP addresses, email
ddresses etc. but also free text may be individually, or in combination
ith other data, sufficient to link the data to a person with certainty
r significant likelihood. Therefore, special legislation concerning per-
onal data may apply to the raw data. The general data protection
egulation (GDPR) of the European Union is a prominent example of
uch legislation. In essence, such legislation may, in effect, prevent
he processing of data beyond prescribed purposes and tasks. Further,
afeguards are needed to keep track of who has accessed the data
tc. Therefore, raw data or other data that has not been anonymised
annot be freely used for explanatory analyses or making decisions in
nnovative ways.

Privacy legislation, such as GDPR, usually makes no general ex-
mption to its provisions concerning data analysis. In other words, the
estrictions on processing data apply to analysis as well, and so do
he obligations of providing information on the processing of the data
ubjects. This makes developing analytical methods more difficult. To
lleviate this situation, simulation can be used to produce sample data
hat can be used as a basis for implementing various forms of analysis.

hile simulated data may be different from real user data in many
espects, it is still likely to be syntactically and structurally, and it can
5

e used to validate that the computations that are to be applied to real o
data later work as intended. We will discuss simulating user behaviour
below; see Section 6.2.2.

The main body of analysis and further computations are ideally
based on a dimensional database. The dimensional database resembles
functionally a data warehouse or a data mart 5: The data is stored
as facts in fact tables. Fact tables are linked to dimensions, such as
ate or geographic location, and facts correspondingly with dimension
alues. Each dimension includes only a manageable number of values,
lso termed levels. For example, instead of storing timestamp with the
illisecond accuracy or higher, the dimension would only include the
ate or have the precision of at most seconds. The purpose of reducing
he number of possible levels is to be able to aggregate data based on
imensions.

Aggregating data serves several purposes. First, aggregation may, if
he characteristics of data are adequately considered and implemented,
nables the anonymisation of data, making it possible to utilise the data
n the application and freely analyse it.

Second, aggregating data also helps reduce the size of the data,
esulting in faster analysis and lower storage requirements.

Third, aggregation enables joining data from multiple fact tables
ased on dimensions for analysis and other purposes. For example, it
s possible to study the interrelation between application failures and
erver load levels by joining the two fact tables according to the time
nd service instance dimensions. Note that the more fine-grained level
f dimension is used, the more direct the link between the variables
hould be; on the other hand, there will be fewer units available
or analysis, and random factors will play a larger role. Taken to an
xtreme, there may be no matching values available at all if the level
f granularity is too high.

In addition to joining the fact tables along the matching dimensions,
.e. dimensions that are the same, it may also be relevant to study
agged time dimensions which help to answer questions related to
elayed behaviour and reason about leading and lagging indicators. As
n example, a campaign, other event or an update may have long term
ffects which can be analysed by means of time series analysis of the
elated time series.

Also, retention is defined as the proportion of customers a business
s able to keep over a period of time and can be defined as the number
f customers left from the initial set at the end of the period, i.e. the
tart of the next period.

5 Although dimensional databases have been applied in practice for
ecades [see e.g. 21], there is somewhat surprisingly only a little research
n the topic.



Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö

𝜇
d

5

p
c
m
t
t
o
d

t
d

k
i
u
p
i
t

i
w
s
o

t
a

5.3. Control processes

The loop in Fig. 2 is closed when data from the dimensional
database is used in control processes to drive the software processes.
For example, the data generated in business and software processes
can be used to decide which tests to run, which features to develop
further or roll out or how much server capacity should be made
available in the future. In general, control processes can be either
manual or automated in part or entirely. We will discuss continuous
experimentation as an example of a software engineering process that
is essentially data-driven and may benefit from automation in Section 6.

5.4. Metrics engineering

In addition to the processing of data itself, we believe that it is cru-
cial to pay effort to the definition and content of metrics themselves. We
term this activity metrics engineering and the related, organised storage
of data pertaining to metrics database, see Fig. 3. Recognising metrics
engineering as an activity of its own is based on the observation that
significant statistical and application-specific expertise enters the way
how metrics are defined and computed. We believe that identifying this
as an activity of its own will improve the quality of the collected data
and, maybe more importantly, the quality of the processed data that
is eventually used to drive software engineering and other processes.
Also, the metrics database supports reuse at the level of metrics and
may also serve as the platform for publishing information related to
metrics. The metrics database should contain data similar to a quality
description in statistics, including, e.g. how often the data is updated,
possible sources of error, if and how corrections are made etc.

It may also be reasonable to compute known high-level metrics
already in the client or server depending on the availability of com-
puting and other resources, the possibility of changes in the definition
of high-level events etc.

Finally, it is also possible to define new metrics based on metrics.
As an example, the standard 𝑍 score related to the null hypothesis
0 = 𝜇 is 𝑍 = 𝑋̂−𝜇0

𝑠 , where 𝑋̂ is the sample mean and 𝑠 is the standard
eviation of a sample.

.5. Adopting data-driven software engineering

For a framework such as Undulate to be practically useful, it is of
aramount importance that the framework can be implemented in a
ompany within a reasonable time frame and preferably in an incre-
ental manner. This is since it is typically economically not feasible

o commit to multi-year projects that provide no early paybacks. Also,
he framework should not require extensive changes to a large number
f processes in order to be useful. In this section, we discuss how the
esign Undulate addresses these issues.

The adoption of the Undulate framework is illustrated in Fig. 4. In
he figure, the curves in the time-level of automation space represent
ifferent software processes controlled using data.

The dimensional database and the related data processing are the
ey architectural components (not shown in Fig. 4) that must be
n place for the framework to work. In addition, driving processes
sing data requires two components: First, the data used to drive a
rocess must be made available in the dimensional database. This is
llustrated using dependency arrows from the processes to the parts of
he dimensional database (cylindric shapes).

Second, automation is only possible if there is a machine-operable
nterface to the process, e.g. a REST API or a command-line interface,
hich can typically, with ease, be turned into an API. The diamond

ymbols represent the control mechanisms enabling automated control
ver the processes.

The illustration of the adoption process is, necessarily, an idealisa-
ion. The degree of automation does not need to grow smoothly nor
pproach 100% as time passes. Also, new features and subsystems are
6

Fig. 4. An example of the transition towards data-driven software engineering. In the
course of time, new data sources and control mechanisms can be added incrementally
instead of committing to fully data-driven processes at once. The level of automation
(proportion of decisions made automatically) increases in each process as the data
becomes better understood through learning from past data and decisions. Legend
(entity — graphical symbol): curve — the level of automation of a software engineering
process as a function of time; diamond — the introduction of a control mechanism
(related to a process); cylinder — data source; dashed arrow — dependency of a process
on a data source.

introduced, and the proportion of manual decisions may also decrease.
It should also be noted that automation should not be a value as
such but a means towards other goals, e.g. making decisions quicker
and enabling the expert staff to focus on decisions with high risks or
otherwise of importance.

6. Experimentation

In this section, we discuss the software engineering process experi-
mentation. In more detail, we define the main concept related to exper-
iments using Nivel2. In addition, we will outline the experimentation
process.

6.1. Concepts

Fig. 5 illustrates the Nivel2 entities used to represent concepts
related to experiments. We will use a sans serif typeface when referring
to Nivel2 concepts.

The main concept is naturally Experiment. The first order instances
of Experiment represent experiments in the conventional sense: such
an instance defines a number of hypotheses and test groups, where
each group is treated with different software. Both hypotheses and
groups are represented by Nivel2 entities, Group and Hypothesis. In
addition, an experiment instance defines a target duration, answering
the question of how long the experiment should run.

An instance of Group defines aspects related to an experiment.
Most importantly, an instance of Group defines an implementation
(represented by the references implementation) used to produce the
service for the users in that group. The implementation is represented
as a reference to one or more containers: an instance of the group refers
to one or more instances of Container, corresponding to source code or
a container image, e.g. Docker6 image: here, the first order instances of
Container have a different name in common language than the second-
order instances, i.e. containers created from an image. A group also
defines the target size of its instances, i.e. how many users the group
should have when the experiment is run.

Note that an instance of Experiment may be dynamic in that the
active groups of the experiment may change over time as new groups
are added. Old ones are completed, i.e. the timespan scheduled for

6 https://www.docker.com/.

https://www.docker.com/


Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö

N
m
p

Fig. 5. Concepts related to experiments and sample instances represented in Nivel2.
i

t
h
c

the group has ended, or the group has been otherwise terminated,
e.g. due to sufficient level of statistical significance has been reached.
The changes in groups can be done manually, or they may be done
automatically based on the search strategy, defined by a referenced
ivel2 entity. The role and semantics of search strategy are discussed in
ore detail in the following subsection concerning the experimentation
rocess. Due to its dynamic character, an experiment can also be
7

g

termed an experiment programme, although experiment is preferred here
n most cases for brevity.

A Hypothesis defines a condition related to a metric or a statis-
ic computed based on the experimentation data. For example, the
ypotheses could state that a target variable in an experiment, say
lick-through rate, should have a value that is statistically significantly
reater than the baseline observed in production.



Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö

e
t
h
F
t
e
t

6

F
t
i
c
a
o
s
a
a
n

b
T
s
b
c
I
I
i
p

D
f
a
d
a
u

a
m
p
p
s
e
c
t
t
c

An experiment makes a distinction between target and control hy-
pothesis, represented by references with respective names. The idea
behind the distinction is that while an improvement, such as an in-
crease in click-through rate, is expected in the primary hypotheses,
there is simultaneously expected to be no change in the control hy-
potheses. For example, one would expect that a change in the user
interface does not cause the number of application crashes (per page
load) to increase. To automate the decisions based on experiment
results, a reasonable strategy could be to introduce a sufficient number
of control hypotheses covering all aspects of the correct behaviour of
service and then check these hypotheses automatically, enabling the
experts to concentrate on the primary hypotheses.

A second-order instance of Experiment represents a run of an
xperiment. The content of the experiment is defined naturally by its
ype, the first order Experiment instance. The second-order instance
as values tied to the attributes and references defined at the top level.
or example, the second-order instance has a start and end time, and
he groups of the experiment have actual sizes and respective start and
nd times. Also, the hypotheses related to the experiment have values
hat enable reasoning on them.

.2. Experimentation process

The experimentation process is illustrated using a flow chart in
ig. 6. The experimentation process begins with the experiment design
hat will result in a Nivel2 experiment entity along with the entities
t refers to. Designing an experiment is typically an iterative and
ross-disciplinary process, the details of which will depend on the char-
cteristics of the experiment and organisation and are outside the scope
f this paper. For the software experimentation process in general,
ee, e.g. [22]. In addition to manual experiment design, previously
cquired data can be used to generate new experiments also even
utomatically or at least extend existing experiment programmes with
ew test groups.

Using the design of the experiment as input, the software that will
e used to implement the experimental services must be prepared.
his part of the process may include different activities based on the
ituation. Suppose the features being experimented on have already
een implemented and instrumented to generate the data needed to
ompute the outcomes of the experiment, i.e. resolve the hypotheses.
n that case, the required source code can be automatically generated.
f, on the other hand, features have not yet been implemented or
nstrumented to produce the data, this must be done using the software
rocesses of the company running the experiment.

Overall, instrumentation plays a significant role in experimentation.
epending on the application domain and devices used, it may not be

easible to collect all data related to all features but rather seek a bal-
nce between performance, bandwidth usage etc. and the availability of
ata. In any case, the instrumentation should include the information
bout the experiment group it relates to: this will enable linking the
sage data to the experiment in a reliable way.

Once the source code is ready, it can be built using the processes
nd tools that are generally used in the company. The build pipeline
ay, for example, include automated tests at different stages of the
ipeline. In Fig. 6, it is assumed that Docker images are built, but the
rocess itself does not commit to a particular technology. However,
ome assumptions are made about deploying the images (or other
ncapsulated units of software). First, it is assumed that such images
an be deployed independently of each other. Second, it is assumed
hat there are available mechanisms for routing some requests to cer-
ain implementations of service at runtime dynamically based on, e.g.
ookies. An example of such mechanisms is Kubernetes7 (for managing

7 https://kubernetes.io/.
8

containerised workloads) and Istio8 (for routing the traffic to the correct
implementation of a service based on experiment group membership,
encoded in a cookie or similar part of a request). The above-mentioned
technologies are mainly practical tools, but they have been discussed
in the research [see e.g. 23–25].

Once the containers providing the experimental software are run-
ning, and the routings have been updated, the cluster is ready for
executing the experiment and the experiment is ready to run. The users
in experiment groups are routed to the experimental version of the
software, and the usage data is sent for processing as described in
Section 5.2.

6.2.1. User registry and management
In parallel with preparing the experimental software, the users

participating in the experiment need to be selected and allocated to
experiment groups. In this paper, we assume for simplicity that users
need to register and log in to use the software under experimenta-
tion. In practice, this is not an assumption that would be true in all
circumstances. Further, identifying users that have not registered may
be difficult or even impossible between sessions. Users are allocated to
groups randomly. The number of users allocated to each group should
be larger than the desired size of the group: users inevitably drop out
of the experiment during its course, and some allocated users may even
never actually enter the experiment.

It may also be the case that a user may not be allocated to an
experiment. Various reasons for this may exist: for instance, the user
may have participated in an experiment previously and needs, there-
fore, to be excluded from further experiments until a predefined time,
e.g. two weeks, has passed. In addition, judicial reasons may prevent
users from participating in an experiment. The experiment or the group
itself may have specific requirements for the users participating in
an experiment. For example, the experiment may be restricted to a
particular geographical area or a previously identified cluster of users.
Overall, a large variety of different considerations must be taken into
account and combined with various forms of data related to the users.
The logical site for such computation is called the user registry.

Once the cluster is ready for execution and the users have been
allocated, the experiment may be started. The start of an experiment
may be specified in the second-order experiment instance (start date
value). At that time, users allocated to groups should receive their
group ID when authenticating to the service along with other data. This
group ID is subsequently used to route the user requests to the software
related to that group and sent back with usage data for processing.

6.2.2. Simulated users
Usage data is essential in any experiment. As we cannot rely on real

user data in our work, we have implemented a simulation system to
overcome the lack of actual user data.

In a simulation, each user belongs to a group. A group defines
a set of possible states in which a user can be at a given time. In
addition to its state, each user has a set of variables that affect its
behaviour. The simulation happens in rounds. On each round, an action
is selected for the user. The action to be performed is selected randomly
based on action weight formulas defined for the group of the user: each
action weight formula is evaluated, resulting in a weight value, used
subsequently in the draw. The action may involve invoking the service
related to an experiment. Through the calls to the service that may be
external to the simulation, the users can also interact with each other;
otherwise, each user is encapsulated and not affected by other users.

In the next step of the round, the result of the selected action
enters the state transition formulas, defined for each group and state.
The formulas may also involve the variables of the users. Similarly as,

8 https://istio.io/.

https://kubernetes.io/
https://istio.io/


Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö

t

p
s
v
i
m

s

i
m

when selecting the action, the new state is drawn based on the weight
values from the formulas.

After choosing the new state, the variables are updated based on
variable formulas defined likewise for the group. The variable formulas
may involve the current values of the variables as well as the state and
the result of the action.

Finally, a formula is used to compute the delay (in seconds) until
he next round begins.

Each formula may also involve a random component drawn from a
redefined distribution, such as the normal distribution. This enables
tochastic simulations. Another source of stochasticity is that each
ariable may be defined as an initial distribution. Due to the differences
n initial values of the variables, each user belonging to the same group
ay have a different type.

The group as defined above can be modelled in Nivel2; the corre-
ponding entity is called a group definition. Similarly, a simulation is

defined in Nivel2. A simulation is characterised by a set of groups, each
to referring a group definition and a number of users to be created
for the group. A simulation also defines a time scale that defines how
quickly the simulation should be run in comparison to real-time; a
simulation can also be run as quickly as possible, i.e. without scheduled
delay between rounds of simulation.

The simulations described above have been implemented in a com-
ponent called simulient in Python. The simulient system sends the
simulation results to an API called results_api after each round. The
results involve the user ID (running number), group ID, initial and final
state and the action taken. In addition, the values of each variable
are sent as details. The simulation runs for a scheduled duration of
simulation time. It can also be stopped using an API endpoint on
request.

6.2.3. Updating and stopping the experiment
While the experiment is running, the accumulating results, as re-

ceived from the dimensional database, may be used for various tasks.
Soft computing and other methods may be used for this task. As an
example, if one or more of the control hypotheses show that some
group is performing badly, alerts can be sent for human intervention or
the group or entire experiment may be aborted altogether. Similarly,
based on the results, new groups can be added. For example, in a
search-based approach, if a group 𝐺 corresponding to a certain point
in an 𝑛 dimensional parameter space performs significantly better than
other groups currently running, the search may be extended to points
closest to 𝐺 (in a grid). If, on the other hand, no currently running
group is better than the others and each group has been running for
the scheduled time and is ready for analysis, a ticket may be added
suggesting human intervention to the experiment.

6.2.4. Implementation
Checking the experiments. Periodically, the Nivel2 database is

queried for active experiments, i.e. experiments that are running. Each
running experiment is checked, and groups may be terminated (moved
under completed groups) or added based on the results so far, the
attribute values of the experiment (e.g. the maximum number of groups
running in parallel). A search strategy for linear search has been
implemented as a Transact-SQL stored procedure.

If and when the experiment is run as a simulation instead of using
real users, the corresponding simulient configuration is updated with
the newly created groups so that data will be generated corresponding
to the new groups as well.

Updating the cluster. Another process, likewise invoked periodi-
cally, goes through each combination of service and cluster to check
which experiment groups should run in each cluster. Based on this
information, JSON files containing Kubernetes specifications (deploy-
ment, destination rule, virtual service) as generated and applied to the
9

respective clusters.
Simulated users. In parallel with the experiment, a simulient ses-
sion is running. The simulient component checks the simulient configu-
ration in Nivel2 database using data API provided by datapi for new or
completed groups and updates its internal configuration accordingly:
users in the terminated groups are removed, and new users are added
for the new groups.

Viewing the experiment results. We have implemented a web
nterface for viewing the experiment results. The interface is imple-
ented using the Shiny9 package of the R10 programming language.

The interface allows selecting a run of the experiment for further
analysis. The groups and metrics related to the run are shown, and
any subset can be selected. In the current implementation, the results
are shown as curves, one for each combination of selected metric and
group; other visualisation can be added with relative ease.

7. Discussion

7.1. Answering the research questions

In the following subsections, we will answer each of the research
questions RQ1–RQ4, respectively.

What components are necessary to support data-driven software processes?
The question is answered by the construction of the Undulate frame-

work in Section 5. Its key components are:

• Control interfaces of software processes. If automation is required,
the interfaces should be programmable. Otherwise, manual inter-
faces will do as well. New interfaces can be added and old ones
automated as new data-driven practices are introduced.

• Data collection from both software and business processes. Ini-
tially, it is not required to collect all data from all processes.

• The dimensional database, which is a key and mandatory com-
ponent of the framework. A centralised database organised us-
ing the same dimensions, where applicable, enables joining data
stemming from different processes, thereby vastly expanding the
possibilities of utilising the data.

• Controlling processes based on the data is the very essence of
data-driven software engineering. Similarly, as in the items above,
not all decisions need to be based on quantitative data and or
automated.

What are the concepts and processes required for extreme continuous
experimentation for web-facing software services?

The concepts related to experimentation were discussed extensively
in Section 6, see esp. Figs. 5 and 6. In addition to the basic con-
cepts, some technical concepts may be necessary depending on the
deployment technology used.

dee

How should the data generated by the software and business processes be
processed and analysed to support software development?

Data processing as a part of the Undulate framework is discussed
in Section 5.2. The storage of data is centralised, which allows joining
data from different sources for various analytical tasks. The same goal
is supported by the use of dimensions to characterise data. The use of
dimensions, as well as metrics computed based on augmented raw data
and other metrics, works towards the same goal.

Further, the Undulate framework is mainly based on using data that
is anonymised by aggregating it to large enough units. This approach
makes the data more useable from a privacy point of view. On the other
hand, raw data is saved and made accessible on a more restrictive basis
for ad hoc analysis, process mining etc.

9 https://shiny.rstudio.com/.
10 https://www.r-project.org/.

https://shiny.rstudio.com/
https://www.r-project.org/


Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö
Fig. 6. Flow chart of the experimentation process.
How can soft computing be used to support extreme continuous experimen-
tation?

The data made available in the dimensional database can be used as
such as an input for soft computing methods. In addition, in Section 7.5,
we will argue that aspects of softness are also present in various familiar
software and statistical processes.

7.2. Experimentation

In the following subsections, we compare the work presented in
Section 6 with previous work.

7.2.1. Knowledge representation
In this paper, we are using Nivel2, a declarative multilevel mod-

elling language for representing experimentation knowledge. This is in
contrast with most previous approaches to experimentation: the pre-
dominant style of knowledge representation seems to be various config-
uration files in JSON or similar languages and even procedural knowl-
edge in the form of computer programs written in general-purpose
programming languages.

Although configuration files and programming languages have the
benefit of familiarity to software professionals, we believe that applying
declarative knowledge representation techniques provides a number
of benefits. First, languages such as Nivel2 provide tool support for
creating, viewing and maintaining the knowledge base. Second, the
languages provide schema-like support for creating entities and ensur-
ing their consistency. Third, the tool support resembles standard form
editing functionalities, which makes the knowledge more accessible to
non-technical experts.

7.2.2. Process
The overall experimentation process described in this paper resem-

bles the processes discussed in existing research [see e.g. 6,7]. This
has also been the intent. However, unlike in previous research, we
allow the experiment to take the form of an experiment program,
consisting of multiple related stages in which groups may be added
and completed groups removed. The changes in groups are based on the
results from previous phases and are an example of extreme continuous
10

experimentation driven by data.
7.2.3. Metrics
Metrics are artefacts, and like any other artefact, large amounts of

both explicit and implicit or tacit knowledge are related to metrics.
Traditionally, statistics and analytics has been an expert task with a
limited amount of automation. When automation has been available, it
has been supported by a thorough understanding of the accumulating
data, both from the content and statistical and analytical point of view.

In previous research, metrics have been classified as OEC (Overall
Evaluation Criteria) metrics, data-quality metrics, guardrail metrics
and local feature and diagnostic metrics [17,18]. The OEC metrics
correspond to target hypotheses in the experiment entity of Fig. 5. More
generally, in the approach presented in this paper, the classification
does not apply to the metrics themselves and not even the hypotheses,
but rather the hypotheses in the context of an experiment. Further,
the other metrics roughly correspond to control metrics. The extent to
which changes are allowed to each kind of the remaining metrics varies.
In our approach, this would be addressed by defining the corresponding
hypotheses, e.g. setting the reference value.

7.3. Dimensional databases

In previous research, the general characteristics of storing experi-
ment data have not been studied extensively. As the experiment data
is typically stemming from the production system, experiment data is
a subset of usage data generated as the software is used.

In the case of data-driven software engineering, the characteristics
of data will depend on a large number of factors, including the software
under study, the instrumentation in particular, how collected data
is sent for analysis, possible with delay or omitted altogether; these
conditions are relevant, especially in the context of mobile apps. Also,
the users have control over the cookies that can be set, which is bound
to affect the amount and quality of data that is available and will show
up as omitted values for some users/session variables. In addition, the
data is affected by the application itself, including possible errors.

The complexity of managing data is also emphasised by the emer-
gence of specialised roles, such as data engineer, data scientist and

business analyst [see e.g. 26].



Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö

o
a

w
l
d
A
b
a
o
e
w
o
d
a

v
O
a

i
M
t
o
s
m
r
a
f

7

i
s
u
c
c
b

d
p
d
i
e
t
m

s
f
p
r
v
t
a
t
p
t
t
r
a

o

7

b
p
e
a
d
d
s

Although dimensional databases seem well suited for many ana-
lytical tasks related to software engineering, not all kinds of data fit
their scope. As an example, clusterings, or more generally, embeddings
f users, products, items of news etc., would best be represented as
ttributes of the dimensional values rather than facts.

Although dimensional databases are not a topic of intense scientific
ork, they are practically still relevant. As an example, Google Ana-

ytics, a part of Google Marketing Platform11 seems to be essentially a
imensional database, although not explicitly phrased as such. Google
nalytics also provides an example of computations that are made
ased on the raw data and not the (aggregated) dimensional data: an
ttribution is a calculated assignment of a quantity (such as the value
f a sale transaction expressed in currency) to one or more contributed
lements, such as landing page or other pages visited before the sale
as completed. The attribution is more likely to be useful if it is based
n individual page views and sales transactions instead of aggregated
ata from even a short period. The attributions themselves can be
ggregated.

The raw data store and analysis based on it illustrated in Fig. 3 pro-
ide the opportunity for trying out different advanced computations.
nce completed, such computations can be incorporated into the data
ugmentation phase.

In addition to the abundant technical challenges related to collect-
ng, processing and utilising data, also legal challenges are increasing.
ost importantly, GDPR sets significant requirements on any con-

roller or processor of personal data situated in the European Union
r processing the data of citizens of the union. Although there is
ome initial research on the effects of GDPR on software develop-
ent [see e.g. 27], the GDPR, along with other privacy concerns,

emain largely unaddressed in research. The aggregating performed as
part of the data processing in Undulate is, in principle, an efficient

orm of anonymisation and therefore resolves the privacy concerns.

.4. Simulation

As a part of validating the implementation of the experiment process
n Section 6, we introduced the simulient component that generates a
imulated database based on a configuration declaratively represented
sing Nivel2. The simulation shows that the experimental software is
orrectly built and deployed and that the routing to the software using
ookies works as intended. Finally, the data thus generated is received
y the API component result_data_api and available for analysis.

However, simulation has other purposes beyond the kind of vali-
ation described above. During recent years, digital twins of different
hysical entities, such as factories, have become the topic of intense
iscussions. The underlying idea or assumption is that the data describ-
ng the entity is more or less readily available for simulations, which
nables running different scenarios. This, in turn, allows analysing of
he effects of specific alternatives and different optimisations to be
ade.

Digital twins may also be useful in the digital world, as has been
hown by Facebook [28–30]. The authors report the use of simulations
or various purposes. The simulations may be run against the actual
roduction platform, an offline copy of the platform (in which the
esponses to specific events have been recorded), and a model-based
ersion of the platform in which data from production has been used
o train a statistical model of the platform. Simulations provide a quick
nd low-cost way to study various aspects of the platform, such as
he possibility of malicious behaviour. From the software engineering
oint of view, simulations also provide an interesting alternative for
esting and experimentation. As argued in Section 2, software processes
hat are different at first sight may turn out to be similar in many
espects, and these similarities can be exploited when implementing
nd automating these processes.

11 https://marketingplatform.google.com/about/analytics/.
11

h

7.5. On the notion of softness

In this subsection, we discuss how softness in various forms is
manifested in different software engineering and other applications.

CI/CD (continuous integration/continuous deployment) pipelines
and other practices have become increasingly popular in software engi-
neering. However, CI/CD pipelines lack a commonly agreed definition.
However, the common understanding is that the pipelines automate
a number of steps, each using as input the output from the previous
stage or stages. There are few, if any, alternative paths: if the pipeline
fails at any point, the execution stops and some kind of error is raised.
Therefore, there is little softness as such in these pipelines. Therefore,
the Undulate framework as such and in particular applied to contin-
uous experimentation would significantly increase the potential for
applying data-driven soft computing techniques in continuous software
engineering processes.

Examples of data-based optimisations in software processes include:

• Different kinds of resources can already be elastic in clusters in
that their capacity changes based on the usage data in real-time.
Also, usage forecasts based on usage data can be used to alter the
capacity before actual changes in usage occur

• Also, other forms of resource optimisation in a cloud environment
can be implemented

• Relational databases use previous execution data to optimise
queries as well

The above implies that the idea of leveraging usage data to drive
software engineering processes is not new.

Aspects of softness can also be seen in risk-based methods. Examples
of such methods include inspecting only certain passengers entering
a country, tax returns or components in complex machinery. What
is common to these scenarios is that exhaustive inspection of all the
entities is not possible due to the costs to the inspector and subjects.
The cases selected for inspection are based on various sources of data,
for example, the personal data of a passenger or some model of how
components age and break does, or which components would cause
the largest damage should they fail. In addition, some cases may be
selected for inspection randomly: this is important if the inspection is
related to detecting fraud or similar malicious human behaviour.

On the other hand, in software engineering, especially software
testing, the emphasis has been on achieving full coverage: all the cases
or combinations of values should ideally be tested, and testing should
cover the entire code base. This may be due to the fact that software
can, in many cases, be tested with relatively little cost nowadays with
the aid of test automation. However, in some cases, software testing
may be costly. As an example, this may happen in the case of embedded
software when specialised, high-cost equipment is needed for testing.
That equipment may then become the bottleneck in the production
process. To optimise the process, one would like to select the tests that
have the highest potential to reveal broken functionality in the devices
and even to predict future problems; tests that are not useful for this
purpose could be omitted. The Undulate approach is well suited for such
ptimisation.

.6. Transition towards data-driven software engineering

The Undulate framework introduced in this paper is unequivocally
ased on centralised data storage and control based on its data. In
ractical settings, implementing such data storage may be prohibitively
xpensive in time-consuming. Indeed, it has been reported that the
pplication of artificial intelligence methods can be difficult to achieve
ue to various reasons, such as management scepticism, pressure to
evelop new features and challenges of combining data from multiple
ources [26]. The dimensional database in Undulate should, however,

elp to resolve the challenge of combining data from multiple sources.

https://marketingplatform.google.com/about/analytics/


Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö

i
b
n
i
s
w
a
m

i
s
m
f
a
a
l
a
t
d
m

o
d
e
e
t

7

Fig. 7. Comparing the representation of the experiment concept using (a) Nivel2 and (b) standard UML class diagrams.
The acceptability may be improved when the same infrastructure
s created with the aim of supporting both software engineering and
usiness processes, all the way to the strategic level. Also, the fact that
ot all data sources need to be included at once should reduce the
nitial investment required. The same applies to the fact that not all
oftware processes need to be included in the initial applications, as
ell as the fact that the target need not be full automation at once, if at
ll. Setting up such an infrastructure is still likely to require high-level
anagement commitment from both the business and technical sides.

A possibly overlooked aspect is related to making the data useable;
t may not be obvious what is available. Even when considering the
oftware processes alone, not all stakeholders are likely to find and
ake use of the data directly using technical interfaces. Also, especially

rom the privacy point of view, access rights and logging access may be
problem. Towards this end, the dimensional database should contain
declarative model of the data, including descriptions in natural

anguage, and have constructs for providing access to different users in
fine-grained manner. Also, the database should provide an interface

hat allows exploring both the metadata (descriptions of data) and the
ata itself. Making the data collected visible and useable more widely
ay also improve the acceptability of the investment.

Indeed, the focus on managing data may have been too much
n technology. Tackling challenges such as ingesting vast amounts of
ata and running queries involving vast amounts of data have been
xtensively studied. Unquestionably, these issues must be resolved but
ventually, data must be made available for people in order for them
o run the processes.

.7. Nivel2 vs. standard UML class diagrams

In this paper, we have applied the Nivel2, a multi-level modelling
language under development, to represent both the concepts used to
model experiments as well as the experiments and their instances, i.e.
runs themselves. Given that standard UML12 class diagrams enjoy exten-
sive tool support and are well understood in the software engineering
community, one may justifiably ask what are the benefits of using a
modelling language still under development.

Fig. 7 contains a model of the experimentation concept at various
levels of abstraction represented using Nivel2, in panel (a), and UML
class diagrams with objects, panel (b). The levels of abstraction are:
(1) the concept of experiment itself, represented by the entity and class
Experiment in Nivel2 and UML, respectively; (2) the experiment defi-
nitions (ColourExperiment) containing at hypotheses etc. that can be

12 Unified Modeling Language, https://www.uml.org/.
12
run at various times or in various areas, resulting in (3) experiment runs
(an instance of ColourExperiment ExperimentRun). The benefits of
Nivel2 become apparent especially when considering the second level:
in Nivel2, entities on that level are both instances of Experiment and
types of experiment runs, and the Nivel2 instantiation semantics covers
the instantiation between both levels (1) and (2), and (2) and (3). In
UML, on the other hand, the object of type ExperimentRun is both
linked to the ColourExperiment and in class ExperimentRun: hence,
two model elements are needed to characterise the object. Moreover,
the instance of link bears no semantics as such. Instead, the semantics
should be defined using some auxiliary construct.

The benefits of Nivel2 over UML extend even beyond the conceptual
difficulties described above. Whereas Nivel2 tool support is largely
based on the ability to create instances of entities in a straightforwards
and guided manner, much of the UML tool support is still, to the best of
our knowledge organised around creating class diagrams and mapping
the classes in a programming language. Instantiation takes place only
when the software is run, and objects of the classes are created.

7.8. Threats to validity

Validity can be considered as the approximate truth of an inference
or knowledge claim [31, p. 34]. In the following, we address the
potential threats to validity in the proposed artefact or the rationale
of the design decisions behind it, and the answers we have provided to
the research questions. In more detail, we address the threats to validity
by addressing internal, construct and external validity [31,32].

Internal validity is essentially about causal claims. We do not make
any strong causal claims in the paper. However, some aspects of
this kind are implied by the necessary support and conceptualisation
addressed in RQ1 and RQ2, which in constructive research turns into
a question of whether they can be feasibly conceptualised and im-
plemented. A straightforward way of addressing that is by creating
artefacts that demonstrate the feasibility. This was done in the form
of the Undulate framework.

Construct validity concerns the constructs used or created in the
research, e.g. whether they are conceptually clearly explicated and
coherent with respect to each other and to the more general usage
of the same concepts. The concepts used in the Undulate framework
are rigorously defined, so the threat to their explication or coherence
in relation to each other can be considered minimal. Furthermore, the
implementation of the framework described in Section 4.2 further helps
to ensure the non-existence of any major issues with the conceptuali-
sation. The conceptual basis of Nivel2 has a solid basis in existing work
in multi-level modelling which lessens the potential for any confusion
with the usage of the concepts in more general.

https://www.uml.org/


Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö
There are, however, central concepts that may have different in-
terpretations in different contexts. For example, the terms experiment
and hypothesis have established meanings in research methodology,
and their usage in continuous experimentation in software engineering
reflects those but is not always exactly the same. Experimentation
in software engineering practice is not based on scientifically solid
theories, but the hypotheses may have a more practical purpose in
explicating what is being tested. This may cause confusion and mis-
interpretation, thus posing a potential threat to construct validity,
particularly if the reader considers experimentation from a scientific
perspective rather than as a practical means in soft computing.

External validity concerns how the knowledge claims are valid, or
in more general terms the results, applicable beyond the context of
the current research. From yet another point of view, the external
validity pertains to the limitations of the applicability of the results.
Our scope in the paper was the development of web-facing software
services, as it gives a clear and simple setting for experimentation.
There are several characteristics that make web-based software highly
suitable for continuous experimentation, such as the ability to easily
route users to different software variants, flexible means to dynamically
deploy software, vast possibilities for collecting usage data, etc. In
another application domain or development setting, variations in these
may affect the feasibility of the approach. As an example, physical
devices without a network connection are considerably more difficult
to experiment with, although, in principle, it would be possible to alter
the software or its configuration in different devices and collect data
from the devices in offline mode. When considering applying the results
in other contexts, these should be considered. The external validity is
thus highly dependent on the context and assumes the responsibility
from the one aiming to transfer any of the results to another context.

7.9. Implications

The Undulate framework introduced in this paper has a number of
implications both for the research and practice of data-driven software
engineering in general and continuous experimentation in particular.
So far, both data-driven software engineering and continuous experi-
mentation have not become widely applied but are to a large extent
only practised by large companies. This is most likely due to the
significant investments in various forms of infrastructure and process
development required to implement such processes.

The Undulate framework facilitates the implementation of data-
driven practices in a number of ways. First, software engineering and
business processes are given characterisations by the data they use
as input and produce as output. Second, the characterisations enable
utilising the process output for controlling the processes themselves,
thus creating a feedback loop. The processes can be controlled in part
or whole automatically, and the automatic control may involve soft
computing technologies.

From the experimentation point of view, a representation of exper-
imentation knowledge using Nivel2 was defined. Such a representation
and the tool support for Nivel2 make managing experiment data at var-
ious levels of abstraction easier, thus reducing the investment required
to introduce more ambitious forms of continuous experimentation.

In summary, the contributions in this paper make advanced soft-
ware engineering techniques available to a larger portion of software
companies. From the scientific point of view, key implications in-
clude demonstrating the usability of multilevel modelling languages for
representing engineering knowledge as well as creating a more solid
13

conceptual basis of experimentation knowledge.
8. Conclusions and further work

In this paper, we have contributed towards the theory and practice
of data-driven software engineering by introducing the Undulate frame-
work. Further, in the context of the framework, we have elaborated on
the experimentation process as an example of a continuous software
engineering process that can be driven by and automated using data.

The work presented in this paper can be extended in multiple ways.
An obvious avenue would be to study other software processes to see
if they indeed fit the framework as expected or should the framework
be extended.

Another perspective would be to study the literature and available
implementations, both open source and proprietary, of dimensional
databases. As noted in the paper, there is relatively little research on the
topic available. Such a database would need to ingest and contain large
amounts of data while still providing near real-time query performance
for usability. Any existing implementation or a prototype implemented
as a part of research would need to match these stringent requirements.

Case studies in real companies would be needed to evaluate the
applicability of the framework in practice. Ideally, the case studies
should cover companies producing different kinds of software (on-
line, on-premise, embedded, etc.) and a scale of processes as wide as
possible.

CRediT authorship contribution statement

Timo Asikainen: Conceptualization, Methodology, Software, Writ-
ing – original draft, Writing – review & editing. Tomi Männistö:
Conceptualization, Methodology, Writing – original draft, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The work was supported by the Academy of Finland (project
317657).

References

[1] H. Holmstöm Olsson, J. Bosch, Data driven development : Challenges in online,
embedded and on-premise software, in: X. Franch, T. Männistö, S. Martínez-
Fernández (Eds.), Proceedings of Product-Focused Software Process Improvement
(PROFES) 2019, Lecture Notes in Computer Science 11915, 2019, pp. 515–527.

[2] F. Auer, M. Felderer, An infrastructure for platform-independent experimentation
of software changes, in: T. Bureš, R. Dondi, J. Gamper, G. Guerrini, T. Jurdziński,
C. Pahl, F. Sikora, P.W.H. Wong (Eds.), SOFSEM 2021: Theory and Practice of
Computer Science, Springer International Publishing, Cham, 2021, pp. 445–457.

[3] F. Auer, C.S. Lee, M. Felderer, Continuous experiment definition characteristics,
in: Proceedings — 46th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA 2020, 2020, pp. 186–190, http://dx.doi.org/10.
1109/SEAA51224.2020.00041.

[4] F. Fagerholm, A. Sanchez Guinea, H. Mäenpää, J. Münch, The RIGHT model for
continuous experimentation, J. Syst. Softw. (2017) http://dx.doi.org/10.1016/j.
jss.2016.03.034.

[5] H. Holmström Olsson, J. Bosch, The HYPEX model: From opinions to data-driven
software development, in: J. Bosch (Ed.), Continuous Software Engineering,
Springer International Publishing, Cham, 2014, pp. 155–164, http://dx.doi.org/
10.1007/978-3-319-11283-1_13.

[6] X. Franch, C. Gómez, A. Jedlitschka, L. López, S. Martínez-Fernández, M. Oriol,
J. Partanen, Data-driven elicitation, assessment and documentation of quality
requirements in agile software development, in: J. Krogstie, H.A. Reijers (Eds.),
Proceedings of CAiSE 2018: Advanced Information Systems Engineering, Lecture
Notes in Computer Science 10816, Springer, 2018, pp. 587–602, http://dx.doi.

org/10.1007/978-3-319-91563-0_36.

http://refhub.elsevier.com/S0950-5849(22)00154-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb2
http://dx.doi.org/10.1109/SEAA51224.2020.00041
http://dx.doi.org/10.1109/SEAA51224.2020.00041
http://dx.doi.org/10.1109/SEAA51224.2020.00041
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1007/978-3-319-11283-1_13
http://dx.doi.org/10.1007/978-3-319-11283-1_13
http://dx.doi.org/10.1007/978-3-319-11283-1_13
http://dx.doi.org/10.1007/978-3-319-91563-0_36
http://dx.doi.org/10.1007/978-3-319-91563-0_36
http://dx.doi.org/10.1007/978-3-319-91563-0_36


Information and Software Technology 152 (2022) 107039T. Asikainen and T. Männistö
[7] A. Henriksson, J. Zdravkovic, Holistic data-driven requirements elicitation in the
big data era, Softw. Syst. Model. online fir (2021) http://dx.doi.org/10.1007/
s10270-021-00926-6.

[8] I. Sommerville, Software Engineering, 9th ed., Addison-Wesley, Harlow, England,
2010.

[9] D. Patil, Building Data Science Teams, O’Reilly Media, 2011.
[10] B. Fitzgerald, K.J. Stol, Continuous software engineering: A roadmap and agenda,

J. Syst. Softw. 123 (2017) 176–189, http://dx.doi.org/10.1016/j.jss.2015.06.063.
[11] H. Holmström Olsson, J. Bosch, Towards continuous customer validation: A

conceptual model for combining qualitative customer feedback with quantitative
customer observation, in: J.M. Fernandes, R.J. Machado, K. Wnuk (Eds.),
Software Business, Springer International Publishing, Cham, 2015, pp. 154–166.

[12] D.I. Mattos, J. Bosch, H. Holmström Olsson, Your system gets better every day
you use it: Towards automated continuous experimentation, in: Proceedings —
43rd Euromicro Conference on Software Engineering and Advanced Applications,
SEAA 2017, 2017, pp. 256–265, http://dx.doi.org/10.1109/SEAA.2017.15.

[13] F. Fagerholm, A. Sanchez Guinea, H. Mäenpää, J. Münch, Building blocks for
continuous experimentation, in: 1st International Workshop on Rapid Continuous
Software Engineering, RCoSE 2014 — Proceedings, 2014, pp. 26–35, http://dx.
doi.org/10.1145/2593812.2593816.

[14] G. Schermann, J. Cito, P. Leitner, Continuous experimentation: Challenges,
implementation techniques, and current research, IEEE Softw. 35 (2) (2018)
26–31, http://dx.doi.org/10.1109/MS.2018.111094748.

[15] G. Schermann, D. Schöni, P. Leitner, H.C. Gall, Bifrost — Supporting con-
tinuous deployment with automated enactment of multi-phase live testing
strategies, in: Proceedings of the 17th International Middleware Conference
(Middleware’16), ACM, Trento, Italy, 2016, pp. 1–14, http://dx.doi.org/10.1145/
2988336.2988348.

[16] S.G. Yaman, M. Munezero, J. Münch, F. Fagerholm, O. Syd, M. Aaltola, C.
Palmu, T. Männistö, Introducing continuous experimentation in large software-
intensive product and service organisations, J. Syst. Softw. 133 (2017) 195–211,
http://dx.doi.org/10.1016/j.jss.2017.07.009.

[17] D. Issa Mattos, P. Dmitriev, A. Fabijan, J. Bosch, H. Holmström Olsson, An
activity and metric model for online controlled experiments, in: M. Kuhrmann,
K. Schneider, D. Pfahl, S. Amasaki, M. Ciolkowski, R. Hebig, P. Tell, J. Klünder,
S. Küpper (Eds.), Product-Focused Software Process Improvement, Springer
International Publishing, Cham, 2018, pp. 182–198.

[18] P. Dmitriev, S. Gupta, D.W. Kim, G. Vaz, A Dirty Dozen: Twelve common
metric interpretation pitfalls in online controlled experiments, in: Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Vol. Part F1296, 2017, pp. 1427–1436, http://dx.doi.org/10.1145/
3097983.3098024.

[19] T. Asikainen, T. Männistö, Nivel: A metamodelling language with a formal
semantics, Softw. Syst. Model. 8 (4) (2009) 521–549, http://dx.doi.org/10.1007/
s10270-008-0103-2.
14
[20] C. Atkinson, T. Kühne, Reducing accidental complexity in domain models,
Softw. Syst. Model. 7 (3) (2008) 345–359, http://dx.doi.org/10.1007/s10270-
007-0061-0.

[21] W. Inmon, Building the Data Warehouse, Vol. 4th ed, Wiley, 2005.
[22] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Ex-

perimentation in Software Engineering, Springer Science & Business Media,
2012.

[23] W. Li, Y. Lemieux, J. Gao, Z. Zhao, Y. Han, Service mesh : Challenges, state of
the art, and future research opportunities, in: 2019 IEEE International Conference
on Service-Oriented System Engineering (SOSE), IEEE, 2019, pp. 122–1225,
http://dx.doi.org/10.1109/SOSE.2019.00026.

[24] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, Borg, omega, and
kubernetes, Commun. ACM 59 (5) (2016) 50–57, http://dx.doi.org/10.1145/
2890784.

[25] D. Bernstein, Containers and cloud: From LXC to docker to kubernetes, IEEE
Cloud Comput. 1 (3) (2014) 81–84, http://dx.doi.org/10.1109/MCC.2014.51.

[26] I. Figalist, C. Elsner, J. Bosch, H. Holmström Olsson, Breaking the vicious circle:
A case study on why AI for software analytics and business intelligence does
not take off in practice iris, J. Syst. Softw. (2021) 111135, http://dx.doi.org/10.
1016/j.jss.2021.111135.

[27] D. Torre, M. Alferez, G. Soltana, M. Sabetzadeh, L. Briand, Model driven
engineering for data protection and privacy: Application and experience with
GDPR, Softw. Syst. Model. online fir (2020) http://dx.doi.org/10.1007/s10270-
021-00935-5, URL http://arxiv.org/abs/2007.12046.

[28] J. Ahlgren, M.E. Berezin, K. Bojarczuk, E. Dulskyte, I. Dvortsova, J. George, N.
Gucevska, M. Harman, R. Lämmel, E. Meijer, S. Sapora, J. Spahr-Summers, WES:
Agent-based user interaction simulation on real infrastructure, in: Proceedings —
2020 IEEE/ACM 42nd International Conference on Software Engineering Work-
shops, ICSEW 2020, 2020, pp. 276–284, http://dx.doi.org/10.1145/3387940.
3392089.

[29] J. Ahlgren, K. Bojarczuk, S. Drossopoulou, I. Dvortsova, J. George, N. Gucevska,
M. Harman, M. Lomeli, S.M. Lucas, E. Meijer, S. Omohundro, R. Rojas, S.
Sapora, N. Zhou, Facebook’s cyber-cyber and cyber-physical digital twins, in:
ACM International Conference Proceeding Series, Association for Computing
Machinery, 2021, pp. 1–9, http://dx.doi.org/10.1145/3463274.3463275.

[30] K. Ahlgren, J. Bojarczuk, M. Dvortsova, I. Harman, R. Hatout, M. Lomeli, E.
Meijer, S. Sapora, Behavioural and structural imitation models in Facebook’s
ww simulation system, in: Proceedings of International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering (RAISE), 2021, p. n/a.

[31] W. Shadish, T.D. Cook, D.T. Campbell, Experimental and Quasi-Experimental
Designs for Generalized Causal Inference, Houghton Mifflin, Boston, 2002.

[32] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2) (2009) 131–164.

http://dx.doi.org/10.1007/s10270-021-00926-6
http://dx.doi.org/10.1007/s10270-021-00926-6
http://dx.doi.org/10.1007/s10270-021-00926-6
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb8
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb8
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb8
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb9
http://dx.doi.org/10.1016/j.jss.2015.06.063
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb11
http://dx.doi.org/10.1109/SEAA.2017.15
http://dx.doi.org/10.1145/2593812.2593816
http://dx.doi.org/10.1145/2593812.2593816
http://dx.doi.org/10.1145/2593812.2593816
http://dx.doi.org/10.1109/MS.2018.111094748
http://dx.doi.org/10.1145/2988336.2988348
http://dx.doi.org/10.1145/2988336.2988348
http://dx.doi.org/10.1145/2988336.2988348
http://dx.doi.org/10.1016/j.jss.2017.07.009
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb17
http://dx.doi.org/10.1145/3097983.3098024
http://dx.doi.org/10.1145/3097983.3098024
http://dx.doi.org/10.1145/3097983.3098024
http://dx.doi.org/10.1007/s10270-008-0103-2
http://dx.doi.org/10.1007/s10270-008-0103-2
http://dx.doi.org/10.1007/s10270-008-0103-2
http://dx.doi.org/10.1007/s10270-007-0061-0
http://dx.doi.org/10.1007/s10270-007-0061-0
http://dx.doi.org/10.1007/s10270-007-0061-0
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb21
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb22
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb22
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb22
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb22
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb22
http://dx.doi.org/10.1109/SOSE.2019.00026
http://dx.doi.org/10.1145/2890784
http://dx.doi.org/10.1145/2890784
http://dx.doi.org/10.1145/2890784
http://dx.doi.org/10.1109/MCC.2014.51
http://dx.doi.org/10.1016/j.jss.2021.111135
http://dx.doi.org/10.1016/j.jss.2021.111135
http://dx.doi.org/10.1016/j.jss.2021.111135
http://dx.doi.org/10.1007/s10270-021-00935-5
http://dx.doi.org/10.1007/s10270-021-00935-5
http://dx.doi.org/10.1007/s10270-021-00935-5
http://arxiv.org/abs/2007.12046
http://dx.doi.org/10.1145/3387940.3392089
http://dx.doi.org/10.1145/3387940.3392089
http://dx.doi.org/10.1145/3387940.3392089
http://dx.doi.org/10.1145/3463274.3463275
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb31
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb31
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb31
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb32
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb32
http://refhub.elsevier.com/S0950-5849(22)00154-9/sb32

