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ABSTRACT Objective: Sharing medical data between institutions is difficult in practice due to data
protection laws and official procedures within institutions. Therefore, most existing algorithms are trained
on relatively small electroencephalogram (EEG) data sets which is likely to be detrimental to prediction
accuracy. In this work, we simulate a case when the data can not be shared by splitting the publicly available
data set into disjoint sets representing data in individual institutions. Methods and procedures: We propose to
train a (local) detector in each institution and aggregate their individual predictions into one final prediction.
Four aggregation schemes are compared, namely, the majority vote, the mean, the weighted mean and the
Dawid-Skene method. The method was validated on an independent data set using only a subset of EEG
channels. Results: The ensemble reaches accuracy comparable to a single detector trained on all the data
when sufficient amount of data is available in each institution. Conclusion: The weighted mean aggregation
scheme showed best performance, it was only marginally outperformed by the Dawid–Skene method when
local detectors approach performance of a single detector trained on all available data. Clinical impact:
Ensemble learning allows training of reliable algorithms for neonatal EEG analysis without a need to share
the potentially sensitive EEG data between institutions.

INDEX TERMS Convolutional neural network, distributed learning, ensemble learning, neonatal EEG,
seizure detection algorithm.

I. INTRODUCTION
Seizures are common during perinatal period [1], and man-
agement of neonatal seizures requires timely detection and
treatment to reduce ensuing brain damage [2]. The current
gold standard for neonatal seizure detection is visual analysis
by a human expert using a full-montage video electroen-
cephalogram (EEG) [3]. Since such service is rarely available
in neonatal intensive care units (NICUs), there is an urgent
clinical need for automated neonatal seizure detection algo-
rithm (NSDA) with human expert level accuracy.

Early automated NSDAs were based on features, quantita-
tive descriptors of short, e.g. 10−16 sec long, EEG segments
and expert-defined threshold decision rules [4], [5], [6].

Hard-coded thresholds were later replaced by statistical tech-
niques, such as linear discriminant analysis [7], support vec-
tor machines (SVMs) [8], [9], [10] and neural networks [11].
Recently, promising results have been obtained using convo-
lutional neural networks (CNNs) [12], [13], [14].

Deep neural networks (DNNs) generally require a large
amount of training data [15]. However, building a large and
diverse enough neonatal EEG data set with high quality
seizure annotations is time consuming, ambiguous [16], [17]
and often limited due to strict regulations (e.g. the Privacy
Rule of the U.S. Health Insurance Portability and Account-
ability Act (HIPAA), or the European General Data Pro-
tection Regulation (GDPR)) making data sharing between
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institutions difficult, if not impossible [18], [19]. Challenges
in sharing data have triggered growing interest in distributed
approaches to statistical learning [20].

One approach that requires minimal sharing of informa-
tion is model ensembling, i.e. models are trained locally
at each institution and predictions on new data are aggre-
gated (ensembled) from predictions made by the local mod-
els. This requires sharing only the models across the network
of institutions rather than sharing the potentially sensitive,
original biosignals. However, the procedures in model shar-
ing need to be planned so that they mitigate the impact of
possible inadvertent leaks of training data through a model
[21], [22]. One solution to this problem is to have a trusted
agent in charge of the models and an aggregation procedure.
Compared to the federated learning [23], ensembling does not
require communication between the institutions during the
training phase (which may be difficult to set up) and it does
not require the institutions to use the samemodel architecture.
One institution could e.g. use a DNN, another an SVM and a
third a decision tree classifier.

Once predictions on new data have been made there are
a number of techniques by which they can be ensembled.
If predictions are accompanied by probabilities they can be
averaged [24], [25], if not, a commonly used method for
label aggregation is to simply select the most frequent label,
referred to as majority vote in the following. One could also
put more weight on some predictions if they are a priori more
trustworthy, otherwise, an estimate of each annotator perfor-
mance can be used [26], [27], [28]. Dawid and Skene [29]
used an expected maximization (EM) algorithm [30] to esti-
mate annotator performance and provide consensus labels.

Ensemble learning has previously been used in neonatal
seizure detection. In [31] stacking is used where different
model types trained on the same data are combined. In [32]
three identical NSDAs are trained on the same EEG data
but using labels from different experts. In this work we use
ensemble learning on disjoint data sets, to simulate the situa-
tion where institutions train NSDAs on locally available data.
Depending on the training data available at each institution
and its similarity to new data to be labelled, the local NSDAs
are expected to vary in performance. The main contribution
and novelty of this work is in the discovery of how such
locally trained models can be aggregated with the aim of
achieving performance comparable to a single state-of-the-
art NSDA trained on the union of all local training data sets.
For aggregation we compared the majority vote, the mean,
the weighted mean (via stacking) and the Dawid–Skene
expectedmaximization algorithm.We show that the weighted
mean outperforms the other methods if the NSDAs in the
ensemble are trained on very few patients and Dawid-Skene
marginally outperforms the other methods when the local
NSDAs are not much worse than the state-of-the-art NSDA.
The NSDAs and ensembles are further validated on an inde-
pendent data set consisting of more than 2100 hours of EEG
recorded from a small subset of the channels used to train the
classifiers.

II. METHODS AND PROCEDURES
Multiple local models, referred to as local NSDAs in the fol-
lowing, are trained on disjoint subsets of multi-channel EEG
recordings, simulating a scenario where several hospitals
train NSDAs individually, without sharing patient data. The
trained detectors are then shared with a trusted agent. To clas-
sify a short EEG segment from a new patient as seizure/non-
seizure, the trusted agent sends the segment through all the
local NSDAs and the predictions are aggregated using one of
the following schemes: majority vote, mean, weighted mean
or the Dawid–Skene method. The methodology is summa-
rized in figure 1.

FIGURE 1. A schematic diagram of the proposed method. Each data set is
used to train a local NSDAs or weights that are shared with a trusted
agent. The trusted agent makes predictions on new data. Seizure
predictions for new data are obtained a) by aggregating predictions made
by R NSDAs using the majority vote, the mean or the Dawid-Skene
method, or, b) by aggregating predictions made by R − 1 local NSDAs
using the weighted mean (weights are learned on the Rth data set).

For local NSDAs, we used DNNs which take EEG seg-
ments as input. The networks share the same architecture but
have different network weights since they were trained on
disjoint training sets.

A. AGGREGATION SCHEMES
In the following we consider a binary classification problem
where the classes are labeled 0 and 1. Let D be a set of N
predictions from R independent models

D =
{(
p11, p

2
1, . . . , p

R
1

)
, . . . ,

(
p1N , p

2
N , . . . , p

R
N

)}
,

where pji is the estimated probability of model j of instance
i belonging to class 1. By setting a threshold between the
classes to 0.5, the predicted label of model j of instance i is
given by

yji =

{
1; if pji ≥ 0.5,
0; otherwise.
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A simple way to aggregate multiple predictions for
instance i, when models do not output their confidence
(e.g. class probabilities), is to use majority vote, i.e. select
the most frequent label. Here we use the mean of predicted
labels,

µMVi =
1
R

R∑
j=1

yji; i ∈ {1, 2, . . . ,N }. (1)

When the models output class probabilities, which is
e.g. the case when the models correspond to the neural net-
works, the predictions can be aggregated by taking the mean
probability,

µMi =
1
R

R∑
j=1

pji; i ∈ {1, 2, . . . ,N }. (2)

As some of the models might perform better than others,
a weighted mean can be used to emphasize the more accurate
models. To get the final prediction in a range between 0 and 1,
we used logistic regression,

µWMi = σ

 R∑
j=1

wjpji

 ; i ∈ {1, 2, . . . ,N }, (3)

where σ (x) = 1/(1+e−x ). The weights for wj are learned on a
held out data set (see section II-D).

The fourth aggregation method evaluated here is the
Dawid–Skene method. The method estimates the sensitiv-
ity and specificity of each model, together with consensus
predictions µDS . For details of the method see appendix A.
To predict the absence/presence of seizures from the above
aggregation schemes, a threshold of 0.5 is used.

B. DATA
The EEG data used to train the NSDAs is a publicly available
data set containing 79 approximately one hour long neonatal
EEG recordings, measured with 19 Ag/AgCl electrodes posi-
tioned according to the 10-20 system [33]. An 18 channel
montage is used, i.e. we derive channels Fp2-F4, F4-C4,
C4-P4, P4-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F8,
F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1,
Fz-Cz and Cz-Pz. The recordings are annotated by three
EEG experts where each second in a recording is annotated
as a seizure or non-seizure. We refer to this data set as
18-channel DS below.

The second, proprietary, data set (the 3-channel DS) con-
sisting of EEG recordings of 28 neonates, is used as a held out
test set to evaluate the aggregation schemes in a real world
setting, i.e. detectors are trained on the 18-channel DS and
tested on this data set. The data set is also used in [34] and
is a subset of the data set used in [35]. Institutional Research
Review Board of the HUS diagnostic center approved the use
of this data, including a waiver of consent due to the study’s
retrospective and observational nature. Each recording spans
from 19 hours to 7 days. The recordings were obtained using
4 needle electrodes (F3, F4, P3 and P4) with a common

reference, instead of the full set of 19 electrodes used in the
training data set. Neonatal recordings are typically performed
with this reduced electrode set to allow easier maintenance
in a long duration brain monitoring [36]. The three bipolar
derivations (F3-P3, F4-P4 and P3-P4) are used for both two
human expert annotators and as the detectors input.

Additional attributes of the data sets are given in table 2 in
appendix B.

Each EEG recording is cut into 16 sec long segments
with 12 sec overlap. Out of the 79 (28) recordings in
18-channel DS (the 3-channel DS), 38 (24) contain at least
one seizure longer than 16 sec identified by three (two) human
experts, meaning each of these recordings contain at least
one consensus seizure segment. Segments containing more
than 1 sec of zero voltage interval in at least one channel
(disconnected electrode or pause in the recording) are left-out
from the training and test sets. The signals are filtered with
a 6th order Chebyshev Type 2 band-pass filter with cut-off
frequencies of 0.5 Hz and 16 Hz, down-sampled to 32 Hz
and rescaled to 16-bit integers. This is similar to the pre-
processing in [10] and [13].

C. NEONATAL SEIZURE DETECTION ALGORITHM
Each NSDA is a neural network consisting of three compo-
nents; a feature extractor, an attention layer and an output
layer. The feature extractor is a CNN from [37]. The fea-
tures are extracted from each EEG channel separately and
are combined into a single feature channel by the attention
layer [13]. The attention layer is used since expert labels are
not specific to individual channels and neonatal seizures tend
to be partial [3], i.e. localized in a small area of the brain and
therefore only present in a subset of the recorded channels.
The attention layer is also independent of the number of
input feature channels making the detector independent of the
number of recorded EEG channels. The output layer is a fully
connected layer with two output nodes representing the two
classes. A detailed description of the network architecture is
given in appendix C.

To compare the aggregation schemes to current state-of-
the-art NSDAs, we trained a neural network using all the
recordings in the 18-channel DS containing at least one con-
sensus seizure longer than 16 sec (P). This NSDA is referred
to as the baseline NSDA in the following.
The local NSDAs use the same neural network architecture

as the baseline NSDA but differ in the data used for training.
The patients in P (patients containing a consensus seizure)
are partitioned into k = 3, 4, . . . , 10 subsets representing
data sets in individual institutions. Partitioning is random
such that each patient is in exactly one subset and there are
at least three patients in every subset. The union of the k
subsets is then P, the data set used as a training set for the
baseline NSDA. By excluding patients without consensus
seizures we ensure each subset has patients with seizures
and eliminate the varying number of EEGs with normal
brain activity in individual subsets, making the analysis more
straightforward. As there can be a big difference between
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the training set sizes, we obtain local NSDAs with differ-
ent generalisation strengths and consequently with different
performance strengths on unseen data. This is expected in
practice. Even though the acquisition equipment is subject
to international standards and the electrodes are positioned
according to the 10-20 system, the EEG signals may vary
considerably depending on the patient cohorts as the sig-
nals differ between neonates of different ages and conditions
[38], [39]. Therefore, the detectors are expected to perform
differently on unseen data.

D. TRAINING
After partitioning the training set, each NSDA (baseline
NSDA and local NSDAs) is trained on 16 sec long EEG
segments corresponding to the consensus seizures and non-
seizure segments. To avoid complications due to class
imbalance [13], [40], the training sets are balanced prior
to training by sub-sampling the non-seizure segments. Seg-
ments with disagreements between the human experts and
partly seizure/non-seizure segments are not included in the
training sets. Cross entropy is used as the loss function. The
Adam optimizer is used to optimize the network weights
using an initial learning rate of 0.001 which is then halved
every 10 epochs. The NSDAs are trained for 30 epochs with
a mini-batch size of 32. Hyper-parameters, learning rate and
number of epochs, are tuned empirically, from observing the
behavior of the loss function during the training of the base-
line NSDA. A small mini-batch size is chosen due to a small
amount of data used in some local NSDAs. For the weighed
mean aggregation scheme, the weights wj, j ∈ {1, 2, . . . ,R},
are learned using a stacking classifier [28]. A logistic regres-
sion classifier is trained using the data from one randomly
selected local NSDA in each experiment. This local NSDA
is not used in an ensemble for making predictions on a test
patient. Therefore, non-overlapping data sets are used for
training the local NSDAs and the logistic regression classifier.
Also, the training data of the local NSDAs would not need to
be shared in practice as the input of the logistic regression
classifier is just a set of seizure probabilities estimated by
the local NSDAs and these can be provided by the trusted
agent.

All the deep learning code used in the experiments
is implemented using PyTorch 1.7.1 [41] and run on an
NVIDIA GTX 1080 Ti GPU. For logistic regression, we use
the scikit-learn [42] implementation with default hyper-
parameters. The code is available at github.com/anaborovac/
Distributed-NSDA.

E. PERFORMANCE
To avoid overlap between training and test data when evaluat-
ing classifier performance on the 18-channel DS, leave-one-
subject-out cross-validation is used. This entailed training
38 baseline NSDAs, 38 sets of local NSDAs and 38 sets of
logistic regression classifiers, leaving out data from one sub-
ject (patient) at a time. The experiment is repeated 10 times,

resulting in 10 ·38 · (3+4+· · ·+10) = 19760 local NSDAs
and 10 · 38 · (1+ 1+ · · · + 1) = 10 · 38 · 8 = 3040 logistic
regression classifiers.

Data from each left-out patient is sent through the corre-
sponding baseline NSDA and local NSDAs. Predictions from
the baseline NSDAs are compared to human expert labels
to obtain performance metrics. Predictions from the local
NSDAs are first aggregated using one of the aforementioned
aggregation schemes: majority vote (1), mean (2), weighted
mean (3) and the Dawid–Skene method (appendix A) to
obtain the final predictions and these are then compared to
human expert labels.

Two sets of performance metrics are calculated, met-
rics based on the success/failure in classifying individual
16 sec long segments, and event-basedmetrics which indicate
whether a seizure is detected at all, or whether a seizure is
falsely reported. The segment-based metrics are sensitivity
(SE), specificity (SP) and the area under the receiver oper-
ating characteristic curve (AUC). These metrics are calcu-
lated from segments without disagreements between human
experts and segments with either seizure either non-seizure
activity for thewhole segment duration. The event-basedmet-
rics are seizure detection rate (SDR), false detections per hour
(FD/h) and the mean false detection duration (MFDD) [43].
A consensus seizure is considered to be detected if it is
detected at any point in time and a seizure is considered as
a false detection if it did not overlap with any (consensus or
not) seizure labelled by the human experts. Definitions of the
metrics are provided in appendix D. Metrics calculated on
each patient separately are summarized by their means and
medians.

Before the event-based metrics are calculated a post-
processing step is in order since segments overlap. Besides
a few segments at the beginning and end of each record-
ing, for each 4 sec long segment there are 4 overlapping
16 sec long segments. Prediction for a 4 sec segment is
obtained by averaging predictions from overlapping 16 sec
long segments [44], [45]. Seizures with duration less than
10 sec are excluded and considered normal brain activity as
by definition seizures are longer than 10 sec [46].

For studying the segment-based level of agreement
between the local NSDAs we use Gwet’s first-order agree-
ment coefficient (AC1) [47]. Compared to the often used
Cohen’s (Fleiss’) κ [13], [48], [49], Gwet’s AC1 is less
prone to the paradoxes associated with highly imbalanced
data [50], [51].

Performance on the 3-channel DS is evaluated in the same
manner as for the 18-channel DS, i.e. the metrics are calcu-
lated for each patient separately and then summarized with
the mean and the median. The baseline NSDA is trained
using all 38 patients in P (no patients are left-out), and the
union of the training sets for the local NSDAs also contain
all 38 patients in P. This results in additional 1 + 10 · (3 +
4 + · · · + 10) = 521 NSDAs and 10 · (1 + 1 + · · · + 1) =
10 · 8 = 80 logistic regression classifiers.
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III. RESULTS
To assess the clinical usefulness of the aggregation schemes
they are compared to a baseline NSDA which is trained on
data from all 38 patients in P (in a leave-one-subject-out
setting for evaluation on the 18-channel DS). The baseline
NSDA thus corresponds to the situation where a single agent
has access to all the training data (P), a situation which is
expected to be favorable compared to aggregating predictions
from multiple models trained on disjoint subsets of the same
data.

A. BASELINE NSDA
Table 1 compares the performance of the baseline detector to
other NSDAs found in the literature. All detectors are neural
networks and were trained or tested using the 18-channel
DS. The difference between the mean (0.92) and median
(0.98) AUC values for the baseline NSDA calculated on the
18-channel DS is mainly due to the presence of respiratory
and heart rate artefacts and low seizure burden in some of the
recordings.

TABLE 1. Comparison of the area under the curve (AUC) values found in
the literature. Each reference uses a different proprietary data set. All
NSDAs, except [13], were trained using the 18-channel DS. Superscript L
denotes leave-one-subject-out testing and superscript C denotes AUC
value on concatenated recordings from the data set.

The performance of an NSDA on an independent test set
is usually worse than performance estimates obtained from
a held out training data. Such a decrease can be attributed
to several factors, including differences in patient cohorts,
seizure prevalence, the number of available EEG channels,
the human experts that annotated the EEG [48], and training
data not representing the general population. For example,
the mean AUC decreased from 0.97 to 0.92 in [13] and from
0.99 to 0.96 in [14].We observe a similar drop in performance
when the baseline detector was tested on a proprietary the
3-channel DS. Detailed validation of the NSDA performance
is available in table 3 in appendix E.

In summary, the baseline NSDA gives comparable results
to the state-of-the-art NSDAs and performs well on record-
ings which include only a small subset of the channels used
in training.

B. AGGREGATION SCHEMES
Here we evaluate the different aggregation schemes and com-
pare them to the baseline NSDA and to the average perfor-
mance of the local NSDAs. If the baseline performance can
be reached with an aggregation scheme, it would indicate

that the data does not need to be shared during the train-
ing of an NSDA to obtain a detector with state-of-the-art
performance. The four aggregation schemes, majority vote,
mean, weighted mean and the Dawid–Skene method were
evaluated on the 18-channel DS and the 3-channel DS for
k = 3, 4, . . . , 10 local NSDAs. Results for the majority vote
are not shown since in all cases majority vote was slightly
outperformed by the mean aggregation scheme (see figure 7
in appendix E).

With an increasing number of local NSDAs the average
performance of an individual detector gradually gets worse
(figure 2). This is explained by the fact that the number of
patients behind each local NSDA is becoming smaller since
the total number of patients in the combined training sets is
constant (37 for the 18-channel DS and 38 for the 3-channel
DS). Consequently there is an increased risk of overfitting
in individual detectors. The size of the local training sets is
quantified with the mean median number of patients in the
training set. E.g., if four local NSDAs are used and the mean
median is 8.1, then on average there are at least nine patients
in the training of two of the local NSDAs.

Figure 2 shows that the AUC, seizure detection rate and
false detection rate behave similarly across both data sets
for all the aggregation schemes, but there is considerably
more variability for the 3-channel DS. All the aggregation
schemes give AUC values that are similar to the baseline
value. However, the aggregation schemes differ in terms of
seizure detection rate and false detections per hour.

Figure 3 shows the seizure probability estimates returned
by local NSDAs for an hour-long recording, together with
probability estimates obtained with the ensemble methods.
All the aggregation schemes result in AUC close to one,
although they detect only 3 out of 7 consensus seizures. The
missed seizures are short in duration and they are clearly
visible in the figure (as white bands) since the corresponding
probabilities are higher than for the non-seizure segments.

The SDR in figure 2 behaves similarly for both data sets.
For all values of k tested, the Dawid–Skene method is com-
parable to the baseline NSDA, while for the mean and the
weighted mean aggregation schemes, fewer seizures were
detected with an increased number of local NSDAs. Recall
that when there are fewNSDAs, eachNSDAdetects almost as
many seizures as the baseline detector. The mean aggregation
scheme performed slightly worse than the weighted mean
and both performed notably worse than the Dawid–Skene
method for more than four local detectors. Moreover, the
average SDR of the local NSDAs is comparable to the values
corresponding to the mean aggregation scheme. With the
weighted mean a larger number of seizures are detected for
k ≥ 8 (k = 10) on the 18-channel DS (3-channel DS),
for smaller k the mean and the weighted mean aggregation
schemes return comparable seizure detection rates.

Moreover, in figure 2 we observe that all aggregation
schemes result in a lower number of FD/h than the aver-
age local NSDA. The average FD/h of the local NSDAs
are noticeably higher for the 3-channel DS than for the
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FIGURE 2. Average area under the curve (AUC), seizure detection rate (SDR) and false detections per hour (FD/h) as a function of the number of local
NSDAs used in the aggregation schemes. The solid lines represent the medians of ten runs together with interquartile ranges denoted with vertical
lines. The grey dashed line represents the average metric of the baseline NSDA. The average (across ten runs) mean median number of patients in each
NSDA is shown in parentheses.

FIGURE 3. An example of aggregated predictions from eight local NSDAs.
The area under the curve is 1.0 for the mean and the weighted mean and
0.99 for the Dawid–Skene method. All aggregation schemes detect 42.9 %
of consensus seizures and they do not falsely detect any seizure.

18-channel DS. One possible explanation is that the record-
ings in the 3-channel DS are much longer and on average
just 3.5 % of a recording corresponds to a seizure activity.

The mean aggregation scheme has a lower false detection rate
than the baseline NSDA and the FD/h decreases steadily with
increasing number of local NSDAs. This may be a result of
low level of agreement between the local NSDAs for the large
k (figure 5 in appendix E). So, even though an individual
local NSDA falsely detects a large number of seizures, the
aggregated prediction filtered them out or was below the
0.5 threshold. This may on the other hand caused problems
with the Dawid–Skenemethod, i.e. the FD/h increased slowly
on the 18-channel DS and rapidly on the 3-channel DS with
increasing number of local NSDAs. In contrast, the logistic
regression classifier determining the weights for the weighted
mean aggregation scheme successfully detected local NSDAs
with high/low false detection rate for all k tested.

We observed low false detection rates for the mean and
weighted mean aggregation schemes and therefore inves-
tigated whether the false detections are short or long in
duration. We did not observe big differences between the
aggregation schemes (10 - 30 sec) and different values of local
NSDAs (figure 6 in appendix E).

To summarise, all aggregation schemes tested here per-
form better than the average local NSDA and are compa-
rable to the baseline NSDA for k ∈ {3, 4}. This shows
that the overfitting by local models noted earlier is offset
by aggregating their predictions. This is in line with pub-
lished reports on ensemble methods such as Random Forests
which aggregate predictions from multiple models individ-
ually overfitting the data. The decrease in performance for
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larger values of k is mainly a result of training the local
NSDAs on smaller training sets that do not capture the general
population. The (weighted) mean aggregation scheme detects
fewer seizures than the baseline detector, however the false
detection rate is comparable, if not lower. The Dawid–Skene
method successfully detects the same number of seizures as
the baseline NSDA for any number of local NSDAs, but
the false detection rate is compromised for k ≥ 6. Predic-
tions obtained with the Dawid–Skene are difficult to explain
[52], [53], only a few local NSDAs with poor perfor-
mance may have caused unexpected and undesired aggre-
gated prediction [54].

IV. CONCLUSION
In this work we have shown that an NSDA based on
a convolutional neural network together with an attention
layer can accurately detect seizures, even if the data is
obtained with different types of electrodes (scalp vs nee-
dle) and significantly lower number of channels than it
was used for training. All the performance metrics of the
NSDAs unsurprisingly dropped when training sets contained
data from only a few patients. For aggregation of such
NSDAs the weighted mean aggregation scheme performed
best. Compared to the Dawid–Skene method, it success-
fully detected local NSDAs with high false detection rates
and seizure detection rate was not as compromised as it
was for the mean aggregation scheme. When a larger num-
ber of patients was included in the training of individual
local NSDAs, i.e. when the number of local NSDAs was
few, the Dawid–Skene method marginally outperformed the
other aggregation schemes. It had a higher seizure detection
rate and the false detections per hour was comparable to
the (weighted) mean aggregation scheme. Independent of
the number of local NSDAs, the majority vote was slightly
outperformed by the mean aggregation scheme and all aggre-
gation schemes performed better than the average individ-
ual (local) NSDA.

The experiments suggest that data does not need to be
shared between institutions. It takes approx. 15 seconds to
process one hour of 18-channel EEG with 10 local detectors,
which is fast enough to be used in an online setting in the
clinic. By utilizing GPU optimized code in the preprocessing
steps and a fast version of the Dawid-Skene aggregation
method [55], one hour of EEG could be processed in less than
2 seconds.

To confirm the findings reported here in a real-world
setting, data from multiple institutions would be required.
A large data set would also allow a detailed study on the
number of local NSDAs needed to reach the desirable classi-
fication performance and whether a mixture of different types
of NSDAs improves or degrades the overall performance.

APPENDIX A
DAWID-SKENE METHOD
The Dawid–Skene method was initially used to estimate the
performance of human annotators [29]. Here the method is

used to estimate the performance of models (local NSDAs)
and obtain consensus judgement amongst them. The method
is as follows. From a given set D of model predictions, the
task is to estimate consensus labels {µi}Ni=1, the sensitivity α

j

and specificity β j of predictive model j ∈ {1, 2, . . . ,R}. Let
Ye denote the multivariate random variable

Ye = (Y 1
1 ,Y

2
1 , . . . ,Y

R
1 , . . . ,Y

1
N ,Y

2
N , . . . ,Y

R
N ),

where random variable Y ji denotes the label given to instance
i by model j. Furthermore, let Ti denote a random variable
corresponding to the true label of instance i for which

P[Ti = 1] = ti = t; i ∈ {1, 2, . . . ,N }.

Assuming that model labels are independent and that condi-
tional probability of Y ji on Ti follows Bernoulli distribution
with parameters αj and β j, respectively:

ai = Pα
[
Y 1
i ,Y

2
i , . . . ,Y

R
i |Ti = 1

]
=

R∏
j=1

(αj)y
j
i (1− αj)1−y

j
i; i ∈ {1, 2, . . . ,N },

bi = Pβ
[
Y 1
i ,Y

2
i , . . . ,Y

R
i |Ti = 0

]
=

R∏
j=1

(β j)1−y
j
i (1− β j)y

j
i; i ∈ {1, 2, . . . ,N }.

To simplify the notation, let θ = (t, α, β) denote the
parameters to be estimated. Assuming that instances are
sampled independently, the likelihood function for Ye is
[29], [56]:

Pθ [Ye] =
N∏
i=1

Pθ [Y 1
i ,Y

2
i , . . . ,Y

R
i ]

=

N∏
i=1

Pθ [Y 1
i ,Y

2
i , . . . ,Y

R
i |Ti = 1]︸ ︷︷ ︸

ai

Pθ [Ti = 1]︸ ︷︷ ︸
t

+Pθ [Y 1
i ,Y

2
i , . . . ,Y

R
i |Ti = 0]︸ ︷︷ ︸

bi

Pθ [Ti = 0]︸ ︷︷ ︸
1−t


=

N∏
i=1

(ait + bi(1− t)) . (4)

Dawid and Skene used the EM algorithm to identify a
local maximum of the likelihood function. The true labels
are estimated by maximizing the likelihood function using
estimated values for the sensitivity and specificity of each
annotator, and the prior probability of class 1 (t), i.e. seizure.
The algorithm has two main steps [29].
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FIGURE 4. Architecture of the NSDA with a total of 29352 learnable
parameters. Other parameters were set to default PyTorch values.

Expectation step: calculate the expected value of a true
label knowing labels made by predictive models,

µi = E[Ti|Y 1
i ,Y

2
i , . . . ,Y

R
i ]

= Pθ [Ti = 1|Y 1
i ,Y

2
i , . . . ,Y

R
i ]

=
Pθ [Y 1

i ,Y
2
i , . . . ,Y

R
i |Ti = 1]Pθ [Ti = 1]

Pθ [Y 1
i ,Y

2
i , . . . ,Y

R
i ]
(Bayes’ theorem)

=
ait

ait + bi(1− t)
; i ∈ {1, 2, . . . ,N }. (5)

Maximization step: estimate t , αj and β j that maximize the
likelihood function (4),

t =

∑N
i=1 µi

N
, (6)

αj =

∑N
i=1 µiy

j
i∑N

i=1 µi
; j ∈ {1, 2, . . . ,R}, (7)

β j =

∑N
i=1(1− µi)(1− y

j
i)∑N

i=1(1− µi)
; j ∈ {1, 2, . . . ,R}. (8)

FIGURE 5. Average Gwet’s AC1 between local NSDAs for 18-channel DS
and 3-channel DS. The solid lines represent the medians of ten runs
together with interquartile ranges denoted with vertical lines.

TABLE 2. A summary of the data sets used in the study. Numbers inside
parentheses represent standard deviation. Means for recordings are
calculated across patients containing at least one consensus seizure
longer than 16 sec (duration of one EEG segment).

In the special case when all the µi’s are either 0 or 1, then
t is the estimated ratio of positive instances and αj (β j) is
an estimated ratio of correctly predicted positive (negative)
examples by expert j, i.e. the estimated sensitivity (speci-
ficity) of expert j.
Input: D, ε = 10−5, kmax = 5000
Output: µDS

initialize µDS = µM

compute θ (0) using equations (6), (7) and (8)
k = 0
repeat
k = k + 1
compute µDS using equation (5)
compute θ (k) using equations (6), (7) and (8)

until | logPθ (k−1) [Ye]− logPθ (k) [Ye]| < ε or k ≥ kmax

APPENDIX B
DATA INFORMATION
See table 2.
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FIGURE 6. Average mean false detection duration (MFDD) as a function of the number of local NSDAs used in the aggregation schemes. The solid
lines represent the medians of ten runs together with interquartile ranges denoted with vertical lines. The grey dashed line represents the average
MFDD of the baseline NSDA.

APPENDIX C
ARCHITECTURE OF THE NSDA
In this work the NSDAs are deep neural networks consisted
of three components, a feature extractor [37], an attention
layer [13] and an output layer (figure 4). We used PyTorch
implementation of layers for the feature extractor and for the
output layer. Using PyTorch notation, the attention layer was
implemented as follows. If an input to the attention layer
is of size (N ,Cin,L) then the output is of size (N ,L) and
can be described as

out(Ni) =
Cin−1∑
k=0

ak input(Ni, k);

ak =
exp

(
wT tanh

(
V input(Ni, k)T

))∑Cin−1
j=0 exp

(
wT tanh

(
V input(Ni, j)T

)) ,
where V ∈ RL×<inner size> and w ∈ RL×1 are learnable
parameters.

APPENDIX D
PERFORMANCE METRICS
A. SEGMENT-BASED METRICS
Segment-based metrics were calculated based on 16 sec long
EEG segments. A true positive (TP) is a correctly predicted
seizure segment, a true negative (TN) is a correctly predicted
non-seizure segment, a false positive (FP) is an incorrectly
predicted non-seizure segment and a false negative (FN) is
an incorrectly predicted seizure segment.
• Sensitivity (ratio of correctly predicted seizure
intervals):

SE =
TP

TP+ FN
· 100.

• Specificity (ratio of correctly predicted non-seizure
intervals):

SP =
TN

TN+ FP
· 100.

• Area under the receiver operating characteristics curve
(AUC). The receiver operating characteristics curve
describes SE depending on 1-SP.

TABLE 3. Accuracy of the baseline model. Area under the curve (AUC),
sensitivity (SE), specificity (SP), seizure detection rate (SDR), false
detections per hour (FD/h) and mean false detection duration (MFDD) are
computed as the mean and median over all the patients with seizures.

B. EVENT-BASED METRICS
Event-based metrics are in comparison with the segment-
based metrics focused on each predicted seizure and not
just 16 sec long segments. Three event-based metrics were
used [43]:
• Seizure detection rate (SDR):

SDR =
DS
CS
· 100,

where DS is a number of detected consensus seizures
and CS is a number of consensus seizures. A seizure was
considered to be detected if it was detected at any time
of its duration.

• False detections per hour (FD/h):

FD/h =
IDS
D
,

where IDS is a number of incorrectly detected seizures
and D is duration of data in hours. A seizure was consid-
ered to be incorrectly detected if it was not overlapping
with any seizure annotated by the experts.
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FIGURE 7. Average area under the curve (AUC), seizure detection rate (SDR), false detections per hour (FD/h) and false detection duration (MFDD) as
a function of the number of local NSDAs used in the aggregation schemes. The solid lines represent the medians of ten runs together with
interquartile ranges denoted with vertical lines. The grey dashed line represents the average metric of the baseline NSDA. The average (across ten
runs) mean median number of patients in each NSDA is shown in parentheses.

• Mean false detection duration (MFDD):

MFDD =

{
0; if IDS = 0
DIDS
IDS ; otherwise

,

where DIDS is a sum of durations of incorrectly detected
seizures in seconds and IDS is a number of incorrectly
detected seizures.

APPENDIX E
ADDITIONAL RESULTS
See table 3 and figures. 6 and 7.
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