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Abstract—Devices capable of multi-connectivity currently use
static rules for selecting the set of interfaces to use. Such rules
are limited in scope and can be counter-productive. We posit
that SDN techniques can address this inefficiency. We present an
approach that enables an SDN controller to manage the flows
traversing the Ethernet, Wi-Fi, and LTE links in our laptop and
also migrate the flows from one link to another. Our solution
opens avenues that enable end-user device to negotiate with the
network controllers when taking its control plane decisions.

Index Terms—Network Management, SDN, Multi-connectivity.

I. INTRODUCTION

Identifying the set of communication interfaces to use is a
key decision taken by devices capable of multi-connectivity.
Multi-connectivity is not new and laptops are capable of
connecting to the Internet via a combination of interfaces
such as Wi-Fi, cellular, or Ethernet. However, selecting the
set of interfaces to use is largely governed by static rules.
For example, our phones typically prefer Wi-Fi over cellular
connectivity regardless of the quality of the Wi-Fi network.
Bahl et al. [1] detail this inefficiency while highlighting the
benefits of using multiple interfaces in a collaborative manner.

Software Defined Networking (SDN) brings the capabil-
ity of taking dynamic decisions based on the instantaneous
network state. This has motivated researchers to leverage
SDN techniques for taking control plane decisions in multi-
connectivity scenarios. However, these works either focus on
managing the Access Points (APs) and base stations [2], [3],
identifying the interface to use locally on the device without
communicating with the network controllers [4], [5], or are
focused solely on enforcing security policies [6].

SDN can also be leveraged for managing the network
interface of an end-user devices. Creating a software switch on
the end-user device and using its virtual interface decouples
the applications from the underlying network interfaces [4],
[1], [7]. This enables the device to coordinate with the network
controllers to identify which interfaces to use, allowing a more
optimal interface selection. Furthermore, decoupling interfaces
from applications enables seamless vertical handovers.

In this paper we exemplify our approach that allows a
network controller to select the communication interfaces used
by end-user devices. Our key contributions are as follows.
1) Our approach is agnostic to the underlying network in-

terfaces and we exemplify it by migrating the network
flows of a laptop with Ethernet, Wi-Fi, and LTE interfaces.
We consider a single network which provides a single IP

(a) Laptop with 3 interfaces. (b) Network topology.

Fig. 1. Multi-connectivity Setup. The Ethernet, Wi-Fi, and LTE interfaces of
the laptop are plugged to an SDN switch running on the laptop.

address to our laptop. This assumption is in line with the
network of the Department of Computer Science at the
University of Helsinki, where each managed device has a
single IP address across all interfaces.

2) We present an algorithm for migrating flows which builds
on the work of Huque et al. [8]. Our enhancement ensures
that the rules in the switches common to the path prior
to flow migration and after the flow migration are left
untouched while also ensuring per-packet consistency.

3) We observe that the flow migration times when using
an implementation of our approach is typically less than
100 ms when the links are not saturated (see §III). Fur-
thermore, in our setup, the flow migrations are seamless
and do not cause existing TCP connections to reconnect.

Our solution enables end user devices to leverage on SDN
techniques for selecting the interfaces it uses and implement-
ing network-triggered handovers. As discussed in §IV, the key
challenges in using an SDN switch on an end-host include (i)
bootstrapping the networking connectivity, and (ii) setting up
the control channel between the switch and the controller.

II. SOLUTION DESCRIPTION

Our solution leverages SDN for programmable link selec-
tion and flow migration. Figure 1(a) presents our prototype
laptop which has three interfaces: Ethernet, Wi-Fi, and LTE.
As shown in Figure 1(b), all three interfaces offer connectivity
via a single network. We make this assumption because
carriers are increasingly offering Wi-Fi and LTE connectivity.
All three interfaces are connected to an SDN switch running on
the laptop. For simplicity, we assume that the SDN controller
managing the switches in the network also manages the switch
on the laptop. Note that the switches in the network use an out-
of-band control channel for communicating with the controller
except the switch in the laptop which uses an in-band control
channel. Further details of the prototype, including the reason



Algorithm 1: The set of rules to add and delete
Data: P ′′: the new path, and P ′: the current path
Result: α: set of rules to add, and δ: set of rules to delete

1 S′ = {s(r) | r ∈ P ′}
2 S′′ = {s(r) | r ∈ P ′′}
3 θ′ = {〈s(r),m(r), a(r)〉 | r ∈ P ′, s(r) ∈ S′ ⋂S′′}
4 θ′′ = {〈s(r),m(r), a(r)〉 | r ∈ P ′′, s(r) ∈ S′ ⋂S′′}
5 α = {r | r ∈ P ′′, s(r) ∈ S′′ \ S′}
6 δ = {r | r ∈ P ′, s(r) ∈ S′ \ S′′}
7 foreach j ∈ S′′ ⋂S′ do
8 rα = r | r ∈ P ′′, s(r) = j
9 rβ = r | r ∈ P ′, s(r) = j

10 if 〈s(rα),m(rα), a(rα)〉 /∈ θ′
⋂
θ′′ then

11 π(rα) ⇐ π(rβ) + 1
12 α = α

⋃
rα

13 δ = δ
⋃
rβ

14 end
15 end

for using the VPN tunnels for the LTE interface are discussed
in §III. We also plan to extend this solution by running a local
instance of an SDN controller, and this is discussed in §IV.

We now present our algorithm that our SDN controller uses
for migrating the flows from one interface to another. Let S
denote the set of SDN-capable forwarding elements in the
network; we henceforth refer to forwarding elements such as
switches and routers as switches. The rules managing all the
flows in the network is R =

⋃
j∈S

Rj where Rj is the set of

rules on switch j ∈ S. We represent the path traversed by a
flow of packets in a given direction by an ordered sequence
of rules serving that flow. P = r1, r2, . . . , rn where rj ∈ R
and 1 ≤ j ≤ n. We consider flows to be unidirectional, and
bidirectional flows are considered two independent flows. Let
P ′ and P ′′ respectively denote the current path traversed by
the flow and the new path after the flow migration.

A straw-man approach for flow migration would be to
install the rules present in P ′′ followed by removing the
rules in P ′. This can be implemented using the technique of
Huque et al. [8] which builds on the two-phase commit [9] and
the rule reverse update technique [10]. If the length of P ′ and
P ′′ are n and m respectively, then this approach requires n+m
operations. However, this approach is sub-optimal because the
controller ends up updating the rules on the switches common
to the current path and the new path. As shown in Figure 2, the
switches common to both paths are typically in the core of the
network and it is desirable to minimize changing their rules.
Therefore, our goal is to ensure that the rules not affected by
flow migration are left untouched by the SDN controller.

We assume that each rule is described by four fields: i) the
switch id, ii) the rule priority, iii) the match field, and iv) the
action field; for a given rule r, we assume these four fields are
given by the functions s(r), π(r), m(r), and a(r) respectively.
As shown in Algorithm 1, we assume S′ and S′′ respectively
denote the set of switches on the current and new path. We use
the switches in S′ ⋂S′′, and the match and action fields of
the rules in P ′ and P ′′ for creating two sets of 3-tuples θ′ and
θ′′. Note that a rule is already serving the flow if its switch id,
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Fig. 2. Testbed. Our test network contains interlinked SDN switches, an SDN
capable AP, and an LTE connection via a VPN tunnel.

match field, and action field is in θ′
⋂
θ′′. Therefore the SDN

controller does not need to install these rules. As shown in
Algorithm 1, the rules on switches in S′′\S′ can be added with
their default priority, and the rules in S′ \ S′′ can be deleted.
Furthermore, the priority of the rules in P ′′ whose switch ids
are in S′ ⋂S′′ but whose switch ids, match, and action fields
are not in θ′

⋂
θ′′ should be higher than the priority of the

corresponding rules in P ′. This gives us α and δ, the set of
rules to add to R and delete from R respectively. We add and
delete the rules using the technique of Huque et al. [8], which
in-turn uses probe packets for ensuring per-packet consistency
and blackhole-freedom during the flow migration.

By not modifying the rules whose switch ids, match field,
and action field are in θ′

⋂
θ′′, Algorithm 1 ensures that

the SDN controller does not modify the rules which are not
affected by flow migration.

III. EVALUATION

We implemented our algorithm in an SDN controller written
using the Ryu framework [11], and used it to migrate flows
between the three interfaces of our laptop. We now detail our
evaluation testbed, the test scenarios, and our results.

A. Testbed Description

As shown in Figure 2, the laptop’s LTE, Wi-Fi, and Ethernet
interfaces are plugged to an Open vSwitch (OVS) bridge
running on the laptop. While plugging the Ethernet interface
to the OVS bridge is straightforward, the Wi-Fi and LTE
interface required the following steps. We assigned the OVS
bridge the same MAC address as that of the Wi-Fi interface
because Wi-Fi APs typically drop packets that have a different
destination MAC address than any of the associated clients.
LTE modems, such as the USB Huawei E3372h LTE don-
gle shown in Figure 1(a), typically expose a Point-to-Point
Protocol (PPP) interface which cannot be directly plugged to
an OVS bridge [12]. We therefore use an Open VPN client
which exposes a TAP interface [13], which was then plugged
to the OVS bridge. This VPN client connects to a VPN server
running on a device connected to an SDN switch.

We assign the laptop a single IP address, which is given to
the OVS, i.e. the physical interfaces or the VPN TAP interface
do not have their own IP addresses. The LTE modem has its



own IP address, but this address is only used to create the
VPN tunnel. This approach is similar to HetSDN [7], however
we only use tunnels over LTE, we do not have a dedicated
Home Agent, and we use a single SDN controller for both the
network and the OVS on the laptop.

We use Linksys WRT3200ACM APs [14] with OVS version
2.9.2. The Ethernet operates at 1 Gbps link with sub millisec-
ond latency. The Wi-Fi speed is up to 100 Mbps, however
the latency varies from few milliseconds under no load to
hundreds of milliseconds when the link is saturated; this is
largely due to the bufferbloat problem [15]. The LTE link
provides up to 40 Mbps bandwidth with a latency of 30 ms.

B. Test Metrics and Workloads

The objective of our evaluation is to highlight the impact
of i) the different characteristics of LTE, Wi-Fi, and Ethernet
links, ii) the buffers in the network, and iii) the in-band control
channel because the OpenFlow messages and the data traffic
from the laptop share the same interface.

We use the flow migration time and the number of TCP
retransmissions to evaluate the performance of our approach.
Migrating a TCP flow from one interface to another therefore
does not incur TCP reconnects. This implies that there are
always packets in flight during the flow migration. The con-
troller therefore sends probe packets in the current path after
the rules for the new path have been installed on the switches,
and before the rules for the current path are removed [8].
We consider a migration to be complete only after the probe
packets have been received at their destination. The arrival of
probe packets at the destination implies that the packets of the
flow which were in flight when the migration started are no
longer in flight; they were either received at the destination
or lost in flight during the migration. Our approach can also
cause TCP retransmissions because packets taking the new
path might arrive before packets taking the current path.

We evaluate the performance of our solution with iperf3 [16]
under three different TCP traffic workloads: i) unlimited with
no bandwidth restrictions, ii) 10 Mbps, where iperf3 throttled
the rate of the TCP flows to 10 Mbps, and iii) idle, where the
interface used by the device was changed when iperf3 was not
running. To meet our objectives, we only considered downlink
traffic, i.e. traffic sent from the default Internet gateway (GW)
to our laptop. For each workload, and for each of the 6
combinations of flow migrations between Ethernet (E), LTE
(L), and WiFi (W) links, we run 30 iterations. For each 20
second iteration, we first start the flow on one interface and
then after 10 seconds we migrate it to the other interface. This
allows the TCP flow to stabilize before migration.

The idle workload gives the baseline performance on the
time required by the SDN controllers to update the flow rules.
Note that the lack of traffic triggers power management in the
Wi-Fi interface and we therefore conducted this test twice:
once when the Wi-Fi power management was enabled (the
default), and once when it was turned off. The LTE modem
does not have power management options available, so we
could not perform similar tests for it. The 10 Mbps workload
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Fig. 3. Evaluation results. We consider all 6 combinations of flow migrations
between Ethernet (E), LTE (L), and WiFi (W) links. The common legend is
shown in the top figure and L→W implies migrating a flow from LTE to Wi-Fi.
The error bars represent the 95% confidence interval across 30 iterations.

emulates migrating a flow used for streaming high quality
videos. The unlimited workload emulates conditions when a
flow is migrated from a saturated link to an unsaturated link.
This workload highlights the impact of network buffers on the
flow migration time and the TCP retransmissions.

C. Results

In Figure 3(a), we observe that the migration time of a flow
depends on the workload and the interfaces used. Across all
workloads, migrating flows from Ethernet incurred a smaller
migration time compared to migrating flows from LTE. This
is expected because the LTE link between the device and the
SDN switch to which it is connected incurred a latency of
around 30 ms even when there was no traffic.

For the unlimited workload, we observe that the migration
times from LTE to other interfaces is much higher than other
combinations, up to 800 ms. Similarly, migrating from Wi-
Fi takes around 160ms, while from Ethernet is always below
100 ms. The higher migration times are explained by the
bufferbloat problem. In LTE, we observe Round-Trip-Times
(RTT) increasing from the baseline of 30 ms up to 400 ms
over the first 10 seconds of the test, indicating large network
buffers. When migration is triggered, the controller sends flow
modification message over the in-band control channel. This
message and corresponding reply use one RTT, and when the
traffic begins to use the new path, a probe message is sent over
the previous path, taking one RTT. In total, the migration uses
two RTTs of the original link, i.e. up to 800 ms. We observe
a similar behaviour with Wi-Fi, but the effect is smaller.

In contrast, we observed migration times of less than 100 ms
for the 10 Mbps workload for all combinations of LTE, Wi-Fi,
and Ethernet interfaces. As the workload is less than any of
the link capabilities, the traffic is not buffered.

For the idle workload, we observe that the migration time
from Wi-Fi when Wi-Fi power management is enabled (de-



fault) is thrice the migration time when it is disabled. This is
because the migration process requires waking up the Wi-Fi
interface so that the controller can update the rules.

In Figure 3(b) we present the number of TCP retransmis-
sions occurred when migrating a flow from one interface to
another. For the unlimited workload, we observe that the buffer
bloat problem results in a high number of TCP retransmissions
when migrating from Wi-Fi and LTE links. For the 10 Mbps
workload we observe a significantly smaller number of TCP
retransmissions compared to the unlimited workload.

These results highlight the impact of the in-band control
channel when migrating flows across interfaces with com-
pletely different link characteristics. Our solution does not
interrupt TCP sessions within single administrative domain.

IV. DISCUSSION AND CONCLUDING REMARKS

We now discuss our insights and some key additional chal-
lenges in leveraging SDN techniques for implementing seam-
less flow migrations in networks offering multi-connectivity.

1) In-band control plane. An in-band control plane causes
the control plane messages to be queued up in large in-network
buffers with the data plane traffic. The impact of these delays
can be further aggravated by the packet losses in the wireless
medium. This issue can be addressed by dedicating one
interface for the control plane traffic. However, this requires
multiple simultaneously connected interfaces, which is not
possible at all times, and it also incurs other costs such as
increased energy consumption.

2) Network Loops. As shown in Figure 1(b), an SDN switch
on an end-user device for implementing multi-connectivity
creates a loop in the network. This can cause flooding if the
broadcast packets are not handled correctly. Switches in our
network therefore send broadcast packets to our controller. For
ARP queries, the controller sends them directly to the host
whose address is being queried. Unfortunately this approach
does not scale and there is a need for coming up with a more
efficient solution that handles broadcast packets.

3) Host deletion and disconnects. Communication interfaces
can enter power saving modes where the network interfaces
stay up, but no traffic is flowing between the host and the
network. In the absence of signaling between the host and the
network controller, the controller cannot determine if a host
has entered sleep mode, left the network, or disconnected.

4) Wi-Fi Roaming. Roaming requires the controller to sup-
port dynamic link disconnections and creation of new links.
When the controller detects roaming, it must set the new
path and delete the current path. However, one key difference
between flow migration and roaming is that the current path
may not be available when a device is roaming. Our solution
can also complement solutions which allows a device to switch
to cellular networks when roaming between Wi-Fi networks.

5) Network Bootstrap. SDN switches use a dedicated out-
of-band link to the SDN controller to exchange messages
during network bootstrap. In contrast, the switch on the end-
user device uses an in-band link to the controller, which
does not exist during the network bootstrap. The switch

therefore requires either a local controller to set basic rules, or
preset low priority rules to establish the network connectivity.
Furthermore, these rules should be comprehensive enough to
ensure network connectivity when the device is unable to
communicate with a network controller.

6) Local Controller. Our proof of concept only has a single
SDN controller. While such a centralized controller can be
implemented in a distributed manner, it might not be able to
scale to manage all the user devices in the network. This calls
for a more decentralized approach where each user device has
its own local controller. Such a controller opens avenues for
a more user-centric approach to be taken into the network
management. We envision that this local controller will have
the key role in taking decisions affecting the device’s traffic
flows and it will need to work with controllers of the networks
offering connectivity to the device. Such a split topology of
network controllers requires addressing a wide range of issues
including trust, consistency, and discovery management.

To conclude, we exemplify how multi-connectivity can be
realized through SDN, and our solution opens avenues towards
addressing challenges brought forth by multi-connectivity.
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