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Abstract. We show that a combination of di↵erential encoding, ran-
dom sampling, and relative Lempel-Ziv (RLZ) parsing is e↵ective for
compressing su�x arrays, while simultaneously allowing very fast decom-
pression of arbitrary su�x array intervals, facilitating pattern matching.
The resulting text index, while somewhat larger (5-10x) than the recent
r-index of Gagie, Navarro, and Prezza (Proc. SODA ’18) — still pro-
vides significant compression, and allows pattern location queries to be
answered more than two orders of magnitude faster in practice.

1 Introduction

The su�x array [18], SA[0..n�1], of a text (or string, or sequence) T of length n is
an array of integers containing a permutation of (0 . . . n�1), so that the su�xes
of T starting at the consecutive positions indicated in SA are in lexicographical
order: T[SA[i]..n] < T[SA[i+1]..n]. Because of the lexicographic ordering, all the
su�xes starting with a given substring P of T form an interval SA[s..e], which
can be determined by binary search in O(|P| log n) time. The su�x array is thus
an e�cient data structure for returning all positions in T where a query pattern
Q occurs; once s and e are located for P = Q, it is simple to enumerate the
occ = e� s+ 1 occurrences of Q.

An alternative to binary search is the so-called backward search method,
which locates the interval of the SA via 2|P| rank queries on the Burrow-Wheeler
transform (BWT) of T [6,7]. Backward search is the basis for compressed text
indexing, emplified by the FM-index family, which has been widely adopted in
practice, for example, in Bioinformatics [17]. The BWT is easily amenable to
compression (while still supporting rank queries), and so the challenge then has
been to reduce the space required for the SA below its trivial n log n-bit encoding,
for which a handful of techniques have emerged in the past two decades. The
most longstanding of these is to explicitly store the position of every bth su�x
in lexicographical (i.e., SA) order. With these samples in hand, rank queries
on BWT (a process called “LF mapping”) allow an arbitrary SA[i] value can
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be determined in O(b) time, thus allowing all occurrences of a pattern to be
obtained in O(b · occ) time, with O(n/b) extra space used for the su�x samples.

Very recently, Gagie, Navarro, and Prezza [8,9], exploiting an ingenious ob-
servation, showed how this can be improved to O(occ · log log n) time. They call
the resulting data structure the r-index. Experiments in [8] show this improve-
ment is not only of theoretical interest: in practice the r-index is around two
orders of magnitude faster than indexes that use regular su�x sampling, and
always less space consuming. Another recent alternative is the succinct compact
acyclic word graph of Belazzougui, Cunial, Gagie, Prezza, and Ra�not [1], which
in practice can be significantly faster than the r-index, but is much bigger (albeit
much smaller than the n log n bits required by the plain SA).

Contribution. The contribution of this short paper is to show that, in practice
(at least), relative Lempel-Ziv parsing is an e↵ective way to compress the suf-
fix array, and one that supports decompression of intervals especially fast. Our
starting point is the di↵erentially encoded SA, denoted SA

d, as first introduced
by Gonzalez and Navarro [11]. We then derive an RLZ dictionary, R, (usually
called the reference sequence [14]), by randomly sampling subarrays from SA

d,
and parse SA

d into phrases relative to R. Supporting random access is then a
matter of storing one original SA value for each phrase (to undo the di↵erential
encoding) and storing the phrase starting points in a predecessor data structure.
Decompressing occ consecutive values from SA can then be performed in essen-
tially O(log log n + occ) time, and is very fast in practice: more than 100 times
faster than the r-index [8] and the CDAWG [1], which are the fastest published
methods. Depending on the dataset, our index uses 5-15 times more space than
the r-index, and less than the CDAWG.

We acknowledge our approach is uncomplicated, and is essentially a new com-
bination of known techniques: as noted above, dictionary compression of di↵er-
entially encoded SAs has been explored previously by Gonzalez and Navarro [11],
where they used the RePair grammar compressor [15] rather than RLZ (which
was undiscovered at the time). Furthermore, RLZ is widely known to support
fast random access to its underlying data, but to date has only been applied
to textual data, be it natural language [13,3,16] or genomic [14,3]. However,
as our experiments show, this combination turns out to be extremely e↵ective,
representing a new point on the pareto curve, and seems to simply have been
overlooked to date. Another piece of related work is the relative su�x tree of
Farruggia et al. [5], in which one or more su�x arrays are compressed relative to

another su�x array, and pattern matching is supported on each individual SA.
That work is di↵erent to ours in that we deal with compression of a single SA.

Our own interest in SA compression comes from our recent work developing
fast indexes for gapped matching [2]. These indexes rely for their e�ciency on
fast scans of su�x array intervals, which is easy on an uncompressed SA, but lose
significant throughput when current compressed SA implementations are used.
The RLZ-compressed su�x array we describe in this paper allows us to derive
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compressed forms of our gapped-matching indexes that use much less space but
operate at comparable speed to uncompressed ones.

Roadmap. In the following section we review the di↵erentially encoded SA of
Navarro and Gonzalez [11,12] and the way it induces a sequences containing
repetitions, which can then be exploited by a dictionary compressor. We also
review relative Lempel-Ziv parsing [14], before describing our data structure
and the way in which it supports fast subarray access. We then report on an
experimental comparison of a prototype of our index, dubbed rlzsa, with the
r-index and the CDAWG [1] — which represent, to our knowledge, the current
state of the art. Conclusions and reflections are then o↵ered.

2 New Locate Index

SA contains a permutation of the integers (0 . . . n � 1) and so is not directly
amenable to dictionary compression in the same way that, say, the text T would
be — it contains no repeated elements. SA does contain repetitions of a di↵er-
ent nature, however. In particular, because of the lexicographical order on the
su�xes in SA if an interval of su�xes SA[x, y] are all preceded by the same sym-
bol c, then there must exist another interval SA[x0, x0 + (y � x) + 1] for which
SA[x] = SA[x0]+1, SA[x+1] = SA[x0+1]+1, . . . , SA[y] = SA[x0x0+(y�x)+1]+1.
Navarro and Gonzalez [11] observed that these so-called self repetitions can be
turned into actual repetitions if one di↵erentially encodes the su�x array as
SA

d[0] = SA[0] and SA

d[i] = (SA[i]�SA[i�1]+n) for i � 1. Note that the “+n”
is for technical convenience, so that all values in SA

d are positive.
Navarro and Gonzalez [11] (see also their later journal paper [12] apply a

grammar compressor to SA

d, augmenting the grammar with additional pointers
to facilitate random access to values in SA

d, and storing original SA values at
regular intervals so that the di↵erential encoding can be reversed.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
T a c t a g a c t a g a c t a g a c t a g a c t a g a c t a g a $

SA 31 30 25 20 15 10 5 0 28 23 18 13 8 3 26 21 16 11 6 1 29 24 19 14 9 4 27 22 17 12 7 2

SAd 31 31 27 27 27 27 27 27 60 27 27 27 27 27 55 27 27 27 27 27 60 27 27 27 27 27 55 27 27 27 27 27

reference 27 27 27 27 27 27 55 27 27 27 27 27 27 27 27 27

phrases 31 30 10 28 1 29 1 - 0 1 2 8 9 20 21 32
| {z } | {z }

P S

Fig. 1: An example illustrating components of our data structure.

Figure 1 shows a small example illustrating the di↵erent components of our
data structure and the intermediate stages in their construction.

RLZ parsing. A variant of the classic LZ77 parsing [21], RLZ parsing compresses
a sequence X relative to a second sequence R (the reference) by encoding X as
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a sequence of substrings, or phrases, that occur in R. Our data structure is built
on an atypical form of RLZ parsing that is critical to support e�cient access to
subarrays of the SA and which we now describe.

We derive our reference string R by randomly sampling substrings from SA

d.
In Section 3 will return to the implementation details such as the number of
samples and the size of each sample, but for the time being let us assume R is
in hand. References built by random sampling have been shown to work well in
practice for compressing web corpora [13] and non-trival bounds on their size
have also since been proved [10].

We encode SA by parsing SA

d into phrases — represented as integer pairs
— that either represent literal values from the original SA (literal phrases), or
point to substrings that occur in the reference sequence R (repeat phrases). The
first component of the pair is always the starting position in SA

d (equivalently
SA) of the phrase. A literal phrase at position i is represented as (i, SA[i]). The
first phrase is always the literal phrase (0, SA[0]). Parsing begins at position 1 in
SA

d and proceeds according to the following rule. If the parsing is up to position
i in SA

d, then the next phrase is either:

– a literal phrase (i, SA[i]), if the previous phrase was not a literal phrase or
SA

d[i] does not occur in R; or
– the longest prefix of SAd[i, n] that occurs in R.

Observe that the parsing rule ensures that every repeat phrase is preceded by
a literal phrase. This allows us to easily recover the portion of the SA that
is covered by a repeat phrase. Let (i, pi) be a repeat phrase of length `i and
(i�1, x) be the preceding literal phrase in the parsing. Then SA[i] = SA

d[i]+x =
R[pi] + x, SA[i+ 1] = SA

d[i+ 1] + SA[i] = R[pi + 1] + SA[i], . . . , SA[i+ `i � 1] =
R[pi + `i � 1] + SA[i+ `i � 2].

Data Structure. We store the parsing in two arrays, S and P , both of length z. S
contains the starting position in SA

d of each phrase in ascending order. We build
and store a predecessor data structure for S. P contains either literal SA values
or positions in R as output by the parsing algorithm (the second components of
each pair). The length of the ith phrase can be determined as S[i+ 1]� S[i].

Decoding a Subarray. We now describe how to decode an arbitrary interval
SA[s, e] using our data structure. The decoded subarray will be materialized in
an output bu↵er B of size e� s+ 1. At a high level, we will decode the phrases
covering SA[s, e] and copy the decoded values that belong in SA[s, e] (some parts
of the first and last phrase may not) into B until it is full, at which point we are
done. To this end, we begin by finding the index in S of the predecessor of s. Let
x denote this index. If P [x] is a literal phrase, we copy its value to the output
bu↵er. Otherwise (P [x] is non-literal) P [x� 1] is by definition literal and we set
p = P [x� 1]. The length of the phrase is ` = S[x+ 1]� S[x]. Assuming for the
moment S[x] = s, to decode phrase x we access R[P [x]], copy (p+ R[P [x]]� n)
to the output bu↵er, and then set p = (p+R[P [x]]�n), continuing then to copy
(p + R[P [x] + 1] � n) to B, and so on until either the whole phrase has been
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decoded, or the output bu↵er is full. Note that if S[x] < s, then we first decode
(as described) and discard the (s � P [x]) symbols of phrase x that are before
position s. After decoding phrase x, if the output bu↵er is not full, we continue
to decode phrase x+ 1, and so on, until all e� s+ 1 values have been decoded.

Implementation Details. In our practical implementation, P is an array of 32-bit
integers. We also limit the maximum phrase length to 216. For the predecessor
data structure, we use the following two-layered approach. We sample every bth
phrase starting position and store these in an array. In a separate array we store
a di↵erential encoding of all starting positions. Because of the aforementioned
phrase length restriction, the array of di↵erentially encoded starting positions
takes 16 bits per entry. Predecessor search for a position x proceeds by first
binary searching in the sampled array to find the predecessor sample at index i
of that array. We then access the di↵erentially encoded array starting at index
ib and scan, summing values until the cummulative sum is greater than x, at
which point we know the predecessor.

3 Experimental Evaluation

In this section we compare the practical performance of our rlzsa index to other
leading compressed indexes, in particular the r-index of Gagie et al. [8] and the
cdawg of Belazzougui et al. [1]1. These indexes were selected because they are the
best current approaches for locate queries according to experiments in [8]2. We
provide results for two variants of rlzsa, which are labelled rlzsa-rand and rlzsa-

lz in the plots. The rlzsa-rand variant uses a reference constructed via random
sampling substrings from the datasets (parameters below). The rlzsa-lz variant
selects substrings for the reference based on a length-limited form of LZ77 pars-
ing, which we describe in the full version of this paper.

Mirroring the experiments in [8], we measured memory usage and locate
times per occurrence of all indexes on 1000 patterns of length 8 extracted from
four repetitive datasets:

– DNA, an artificial dataset of 629145 copies of a DNA sequence of length 1000
(Human genome) where each character was mutated with probability 10�3;

– boost, a dataset of concatenated versions of the GitHub’s boost library;
– einstein, a dataset of concatenated versions of Wikipedia’s Einstein page;
– world, a collection of all pdf files of CIA World Leaders from January 2003

to December 2009 downloaded from the Pizza&Chili corpus.

The average number of occurrences per pattern was 89453 (boost), 607750 (DNA),
31788 (einstein), 29781 (world).

1 The only implementation of cdawg works only for strings on {a,c,g,t}.
2 We also tried unsuccessfully to include the Locally Compressed Su�x Array (LCSA)
of Gonzalez, Navarro, and Farrada [12], which is based on di↵erential encoding of the
SA and RePair grammar compression. After expending significant e↵ort attempting
to get their code to work we discovered — in communication with the authors [4]
— that our failure was due to known bugs in the (dated) LCSA codebase.
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Test Machine and Environment. We used a 2.10GHz Intel Xeon E7-4830 v3
CPU equipped with 30MiB L3 cache and 1.5TiB of main memory. The machine
had no other significant CPU tasks running and only a single thread of execution
was used. The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.10.0-38-
generic. Programs were compiled using g++ version 5.4.0. All given runtimes were
recorded with the C++11 high resolution clock time measurement facility.

Results. The results of our experiments appear in Figure 2. On all datasets,
both variants of our new rlzsa index are clearly the fastest, providing a newly
relevant point on the space-time curve. We locate occurrences always at least
two orders of magnitude faster than all other indexes: compared to r-index, from
a minimum of 120 times on world to a maximum of 160 times on DNA. On DNA
we are 100 times faster than cdawg, which is the next fastest index, and is more
than twice the size of the rlzsa variants. The r-index is always the smallest index,
from 5 times (world) to 14 times (DNA) smaller than rlzsa-rand.

We remark that in preliminary experiments, we observed rlzsa times to be
extremely stable, and quite invariant to reference size. In the plots the rlzsa-

rand variant used references size |R| of 106496 (boost), 28597248 (DNA), 6417408
einstein, 2760704 (world), with the reference sequence made up of substrings
of length 4096 (boost, world) or 3072 (DNA, einstein). Finally, the rlzsa-lz index
is noticeably smaller than the rlzsa-rand one on the boost dataset, but otherwise
the two rlzsa indexes are very close in size.
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Fig. 2: Locate time per occurrence and working space (in bits per symbol) of the in-

dexes. The vertical axis shows nanoseconds per reported occurrence and is logarithmic.

4 Concluding Remarks

We have described and tested a compressed data structure — rlzsa — that rep-
resents the su�x array and allows fast decompression of arbitrary subarrays, fa-
cilitating indexed pattern matching. The speed of interval access comes from the
cache-friendly nature of RLZ decompression: after an initial predecessor query,
all subarray values are obtained by a (usually small) number of cache-friendly
copies from the reference sequence. Our index is also easy to construct.

There a numerous avenues for future work. Firstly, although we may never
reach the impressively small size of the r-index, we believe the space usage of
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the rlzsa can be significantly further reduced in practice by both simple repre-
sentational techniques (e.g., bit packing position values, using Elias-Fano for the
predecessor structure) and by adapting improved reference construction schemes
that work well for RLZ when compressing text [13,19,20,16]. Secondly, is there
a way to derive a hybrid of the rlzsa and r-index approaches that is smaller than
the former and faster than the latter? Finally, it may be possible to derive space
bounds for the rlzsa by combining the analysis of Gagie et al. [10], which relates
the size of RLZ under random sampling to grammar compression of T, with the
analysis of Gonzalez and Navarro [11], which relates grammar compression of
the di↵erentially encoded SA to the kth order empirical entropy of T.

Acknowledgements. Our thanks go to Héctor Farrada, Nicola Prezza, and Daniel
Valenzuela for prompt responses to our queries.
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