UNIVERSITY OF HELSINKI

https://helda.helsinki.fi

Relative Lempel-Ziv Compression of Suffix Arrays

Puglisi, Simon J.

Springer Science and Business Media Deutschland GmbH
2020

Puglisi, S J & Zhukova , B 2020 , Relative Lempel-Ziv Compression of Suffix Arrays . in C

Boucher & S V Thankachan (eds) , String Processing and Information Retrieval : 27th

pylInternational Symposium, SPIRE 2020, Orlando, FL, USA, October 13 15,
Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) , vol. 12303 LNCS , Springer

Science and Business Media Deutschland GmbH , Cham , pp. 89-96 , International

Symposium on String Processing and Information Retrieval , Orlando , Florida , United

States , 13/10/2020 . https://doi.org/10.1007/978-3-030-59212-7 7

http://hdl.handle.net/10138/348162
https://doi.org/10.1007/978-3-030-59212-7_7

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Relative Lempel-Ziv Compression of Suffix
Arrays*

Simon J. Puglisi and Bella Zhukova

Department of Computer Science, University of Helsinki
Helsinki Institute for Information Technology (HIIT)
Helsinki, Finland
{simon.puglisi,bella.zhukova}@helsinki.fi

Abstract. We show that a combination of differential encoding, ran-
dom sampling, and relative Lempel-Ziv (RLZ) parsing is effective for
compressing suffix arrays, while simultaneously allowing very fast decom-
pression of arbitrary suffix array intervals, facilitating pattern matching.
The resulting text index, while somewhat larger (5-10x) than the recent
r-index of Gagie, Navarro, and Prezza (Proc. SODA ’18) — still pro-
vides significant compression, and allows pattern location queries to be
answered more than two orders of magnitude faster in practice.

1 Introduction

The suffix array [18], SA[0..n—1], of a text (or string, or sequence) T of length n is
an array of integers containing a permutation of (0...n —1), so that the suffixes
of T starting at the consecutive positions indicated in SA are in lexicographical
order: T[SA[i]..n] < T[SA[i+1]..n]. Because of the lexicographic ordering, all the
suffixes starting with a given substring P of T form an interval SA[s..e], which
can be determined by binary search in O(|P|logn) time. The suffix array is thus
an efficient data structure for returning all positions in T where a query pattern
Q occurs; once s and e are located for P = Q, it is simple to enumerate the
occ = e — s+ 1 occurrences of Q.

An alternative to binary search is the so-called backward search method,
which locates the interval of the SA via 2|P| rank queries on the Burrow-Wheeler
transform (BWT) of T [6,7]. Backward search is the basis for compressed text
indexing, emplified by the FM-index family, which has been widely adopted in
practice, for example, in Bioinformatics [17]. The BWT is easily amenable to
compression (while still supporting rank queries), and so the challenge then has
been to reduce the space required for the SA below its trivial n log n-bit encoding,
for which a handful of techniques have emerged in the past two decades. The
most longstanding of these is to explicitly store the position of every bth suffix
in lexicographical (i.e., SA) order. With these samples in hand, rank queries
on BWT (a process called “LF mapping”) allow an arbitrary SA[i] value can

* This research is supported by Academy of Finland through grant 319454.



2 Simon J. Puglisi and Bella Zhukova

be determined in O(b) time, thus allowing all occurrences of a pattern to be
obtained in O(b- occ) time, with O(n/b) extra space used for the suffix samples.

Very recently, Gagie, Navarro, and Prezza [38,9], exploiting an ingenious ob-
servation, showed how this can be improved to O(occ - loglogn) time. They call
the resulting data structure the r-index. Experiments in [3] show this improve-
ment is not only of theoretical interest: in practice the r-index is around two
orders of magnitude faster than indexes that use regular suffix sampling, and
always less space consuming. Another recent alternative is the succinct compact
acyclic word graph of Belazzougui, Cunial, Gagie, Prezza, and Raffinot [1], which
in practice can be significantly faster than the r-index, but is much bigger (albeit
much smaller than the nlogn bits required by the plain SA).

Contribution. The contribution of this short paper is to show that, in practice
(at least), relative Lempel-Ziv parsing is an effective way to compress the suf-
fix array, and one that supports decompression of intervals especially fast. Our
starting point is the differentially encoded SA, denoted SA?, as first introduced
by Gonzalez and Navarro [11]. We then derive an RLZ dictionary, R, (usually
called the reference sequence [14]), by randomly sampling subarrays from SAd,
and parse SA? into phrases relative to R. Supporting random access is then a
matter of storing one original SA value for each phrase (to undo the differential
encoding) and storing the phrase starting points in a predecessor data structure.
Decompressing occ consecutive values from SA can then be performed in essen-
tially O(loglogn + occ) time, and is very fast in practice: more than 100 times
faster than the r-index [8] and the CDAWG [1], which are the fastest published
methods. Depending on the dataset, our index uses 5-15 times more space than
the r-index, and less than the CDAWG.

We acknowledge our approach is uncomplicated, and is essentially a new com-
bination of known techniques: as noted above, dictionary compression of differ-
entially encoded SAs has been explored previously by Gonzalez and Navarro [11],
where they used the RePair grammar compressor [15] rather than RLZ (which
was undiscovered at the time). Furthermore, RLZ is widely known to support
fast random access to its underlying data, but to date has only been applied
to textual data, be it natural language [13,3,16] or genomic [14,3]. However,
as our experiments show, this combination turns out to be extremely effective,
representing a new point on the pareto curve, and seems to simply have been
overlooked to date. Another piece of related work is the relative suffix tree of
Farruggia et al. [5], in which one or more suffix arrays are compressed relative to
another suffix array, and pattern matching is supported on each individual SA.
That work is different to ours in that we deal with compression of a single SA.

Our own interest in SA compression comes from our recent work developing
fast indexes for gapped matching [2]. These indexes rely for their efficiency on
fast scans of suffix array intervals, which is easy on an uncompressed SA, but lose
significant throughput when current compressed SA implementations are used.
The RLZ-compressed suffix array we describe in this paper allows us to derive



Relative Lempel-Ziv Compression of Suffix Arrays 3

compressed forms of our gapped-matching indexes that use much less space but
operate at comparable speed to uncompressed ones.

Roadmap. In the following section we review the differentially encoded SA of
Navarro and Gonzalez [11,12] and the way it induces a sequences containing
repetitions, which can then be exploited by a dictionary compressor. We also
review relative Lempel-Ziv parsing [14], before describing our data structure
and the way in which it supports fast subarray access. We then report on an
experimental comparison of a prototype of our index, dubbed rlzsa, with the
r-index and the CDAWG [1] — which represent, to our knowledge, the current
state of the art. Conclusions and reflections are then offered.

2 New Locate Index

SA contains a permutation of the integers (0...n — 1) and so is not directly
amenable to dictionary compression in the same way that, say, the text T would
be — it contains no repeated elements. SA does contain repetitions of a differ-
ent nature, however. In particular, because of the lexicographical order on the
suffixes in SA if an interval of suffixes SA[x, y] are all preceded by the same sym-
bol ¢, then there must exist another interval SA[z’, 2’ + (y — x) + 1] for which
SA[z] = SA[z']+1,SA[z+1] = SA[z’ +1]+1,...,SAly] = SA[z'2’ +(y—x)+1]+1.
Navarro and Gonzalez [11] observed that these so-called self repetitions can be
turned into actual repetitions if one differentially encodes the suffix array as
SA?[0] = SA[0] and SA[i] = (SA[i] — SA[i—1]+n) for i > 1. Note that the “4n”
is for technical convenience, so that all values in SA? are positive.

Navarro and Gonzalez [11] (see also their later journal paper [12] apply a
graminar compressor to SA?, augmenting the grammar with additional pointers
to facilitate random access to values in SA?, and storing original SA values at
regular intervals so that the differential encoding can be reversed.

i 0 1 2 3 4 5 6 7 & 9 10 1l 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
T [afcltJTalelalcltlaJelaJc[tJalglafc[tJaJeJaJc[tJalg[afc[tJaJeg[als

54 [31[30 %[ 20 [15][10] 5[0 [28] 23|18 13] 83 [26[21[16][11]6 |1 [0 [2d[0[1][0][4][27[2[7[12]7]2

st [T 81 [97] 27 [ 27 [ 27 | 27 | 27 [ 60 ] 27 [ 97 [ 97 [ 27 [ 27 [ 55 | 27 | 27 | 27 | 27 [ 27 [ 60 [ 27 [ 27 [ 27 [ 27 | 27 | 55 | 27 [ 27 [ 97 [ 97 [ 27

veference [27 | 27 | 27 | 27 | 27 | 27 | 55 | 27 | 27 | 27 [ 27 | 27 | 27 [ 27 | 27| 27 |

phrases [31]30 [10[ 28] 1 (29[ 1 [ - [0 [ T [2 8 [0 [20]2[32]

P S

Fig. 1: An example illustrating components of our data structure.
Figure 1 shows a small example illustrating the different components of our

data structure and the intermediate stages in their construction.

RLZ parsing. A variant of the classic LZ77 parsing [21], RLZ parsing compresses
a sequence X relative to a second sequence R (the reference) by encoding X as



4 Simon J. Puglisi and Bella Zhukova

a sequence of substrings, or phrases, that occur in R. Our data structure is built
on an atypical form of RLZ parsing that is critical to support efficient access to
subarrays of the SA and which we now describe.

We derive our reference string R by randomly sampling substrings from SAY,
In Section 3 will return to the implementation details such as the number of
samples and the size of each sample, but for the time being let us assume R is
in hand. References built by random sampling have been shown to work well in
practice for compressing web corpora [13] and non-trival bounds on their size
have also since been proved [10].

We encode SA by parsing SA? into phrases — represented as integer pairs
— that either represent literal values from the original SA (literal phrases), or
point to substrings that occur in the reference sequence R (repeat phrases). The
first component of the pair is always the starting position in SA? (equivalently
SA) of the phrase. A literal phrase at position 4 is represented as (4, SA[i]). The
first phrase is always the literal phrase (0, SA[0]). Parsing begins at position 1 in
SA? and proceeds according to the following rule. If the parsing is up to position
i in SA?, then the next phrase is either:

— a literal phrase (i, SA[i]), if the previous phrase was not a literal phrase or
SA“[i] does not occur in R; or
— the longest prefix of SAd[i7 n] that occurs in R.

Observe that the parsing rule ensures that every repeat phrase is preceded by
a literal phrase. This allows us to easily recover the portion of the SA that
is covered by a repeat phrase. Let (i,p;) be a repeat phrase of length ¢; and
(i—1,z) be the preceding literal phrase in the parsing. Then SA[i] = SA%[i]+z =
Rlp;| + x,SA[i + 1] = SAd[i + 1]+ SA[i] = R[p; + 1] + SA[i],...,SAli + ¢, — 1] =
Rlp; +4; — 1] + SAli + ¢; — 2].

Data Structure. We store the parsing in two arrays, S and P, both of length z. S
contains the starting position in SA of each phrase in ascending order. We build
and store a predecessor data structure for S. P contains either literal SA values
or positions in R as output by the parsing algorithm (the second components of
each pair). The length of the ith phrase can be determined as S[i + 1] — S[i].

Decoding a Subarray. We now describe how to decode an arbitrary interval
SAls, e] using our data structure. The decoded subarray will be materialized in
an output buffer B of size e — s + 1. At a high level, we will decode the phrases
covering SA[s, e] and copy the decoded values that belong in SA[s, €] (some parts
of the first and last phrase may not) into B until it is full, at which point we are
done. To this end, we begin by finding the index in S of the predecessor of s. Let
x denote this index. If P[z] is a literal phrase, we copy its value to the output
buffer. Otherwise (P[z] is non-literal) P[x — 1] is by definition literal and we set
p = P[z — 1]. The length of the phrase is £ = S[z + 1] — S[z]. Assuming for the
moment S[x] = s, to decode phrase x we access R[P[z]], copy (p + R[P[z]] — n)
to the output buffer, and then set p = (p+ R[P[z]] —n), continuing then to copy
(p + R[P[z] + 1] — n) to B, and so on until either the whole phrase has been



Relative Lempel-Ziv Compression of Suffix Arrays 5

decoded, or the output buffer is full. Note that if S[z] < s, then we first decode
(as described) and discard the (s — P[z]) symbols of phrase = that are before
position s. After decoding phrase x, if the output buffer is not full, we continue
to decode phrase x + 1, and so on, until all e — s 4+ 1 values have been decoded.

Implementation Details. In our practical implementation, P is an array of 32-bit
integers. We also limit the maximum phrase length to 2'6. For the predecessor
data structure, we use the following two-layered approach. We sample every bth
phrase starting position and store these in an array. In a separate array we store
a differential encoding of all starting positions. Because of the aforementioned
phrase length restriction, the array of differentially encoded starting positions
takes 16 bits per entry. Predecessor search for a position x proceeds by first
binary searching in the sampled array to find the predecessor sample at index i
of that array. We then access the differentially encoded array starting at index
tb and scan, summing values until the cummulative sum is greater than z, at
which point we know the predecessor.

3 Experimental Evaluation

In this section we compare the practical performance of our rlzsa index to other
leading compressed indexes, in particular the r-index of Gagie et al. [3] and the
cdawg of Belazzougui et al. [1]'. These indexes were selected because they are the
best current approaches for locate queries according to experiments in [$]?. We
provide results for two variants of rlzsa, which are labelled rlzsa-rand and rlzsa-
Iz in the plots. The rlzsa-rand variant uses a reference constructed via random
sampling substrings from the datasets (parameters below). The rlzsa-lz variant
selects substrings for the reference based on a length-limited form of LZ77 pars-
ing, which we describe in the full version of this paper.

Mirroring the experiments in [3], we measured memory usage and locate
times per occurrence of all indexes on 1000 patterns of length 8 extracted from
four repetitive datasets:

— DNA, an artificial dataset of 629145 copies of a DNA sequence of length 1000

(Human genome) where each character was mutated with probability 10~3;

boost, a dataset of concatenated versions of the GitHub’s boost library;

— einstein, a dataset of concatenated versions of Wikipedia’s Einstein page;

— world, a collection of all pdf files of CIA World Leaders from January 2003
to December 2009 downloaded from the Pizza&Chili corpus.

The average number of occurrences per pattern was 89453 (boost), 607750 (DNA),
31788 (einstein), 29781 (world).

! The only implementation of cdawg works only for strings on {a,c,g,t}.

2 We also tried unsuccessfully to include the Locally Compressed Suffix Array (LCSA)
of Gonzalez, Navarro, and Farrada [12], which is based on differential encoding of the
SA and RePair grammar compression. After expending significant effort attempting
to get their code to work we discovered — in communication with the authors []
— that our failure was due to known bugs in the (dated) LCSA codebase.



6 Simon J. Puglisi and Bella Zhukova

Test Machine and Environment. We used a 2.10 GHz Intel Xeon E7-4830 v3
CPU equipped with 30 MiB L3 cache and 1.5 TiB of main memory. The machine
had no other significant CPU tasks running and only a single thread of execution
was used. The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.10.0-38-
generic. Programs were compiled using g++ version 5.4.0. All given runtimes were
recorded with the C++11 high resolution_clock time measurement facility.

Results. The results of our experiments appear in Figure 2. On all datasets,
both variants of our new rlzsa index are clearly the fastest, providing a newly
relevant point on the space-time curve. We locate occurrences always at least
two orders of magnitude faster than all other indexes: compared to r-index, from
a minimum of 120 times on world to a maximum of 160 times on DNA. On DNA
we are 100 times faster than cdawg, which is the next fastest index, and is more
than twice the size of the rlzsa variants. The r-index is always the smallest index,
from 5 times (world) to 14 times (DNA) smaller than rlzsa-rand.

We remark that in preliminary experiments, we observed rlzsa times to be
extremely stable, and quite invariant to reference size. In the plots the rlzsa-
rand variant used references size |R| of 106496 (boost), 28597248 (DNA), 6417408
einstein, 2760704 (world), with the reference sequence made up of substrings
of length 4096 (boost, world) or 3072 (DNA, einstein). Finally, the rlzsa-lz index
is noticeably smaller than the rlzsa-rand one on the boost dataset, but otherwise
the two rlzsa indexes are very close in size.

oe
I I I LB o I I I | | I | | I | I |
0 002 004 006 008 01 0 2 1 G B 00 0.2 0.4 0.6 0.8 10 1 3 1 5 6

2
RSS (bits/symbol) RSS (bi RSS (bits/symbol) RSS (bits/symbol)

@ rzalz O rlzsarand W rindex  + cdawg

Fig. 2: Locate time per occurrence and working space (in bits per symbol) of the in-
dexes. The vertical axis shows nanoseconds per reported occurrence and is logarithmic.

4 Concluding Remarks

We have described and tested a compressed data structure — rlzsa — that rep-
resents the suffix array and allows fast decompression of arbitrary subarrays, fa-
cilitating indexed pattern matching. The speed of interval access comes from the
cache-friendly nature of RLZ decompression: after an initial predecessor query,
all subarray values are obtained by a (usually small) number of cache-friendly
copies from the reference sequence. Our index is also easy to construct.

There a numerous avenues for future work. Firstly, although we may never
reach the impressively small size of the r-index, we believe the space usage of



Relative Lempel-Ziv Compression of Suffix Arrays 7

the rlzsa can be significantly further reduced in practice by both simple repre-
sentational techniques (e.g., bit packing position values, using Elias-Fano for the
predecessor structure) and by adapting improved reference construction schemes
that work well for RLZ when compressing text [13,19,20,16]. Secondly, is there
a way to derive a hybrid of the rlzsa and r-index approaches that is smaller than
the former and faster than the latter? Finally, it may be possible to derive space
bounds for the rlzsa by combining the analysis of Gagie et al. [10], which relates
the size of RLZ under random sampling to grammar compression of T, with the
analysis of Gonzalez and Navarro [11], which relates grammar compression of
the differentially encoded SA to the kth order empirical entropy of T.

Acknowledgements. Our thanks go to Héctor Farrada, Nicola Prezza, and Daniel
Valenzuela for prompt responses to our queries.

References

1. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Proc. 26th Annual Symposium on Combi-
natorial Pattern Matching (CPM). pp. 26-39 (2015)

2. Caéceres, M., Puglisi, S.J., Zhukova, B.: Fast indexes for gapped pattern matching.
In: Proc. 46th International Conference on Current Trends in Theory and Practice
of Informatics (SOFSEM). pp. 493-504. LNCS 12011, Springer (2020)

3. Deorowicz, S., Grabowski, S.: Robust relative compression of genomes with random
access. Bioinformatics 27(21), 2979-2986 (2011)

4. Farrada, H.: Personal Communication

5. Farruggia, A., Gagie, T., Navarro, G., Puglisi, S.J., Sirén, J.: Relative suffix trees.
Comput. J. 61(5), 773788 (2018)

6. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14
November 2000, Redondo Beach, California, USA. pp. 390-398. IEEE Computer
Society (2000)

7. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552-581
(2005)

8. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proc. SODA. pp. 1459-1477. ACM-SIAM (2018)

9. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text
searching in bwt-runs bounded space. J. ACM 67(1), 2:1-2:54 (2020)

10. Gagie, T., Puglisi, S.J., Valenzuela, D.: Analyzing relative lempel-ziv reference
construction. In: String Processing and Information Retrieval - 23rd International
Symposium, SPIRE 2016, Beppu, Japan, October 18-20, 2016, Proceedings. pp.
160-165. LNCS 9954 (2016)

11. Gonzélez, R., Navarro, G.: Compressed text indexes with fast locate. In: Proc.
18th Annual Symposium on Combinatorial Pattern Matching (CPM). pp. 216
227. LNCS 4580 (2007)

12. Gonzélez, R., Navarro, G., Ferrada, H.: Locally compressed suffix arrays. ACM
Journal of Experimental Algorithmics 19(1), article 1 (2014)

13. Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv factorization for efficient
storage and retrieval of web collections. Proceedings of the VLDB Endowment
5(3), 265-273 (2011)



14.

15.

16.

17.

18.

19.

20.

21.

Simon J. Puglisi and Bella Zhukova

Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Proceedings of the 17th Symposium on
String Processing and Information Retrieval (SPIRE). pp. 201-206. LNCS 6393
(2010)

Larsson, N.J., Moffat, A.: Offline dictionary-based compression. Proc. IEEE 88(11),
1722-1732 (2000)

Liao, K., Petri, M., Moffat, A., Wirth, A.: Effective construction of relative lempel-
ziv dictionaries. In: Proc. 25th International Conference on the World Wide Web
(WWW). pp. 807-816 (2016)

Maékinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press (2015)

Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Computing 22(5), 935-948 (1993)

Tong, J., Wirth, A., Zobel, J.: Compact auxiliary dictionaries for incremental com-
pression of large repositories. In: Proceedings of the 23rd ACM International Con-
ference on Conference on Information and Knowledge Management, CIKM 2014,
Shanghai, China, November 3-7, 2014. pp. 1629-1638. ACM (2014)

Tong, J., Wirth, A., Zobel, J.: Principled dictionary pruning for low-memory corpus
compression. In: The 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’14, Gold Coast , QLD, Australia -
July 06 - 11, 2014. pp. 283-292. ACM (2014)

Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3), 337-343 (1977)



