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ABSTRACT

Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the pho-
tometric sample of Euclid. Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the
estimation of the best fitting cosmological parameters that we expect if this effect is neglected.
Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combi-
nation of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the
lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation.
Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy
clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1σ errors on Ωm,0,w0,wa at the
level of 20–35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting
magnification in the clustering analysis leads to shifts of up to 1.6σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic
shear, and galaxy–galaxy lensing, magnification does not improve precision, but it leads to an up to 6σ bias if neglected. Therefore, for all models
considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3×2pt
analysis) for an accurate parameter estimation.

Key words. large-scale structure of Universe – cosmological parameters – cosmology: theory
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1. Introduction

In the past few decades, observational cosmology has undergone
unprecedented advances in terms of experimental techniques.
The anisotropies of the cosmic microwave background (CMB)
have been mapped with stunning accuracy (Planck Collabora-
tion VI 2020), and the low-redshift window has become acces-
sible with observations of the large-scale distribution of galax-
ies and the statistics of weak gravitational lensing (Alam et al.
2017; DES Collaboration 2018, 2022; Lee et al. 2022; Sevilla-
Noarbe et al. 2021; Asgari 2021; Heymans et al. 2021), as have
distance measurements from supernovae (Scolnic et al. 2018).
This progress on the experimental side has led to the affirma-
tion of Λ cold dark matter (CDM) as the concordance model
for cosmology. Despite the remarkable success of ΛCDM, there
are two ingredients whose nature is still unknown: dark mat-
ter and dark energy. In addition, the value of the cosmologi-
cal constant corresponds to a vacuum energy in the millielec-
tronvolt regime, which is unsatisfactory from a theoretical point
of view. Furthermore, the constancy of Λ leads to the ques-
tion of why its contribution to the expansion rate of the Uni-
verse should be of the same order of magnitude as the one from
the matter density only at the present time. These fine-tuning
and coincidence (‘why now’) problems motivate researchers in
the field to consider alternatives to ΛCDM, such as scalar field
dark energy (quintessence, k-essence) and more general tensor-
scalar gravity theories or other modifications of general relativ-
ity (see e.g., Amendola et al. 2018 for an extended discussion).
The next generation of large-scale structure probes is expected
to provide crucial information on the dark sector that will allow
us to test many of these different models of dark energy and
our theory of gravity on cosmological scales. Due to the sta-
tistical power of these future surveys, new efforts are needed
to reduce systematic uncertainties to a higher degree than pre-
viously required. Such systematic effects arise not only from
observational aspects, but also from the theoretical predictions
that may have to be improved as well to exploit the full power of
the upcoming observations.

The Euclid survey (Amendola et al. 2018; Laureijs et al.
2011) will contribute to the challenge of constraining the dark
sector with the combination of two complementary probes: (a)
a spectroscopic sample of about 30 million galaxies that will
be used to study the growth of structure in the redshift range
z ∈ [0.9, 1.8] (Pozzetti et al. 2016) and (b) a photometric cat-
alogue of about 1.5 billion galaxy images, which will provide
a direct tomographic map of the distribution of matter through
measurements of cosmic shear in the redshift range z ∈ [0, 2]
(Amendola et al. 2018).

In this paper, we focus on the photometric sample. Galaxy
images and positions in this sample will be used both for extract-
ing the galaxies’ shapes and their weak lensing (WL) distortions
and for galaxy clustering measurements in photometric redshift
bins. However, the statistics of galaxy number counts are not
only determined by the local density of sources; they are also
affected by gravitational lensing due to the foreground matter
distribution (Menard & Bartelmann 2002; Menard et al. 2003a,b;
Matsubara 2004; Scranton et al. 2005; LoVerde et al. 2008; Hui
et al. 2008; Hildebrandt et al. 2009; Van Waerbeke et al. 2010;
Heavens & Joachimi 2011; Bonvin & Durrer 2011; Challinor &
Lewis 2011; Duncan et al. 2014; Unruh et al. 2020; Liu et al.
2021). Gravitational lensing affects the observed number count
of galaxies in two ways, which have opposite signs: it modifies
the observed size of the solid angle, diluting the number of galax-
ies per unit of solid angle behind an overdensity, and it magni-

fies the apparent luminosity of galaxies behind an overdensity,
enhancing the number of galaxies above the magnitude thresh-
old of a given survey. The second effect is survey dependent.
To model it, we need to know the luminosity function and the
magnitude cut of the galaxies in the sample. The combination of
these two effects is known as ‘lensing magnification’.

Lensing magnification has not been taken into account
in the validated Euclid forecast (Euclid Collaboration 2020,
EC20 in the following), and the aim of this work is to assess
its impact on the analysis of the Euclid photometric sam-
ple. There has been extensive work in investigating the rele-
vance of magnification for future cosmological surveys (see for
example Namikawa et al. 2011; Bruni et al. 2012; Gaztañaga
et al. 2012; Duncan et al. 2014; Montanari & Durrer 2015;
Eriksen & Gaztanaga 2015a, 2018; Eriksen & Gaztañaga 2015;
Raccanelli et al. 2016; Cardona et al. 2016; Di Dio et al.
2016; Lorenz et al. 2018; Villa et al. 2018; Thiele et al. 2020;
Tanidis et al. 2020; Bellomo et al. 2020; Jelic-Cizmek et al.
2021; Viljoen et al. 2021). The consensus is that lensing should
be taken into account in the analysis of photometric clustering
for the following reasons: (i) Including lensing will significantly
improve the cosmological constraints by breaking the degener-
acy between galaxy bias and the amplitude of primordial per-
turbations. This is especially relevant for photometric samples
where redshift-space distortions (RSDs) are smeared out. (ii)
Neglecting this effect can lead to significant shifts in the estima-
tion of some cosmological parameters – especially for models
beyond the minimal ΛCDM (Camera et al. 2015; Lorenz et al.
2018; Villa et al. 2018). (iii) Lensing magnification provides a
tomographic measurement of the lensing potential that is com-
plementary to cosmic shear analysis and can be used to test gen-
eral relativity (Montanari & Durrer 2015).

In this work, we study the impact of lensing magnification
on the analysis of the photometric sample of Euclid, using for
the first time realistic specifications for the local count slope
based on the Euclid Flagship simulation. Apart from ΛCDM
and massive neutrinos, we consider a simple phenomenological
parametrisation of dark energy as a function of redshift, z, via an
equation of state of the form

w(z) = w0 + wa
z

1 + z
,

which is the so-called Chevallier-Polarski-Linder (CPL), or
w0wa, parametrisation (Chevallier & Polarski 2001; Linder
2003). While these simple models do not fully allow one to
explore the additional information that lensing magnification
may add to photometric galaxy clustering (GCph) as a cosmo-
logical probe, they are sufficient to assess whether we need to
include lensing magnification to avoid systematically biasing our
results. An extended analysis that includes dark energy models
with a stronger impact on the growth of structure is beyond the
scope of this paper and is left for future work.

The paper is structured as follows. In the next section, we
introduce the theoretical, linear perturbation theory expressions
for the quantities measured in the survey. In Sect. 3 we present
the Euclid specifics used in this work, and we outline how they
have been extracted from the Flagship simulation. In Sect. 4 we
describe the Fisher formalism used in our analysis. In Sect. 5
we present the results and discuss them. In Sect. 6 we show the
outcome of several tests that we performed to assess the robust-
ness of our results. We conclude in Sect. 7. In the appendix we
discuss in more detail some technical aspects of our work.
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2. The photometric sample observables: number
counts and cosmic shear

In this section we define our observables: the galaxy number
counts, the shear, and their cross-correlation. We consider them
as quantities on the sphere at different redshifts. We first give
a brief recap on power spectra and correlation functions on the
sphere for different tensorial quantities. We then discuss our spe-
cific observables in more detail.

2.1. Angular power spectra

Whenever we have a function on the sphere, such as the num-
ber counts, ∆(n, z), the lensing potential, ψ(n, z), or the conver-
gence, κ(n, z), observed in the direction n at fixed redshift, z, or
integrated over a redshift bin centred at z, we can expand it in
spherical harmonics,

∆(n, z) =
∑
`m

a∆
`m(z)Y`m(n), (1)

κ(n, z) =
∑
`m

aκ`m(z)Y`m(n). (2)

Due to statistical isotropy, which we assume here1, the a`m
coefficients for different ` and m values are uncorrelated, and we
obtain the angular power spectra〈

a∆
`m(z) a∆ ∗

`′m′ (z
′)
〉

= C∆∆
` (z, z′) δK

``′δ
K
mm′ , (3)〈

aκ`m(z) aκ ∗`′m′ (z
′)
〉

= Cκκ
` (z, z′) δK

``′δ
K
mm′ , (4)〈

a∆
`m(z) aκ ∗`′m′ (z

′)
〉

= C∆κ
` (z, z′) δK

``′δ
K
mm′ , (5)

where the symbol δK
ab denotes the Kronecker delta and the super-

scripts ∆ and κ denote the number counts and the convergence
field as example of functions on the sphere for which we can
compute the angular power spectrum. For Gaussian fluctuations,
these power spectra contain the full statistical information. In
the presence of non-Gaussianities, reduced higher-order spectra
and other statistics contain additional information. The fact that
the power spectra depend on redshift is what makes clustering
surveys so useful. They contain three-dimensional information,
which we exploit in this case by considering several redshifts
and their cross-correlations.

For functions on the sphere, the link between the power spec-
trum and the correlation function is given by

〈 f (n, z) f (n′, z′)〉 =
1

4π

∑
`

(2` + 1) C f f
`

(z, z′) P`(n · n′), (6)

where P` denotes the Legendre polynomial of degree ` and f is
the considered function on the sphere.

The shear is not a function, but a helicity-2 object on the
sphere, which has to be expanded in spin-weighted spherical har-
monics (see Bartelmann & Schneider 2001 for an introduction).
Denoting the complex shear by γ = γ1 + iγ2 we can write

γ(n, z) =
∑
`m

aγ
`m(z) 2Y`m(n). (7)

1 Observational evidence of statistical isotropy in the galaxy distri-
butions has been found for example in Blake & Wall (2002), Alonso
et al. (2015), and Bengaly et al. (2017). However, recent measurements
of the local radio dipole exhibit an anomaly when compared to the
CMB dipole, which may indicate a not purely kinematic origin (see for
example Siewert et al. 2021). The presence of a large-scale anisotropy
has been also found in CMB data (see Fosalba & Gaztañaga 2021 for
details).

Here 2Y`m are the spin-2 spherical harmonics (see e.g., Durrer
2020 for details). The correlators〈
aγ
`m(z) aγ ∗

`′m′ (z
′)
〉

= Cγγ
`

(z, z′) δK
``′δ

K
mm′ (8)

denote the shear power spectrum. In order to compare the shear
spectrum with the convergence κ, we first act on γ with the spin-
lowering operator /∂∗ (again, see e.g., Durrer 2020 for details).
This allows us to define the function

β(n, z) = (/∂∗)2γ(n, z) =
∑
`m

√
(` + 2)!
(` − 2)!

aγ
`m(z) Y`m(n). (9)

For the second equality we made use of the identity

(/∂∗)2
2Y`m(n) =

√
(` + 2)!
(` − 2)!

Y`m(n).

The scalar quantity β is actually just the Laplacian of κ, which
implies

[`(` + 1)]2Cκκ
` =

(` + 2)!
(` − 2)!

Cγγ
`
. (10)

On small angular scales, ` � 1, these spectra therefore agree,

Cκκ
` ' Cγγ

`
. (11)

A similar relation can be derived for the cross-correlation of the
shear and a scalar function (see Appendix A for details).

Given the power spectra correlating two quantities A and B,
CAB
` (z, z′), we can compute the corresponding spectra obtained

from two bins i and j with (normalised) galaxy distributions ni(z)
and n j(z). They are simply given by

CAB
` (i, j) =

∫
dz dz′ ni(z) n j(z′) CAB

` (z, z′). (12)

The observables AB used in this paper are the galaxy number
counts ∆∆, the cosmic shear γγ and their cross-correlation ∆γ
(galaxy–galaxy lensing). We discuss them in more detail in the
following section.

2.2. Galaxy number counts

The clustering of matter in the Universe is a very promising
observable not only to determine cosmological parameters but
also to test the theory of gravity, general relativity, on cosmolog-
ical scales. While we cannot observe the matter density directly,
it is generally assumed that on large scales the distribution of
galaxies is a faithful biased tracer of the matter distribution. On
large enough scales (roughly ` < 500), the bias depends on red-
shift but not on scale (see for example Fosalba et al. 2015b).
An important issue is, however, that we do not observe galax-
ies in a three-dimensional spatial hypersurface but on our past
light cone. More precisely, we measure angular positions and
redshifts, which are affected by the perturbed geometry and the
peculiar motion of galaxies. While the galaxy velocities have
been taken into account in galaxy number counts since the semi-
nal paper by Kaiser (1987), the fully relativistic perturbed light-
cone projection has been considered first about a decade ago.
In Yoo et al. (2009), Yoo (2010), Bonvin & Durrer (2011), and
Challinor & Lewis (2011) these light-cone or projection effects
have been studied at first order in perturbation theory. A numer-
ical code for the fast calculation of all relativistic effects is pre-
sented in Di Dio et al. (2013), with vanishing curvature, and
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Di Dio et al. (2016), including curvature. These codes are pub-
licly available and included in the newer releases of Class (Blas
et al. 2011). Attempts to go to second order in the light-cone pro-
jection have also been published (Bertacca et al. 2014; Yoo &
Zaldarriaga 2014; Di Dio et al. 2015).

On small scales, k � H/c, where k is the comoving wave
number, c is the speed of light, and H denotes the comoving
Hubble parameter, H(z) = 1

a
da
dη , with a the scale factor and η

conformal time, only density, peculiar velocity (which enters
through RSDs) and lensing magnification are relevant. These
terms lead to the following simple formulae in angular and red-
shift space

∆(n, z) = b(z) δ[r(z)n, z] −
1
H(z)

∂rVr[r(z)n, z]

+[5s(z) − 2] κ(n, z), (13)

κ(n, z) =

∫ r(z)

0
dr′

[r(z) − r′]
2r(z)r′

∆Ω(Φ + Ψ)[r′n, z(r′)] (14)

=
1
2

∆Ωψ(n, z) , (15)

where the unit vector n denotes the direction of observation, z
is the measured redshift, Vr = −V · n is the peculiar veloc-
ity in longitudinal gauge V projected along the radial direction,
and ∆Ω is the Laplace operator on the sphere2. Here, ψ is the
lensing potential3, b(z) is the galaxy bias, r(z) is the comoving
distance out to redshift z and z(r) is its inverse. Φ and Ψ are
the Bardeen potentials, which in ΛCDM are related to the New-
tonian potential by Ψ ' Φ ' ΦNewton/c2. The function s(z) is
the local count slope4 given by the logarithmic derivative of the
cumulative number density of galaxies as a function of their flux
F measured at the flux limit of the survey under consideration,
Flim. More precisely,

5
2

s(z, Flim) ≡ −
∂log10N(z, F > Flim)

∂log10Flim
. (16)

Contrary to the bias b(z), which is estimated through the clus-
tering analysis together with the cosmological parameters, the
local count slope s(z) can in principle be measured directly from
the luminosity function of the galaxy sample, which provides a
measurement independent of the cosmological analysis.

The angular power spectrum of galaxy clustering is given by

C∆∆
` (z, z′) = Cgg

`
(z, z′) + [5s(z′) − 2] Cgκ

`
(z, z′) (17)

+ [5s(z) − 2] Cκg
`

(z, z′) + [5s(z) − 2][5s(z′) − 2] Cκκ
` (z, z′)

+ CRSD
` (z, z′) ,

where the term in the last line contains the RSD-RSD correlation
as well as the density-RSD and the magnification-RSD correla-
tions.

In our analysis, we used Limber’s approximation for these
spectra (Limber 1954), which is very good for the lensing poten-
tial and for ` & 30. We also made use of the Einstein constraint

2 The operator ∆Ω is defined in terms of the spin lowering and raising
operators /∂∗ and /∂, that is, ∆Ω ≡ (/∂ /∂∗ + /∂∗ /∂)/2 (see Bernardeau et al.
2010, for details).
3 We use the sign convention of Bartelmann & Schneider (2001) for
the lensing potential, which is the opposite of the one in Lewis et al.
(2000).
4 In the literature this is often called the ‘magnification bias’.

equation in the late Universe, where radiation can be neglected,
such that

PΦ+Ψ(k, z) = 9
(H0

k

)4

Ω2
m,0(1 + z)2 Pδδ(z, k). (18)

Here Pδδ is the matter power spectrum in comoving gauge,
and PΦ+Ψ is the power spectrum of the two Bardeen potentials
(which are equal in our regime), which enters into the computa-
tion of the convergence in Eq. (15), and Ωm,0 is the matter den-
sity parameter. Using Limber’s approximation (Limber 1954),
the galaxy-magnification correlation in Eq. (17) can be written
as

Cgκ
`

(z, z′) =


6 b(z)Ωm,0

(
H0
c

)2 `(`+1)
(2`+1)2

[r(z′)−r(z)]
r(z′)r(z) z < z′

× (1 + z) Pδδ

[
`+1/2

r(z) , z
]
,

0, z ≥ z′,

(19)

and the magnification-magnification correlation becomes

Cκκ
` (z, z′) =

(
2H0

c

)4

(3Ωm,0)2 `
2(` + 1)2

(2` + 1)4 (20)

×

∫ rmin

0
dr

[r(z) − r][r(z′) − r]
r(z)r(z′)

[1 + z(r)]2 Pδδ

(
` + 1/2

r
, z

)
,

where rmin = min{r(z), r(z′)} (for more details on Limber’s
approximation, see e.g., Durrer 2020).

In Fig. 1 we show the main contributions to the galaxy num-
ber counts for the Euclid specifics described in Sect. 3. We show
two representative configurations: the auto-correlation at mean
redshift z̄1 = z̄2 = 0.69, where the density contribution dom-
inates, and the cross-correlation of two far-apart redshift bins,
z̄1 = 0.14 and z̄2 = 1.91, where the entire signal consists of the
cross-correlation of density at z̄1 and magnification at z̄2.

While RSDs, the second term on the first line of Eq. (13), are
very important for spectroscopic surveys, they are smeared out in
photometric surveys: their contribution to the auto-correlations
is ∼30% at ` ∼ 10 and drops below 1% at ` > 90. For this rea-
son, they have been neglected in the official forecast presented in
EC20. In this paper, we focus on lensing magnification. There-
fore, we neglect RSDs in the main analysis presented in this
manuscript, and we test the impact of this approximation on our
results in Sect. 6. A detailed study on the impact of RSDs on the
Euclid analysis is left to future work, as it has been pointed out
in Tanidis & Camera (2019) that correct modelling of RSDs is
crucial so as not to bias cosmological parameter estimation.

Even though Eq. (13) is strictly valid only within linear
perturbation theory, the density term and the magnification
term are well modelled by replacing the linear power spectrum
with a non-linear prescription (see e.g., Fosalba et al. 2015a,b;
Lepori et al. 2021). This is not at all the case for RSDs, but since
we do not include this effect in the analysis, the main results of
this work, namely the relevance of magnification for parameter
estimation, can be trusted when obtained with a non-linear pre-
scription. At equal redshifts, the density fluctuation is usually the
dominant contribution to the number counts, while at unequal
redshifts, the lensing terms δκ and κκ dominate, as can be seen
in Fig. 1.

2.3. Cosmic shear

The paths followed by photons coming from distant galaxies are
deflected due to the large-scale structure of the Universe. These
deflections introduce distortions in the images of these galax-
ies. We can decompose these distortions (at the linear level and
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Fig. 1. Number counts of power spectra for the Euclid photometric
sample (top panels) and percentage contributions of magnification and
RSDs, 100 × CRSD/magn

` /C∆∆
` (bottom panels). The contribution of mag-

nification includes the κκ contribution as well as the density-κ contri-
butions, given by the second, third, and fourth terms in Eq. (17). The
contribution of RSDs, third line in Eq. (17), comprises the RSD-RSD
correlation and the cross-correlation of RSDs with density and magni-
fication. The magnification-RSD correlation is sub-dominant. The top
sub-figure refers to the auto-correlation at z̄1 = z̄2 = 0.69. While
the contribution of RSDs is 30% on large scales, that is, ` ∼ 10,
it drops below 1% at ` > 90. For this configuration, the contribu-
tion of magnification is at the sub-percent level on all scales (the blue
line and the orange line overlie on all scales). The bottom sub-figure
shows the cross-correlation of two bins with large redshift separation,
z̄1 = 0.14, z̄2 = 1.91. The contribution of density alone and RSDs is
negligible in this case. Magnification (and its cross-correlation with the
density) constitutes the totality of the spectrum.

locally) into convergence given by κ and complex shear γ. The
former is related to the magnification of the images, while the
latter is linked to the shape distortion of the images. More specif-
ically, these two effects correspond to the trace and trace-free
part of the Jacobian of the lens map given by

n 7→ n− α(n, z), (21)
α(n, z) = ∇Ωψ(n, z), (22)

where ∇Ω denotes the gradient on the sphere.
Although cosmological information can be extracted from

the convergence (see e.g., Alsing et al. 2015), we focus here on
the cosmological signal that can be obtained from the shear field.
Under the assumption of homogeneity and isotropy of our Uni-
verse, the mean of the shear field vanishes. However, its angular

power spectrum Cγγ
`

contains cosmological information sensi-
tive to both the expansion and the growth of structures.

Linking the shear field to observations, the ellipticity of a
given galaxy, at linear order, can be expressed as

ε = γ + εI, (23)

where εI stands for the intrinsic ellipticity of the object. Under
the assumption that galaxies are randomly oriented, the ellip-
ticity provides an unbiased estimator of the complex shear.
However, in practice tidal interactions during the formation of
galaxies or other astrophysical effects may induce an intrinisic
alignment of galaxies (see e.g., Joachimi et al. 2015), resulting
in one of the major systematic effects in WL analyses.

Considering the angular power spectra of Eq. (23), we can
express the ellipticity angular power spectrum as

Cεε
` = Cγγ

`
+ CIγ

`
+ CγI

`
+ CII

` , (24)

where the two indexes represent two tomographic redshift bins.
Therefore, the cosmic shear angular power spectra are con-
taminated by the correlations between background shear and
foreground intrinsic ellipticity, CIγ

`
, the correlations between

background and foreground intrinsic ellipticity, CII
` , and the

correlations between background intrinsic ellipticity and fore-
ground shear, CγI

`
. We note that CγI

`
should be equal to zero

because foreground shear should not be correlated with a back-
ground ellipticity except if galaxies are misplaced due to the pho-
tometric redshift uncertainty. Using Eq. (11), the cosmic shear
(without intrinsic alignments) angular power spectra, Cγγ

`
, is

directly given by Eq. (20) within Limber’s approximation.
In this work, we model the remaining terms in Eq. (24), using

the extended non-linear alignment model for intrinsic alignments
presented in EC20. In this model, the three-dimensional matter-
intrinsic and intrinsic-intrinsic power spectra can be expressed
as

PδI(k, z) = −AIACIAΩm,0
FIA(z)
D(z)

Pδδ(k, z), (25)

PII(k, z) =

[
AIACIAΩm,0

FIA(z)
D(z)

]2

Pδδ(k, z), (26)

with

FIA(z) = (1 + z)ηIA

[
〈L〉(z)
L∗(z)

]βIA

, (27)

where AIA, ηIA, βIA are nuisance parameters controlling the
intrinsic alignment amplitude, redshift dependence, and lumi-
nosity dependence, respectively. Following the standard conven-
tion in the literature to model the intrinsic alignments (see e.g.,
Joachimi et al. 2021), the constant CIA is set to a fixed value
of 0.0134 as it is fully degenerate with AIA. The 〈L〉(z) and
L∗(z) stand for the redshift-dependent mean and the character-
istic luminosity of source galaxies. We refer the reader to EC20
for more details on this model.

Given these three-dimensional power spectra, again using
Limber’s approximation, we can express the full ellipticity angu-
lar power spectra as

Cεε
` = Cγγ

`
+ CIγ

`
+ CII

` , (28)
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where CIγ
`

and CII
` are given by

CII
` (z, z′) = δD(z − z′)

H(z)
c r(z)2 PII

[
` + 1/2

r(z)
, z

]
, (29)

CIγ
`

(z, z′) =


6 Ωm,0

(
H0
c

)2 `(`+1)
(2`+1)2

[r(z′)−r(z)]
r(z′)r(z)

× (1 + z) PδI

[
`+1/2

r(z) , z
]
,

z < z′,

0, z ≥ z′.

(30)

Considering photometric redshift bins i and j, even if the
mean redshift z̄i > z̄ j we have to include not only CIγ

`
( j, i) but

also CIγ
`

(i, j) = CγI
`

( j, i) in Cεε
`

(i, j) due to the significant overlap
of photometric redshift bins.

It is important to mention that relativistic effects are also
present in the source sample and therefore in cosmic shear analy-
ses. For example, magnification effects can also change the num-
ber of sources in a magnitude-limited survey. However, these
effects are of second order and the inclusion of magnification
effects in cosmic shear requires the modelling of the matter bis-
pectrum. Furthermore, its overall impact is significantly smaller
than for galaxy number counts (see e.g., Duncan et al. 2014;
Deshpande et al. 2020). Because of this, and the fact that the
impact of magnification effects in cosmic shear has already been
studied in Deshpande et al. (2020) in the context of Euclid,
we do not consider this effect (and other relativistic effects
that appear at second order) in the cosmic shear part of our
analysis.

2.4. Galaxy–galaxy lensing

In the photometric survey of Euclid, we measure both galaxy
number counts and cosmic shear, and we will also cross-
correlate these measurements (see e.g., Tutusaus et al. 2020).
For purely scalar perturbations, the correlation function between
the tangential shear and number counts is given by Eq. (A.5):

〈∆(n, z)γt(n′, z′)〉 = −
1

4π

∑
`

2` + 1
`(` + 1)

P`2(n · n′) C∆κ
` (z, z′), (31)

where P` 2 is the modified Legendre function, of degree ` and
index m = 2 (see Abramowitz & Stegun 1970). Here, C∆κ

`
(z, z′)

is the angular correlation spectrum between the number counts
∆ and the convergence κ (see Sect. 2.1).

As before, for a photometric survey, we can neglect RSD and
large-scale relativistic contributions, so that

C∆κ
` (z, z′) ' Cgκ

`
(z, z′) + [5s(z) − 2] Cκκ

` (z, z′). (32)

Using Limber’s approximation, the two contributions in
Eq. (32) are given by Eqs. (19) and (20), respectively. For
z′ > z the dominant term is Cgκ

`
(z, z′) since the foreground

density fluctuations contribute to the integral κ (see Eq. (14))
This correlation has been measured by, for example, the Dark
Energy Survey (DES; DES Collaboration 2018). For z > z′, this
term (nearly) vanishes and the correlation is dominated by the
Cκκ
`

(z, z′) term. This term has also been recently measured (Liu
et al. 2021). Considering distributions ni(z) for galaxy number
counts and n j(z) for the shear measurements in bins i and j,
respectively, one obtains in Limber’s approximation (see e.g.,
Ghosh et al. 2018):〈

∆(i)γ
( j)
t

〉
(θ) =∫ ∞

0
dz ni(z)

∫ ∞

0
dz′ n j(z′)

∫ ∞

0

`d`
2π

J2(`θ)C∆κ
` (z, z′). (33)
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Fig. 2. Angular power spectra of the GGL cross-correlation for the
Euclid photometric sample (top panels) and percentage contributions
of magnification and RSDs, 100 × C∆κ,RSD/magn

` /C∆κ
` (bottom panels).

The contribution of magnification is the second term in Eq. (32). The
contribution of RSDs, which is neglected in Eq. (32), is given by the
cross-correlation RSD-κ. The top sub-figure refers to the configuration
z̄1 < z̄2, that is, we correlate galaxies at low redshift with the back-
ground lensing. The contribution of RSDs is 3% on large scales and
drops below the percent level at ` ≈ 30, while the contribution of mag-
nification is at the sub-percent level on all scales. The bottom sub-figure
shows the configuration z̄1 > z̄2, that is, we correlate number counts at
high redshift with foreground lensing. The contribution of density alone
and RSDs is negligible in this case: we observe the correlation of mag-
nification with the foreground cosmic shear. The small contribution of
density alone, the blue curve in the top panel, changes sign at ` ∼ 50: it
is negative on small scales and positive on large scales.

In Fig. 2 we show two representative configurations of these
spectra for the Euclid specifics. For z̄1 < z̄2 the density term
in the number counts is the largest contribution to the cross-
correlation; vice versa, the configuration with z̄1 > z̄2 is dom-
inated by the cross-correlation of magnification and lensing. It
should be noted that RSDs have an effect of <3% on both con-
figurations.

3. Euclid specifics from the Flagship simulation

In this section, we briefly describe the Flagship galaxy catalogue
and the ingredients extracted from this simulation to obtain real-
istic input for our forecasts.

We use the Flagship galaxy mock catalogue of the Euclid Con-
sortium adapted the photometric sample (Euclid Collaboration,
in prep.). The catalogue uses the Flagship N-body dark matter
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simulation (Potter et al. 2017). The cosmological model assumed
in the simulation is a flat ΛCDM model with fiducial values
Ωm,0 = 0.319, Ωb,0 = 0.049, ΩΛ = 0.681, σ8 = 0.83, ns =
0.96, h = 0.67. The N-body simulation ran in a 3.78 h−1Gpc
box with particle mass mp = 2.398 × 109 h−1 M� . Dark matter
halos are identified using the code ‘Robust Overdensity Calcula-
tion using K-Space Topologically Adaptive Refinement’, known
as Rockstar (Behroozi et al. 2013), and are retained down to
a mass of 2.4 × 1010 h−1 M�, which corresponds to ten parti-
cles. Galaxies are assigned to dark matter halos using the halo
abundance matching (HAM) and halo occupation distribution
(HOD) techniques, closely following Carretero et al. (2015). The
galaxy mock generated has been calibrated using local observa-
tional constraints, such as the luminosity function from Blanton
et al. (2003) and Blanton et al. (2005a) for the faintest galaxies,
the galaxy clustering measurements as a function of luminosity
and colour from Zehavi et al. (2011), and the colour-magnitude
diagram as observed in the New York University Value Added
Galaxy Catalog (Blanton et al. 2005b). The mock calibration
is automated and reproducible thanks to a novel and efficient
minimisation technique that works in the presence of stochastic
noise inherent to the galaxy mock construction (Tutusaus et al.,
in prep.). The catalogue contains about 3.4 billion galaxies over
5000 deg2 and extends up to redshift z = 2.3.

Given this galaxy catalogue, we extract three different quan-
tities to adapt our forecasts to Euclid specifications: the galaxy
distributions as a function of redshift, n(z), the galaxy bias, and
the local count slope. The Flagship mock galaxy catalogue is
complete for magnitude limits below 25.5−26 in the Euclid VIS
band. The specifics for the Euclid photometric sample used in
this work have been extracted applying a magnitude cut of 24.5
in the VIS band, which is well within the completeness limit.

Number density distributions. The different galaxy distribu-
tions used in this analysis correspond to the fiducial selection
presented in Euclid Collaboration (2021). In this reference, the
authors generated photometric redshift estimates for all objects
in an area of 400 square degrees of the Flagship catalogue. Using
the directional neighbourhood fitting (DNF; De Vicente et al.
2016) training-based algorithm, two different redshift estimates
were provided for each object. The DNF algorithm estimates the
photometric redshifts based on the closeness in colour and mag-
nitude space of the galaxies with unknown redshift to reference
galaxies with known redshifts (training sample). The average
of the redshifts from the neighbourhood in colour and magni-
tude space is one of the estimates, denoted zmean. But DNF can
also provide a second estimate consisting of a Monte Carlo draw
from the nearest neighbour, denoted as zmc. This estimate can
be understood as a one-point sampling of the photometric red-
shift probability density function. In this work, we consider the
fiducial settings from Euclid Collaboration (2021), which were
selected to optimise the constraining power of galaxy cluster-
ing and galaxy–galaxy lensing (GGL) with the Euclid photomet-
ric sample. Such settings imply that DNF was trained with an
incomplete spectroscopic training sample to mimic the expected
lack of spectroscopic information at very faint magnitudes. We
consider the optimistic magnitude limits for all photometric
bands shown in Table 1 of Euclid Collaboration (2021). Given
these two photometric redshifts estimates per galaxy, and follow-
ing Euclid Collaboration (2021), we select all Flagship galaxies
with zmean between 0 and 2, and split the sample into 13 bins with
equal redshift width. We then obtain the final n(z) used in our
predictions by computing the histogram of zmc of all the galaxies
within each one of these bins. For these photometric bins, the
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Fig. 3. Normalised number of galaxies in the photometric redshift bins
of Euclid, as inferred from the Flagship simulation. The sample is split
into 13 equally spaced redshift bins defined by zmean. The redshift dis-
tribution of the galaxies inside the bins is estimated computing the his-
togram of the redshift defined by zmc. The vertical lines indicate the
mean redshifts of the bins, z̄. We note that this is the fiducial setting
from Euclid Collaboration (2021), selected to optimise the constrain-
ing power of galaxy clustering and GGL with the Euclid photometric
sample.

fraction of outliers is 2.2% (see Table 3 in Euclid Collaboration
2021). In Fig. 3 we represent the 13 normalised n(z) distributions
obtained by binning in zmean and computing the histogram of
zmc, while the vertical grey lines show the mean redshift for each
sample, z̄. We note that it should not be confused with the zmean
estimate provided by DNF for each object. Moreover, although
the bins were selected with equal width in zmean, given the non-
Gaussianity of the zmc distributions, their mean redshift z̄ is not
equispaced, as can be seen in Table 1. The number density for
each of the bins is also provided in the same table.

Galaxy bias. The linear galaxy bias is calculated as the
square-root ratio between the angular galaxy-galaxy power spec-
trum, Cgg

`
, from the different n(z) samples and the angular matter-

matter power spectrum, Cδδ
`

. The Cgg
`

is obtained from the maps
of the fractional overdensity of galaxies, generated using the
HEALPix framework (Gorski et al. 2005). The maps have a res-
olution of Nside = 4096 (that is 0.85 arcmin/pixel). We esti-
mated the angular power spectra using PolSpice5 (Szapudi et al.
2000; Chon et al. 2004). Mask effects for the 400 square degrees
photo-z region are also accounted for in this harmonic space anal-
ysis. The resulting C` values are corrected for shot noise using
Ccorr
` = C` − 4π fsky/ngal, where fsky is the fraction of the sky cov-

ered by the photo-z sample and ngal is the number of galaxies in the
sample. The Cδδ

`
is modelled with the public code Core Cosmol-

ogy Library6 (CCL; Chisari et al. 2019) using the fiducial cosmol-
ogy of the Flagship simulation. We used Limber’s approximation
for every multipole since CCL does not yet allow a non-Limber

5 www2.iap.fr/users/hivon/software/PolSpice/
6 ccl.readthedocs.io/en/latest
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Table 1. Summary of Euclid specifics from Flagship.

z̄ ngal(z̄) [gal/bin/arcmin2] b(z̄) s(z̄)

0.14 0.758 0.624 0.023
0.26 2.607 0.921 0.135
0.39 4.117 1.116 0.248
0.53 3.837 1.350 0.253
0.69 3.861 1.539 0.227
0.84 3.730 1.597 0.280
1.0 3.000 1.836 0.392
1.14 2.827 1.854 0.481
1.3 1.800 2.096 0.603
1.44 1.078 2.270 0.787
1.62 0.522 2.481 1.057
1.78 0.360 2.193 1.138
1.91 0.251 2.160 1.094

Notes. Number density (in units of gal/bin/arcmin2), galaxy bias, and
local count slope used in each photometric bin. Values are extracted
from the Flagship simulation. A simple fit for b(z) and s(z) can be found
in Appendix C.

framework to be used. We note that the (linear) galaxy bias is cal-
culated as the mean value across the multipole range ` ∈ [50, 500]
to avoid non-linear (or higher-order) bias effects.

Local count slope. As described in Sect. 2.2, the local count
slope can be calculated from Eq. (16). We use the observed mag-
nitude in the Euclid VIS band with error realisation, assuming a
10σ magnitude limit of 24.6. For our analysis, we use a mag-
nitude cut of 24.5. A binned magnitude cumulative function is
calculated for the photo-z sample at the different redshifts, and
the corresponding slope is calculated at the magnitude cut using
bins centred at 24.45 and 24.55.

The results for n(z), b(z), and s(z) are shown in Table 1 and
Fig. 4.

4. Method

4.1. The Fisher matrix formalism

In this work, we follow EC20 in estimating the uncertainties on
the cosmological parameters using a Fisher matrix formalism.
We used the Fisher matrix code FisherCLASS, based on version
v2.9.4 of the Class code (Blas et al. 2011; Di Dio et al. 2013),
adapted to the prescription described in the previous section. The
code has been validated against EC20. More details on the code
and its validations are presented in Appendix B.

We should recall that the Fisher matrix is defined as the
expectation value of the second derivative with respect to the
model parameters of the logarithm of the likelihood function of
the data (Tegmark 1997),

Fαβ =

〈
−
∂2lnL
∂θα∂θβ

〉
, (34)

where α and β label the parameters of interest θα and θβ.
Under the assumption of a Gaussian likelihood for the data,

the Fisher matrix can be written as

Fαβ =
1
2

tr
[
∂C

∂θα
C−1 ∂C

∂θβ
C−1

]
+

∑
pq

∂µp

∂θα

(
C−1

)
pq

∂µq

∂θβ
, (35)

where µ is the mean of the data vector and C is the covariance
matrix of the data. The trace and sum over p or q stand for sum-
mations over the components of the data vector. It is important
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Fig. 4. Galaxy number density in units of gal/bin/arcmin2 (top panel),
galaxy bias (middle panel), and local count slope (bottom panel) as a
function of redshift. These results are obtained from the Flagship sim-
ulation. We note that at z = 1 we have s ' 0.4, so 2−5 s(z = 1) ' 0.
Hence, the lensing term exactly cancels at this redshift. A simple fit for
b(z) and s(z) is found in Appendix C.

to note that, in practice, we consider the angular power spectra
as observables, which follow a Wishart distribution if the fluc-
tuations are Gaussian. As shown for example in Carron (2013),
Bellomo et al. (2020), the Fisher matrix for such distributions is
given by Eq. (35) but without the first term. Therefore, in the fol-
lowing, we only consider the second term when computing the
Fisher matrix.

Once the Fisher matrix is constructed, we estimate the
expected covariance matrix of the cosmological parameters as
the inverse of the Fisher matrix:

Cαβ =
(
F−1

)
αβ
. (36)

The Fisher matrix formalism is a powerful tool to quickly
forecast the constraining power of future surveys. The main lim-
itation of this approach is the Gaussian approximation, which
results in optimistic cosmological constraints. Wolz et al. (2012)
and Takada & Jain (2009) show that, for observables that trace
structure formation, such as WL and tomographic galaxy clus-
tering analysis, the 1σ errors are typically underestimated by
10% to 20%. The purpose of our analysis is assessing the impact
of magnification. Therefore, when we compare the cosmologi-
cal constraints with and without magnification we do not expect
the Gaussian approximation to change significantly our results
because both constraints with and without magnification are
affected in the same way.

Another limitation of the Fisher approach is that it only pro-
vides the uncertainties for a fiducial model. Therefore, it can-
not quantify the bias in the posterior distributions if a wrong
model is used to forecast the data vector and its covariance. This
can be fixed using extensions of the Fisher matrix formalism, as
explained at the end of this section.

We consider analyses of GCph, WL, and their cross-
correlation terms. In the case of a joint analysis, a joint
covariance matrix is required. In this work, since we consider
the angular power spectra as observables (see e.g., EC20, for
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the equations when using the spherical harmonic coefficients as
observables), we use the fourth-order Gaussian covariance given
by

C
[
CAB
` (i, j),CA′B′

`′ (k, l)
]

=
δK
``′

(2` + 1) fsky∆`

×

{ [
CAA′
` (i, k) + NAA′

` (i, k)
] [

CBB′
`′ ( j, l) + NBB′

`′ ( j, l)
]

+
[
CAB′
` (i, l) + NAB′

` (i, l)
] [

CBA′
`′ ( j, k) + NBA′

`′ ( j, k)
] }
, (37)

where A, B, A′, B′ run over WL and galaxy clustering, and i, j, k, l
run over all tomographic bins. The noise terms NXY ′

` are given by
σ2
ε/n̄iδ

K
i j, δ

K
i j/n̄i, and 0 for WL, galaxy clustering, and the cross-

correlation terms, respectively. σ2
ε is the variance of the elliptic-

ity measurement (equal to 0.32 in EC20 and in this work), and n̄i
is the number density in the corresponding tomographic bin.

With this covariance matrix, we can compute the final joint
Fisher matrix as

Fαβ =

`max∑
`=`min

∑
ABCD
i j,mn

∂CAB
` (i, j)
∂θα

C−1
[
CAB
` (i, j),CCD

` (m, n)
] ∂CCD

`
(m, n)

∂θβ
,

(38)

where A, B,C,D run over the different probes. The indices i j and
mn run over all unique pairs of tomographic bins (i ≤ j,m ≤ n)
for WL and galaxy clustering, while they run over all pairs of
tomographic bins for the cross-correlation terms.

Throughout this study, we consider the pessimistic sce-
nario presented in EC20 as a conservative choice for the lens-
ing effects. We include all multipoles from ` = 10 up to
` = 1500 for WL and all multipoles from ` = 10 up to
` = 750 for galaxy clustering and the cross-correlation terms.
These maximum ` values have been determined in EC20 by
mapping the signal-to-noise ratio (S/N) between an analysis
with and without the super-sample covariance contribution. In
more detail, such ` values correspond to the values providing
the same S/N in an analysis considering a Gaussian covari-
ance and in an analysis going to very non-linear scales (`max =
5000 for WL and `max = 3000 for galaxy clustering and the
cross-correlation terms) but accounting for the super-sample
covariance. We note that the maximum multipole considered for
galaxy clustering and the cross-correlation terms is significantly
smaller than the maximum multipole considered for WL. The
main reason behind this choice is that galaxy clustering (and
cross-correlations) is more sensitive to non-linearities, and their
relevance appears sooner than in the WL case when including
small scales. Given the fact that we consider a linear galaxy bias
model, we prefer to be more conservative when selecting the
scale cuts for galaxy clustering and the cross-correlation terms.

4.2. Beyond the Fisher matrix formalism

In this analysis, beyond providing the expected constraints on
the cosmological parameters, we want to quantify the amount
of information that is misinterpreted in an analysis that neglects
magnification and how this affects the estimation of cosmologi-
cal parameters. This is a model comparison problem, where the
two models have a common set of cosmological parameters, and
they differ by an extra model parameter, which is fixed in both
models, but to a different value (see for example, Taylor et al.

2007). We can generically express our theoretical model for the
angular power spectra as

C∆∆
` (i, j) = Cgg

`
(i, j) + εLC∆∆,magn

`
(i, j), (39)

C∆κ
` (i, j) = Cgκ

`
(i, j) + εLC∆κ,magn

`
(i, j), (40)

where εL is the extra model parameter, fixed to εL = 1 in
the correct model and to εL = 0 in the wrong model. We
note that in Eq. (39) the magnification contribution C∆∆,magn

`
(i, j)

includes both the density-magnification cross-correlation and the
magnification-magnification auto-correlation, while in Eq. (40)
C∆κ,magn
`

(i, j) is the cross-correlation between magnification
and κ.

The shift in the fixed parameter in the wrong model leads to a
shift in the maximum of the likelihood and, therefore, to a bias in
the estimation of the common set of cosmological parameters. A
first-order Taylor expansion of the likelihood around the wrong
model leads to the following expression for the shift in the best
fit of common parameters {θα}:

∆θα =
∑
β

(
F−1

)
αβ

Bβ, (41)

where

Bβ =

`max∑
`=`min

∑
ABCD
i j,mn

∂CAB
` (i, j)
∂θβ

C−1
[
CAB
` (i, j),CCD

` (m, n)
] ∂CCD

`
(m, n)

∂εL
.

(42)

We note that since we are expanding the likelihood around
the wrong model, the Fisher matrix in Eq. (41) must be com-
puted neglecting magnification. This difference is of course of
second order, but since we neglect other second-order terms, this
is the more consistent approach. This formalism provides a fast
and straightforward method to test the accuracy of our analysis if
a known systematic effect is neglected. However, it is important
to keep in mind the implicit assumptions behind the formula:
since we are Taylor-expanding our likelihood around the incor-
rect model, we are assuming that the neglected systematic effect
is small and, therefore, this formula can be quantitatively trusted
only for small values of the shifts. If this assumption is violated,
the computation of the shifts with this formalism gives a clear
indication that the systematic effect is important for a precise
parameter estimation.

Our analysis aims to assess whether magnification must be
modelled for the analysis of the photometric sample of Euclid
or if the effect can be neglected. Therefore, for the purpose of
our paper, a Fisher matrix analysis is a reliable tool to qualita-
tively study the impact of neglecting magnification. A quantita-
tive determination of the parameter shifts is beyond the scope of
this work and would require a full Markov chain Monte Carlo
(MCMC) analysis to be run.

5. Results

We investigate the impact of magnification for the primary cos-
mological probes in the photometric sample of Euclid: the GCph
and the probe combination of galaxy clustering, WL and GGL
(GCph + WL + GGL).

The fiducial cosmology adopted in our analysis is a flat
ΛCDM model with one massive neutrino species. The set of
parameters considered in the analysis comprises: the present
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Table 2. Fiducial values of the cosmological parameters.

Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν [eV]

0.32 0.05 −1.0 0.0 0.67 0.96 0.8156 0.06

matter and baryon critical density parameters, respectively Ωm,0
and Ωb,0; the dimensionless Hubble parameter h; the ampli-
tude of the linear density fluctuations within a sphere of radius
8 h−1 Mpc, σ8; the spectral index of the primordial matter power
spectrum ns; the equation of state for the dark energy component
{w0,wa}; and the sum of the neutrino masses

∑
mν.

The fiducial values of the cosmological parameters are
reported in Table 2. They correspond to the ΛCDM best-fit
parameters from the 2015 Planck release (Planck Collaboration
XIII 2016). This choice is consistent with the baseline cosmol-
ogy adopted in EC20.

In addition to these cosmological parameters, we introduce
nuisance parameters and marginalise over them. For galaxy clus-
tering the bias in each redshift bin, {bi}, i = 1, ...,Nbins, are
included as nuisance parameters. We modelled them as constant
within each redshift bin, and we estimated their fiducial values
in the Flagship simulation, as described in Sect. 3 (see values
in Table 1). For WL, the nuisance parameters are the ones used
to model the intrinsic alignment contamination to cosmic shear,
as defined in Sect. 2.3: {AIA, ηIA, βIA}. We note that since CIA is
fully degenerate withAIA, it is kept fixed in the Fisher analysis.
Their fiducial values are given by: AIA = 1.72, ηIA = −0.41,
βIA = 2.17, and CIA = 0.0134. We note that these fiducial val-
ues correspond to the values considered in EC20. However, the
amplitude AIA might be smaller in practice (see Fortuna et al.
2021, for a discussion on the intrinsic alignment amplitude for
different types of galaxies).

The impact of magnification on the cosmological parameters
may depend on the model chosen to describe our Universe. We
therefore ran our analysis for four different cosmological mod-
els and comment on the difference between the results when
relevant. (1) a minimal ΛCDM model, with five free parame-
ters {Ωm,0,Ωb,0, h, ns, σ8} plus nuisance parameters; (2) a ΛCDM
model plus the sum of the neutrino masses as an additional free
parameter: {Ωm,0,Ωb,0, h, ns, σ8,

∑
mν} plus nuisance parame-

ters; (3) dynamical dark energy with seven free parameters
{Ωm,0,Ωb,0,w0,wa, h, ns, σ8} plus nuisance parameters; and (4)
dynamical dark energy plus the sum of the neutrino masses as
an additional free parameter: {Ωm,0,Ωb,0,w0,wa, h, ns, σ8,

∑
mν}

plus nuisance parameters.
Although we ran our analysis for the four models described

above, some results and tests that we performed will be reported
only for model 3 that we consider as our baseline analysis. In the
baseline model, we did not vary the sum of the neutrino masses
because its likelihood is highly non-Gaussian due to a physi-
cally forbidden region: it cannot be negative. Since the Fisher
approach assumes Gaussian statistics, it is not accurate for com-
puting constraints on the neutrino mass. The results reported for
models 2 and 4 are therefore less accurate than the ones for mod-
els 1 and 3. An MCMC analysis that does not rely on Gaussianity
for the effect of lensing magnification in the estimated neutrino
mass is presented in Cardona et al. (2016).

5.1. Magnification information in the photometric sample

As discussed in the introduction, neglecting magnification in
the modelling of the clustering signal will have two effects on

the results of the Euclid analysis: first, it will lead to incor-
rect estimations of the error bars on cosmological parameters,
and second, it will lead to wrong estimations of the best-fit val-
ues of the cosmological parameters. The importance of these
two effects is directly related to the S/N of the observables,
compared to the S/N of magnification. We therefore start by
computing these various S/N. Since we are interested in the
redshift dependence of the S/N, we did not sum over all red-
shift bins, but rather computed the S/N for each pair of red-
shift bins (zi, z j) separately. The S/N for our observables is given
by

( S
N

)AB

i j
=

√√√ `max∑
`=`min

CAB
`

(i, j) C−1
[
CAB
`

(i, j),CAB
`

(i, j)
]

CAB
`

(i, j), (43)

where {AB} = {∆∆}, {∆κ}, {κκ} for GCph, GGL, and WL, respec-
tively, and (i, j) refers to the pair of redshift bins. The S/N for the
magnification contribution in GCph and GGL is given by

( S
N

)κAB

i j
=

√√√ `max∑
`=`min

∆CAB
`

(i, j)C−1
[
CAB
`

(i, j),CAB
`

(i, j)
]
∆CAB

`
(i, j),

(44)

where ∆CAB
` (i, j) denotes the contribution of magnification to the

angular power spectrum AB. We note that in Eq. (44) only the
magnification is included in the signal, but the covariance is that
of the full observable.

In Fig. 5 we show the S/N for GCph, GGL, and WL (without
magnification) for each pair of redshift bins (the index i refers to
the ith redshift bin defined in Table 1). We see that the GCph sig-
nal is most significant in the auto-correlations and in the cross-
correlation of nearby bins. The S/N is slightly larger at low red-
shift (it peaks for bins 2 and 3). Interestingly, the S/N of the
GCph signal in the cross-correlations of bins 12 and 13 is larger
than the one in the corresponding auto-correlations. There are
two reasons for this: on the one hand, these bins have a very sig-
nificant overlap, as can be seen from Fig. 3; and on the other
hand, correlations of different bins have no shot noise, which is
the dominant source of noise in high-redshift bins. The GGL S/N
is prominent in the cross-correlations of cosmic shear at inter-
mediate redshift (z ∼ 0.7–1.3) and the galaxy density at low z
(z ∼ 0.25–0.55). Finally, the S/N of WL is found to be promi-
nent in the cross-correlation of nearby bins in the redshift range
z ∼ 0.7–1.5, reaching a maximum for the configuration i = 7
(z̄ = 1), j = 8 (z̄ = 1.14). The peak of the WL S/N per bin is
comparable to the peak of the GCph S/N and to the peak of the
GGL S/N.

The S/N of magnification is shown in Fig. 6 for the GCph
alone analysis and for the GGL alone analysis (the WL analysis
is not affected by magnification). In the GCph analysis, we find
that the S/N of magnification is largest for the cross-correlation
of widely separated redshift bins, reaching a maximum in the
cross-correlation of i = 3 and j = 12. For these pairs, the con-
tribution of magnification is dominated by the cross-correlation
of density at low z and magnification at high z. We also note
that the minimum S/N is found for the auto-correlation of the
bin i = 7 and its cross-correlations with other bins. This is due
to the value of the local count slope, close to the critical value
s = 0.4 for these configurations. In fact, for s = 0.4 the effect of
magnification on the apparent luminosity of the observed galax-
ies compensates exactly for the change in the observed solid
angle due to lensing, and therefore, the magnification contribu-
tion to the number counts is exactly zero for this critical value
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Fig. 5. S/N per bin neglecting lensing magnification for the observables: GCph (top left), GGL (top right), and WL (bottom). The index i refers to
the ith redshift bin defined in Table 1. The S/N is computed from Eq. (43).
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Table 3. Constraints on cosmological parameters for GCph alone.

Model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM Only density 1.4 4.2 – – 2.8 1.2 0.80 –
+ magnification 1.1 4.2 – – 2.8 1.1 0.57 –

ΛCDM +
∑

mν Only density 1.9 4.2 – – 2.9 1.4 1.2 140
+ magnification 1.6 4.2 – – 2.9 1.2 1.0 130

w0 waCDM Only density 7.3 9.1 25 84 3.7 1.8 1.9 –
+ magnification 4.7 6.9 16 54 3.2 1.2 1.6 –

w0 waCDM +
∑

mν Only density 7.4 9.6 25 84 3.7 1.9 1.9 160
+ magnification 4.7 7.2 16.5 54 3.2 1.3 1.6 150

Notes. The 1σ constraints on cosmological parameters are relative to their corresponding fiducial values (in %), without and with magnification.
For the parameter wa, we report the absolute error times 100. We have marginalised over the galaxy bias parameters, and the values of the local
count slope are kept fixed in the computation of the constraints with magnification. We report the results for four cosmological models: a minimal
ΛCDM model with one massive neutrino species and fixed neutrino mass, an analogue model that includes dynamical dark energy, denoted as
w0 waCDM, and two extensions of these models where the sum of the neutrino masses is a free parameter.

Table 4. Improvement in the constraints for GCph alone, including magnification.

Model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM 21% 0.3% – – 1% 12% 28% –
ΛCDM +

∑
mν 11% 0.5% – – 1.65% 13% 16% 3%

w0 waCDM 36% 24% 34% 35% 14% 32% 18% –
w0 waCDM +

∑
mν 37% 25% 35% 35% 15% 30% 15% 4%

Notes. Shown is the improvement in the constraints (given by 1 − σmagn/σdens, in %), including magnification. We report the results for the same
models as in Table 3, and, in the same way, we marginalise over the galaxy bias parameters. The values of the local count slope are fixed, and thus
we assume a perfect knowledge of s(z) in each redshift bin.

(see Eq. (13)). Comparing with Fig. 5, we see that the maxi-
mum S/N for magnification is roughly four times smaller than
the maximum S/N for GCph (due to density).

In the GGL observable, the magnification signal is given
by the cross-correlation of the magnification contribution to the
number count and cosmic shear. The largest S/N is found cross-
correlating the magnification at high redshift (z > 1.7) and cos-
mic shear at intermediate and high redshift (z ∈ [0.8, 1.5]).
For these configurations the contributions of density to the
galaxy counts is very small: the background density field is
(almost) uncorrelated with the lensing signal in the foreground
and the small correlations that we estimate are due to the
overlap between the redshift distribution of the sources in the
bins. Comparing with Fig. 5, we see that the maximum S/N
for magnification in the GGL observable (which is due to the
magnification-shear correlation) is roughly 2.5 times smaller than
the maximum S/N for GGL (which comes from the density-shear
correlation).

In general, comparing Fig. 5 with Fig. 6 we see that the con-
tamination due to magnification is maximal for the bins in which
the S/N of the corresponding observable is minimal. This will
somewhat mitigate the impact of magnification on the analysis,
but as we will see in Sects. 5.2.2 and 5.3.2 it is not enough to
make magnification negligible.

5.2. Impact of magnification on the galaxy clustering
analysis

We now compute the impact of magnification on the constraints
and on the best-fit values of the cosmological parameters. We
first consider an analysis based on galaxy clustering alone.

5.2.1. Cosmological constraints

In order to quantify the amount of cosmological information
encoded in the magnification signal, for each cosmological
model we ran two Fisher matrix analyses: (a) one that includes
only the density contribution to the galaxy clustering observable
and covariance, and (b) one that also takes into account lensing
magnification, both in the theoretical signal and in the covari-
ance. We then compared the constraints in both cases.

The impact of magnification strongly depends on the value
of the local count slope s(z). As we see from Eq. (13), if s(z) =
0.4, magnification has no effect in the corresponding bin. For
Euclid’s photometric survey, this is nearly the case for redshift
bin 7 around z = 1 (see Table 1). As a first step, we assumed
that we know the value of the local count slope s(z) exactly in
each redshift bin. This local count slope can indeed be measured
directly from the distribution of galaxies as a function of lumi-
nosity. In Table 3 we report the constraints obtained for the two
analyses. In Table 4 we show the relative difference between the
1σ constraints obtained in the two cases.

Including magnification significantly improves the con-
straints on cosmological parameters. For a ΛCDM model, mag-
nification provides additional information on Ωm,0 and σ8,
improving their constraints at the level of 21% and 28%. This
can be understood by the fact that the density contribution is
proportional to the bias, which is a free parameter (over which
we marginalise). In the linear regime, there is therefore a strong
degeneracy between the amplitude of perturbations σ8 and the
bias, both of which control the amplitude of the density term.
The non-linear evolution of the density field breaks this degener-
acy. However, since we restrict the analysis to mildly non-linear
scales, the degeneracy is only partially broken. Including magni-
fication then significantly improves the constraints onσ8, since it
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The results reported here refer to our baseline cosmology, that is, the w0 waCDM model. The contour plot was generated using the Python library
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helps to break the degeneracy further. Looking at the magnifica-
tion contribution to GCph we see that it contains two terms: one
that depends linearly on the bias (from the correlation between
density and lensing) and one that is independent of bias (from the
lensing-lensing correlation). These two terms break the degener-
acy between σ8 and the bias, leading to a significant improve-
ment in the constraints. We verified that this improvement is
even stronger when we use a smaller `max since in this case non-
linearities are less relevant and are therefore not able to break the
degeneracy: for example, for `max = 300, the constraint on σ8 is
improved by 50%. Adding magnification also improves the con-
straints on Ωm,0, which is not surprising since Ωm,0 is itself also
degenerate with σ8: it determines the redshift of matter-radiation
equality where density perturbations start to grow. This degen-
eracy is evident in Fig. 7. Breaking the degeneracy between the

bias and σ8 therefore automatically leads to better constraints on
Ωm,0.

For our baseline model with dynamical dark energy, we have
a large improvement for all the parameters, up to roughly 35%
for Ωm,0 and {w0,wa}. From Table 3, we see that adding {w0,wa}

as free parameters strongly degrades the constraints on Ωm,0.
This is due to the fact that these quantities are degenerate, as
can be seen from Fig. 7: changing Ωm,0 means changing ΩDE,0,
which can be partially counterbalanced by a change of the equa-
tion of state. When only density is included in the analysis, this
degeneracy is worsened by the fact that the bias is free and
can be adjusted at each redshift. However, when magnification
is included, it tightens the constraints since the lensing-lensing
contribution is independent of bias. This leads to a significant
improvement in the constraints on Ωm,0 and {w0,wa}.
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Table 5. Uncertainty in the local count slope, GCph alone.

Parameter s(zi) fixed s(zi) marg + 10% prior on s(zi)

Ωm,0 36% 17% 23%
Ωb,0 24% 13% 16%
w0 34% 14% 21%
wa 35% 17% 20%
h 14% −8% 13%
ns 32% −22% 9%
σ8 18% −21% 18%

Notes. The relative difference, 1 − σmagn/σdens, in percentage, is shown
for three cases: (a) an optimistic scenario, when the local count slope is
measured with high accuracy and thus s(z) is kept fixed in the analysis
(Col. 2), (b) a pessimistic scenario where the local count slope can-
not be constrained by an independent measurement, and therefore we
marginalise over its values (Col. 3), and (c) a realistic scenario such that
the local count slope is assumed to be measured independently with a
10% precision (Col. 4). The results reported here refer to our baseline
cosmology, the w0 waCDM model.

Finally, adding the sum of the neutrino mass as a free param-
eter degrades the constraints with respect to the ΛCDM case,
especially for Ωm,0 and σ8. Adding magnification mitigates this
degradation, again due to the fact that magnification has a con-
tribution that is bias independent.

As already mentioned, all these results were obtained assum-
ing perfect knowledge of the local count slope, s(z). However,
in a realistic scenario, the local count slope will not be exactly
known: it will be measured with some uncertainty. In order to
take this into account, we compared the optimistic analysis pre-
viously discussed to a pessimistic case and a realistic case. In the
pessimistic case, we assumed no prior knowledge of local count
slope, and we treated it in the same way as the galaxy bias: we
marginalised over the local count slope parameters in each red-
shift bin. In the realistic case, we still marginalised over the local
count slope, but we included a uniform 10% prior on the Nbins
extra parameters.

The prior information σsi = 0.1 × si on the local count slope
in the i = 1, ...,Nbins bins is included adding to our Fisher matrix
a diagonal prior information matrix, whose entries are

Fprior
αβ = δK

αβ ×

{
0 for α , si ,

σ−2
si

for α = si.
(45)

In Table 5 we report the percent improvement due to mag-
nification for the optimistic (second column), pessimistic (third
column), and realistic (fourth column) scenario, for our baseline
model of dynamical dark energy. In the pessimistic scenario, that
is, assuming no prior knowledge of the local count slopes, we
partially lose the information encoded in the magnification sig-
nal when constraining Ωm,0,Ωb,0,w0, and wa. More worryingly,
h, ns, and σ8 will be measured with larger errors compared to
an analysis including only density. We would like to empha-
sise that this does not imply that an analysis without magnifi-
cation is preferable for measuring these parameters: as we show
in the next section, neglecting magnification generates a shift
in the best-fit values of the parameters. Such an analysis would
therefore be more precise but less accurate, which is not a viable
option.

Finally, in the realistic scenario where we assumed that we
can measure s(z) with a 10% precision, we see from Table 5
that magnification improves the constraints on all cosmological
parameters. The improvement is smaller than in the optimistic

scenario, but it still reaches ∼20% for Ωm,0 and the dark energy
equation of state. This test suggests that an independent precise
measurement of the local count slope is crucial for an optimal
analysis of the photometric galaxy number counts. There are
several difficulties associated with this measurement. In partic-
ular, systematic effects such as noise, colour selection, and dust
extinction can have a significant impact (see e.g., Hildebrandt
2016). Furthermore, galaxy samples are in general not purely
flux-limited. A novel method for estimating the local count
slope for a complex selection function has been developed for
the Kilo-Degree Survey (KiDS; see von Wietersheim-Kramsta
et al. 2021). Assessing whether this method will be accurate
enough for Euclid, that is, whether it can be used to estimate
the local count slope within a 10% uncertainty, requires further
investigation.

5.2.2. Shift in the best fit

In an optimal cosmological analysis, we aim to estimate the
parameters of our models in a precise and accurate way. In this
section, we study the impact of magnification on the accuracy of
the analysis, that is, we calculate the shift induced on the best-fit
values of the parameters due to neglecting magnification in the
theoretical modelling of the clustering signal.

As discussed in Sect. 4.1, the estimation of the shift is based
on a Taylor expansion of the likelihood around the correct model
and, therefore, it can be trusted quantitatively only when the
shifts ∆θ are much smaller than the 1σ error. The results of our
analysis should therefore be regarded as a diagnostic to deter-
mine whether magnification can be neglected or not: if we find
small values for the shifts ∆θ � σ, the Taylor expansion is valid,
and we can confidently conclude that it is safe to neglect magni-
fication in the theoretical modelling. On the other hand, if large
values ∆θ & σ are found, we cannot quantitatively trust the value
of the shift, but we can conclude that the shifts are large and that,
consequently, magnification cannot be neglected in the theoreti-
cal modelling.

In Table 6 we report the shift in the best-fit estimation of
our parameters for the four models under consideration. For a
five-parameter ΛCDM model, all parameter shifts in the best-
fit estimation are below 1σ. The measurement of σ8 is the
most affected by magnification (∆σ8 ∼ 0.6σ). The shifts are
negative for Ωm,0 and σ8, which means that the magnification
contamination decreases the clustering signal. The sign of the
magnification contamination depends on the sign of 5s − 2 and
on the relative importance of the density-magnification corre-
lation (which is proportional to 5s − 2 and therefore changes
sign at z ' 1), and the magnification-magnification correlation
(which is proportional to (5s − 2)2 and is therefore always pos-
itive). To understand the sign of the shifts, we performed the
following test: we ran an analysis where we remove the mag-
nification from the signal for z > 1, that is, we pretended that
magnification contaminates only the redshifts z ≤ 1. We found
that the shifts on all parameters remain almost the same in this
case7. This shows that the shifts are not due to the high magni-
fication contamination (S/N ∼ 80) at high redshift (z ≥ 1.62
in Fig. 6) but rather to the (relatively) small contamination
(S/N ∼ 10−20) at z ≤ 1. At those redshifts, the factor 5s − 2
is negative. From Fig. 5 we see that the GCph signal peaks for
the auto-correlations of redshift bins. We expect therefore the
constraints, and consequently the shifts, to come mainly from

7 The only parameters for which the shift decreases are the bias param-
eters governing the bias evolution at high redshift.
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Table 6. Shift in best-fit parameters for GCph alone.

Model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM −0.18 0.004 – – −0.02 0.33 −0.57 –
ΛCDM +

∑
mν 0.96 −0.15 – – −0.42 0.98 −1.62 1.64

w0 waCDM −0.65 −0.64 −1.02 1.20 0.05 1.04 0.17 –
w0 waCDM +

∑
mν −0.90 −1.12 −1.27 1.21 0.22 1.59 −0.13 1.62

Notes. The shift in best-fit parameters are in units of 1σ. We report the results for the same models as in Tables 3 and 4. The shifts are estimated
with the formalism described in Sect. 4.2. The values of shifts that are larger than 1σ cannot be trusted but indicate that the shift is large. We
marginalise over the galaxy bias parameters, and the values of the local count slope are fixed to their fiducial values.

these auto-correlations. Since the bins are relatively wide, both
the density-magnification and the magnification-magnification
contribute to the auto-correlations, and we checked that the
density-magnification always dominates at z ≤ 1. As a conse-
quence, the magnification contamination is negative for the bins
that contribute most to the constraints, leading to a decrease in
Ωm,0 and σ8.

For all the models beyond ΛCDM, we find shifts above
1σ. The parameters that are mostly affected are the parameters
beyond the ΛCDM minimal model: the neutrino mass and the
dynamical dark energy parameters {w0,wa}. This can be under-
stood by looking at Fig. 5, where we see that the S/N for GCph
peaks at low redshift: z ∈ [0.26, 0.39], which corresponds to bins
i = 2, 3. For ΛCDM, we expect the constraints to be driven by
these bins. For models beyond ΛCDM, however, the evolution
with redshift becomes relevant: the sum of the neutrino mass
and the dark energy equation of state modify indeed the redshift
evolution of perturbations. More redshift bins contribute there-
fore to the constraints, which increases proportionally the impact
of magnification and leads to a larger shift. Since the impact
of dark energy and neutrino mass decreases with redshift, we
expect however the highest-redshift bins to be irrelevant for the
constraints. As before, to check this, we ran an analysis with-
out the magnification contamination at z > 1 and we found that
the shifts on all parameters remain almost the same. This again
means that the shifts do not come from the high-redshift bins
where the magnification contamination is the largest, but rather
from the low-redshift bins. A direct consequence of this is that
any alternative model that would be constrained by the highest-
redshift bins of Euclid, would be significantly more biased when
neglecting magnification. We note that these results are in agree-
ment with previous analyses on this subject (see e.g., Cardona
et al. 2016; Lorenz et al. 2018; Villa et al. 2018).

Looking at the sign of the shifts of Ωm,0 and σ8 for models
beyond ΛCDM, we see from Table 6 that when the neutrino mass
is included the shift in Ωm,0 becomes positive, whereas in the
dynamical dark energy model the shift in σ8 becomes positive.
However, the overall amplitude is still decreased by magnifica-
tion, since the negative shifts are always larger than the positive
ones.

For our calculation of the shifts, we used the fiducial values
of the local count slope measured in the Flagship simulation. We
did not consider the local count slope as a free parameter in this
part of the analysis, since our goal was to determine the shifts
induced on the other cosmological parameters by a magnifica-
tion signal of a given fixed amplitude. However, we tested the
stability of our results by repeating the analysis with different
fiducial values of the local count slope. We found that, in the
range si = (1 ± 0.1)sfid

i , the values of the shifts do not change
significantly. Therefore, our results are robust with respect to the
fiducial si used in the analysis.

5.3. Impact of magnification on the probe combination
analysis

In this section, we present the same analysis described in
Sect. 5.2, but this time for the joint data GCph + WL + GGL.
We note that magnification contributes to the galaxy clustering
observable and to the cross-correlation GGL, while in our anal-
ysis it does not affect cosmic shear.

5.3.1. Constraints on cosmological parameters

Similar to the discussion in the previous section, we studied
the impact of magnification on the constraints on cosmological
parameters by comparing a Fisher matrix analysis for the probe
combination that neglects this effect and an analysis that consis-
tently includes it. As before, we considered an optimistic case
where we assume that the local count slope is exactly known, a
pessimistic case where the local count slope is considered as a
free parameter, and a realistic case where we include a 10% prior
on the local count slope.

In the optimistic case, that is, assuming a perfect knowledge
of the local counts slope, we found that the improvement on
the constraints due to magnification is negligibly small, that is,
smaller than 3% for all cosmological parameters and all mod-
els under consideration. This is due to the fact that the infor-
mation encoded in magnification is the same as the one in the
cosmic shear. As a consequence, adding magnification does not
help to break degeneracies between parameters anymore, since
these degeneracies are already broken by the inclusion of cosmic
shear. This can be seen by looking at Table 7, where we report
the 1σ constraints for the joint analysis. Comparing with Table 3,
we see for example that the constraints on Ωm,0 for our baseline
dynamical dark energy model are four times better in the joint
analysis, and the constraints on σ8 are three times better. This
reflects the fact that cosmic shear breaks the degeneracy between
the amplitude of perturbations and the bias, and since its S/N is
significantly higher than that of magnification (as can be seen
from Figs. 5 and 6), adding magnification does not help any-
more. This also becomes clear by looking at Fig. 8, which com-
pares the constraints from galaxy clustering alone, with the ones
from the joint analysis for our baseline dynamical dark energy
model: we see that adding cosmic shear brings a much larger
improvement in the constraints than including magnification in
the clustering signal.

These constraints refer to the optimistic scenario. In Table 8
we compare this with the pessimistic scenario (second column)
and the realistic scenario (last column). In the pessimistic sce-
nario, the constraints are degraded at the level of 10–20%.
This degradation, especially in σ8 and Ωm,0, is due to the fact
that we no longer have a precise measure of the density fluc-
tuation amplitude if the amplitude of lensing magnification is
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Table 7. Constraints on cosmological parameters for GCph + WL + GGL.

Model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM 0.75 3.4 – – 2.2 0.76 0.37 –
ΛCDM +

∑
mν 0.91 4.0 – – 2.3 0.76 0.60 100

w0 waCDM 1.1 4.4 4.0 15 2.4 0.89 0.46 –
w0 waCDM +

∑
mν 1.2 4.5 4.0 16 2.4 1 0.83 140

Notes. 1σ constraints are relative to their corresponding fiducial values, including magnification (in %). For the parameter wa, we report the
absolute error times 100. We have marginalised over the galaxy bias and the intrinsic alignment parameters, and the values of the local count slope
are kept fixed. We report the results for four cosmological models: a minimal ΛCDM with one massive neutrino species and fixed neutrino mass,
an analogue model that includes dynamical dark energy, denoted as w0 waCDM, and their extensions where the sum of the neutrino masses is also
a free parameter. The constraints obtained when neglecting magnification differ from the values reported here by less than 3% for all cosmological
parameters and all models considered.

completely unknown. In a realistic scenario we are able to
recover the same information as in the optimistic case.

To conclude, including magnification has a negligible impact
on the constraints for the joint analysis, provided that the local
count slope will be measured independently with a 10% uncer-
tainty. If we do not have independent measurements of the local
count slope, an analysis with no magnification will provide con-
straints that are up to 10–20% too optimistic.

5.3.2. Shift in the best fit

The fact that magnification has little impact on the constraints on
cosmological parameters extracted from the joint analysis does
not mean that an analysis that neglects this effect is accurate in
terms of parameter estimation. Applying the Fisher formalism to
our model comparison problem, we compute the shift in the best-
fit estimation for an analysis that assumes the incorrect model
with no magnification.

The values of the shifts are reported in Table 9. For all four
cosmological models under consideration we find large devia-
tions, that is, above 1σ. Although the Fisher formalism that we
use cannot be trusted quantitatively in this case, we can conclude
that an analysis that neglects magnification does not provide an
accurate estimation of cosmological parameters. This important
result agrees with previous studies (see Duncan et al. 2014):
although magnification has little impact on the precision of the
cosmological constraints in the 3 × 2pt analysis, inferred cos-
mological parameter values are highly biased when the effect is
neglected. Comparing the above with the shifts obtained from
galaxy clustering alone (see Table 6), we see that the shifts (in
units of σ) are significantly larger in the joint analysis, espe-
cially for Ωm,0 where it lies between 5 and 7σ, depending on
the model, and for σ8 where it is between 3 and 4.5σ. This is
only partially due to the fact that now the 1σ errors are smaller,
as is seen in Fig. 8. More importantly, the shear measurements
provide a precise estimation of the gravitational potential so
that number counts are no longer well-fitted without lensing
magnification.

Looking at the sign of the shifts in Table 9, we see that the
shifts in σ8 are negative for all models, whereas the shifts in
Ωm,0 are always positive. Moreover, we checked the shifts of the
best-fit galaxy bias parameters and found that most of them are
negative. In Fig. 9, we directly compare the shifts for our base-
line dynamical dark energy model in the GCph analysis and in
the combined analysis. The shifts are systematically of opposite
sign. We already know that in the GCph signal, the magnifica-
tion contamination is negative in the pairs of redshift bins that
contribute most to the constraints. In the GGL signal, the magni-

fication contamination is proportional to 5s−2, which is negative
at z < 1 and positive at z > 1. The sign of the shifts will there-
fore depend on which range of redshift contributes most to the
constraints. As before, we ran an analysis removing the magni-
fication contamination in GCph and in GGL at z > 1. We found
that the shifts decrease slightly in amplitude but remain of the
same sign: for example, the shift in σ8 decreases from −4.6σ to
−2.3σ, whereas the shift in Ωm,0 decreases from 6.9σ to 4.4σ.
This means that the constraints are mainly driven by z < 1, where
the magnification contamination is negative in both GCph and
GGL. Indeed, if the magnification contamination at z > 1 were
to be the main driver of the shifts, we would expect the shifts to
change sign when we remove the z > 1 contamination, since at
z = 1 the contamination in GGL changes sign. This test shows
that removing from the analysis the bin configurations at high
redshift, which are dominated by magnification, does not reduce
the bias in the best-fit estimation due to neglecting magnifica-
tion, as already pointed out in Thiele et al. (2020).

We then performed another test, where we fixed the value
of Ωm,0 and computed the shifts in the other parameters for our
baseline dynamical dark energy model. We found that, in this
case, the shift in σ8 becomes positive, whereas the shifts in the
bias parameters become significantly more negative. This shows
that there is a strong interplay between the impact of σ8,Ωm,0,
and the bias on the amplitude of the GCph signal and the GGL
signal, and that there are therefore various ways of decreasing the
overall amplitude of these signals. When only GCph is included,
one can decrease the amplitude of the density signal by decreas-
ing σ8,Ωm,0, or the bias. Depending on the model, different solu-
tions might mimic better the magnification contamination. In
the joint analysis on the other hand, the problem is much more
constrained: since the WL (shear-shear correlation) is not con-
taminated, this part of the signal has to remain unchanged. Any
negative shift in σ8 needs therefore to be compensated for by a
positive shift in Ωm,0 to keep S 8 = σ8(Ωm,0/0.3)0.5 almost con-
stant. This explains why in all models the shift in σ8 and the
shift in Ωm,0 have opposite sign (see Table 9). In particular, for
the dynamical dark energy model, we have that the positive shift
∆Ωm,0/Ωm,0 = 7% and the negative shift ∆σ8/σ8 = −2% par-
tially compensate to give a small positive shift ∆S 8/S 8 = 1%.
Moreover, the shifts must be adjusted to decrease at the same
time the GCph signal, which is proportional to b2〈δδ〉, and the
GGL signal, which is proportional to b〈δκ〉. From Table 9 and
Fig. 9 we see that all this leads to shifts that are systemat-
ically larger in the joint analysis than in the GCph analysis.
This shows that including magnification in the theoretical model
is absolutely crucial for the joint analysis of the photometric
sample.

A93, page 16 of 26



Euclid Collaboration: Euclid preparation. XIX.

10−3 10−2 10−1 100

σ/θfid

Ωm,0

Ωb,0

w0

wa

h

ns

σ8

GCph (without magnification)

GCph (with magnification, s marginalised with prior)

GCph (with magnification, s fixed)

WL

GCph + WL + XC

Fig. 8. Marginalised 1σ errors on cosmological parameters, relative to
their corresponding fiducial values for the baseline model of dynamical
dark energy. The error bars for wa represent the absolute error, σ, for
this parameter since a relative error cannot be computed for a fiducial
value of 0. Each histogram refers to a different cosmological analysis
or observational probe. We show in blue a GCph analysis that neglects
magnification, in orange a GCph analysis that includes magnification
and assumes a 10% prior on the measurement of the local count slope
(realistic scenario), and in green a GCph analysis that models magnifi-
cation assuming a perfect knowledge of the local count slope (optimistic
scenario). For comparison, we show in pink the constraints from the
WL analysis and in violet the one obtained from the probe combination
GCph + WL + GGL.

6. Robustness tests

The results presented in the previous sections are a natural exten-
sion of the Euclid forecast presented in EC20 to include magni-
fication in the analysis of the photometric sample. We adopted
three underlying simplifications: (1) non-linearities are modelled
with the Halofit prescription (Smith et al. 2003), including the
Bird and Takahashi corrections; (2) the RSD contribution to the
galaxy count is neglected in the analysis; and (3) both the signal
and covariance are computed using Limber’s approximation. In
what follows, we test the robustness of our results with respect
to these three assumptions.

Table 8. Uncertainty in the local count slope, GCph + WL + GGL.

Parameter s(zi) fixed s(zi) marg + 10% prior on s(zi)

Ωm,0 1% −23% −3%
Ωb,0 <1% −3% <1%
w0 2% −16% <1%
wa 2% −11% 2%
h <1% <1% <1%
ns <1% −4% −2%
σ8 1% −14% <1%

Notes. The relative difference, 1 − σmagn/σdens, is in percentage. As in
Table 5, we report the results for three scenarios: (a) an optimistic sce-
nario, when the local count slope is measured with high accuracy and
thus s(z) is kept fixed in the analysis (Col. 2), (b) a pessimistic scenario
where the local count slope cannot be constrained by an independent
measurement, and therefore we marginalise over its values (Col. 3), and
(c) a realistic scenario such that the local count slope is assumed to
be measured independently with a 10% precision (Col. 4). The results
reported here refer to our baseline cosmology, the w0 waCDM model.

6.1. Non-linear prescription

Martinelli et al. (2021) investigate in detail the impact of differ-
ent non-linear prescriptions on parameter estimation for the WL
analysis of Euclid. In this work, we do not aim to compare the
parameter estimation analysis itself for different non-linear mod-
els. Instead, we want to verify whether the impact of magnifica-
tion on the analysis strongly depends on our non-linear recipe.

With this objective in mind, we compared the analysis pre-
sented in Sect. 5 for three non-linear prescriptions. The first
is Halofit (Smith et al. 2003; Bird et al. 2012; Takahashi
et al. 2012), a model for the non-linear matter power spectrum
inspired by the halo model (Cooray & Sheth 2002). This is
our reference recipe, and it is the implementation adopted in
the forecast validation project for Euclid EC20. The second is
Halofit+Pk-equal (Casarini et al. 2016), which is an exten-
sion to the Halofit fitting formula to models with a redshift-
dependent equation of state for the dark energy component. The
third is HMCODE (Mead et al. 2016), an alternative parametrisa-
tion for the total matter power spectrum that is based on the halo
model but with physically motivated free parameters. Although
this model can account for baryonic feedback, in this test we
used the model fitted to the Cosmic Emulator dark-matter-only
simulation (Heitmann et al. 2014). The three models considered
here are all implemented in version v2.9.4 of Class (Blas et al.
2011) and, therefore, applying our analysis to different recipes is
straightforward.

We performed this test on our baseline cosmology, and we
assumed the optimistic scenario for the local count slope, that is,
we assumed that s(z) is exactly known. Therefore, its value was
fixed in the analysis.

In Table 10 we compare the improvement in terms of con-
straining power for the non-linear models considered here, for
a GCph alone analysis. The maximum percentage improvement
of the 1σ errors between an analysis with magnification and an
analysis that neglects this effect varies between 25% (Pk-equal)
and 42% (HMCODE).

Table 11 shows a comparison of the shifts in the best-
fit parameters for GCph alone analysis. For all the non-linear
prescriptions considered here, neglecting magnification can
introduce a shift larger than 1σ for several model parameters.
Therefore, we find that magnification should not be neglected
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Table 9. Shift in best-fit parameters for GCph + WL + GGL.

Model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM 4.73 0.41 – – −0.56 −1.76 −2.88 –
ΛCDM +

∑
mν 5.64 0.65 – – 0.07 −1.51 −4.21 3.08

w0 waCDM 6.90 2.89 4.58 −2.82 1.16 −4.39 −4.56 –
w0 waCDM +

∑
mν 6.21 2.71 4.57 −2.82 1.09 −3.60 −2.91 0.51

Notes. We report the shift in the values of the best fitting parameters, in units of 1σ, for the same models as in Table 7. The shifts are computed
with the formalism described in Sect. 4.2, and therefore, the values of shifts that are larger than 1σ cannot be quantitatively trusted but indicate
that the shift is large. We marginalise over the galaxy bias and intrinsic alignment parameters, and the values of the local count slope are fixed to
their fiducial values.

−4 −2 0 2 4
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Ωb,0

w0

wa

h

ns

σ8

GCph

GCph + WL + XC

Fig. 9. Shift in the best-fit estimation of cosmological parameters
induced by neglecting magnification in our theoretical model. The val-
ues of the shift are expressed in units of the marginalised 1σ constraints.
The blue histogram refers to the parameters estimated from the GCph
alone analysis, and the orange histogram represents the shifts for the
3 × 2pt analysis GCph + WL + GGL. The red regions highlight shifts
above 1σ in absolute value. The values of the shifts computed with the
Fisher formalism cannot be trusted quantitatively in this region.

in the galaxy clustering analysis of the photometric sample of
Euclid, independently of the non-linear modelling.

We repeated the same analysis for the probe combination
GCph + WL + GGL. We find that the impact of magnification on
the constraints is negligible (<3%) for all non-linear prescrip-
tions considered here. In Table 12 we report the shifts in the
best-fit estimation due to neglecting magnification in the joint
analysis. The shifts do not strongly depend on the way we model
non-linearities, and they show that magnification should not be
neglected in the analysis.

In conclusion, we have shown that the results that we present
in the main body of this manuscript are valid independent of

Table 10. Impact of non-linear prescription on the constraints for GCph
alone.

Parameter Halofit Halofit + Pk-equal HMCODE

Ωm,0 36% 24% 31%
Ωb,0 24% 15% 27%
w0 34% 22% 20%
wa 35% 25% 23%
h 14% 13% 6%
ns 32% 18% 42%
σ8 18% 14% 11%

Notes. We compare the relative difference 1 − σdens+magn/σdens,
expressed as a percentage, obtained when using three different non-
linear prescriptions, as described in the text. The results reported here
refer to our baseline cosmology, that is, the w0 waCDM model.

Table 11. Impact of non-linear prescription on the shifts for GCph
alone.

Parameter Halofit Halofit + Pk-equal HMCODE

Ωm,0 −0.65 −1.08 −1.34
Ωb,0 −0.64 −1.00 −1.42
w0 −1.02 −1.62 −1.82
wa 1.20 −1.84 2.06
h 0.05 0.53 −0.26
ns 1.04 1.03 1.33
σ8 0.17 0.72 0.67

Notes. We compare the shift in the best-fit parameters, in units of 1σ,
obtained using three different non-linear prescriptions, as described in
the text. The results reported here refer to our baseline cosmology, the
w0 waCDM model.

the non-linear modelling. Although this test assumes the w0wa
parametrisation, it has been shown in, for example, Lorenz et al.
(2018) and Villa et al. (2018) that the impact of magnification on
galaxy clustering is enhanced for several modified gravity mod-
els. Therefore, we do not expect this picture to change signifi-
cantly for other cosmological models.

6.2. Redshift-space distortions

Redshift-space distortions are currently neglected in the Euclid
forecast for the photometric sample. The reason is twofold. First,
in photometric redshift bins radial correlations are washed out
due to poor redshift resolution and, therefore, the information
encoded in the RSD contribution is highly suppressed. Second,
the non-linear modelling of RSDs is a challenging task: the
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Table 12. Impact of non-linear prescription on the shifts for GCph +
WL + GGL.

Parameter Halofit Halofit + Pk-equal HMCODE

Ωm,0 6.90 6.4 6.35
Ωb,0 2.89 2.99 2.83
w0 4.58 4.58 4.37
wa −2.82 −3.07 −3.31
h 1.16 0.71 0.72
ns −4.39 −4.17 −2.79
σ8 −4.56 −4.73 −4.49

Notes. We compare the shift in the best-fit parameters, in units of 1σ,
obtained using three different non-linear prescriptions, as described in
the text. The results reported here refer to our baseline cosmology, the
w0 waCDM model.

several prescriptions proposed to include the finger-of-god
effects into our theoretical model have been proven to be inaccu-
rate for modelling RSD contribution to the angular power spec-
trum (Jalilvand et al. 2020) and it has also been shown that
finger-of-god effects change the RSD harmonic-space spectrum
on all scales (Grasshorn Gebhardt & Jeong 2020). Although a
comprehensive study on the impact of RSDs in the analysis of
the Euclid photometric sample would require an accurate mod-
elling of RSDs, which is beyond the scope of this work, we are
interested in studying whether including the RSD signal could
significantly affect our conclusions on the impact of magnifica-
tion for the Euclid photometric sample.

For this purpose, we repeated the analysis presented in
Sect. 5, including RSD contributions to galaxy clustering. The
non-linear RSD is naively modelled using the Kaiser formula,
that is, finger-of-god effects are neglected. This approximation
overestimates the contribution from RSDs to the galaxy clus-
tering analysis, and should therefore give a first indication of
whether the effect is important or not.

In Table 13 we compare the impact of lensing on the con-
straints and the shift in the best fit induced by neglecting magni-
fication, with and without RSDs. We stress that the lines denoted
‘with RSD’ include the RSD signal, both in the Fisher analysis
that includes magnification and the one that neglects it. More-
over, in the shift analysis, we are comparing an incorrect model
that includes density and RSDs to a correct model that accounts
for density, RSDs, and magnification. For both the GCph alone
analysis and the joint analysis, including RSDs does not sig-
nificantly change the improvement in the constraints driven by
magnification and the shift in the best-fit estimation induced by
neglecting this effect. Therefore, our conclusions on the impact
of magnification do not depend on the RSD contribution. How-
ever, we stress that this result does not imply that RSDs can be
neglected in the analysis. In fact, an analysis without RSDs could
still provide an inaccurate estimate of cosmological parameters.
This aspect will be addressed in a future work.

6.3. Limber’s approximation

An exact computation of the angular power spectra for the
galaxy clustering and WL analysis requires the estimation of
double integrals in redshift (or comoving distance) of spheri-
cal Bessel functions and their derivatives, which is a numeri-
cal challenge for data-analysis pipelines due to the oscillatory
behaviour of the Bessel functions. The computational time can
be drastically reduced when making use of Limber’s approxi-

mation (Limber 1953, 1954; LoVerde & Afshordi 2008), which
assumes small angular scales and that the other function that
appears in the radial integral varies much more slowly than the
spherical Bessel functions. Effectively, this implies that we can
approximate the spherical Bessel functions with a Dirac-delta
function,

j`(x) '
√

π

2` + 1
δD

(
` +

1
2
− x

)
.

The accuracy of Limber’s approximation depends on the
selection functions of the tracers and the scales that we are prob-
ing (see for example Simon 2007; Eriksen & Gaztanaga 2015b;
Kitching et al. 2017; Kilbinger 2017; Lemos et al. 2017; Fang
et al. 2020; Matthewson & Durrer 2021). For tracers with a broad
kernel, such as cosmic shear, Limber’s prescription has a rela-
tively small impact on the estimation of cosmological param-
eters (Kilbinger 2017; Lemos et al. 2017). On the other hand,
the approximation is inaccurate for the density and RSD contri-
butions to the number count, especially for selection functions
with a narrow radial width (Eriksen & Gaztanaga 2015b; Fang
et al. 2020; Matthewson & Durrer 2021).

Since a brute-force computation of the angular power spec-
tra is not doable for a full MCMC analysis, Limber’s approx-
imation has been widely adopted in the literature EC20, and
we adopted the same approximation in the analysis presented
in the previous sections of this paper. In this section, we study
the impact of the approximation on the analysis. For this pur-
pose, we ran the Fisher analysis presented in Sect. 5 using
a brute-force integration for estimating the angular spectra on
large scales, that is, for ` < `Limb, and turning on Limber’s
scheme only for sufficiently large multipoles, where the approx-
imated spectra are accurate enough. In order to perform this
test, we used the recipe implemented in the Class code (Di
Dio et al. 2013), where two parameters regulate the multi-
poles threshold at which Limber’s approximation is active: (1)
l_switch_limber_for_nc_local_over_z, which regulates
the threshold at which the density contributions to the galaxy
clustering power spectra are computed using Limber, that is,
`Limb = l_switch_limber_for_nc_local_over_z × zm for
the density selection function, where zm is the mean redshift
of the bin; and (2) l_switch_limber_for_nc_los_over_z,
which similarly defines the multipoles’ threshold at which the
lensing and magnification contributions to the power spectra are
computed using Limber. We note that, in the Class implemen-
tation, Limber’s threshold is redshift dependent, as the approxi-
mation is more accurate at low z.

For the purpose of our analysis, this test is de facto
equivalent to a brute-force analysis that does not employ
Limber at all. We compared this setting to the less con-
servative l_switch_limber_for_nc_local_over_z = 300,
l_switch_limber_for_nc_local_over_z = 40 and we ver-
ified that the constraints differ by a few percent at most in the
two cases.

In Table 14 we quantify the impact of Limber’s approxi-
mation on our results. For a galaxy clustering analysis alone,
Limber’s approximation has a non-negligible effect, and in the
most accurate analysis, which does not rely on Limber at low
`, we find that magnification has a larger impact, both in terms
of constraints on cosmological parameters, and the accuracy of
the best-fit estimation. The improvement in constraining power
when magnification is included reaches 48% for Ωm,0,w0,wa,
while the shifts are roughly twice as large, in absolute value.
The large impact of Limber on this analysis can be understood
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Table 13. Impact of RSDs.

Ωm,0 Ωb,0 w0 wa h ns σ8

1 − σmagn

σdens
[%] (GCph) No RSD 36% 24% 34% 35% 14% 32% 18%

With RSD 32% 20% 29% 29% 13% 27% 17%
∆θ/σθ (GCph) No RSD −0.65 −0.64 −1.02 1.20 0.05 1.04 0.17

With RSD −0.75 −0.63 −0.83 0.86 0.25 1.05 0.09
1 − σmagn

σdens
[%] (GCph + WL + GGL) No RSD 1% <1% 2% 2% <1% <1% 1%

With RSD 1% <1% 2% 2% <1% <1% 1%
∆θ/σθ (GCph + WL + GGL) No RSD 6.90 2.89 4.58 −2.82 1.16 −4.39 −4.56

With RSD 6.95 2.82 4.62 −2.98 1.07 −4.22 −4.73

Notes. Impact of magnification in the GCph and GCph + WL + GGL analyses, including or neglecting RSDs, for our baseline cosmology. In the
results labelled as ‘with RSD’, we add the contribution of RSDs both in the Fisher analysis that includes magnification and the one that neglects
it. Vice versa, the results denoted as ‘no RSD’ completely neglect RSDs, and they correspond to the analysis presented in Sect. 5.

Table 14. Impact of Limber’s approximation.

Ωm,0 Ωb,0 w0 wa h ns σ8

1 − σmagn

σdens
[%] (GCph) Limber 36% 24% 34% 35% 14% 32% 18%

No Limber 47% 36% 47% 48% 18% 43% 27%
∆θ/σθ (GCph) Limber −0.65 −0.64 −1.02 1.20 0.05 1.04 0.17

No Limber −1.77 −1.77 −2.30 2.53 0.47 2.18 1.20
1 − σmagn

σdens
[%] (GCph + WL + GGL) Limber 1% <1% 2% 2% <1% <1% 1%

No Limber 1% <1% 2% 2% <1% <1% 1%
∆θ/σθ (GCph + WL + GGL) Limber 6.90 2.89 4.58 −2.82 1.16 −4.39 −4.56

No Limber 6.82 2.87 4.45 −2.65 1.13 −4.37 −4.46

Notes. Impact of magnification in the GCph and GCph + WL + GGL analyses for our baseline cosmology. We compare the results obtained within
Limber’s approximation to an analysis that does not use Limber at low `, as described in the text.

as follows: Limber mostly affects the analysis without magnifi-
cation, degrading the constraints at the 30–40% level. The effect
of Limber on an analysis that includes magnification is smaller,
that is, constraints are affected by Limber at the 10% level. The
overall effect on the constraints is that the impact of magnifica-
tion is underestimated when Limber is employed on all scales.
On the other hand, we find that the impact of Limber’s approxi-
mation is marginal for the probe combination analysis.

Our results show that not using Limber’s approximation does
not substantially modify the take-home message of our work,
that is, that magnification needs to be taken into account in the
analysis of the photometric sample of Euclid. However, they
also point out that Limber’s approximation may not be suffi-
ciently accurate for modelling the two-point angular statistics of
galaxy clustering. Finding a scheme that accommodates both the
required accuracy and speed of the cosmological analysis would
certainly be welcome and would require a specific investigation.
Recent developments in this direction can be found in, for exam-
ple, Fang et al. (2020) and Matthewson & Durrer (2021).

7. Conclusions

In this work, we have studied the effect of lensing magnification
on galaxy number counts in the photometric survey of Euclid.
We have investigated the pure photometric number counts and
the correlation of number counts with the tangential shear. While
magnification also affects the shear power spectrum, we have
neglected this effect in our analysis as it is of second order, and
we expect it to have a smaller impact on the probe combination

analysis than the first-order magnification term in the number
counts. The effect of this correction on the WL analysis has been
investigated in Deshpande et al. (2020).

In previous forecasts of the capabilities of Euclid’s photo-
metric survey, lensing magnification was neglected. We have
studied its effect for ΛCDM and a dynamical dark energy model,
with and without varying neutrino masses. We have determined
the changes in error bars that are obtained by including lensing
magnification in the analysis as well as the shift in the best-fit
cosmological parameters due to neglecting magnification in the
theoretical modelling of the signal.

When considering the galaxy clustering signal alone, lens-
ing magnification significantly reduces the error bars on cos-
mological parameters (especially σ8, ns, and Ωm,0), assuming a
perfect knowledge of the local count slope; neglecting it leads
to significant shifts in the best-fit parameters. The reduction in
errors comes mainly from the fact that magnification information
breaks the degeneracy between the amplitude of density fluctua-
tions, σ8, and galaxy bias.

Once we also include shear and cross-correlation data, includ-
ing magnification no longer has a significant effect on the error
bars, that is, on the precision of the analysis. However, neglecting
magnification leads to very significant shifts in the best-fit param-
eters of up to six standard deviations. In fact, all the parameters
of the dynamical dark energy model are shifted by more than one
standard deviation. Hence, the accuracy of modelling is drasti-
cally improved by including lensing magnification.

Even though shifts of more than 1σ cannot be taken at face
value in our Fisher matrix approach (since the shifts are deter-
mined at first order in ∆θ/σ), a shift of order one or more
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standard deviations robustly indicates that the analysis is signif-
icantly biased. To obtain a good estimate for the value of the
shift, we would have to perform an MCMC analysis as in, for
example, Cardona et al. (2016).

In our forecast we have adopted realistic specifications: the
galaxy number density, the galaxy bias, and the local count
slope have been extracted from the Flagship galaxy catalogue.
The galaxy sample is split into 13 photometric bins, which
optimises the figure of merit for galaxy clustering and GGL
(Euclid Collaboration 2021). The impact of magnification is
expected to depend on the number of redshift bins, as discussed
in Villa et al. (2018). We expect magnification to have a big-
ger impact on the cosmological constraints for a few wider red-
shift bins. This is due to the facts that the radial correlations are
suppressed in wider bins and the cosmological constraints come
primarily from transverse correlations, which are more affected
by magnification. On the other hand, a larger number of thinner
redshift bins will not increase the number of modes induced by
magnification; only the modes dominated by density and RSDs
will be boosted in this configuration. We thus expect that the
overall impact of magnification will be smaller for this configu-
ration. Nevertheless, in this paper we do not aim to propose an
optimal binning to enhance or minimise the importance of mag-
nification. For configurations similar to the optimal choice, that
is, a number of photometric bins in the redshift range 10–15, we
do not expect the overall conclusions of our paper to significantly
change.

We have also tested the robustness of our predictions with
respect to the most relevant approximations used in the anal-
ysis. We have compared three prescriptions for including non-
linearities in the matter power spectrum and found that their
impact on the shifts is not substantial. Moreover, we have found
that we obtain similar results whether or not we include RSDs
in our analysis. The use of Limber’s approximation, however,
has an impact on our results in the analysis of galaxy cluster-
ing alone. Using Limber actually leads us to underestimate both
the improvements brought by magnification on the cosmological
constraints and the shifts induced on the best-fit values. How-
ever, in the combined analysis, which includes the shear and
cross-correlations, this difference disappears. This finding con-
firms similar results by Fang et al. (2020) for the Vera C. Rubin
Observatory’s Legacy Survey of Space and Time and the DES,
where it is also found that while Limber’s approximation is quite
inaccurate in a clustering-only analysis, it performs significantly
better in a combined analysis.

This work presents the minimal extension of the Euclid fore-
cast in EC20 to include lensing magnification in galaxy number
counts. The effect is included at leading order in the magnifica-
tion expansion. Second-order effects, discussed for example in
Menard et al. (2003b), are neglected. Moreover, as pointed out
in Monaco et al. (2019), galaxy bias depends on luminosity, so a
modulation of survey depth on the sky (due to systematics in that
paper, while here it is due to lensing) couples with galaxy den-
sity to give a contribution that is of opposite sign of the magnifi-
cation bias (higher magnification will give observational access
to less luminous galaxies, which are less biased). This contribu-
tion could be significant for bright galaxies, whose bias is more
strongly dependent on luminosity.

We have not considered the direct estimation of magnifica-
tion via flux measurements. Therefore, systematic effects such as
blending and obscuration are not included in the analysis. Their
correct modelling will be needed in order to optimise direct mag-
nification measurements (Ménard et al. 2010; Hildebrandt 2016;
Gaztanaga et al. 2021). The final main conclusion is simply that

for an accurate estimation of cosmological parameters, lensing
magnification needs to be included in the analysis of the photo-
metric survey of Euclid. Failing to do so would lead to an incor-
rect interpretation of the results of the photometric survey. In
particular, using a theoretical modelling without lensing magni-
fication could mistakenly lead us to believe that we have detected
deviations from ΛCDM or even a modification of general
relativity.
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Appendix A: Shear correlation function

Since it is not commonly discussed in the literature, we sum-
marise here the expression for the shear and number count tan-
gential shear correlation functions, which can be expressed in
terms of the corresponding power spectra. As the shear is a
helicity-2 quantity this relation is not simply given by the Leg-
endre polynomials, but it is (Stebbins 1996)

〈γ(n, z)γ(n′, z′)〉 =
∑
`

(2` + 1)(` − 2)!
π(` + 2)!

Cγγ
`

(z, z′) G` 2(n · n′) .

(A.1)

Here the function G` 2 is given by

G` 2(µ) =

(
4−`

1−µ2 −
1
2
`(` − 1)

)
P` 2(µ) + (` + 2)

µ

1 − µ2 P`−1, 2(µ) ,

(A.2)

and P` 2 is the modified Legendre function, of degree ` and index
m = 2 (see Abramowitz & Stegun 1970).

Furthermore, the correlation spectrum between some scalar
function, f , and a helicity-2 tensor, γab, is determined by the
‘tangential’ component, γt = γabeaeb, where e = (e1, e2) is the
vector pointing from the point n to n′ on the sphere. A function
is only correlated to the scalar part of the traceless tensor γab,
which is the traceless second (angular) derivative of a potential
ψ,

γab(n′, z′) =

(
∇a∇b −

1
2
δab∆Ω

)
ψ , (A.3)

where ∆Ω denotes the Laplacian on the sphere. In the case, of
interest to us, ψ is the lensing potential. For the correlation func-
tion of a scalar quantity f and the tangential part of a helicity-
2 field derived from a potential ψ, one obtains the following
expression (see e.g. Ghosh et al. 2018):

〈 f (n, z)γt(n′, z′)〉 = −
1

8π

∑
`

(2` + 1) C fψ
`

(z, z′) P` 2(n · n′) (A.4)

=
1

4π

∑
`

C f κ
`

(z, z′)
2` + 1
`(` + 1)

P` 2(n · n′) , (A.5)

where κ = ∆ψ/2. The angular dependence via P` 2 is a conse-
quence of the fact that γt(n′) behaves as a helicity-2 quantity
under rotations around n′. Setting

〈 f (n, z)γt(n′, z′)〉 =
1

4π

∑
`

C fγt
`

(z, z′)
2` + 1
`(` + 1)

P` 2(n · n′) (A.6)

implies that the correlation spectra of f with γt and κ agree,

C fγt
`

(z, z′) = C f κ
`

(z, z′) . (A.7)

Appendix B: Code validation

The analysis presented in this work was carried out with the
Fisher matrix code FisherCLASS. This code runs in two steps.

The first is computation of the angular power spectra. A
Python script repeatedly calls a customised version of the code
class v2.9.4 (Blas et al. 2011; Di Dio et al. 2013) and com-
putes all the angular power spectra needed for the analysis. The
spectra are ideally computed in parallel (the script submits a job
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Fig. B.1. Percentage difference in the 1σ uncertainties (top panel) and
un-marginalised constraints (bottom panel) for the probe combination
GCph+WL+GGL. This analysis includes ten and three nuisance param-
eters for the galaxy bias and intrinsic alignment contributions, respec-
tively, which are marginalised over in the 1σ constraints.

to a cluster queue for each setting required). The angular power
spectra are computed using the number count feature (Di Dio
et al. 2013) and the lensing potential feature in class. A few
modifications to the public version of the class code have been
implemented for the purpose of this paper: i) generic and thus
non-Gaussian redshift bins: the redshift distribution of the lenses
and sources can be read for each redshift bin individually; ii)
galaxy bias can be redshift dependent within each bin; and iii) if
the lensing potential feature is turned on, the output spectra are
the shear angular power spectra, and they can include an intrin-
sic alignment systematic effect, modelled through the extended
non-linear alignment model EC20.

The second step is the Fisher matrix analysis. A Jupyter
Notebook reads the angular power spectra output from step 1)
and estimates the full covariance, the derivative with respect to
a chosen set of parameters, and the full Fisher matrix. The note-
book computes in addition the Fisher matrices for individual
probes: GCph, WL, and the GGL terms.

The advantage of this code is that it relies on the well-
maintained and tested number count feature in class, which
allows the relativistic effects to be included in the clustering
observables. The code has been validated against the results in
EC20. For this purpose, we compared the cosmological fore-
cast obtained with FisherCLASS to the forecast computed with
CosmoSIS 8(Zuntz et al. 2015).

The baseline setting used for this code comparison is the
same as the one adopted in EC20 for the GCph + WL +
GGL(GCph, WL) joint analysis. In summary: The cosmological
parameter space is θ = {Ωm,0, Ωb,0, w0, wa, h, ns, σ8}, that is,
a flat cosmology with dynamical dark energy. The galaxy sam-
ple is split into ten equally populated redshift bins, with galaxy
number density ngal = 30 galaxies/arcmin2. We included as nui-
sance parameters ten galaxy bias parameters and three parame-
ters for the intrinsic alignment contribution to the WL observ-
able. Finally, the `-modes included in the analysis range from
`min = 10 to `max, GCph = 750 and `max, WL = 1500 for GCph and
WL, respectively.

However, we note that the specifications used in the analysis
presented in this work are the ones summarised in Sect. 3. This
includes using the redshift distributions shown in Fig. 3.

In Fig. B.1, we present the code comparison for the joint
analysis. We show the percentage difference between the con-
straints obtained with the two codes and the mean values of the
8 https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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two results. The top panel refers to 1σ marginalised constraints,
while the bottom panel shows the comparison for the un-
marginalised constraints. The largest discrepancies between the
two codes are ∼ 4% for the 1σ errors and ∼ 2% for the un-
marginalised constraints. We note that the outcome of the two
codes has been compared for several intermediate steps, differ-
ent settings, and different probe combinations, always leading to
an excellent agreement.

Appendix C: Fitting functions for b(z) and s(z)
We also fitted the galaxy bias and the local count slope found
in the Flagship simulation with simple third-order polynomials.
We found the following coefficients for the best fit:

s(z) = s0 + s1z + s2z2 + s3z3 , (C.1)

b(z) = b0 + b1z + b2z2 + b3z3 , (C.2)

with

s0 = 0.0842 , s1 = 0.0532 , s2 = 0.298 , s3 = −0.0113 ,
b0 = 0.5125 , b1 = 1.377 , b2 = 0.222 , b3 = −0.249 .

(C.3)

In Fig. C.1 we compare our best fit with the Flagship simu-
lation measurements. In our calculations we did not use these
fits, but we present them here for convenience. The Flagship
specifics have been estimated for the survey binning described

1

2

b(
z)

Flagship

fit

0.0 0.5 1.0 1.5 2.0
z

0.0

0.5

1.0

s(
z)

Montanari&Durrer (2015)

Flagship

fit

Fig. C.1. Fit (continuous lines) to the galaxy bias (top panel) and the
local count slope (lower panel) together with the simulation results.
For the local count slope, we also plot the theoretical function for s(z)
derived in Montanari & Durrer (2015) for comparison (dashed black
line).

in Sect. 3, and therefore the fitting functions are adapted to this
specific configuration.
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