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Exclusive production of light vector mesons in deep inelastic scattering is calculated at next-to-leading
order in the dipole picture in the limit of high photon virtuality. The resulting expression is free of any
divergences and suitable for numerical evaluations. The higher-order corrections are found to be
numerically important, but they can be mostly captured by the nonperturbative fit parameters describing
the initial condition for the small-x evolution of the dipole scattering amplitude. The vector meson
production cross section is shown to depend only weakly on the meson distribution amplitude and the
factorization scale. We also present phenomenological comparisons of our result to the existing exclusive ϕ
and ρ production data from HERA and find an excellent agreement at high virtualities.
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I. INTRODUCTION

Deep inelastic scattering (DIS) is a powerful tool to study
the partonic structure of protons and nuclei at high energies.
This process has been studied in detail in electron-proton
collisions at HERA, where the vast amount of measured
data has revealed a rapid increase in the density of gluons
with small momentum fraction x [1,2]. The observed
increase cannot continue indefinitely without violating
unitarity, and as such the saturation effects are expected
to dominate the small-x part of the hadron wave function.
To describe QCD in this region of phase space where parton
densities become of the same order as the inverse of the
strong coupling, an effective field theory approach to QCD,
called the color glass condensate (CGC), has been devel-
oped [3–5].
In CGC, the high density of small-x gluons gives rise to

nonlinear dynamics that slows down the growth of the
gluon density. Despite the success of the CGC-based
calculations in describing various high-energy collider
experiments [6], there has not been definitive experimental
evidence of saturation. To get precise DIS data from the
saturation region new experimental facilities have been
proposed, such as the upcoming Electron-Ion Collider
in the U.S. [7–9] and a similar collider at CERN [10].

These facilities would allow for DIS measurements with
heavy nuclei where the saturation effects are amplified
approximately by A1=3. To meet the precision of these
future experimental studies where nonlinear QCD dynam-
ics is probed, it is necessary to promote the theory
calculations in the CGC framework to higher-order
accuracy.
One powerful process to probe gluon saturation is

exclusive vector meson production as it requires an
exchange of at least two gluons with the target. This
renders the cross section roughly proportional to the gluon
density squared [11] at leading order (but the situation is
more complicated at next-to-leading order in a collinear
factorization based approach, see Ref. [12]). Another
advantage of it is that only in exclusive processes it is
possible to measure the momentum transfer squared t in the
process. The momentum transfer dependence can be related
to the impact parameter dependence via a Fourier trans-
form, providing access to the spatial distribution of nuclear
matter in nuclei at high energy [13,14] and to the
generalized parton distribution functions [15].
A convenient approach for describing exclusive vector

meson production in DIS is the dipole picture where the
process can be written in terms of the virtual photon and
meson light-front wave functions along with the dipole-
target scattering amplitude [16,17]. The dipole amplitude
satisfies perturbative small-x evolution equations, such as
the Balitsky-Kovchegov (BK) equation [18,19], which
resums large logarithmic contributions ∼αs ln 1=x. The
photon wave function can be calculated perturbatively
[20,21], but the meson wave function is instead non-
perturbative and therefore requires additional modeling.
For heavy vector mesons one can take advantage of the
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small relative velocity of the quark-antiquark pair in the
meson and model it as a fully nonrelativistic bound state
[11], with velocity corrections that can be linked to the
nonrelativistic QCD (NRQCD) matrix elements [22].
Another possibility is to take the limit of high photon
virtuality, Q2 ≫ M2

V (whereMV is the meson mass), where
one can make a twist expansion for the process [23,24].
This corresponds to writing the meson wave function in
terms of a nonperturbative distribution amplitude, on top of
which higher-order corrections can be calculated perturba-
tively. This is especially suitable for light vector mesons
and is a basic assumption in this paper.
The next-to-leading order (NLO) calculations in the

dipole picture are starting to become available. First of
all, the BK equation is available at NLO accuracy [25–28].
The NLO corrections to the virtual photon wave function
have been calculated with both massless [29–31] and
massive [32,33] quarks. These developments enable phe-
nomenological studies of proton and nuclear structure
functions at small x, and also make it possible to determine
the nonperturbative initial condition for the small-x evo-
lution of the dipole amplitude by performing fits to HERA
data [34–37]. Another recently proposed approach to
determine the initial condition is based on a perturbative
calculation of the proton color charge correlators in terms
of the nonperturbative proton valence quark wave func-
tion [38,39]. In order to calculate exclusive vector meson
production at NLO accuracy, the additional ingredient
required is the meson wave function at NLO. This wave
function has been calculated in the nonrelativistic limit
for heavy vector mesons in Ref. [40] and used for
calculating longitudinal heavy vector meson production
at NLO accuracy in Ref. [41] including also the first
relativistic corrections [22]. Other recent developments
towards the NLO accuracy in the CGC framework include,
for example, studies of dijet production in DIS and
hadronic collisions [42–44], and inclusive hadron produc-
tion in proton-lead collisions [45–52].
The main focus of this work, light vector meson

production in the high-Q2 limit at NLO, has been calcu-
lated in Ref. [53] using covariant perturbation theory in
momentum space including nonlinear QCD dynamics in
the shockwave approach. In this paper, we calculate the
NLO corrections using light cone perturbation theory [20]
in mixed transverse coordinate, longitudinal momentum
fraction space. The advantage of the light cone perturbation
theory is that the calculation can be divided into the photon
and meson wave functions that need to be combined only at
the end. One can also directly take advantage of the
recently calculated photon NLO wave function. The mixed
coordinate space is convenient as the transverse coordinates
of the partons do not change during the interaction with the
target at high energies. Compared to Ref. [53] we also use a
different scheme to subtract the rapidity divergence from
the real gluon emission part. This scheme is developed in

Refs. [46,51,54,55] in order to avoid unphysical results in
single hadron production and in proton structure function
calculations at NLO accuracy. Our results are also straight-
forward to apply in phenomenological analyses using
existing dipole amplitude fits as is demonstrated in thiswork.
The paper is structured as follows. In Sec. II we present

the framework for vector meson production and explain the
resummation of small-x gluons. In Sec. III, the photon
and meson NLO wave functions are shown explicitly. The
NLO corrections to the light vector meson wave function
are calculated using light cone perturbation theory at
leading twist. We then proceed to calculate the production
amplitude in Sec. IV and present the result in the mixed
space. In Sec. V, we show numerical calculations of the
NLO production amplitude along with comparisons to the
existing ρ and ϕ production data before presenting our
conclusions in Sec. VI.

II. EXCLUSIVE SCATTERING AT HIGH ENERGY

A. High energy factorization

The scattering amplitude for exclusive vector meson
production at high energy and in the zero squared momen-
tum transfer t ¼ 0 limit can be written in a factorized form

−iA ¼
X
f

2

Z
dD−2x0dD−2x1

×
Z

dz0dz1
ð4πÞ2 4πδðz0 þ z1 − 1ÞΨγ�→qq̄

f ðΨV→qq̄
f Þ�N01

þ
X
f

2

Z
dD−2x0dD−2x1dD−2x2

×
Z

dz0dz1dz2
ð4πÞ3 4πδðz0 þ z1 þ z2 − 1Þ

×Ψγ�→qq̄g
f ðΨV→qq̄g

f Þ�N012; ð1Þ

and the coherent vector meson V electroproduction cross
section can now be obtained as

dσγ
�þp→Vþp

dt

����
t¼0

¼ 1

16π
jAj2: ð2Þ

Here x0;1;2 are the quark, antiquark, and gluon transverse
coordinates, and zi denotes the fractions of the photon’s
plus momentum carried by these partons. This factorization
is justified at high energy as the lifetimes of the virtual
photon qq̄ and qq̄g Fock states are much longer than
the timescales related to the interactions with the target
color field. We use the eikonal approximation and describe
the interactions with the target in terms of Wilson line
correlators. The Wilson line VF;AðxÞ describes a color
rotation of a quark (fundamental representation F) or a
gluon (adjoint representation A) when it propagates through
the target, and the relevant correlators read
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N01 ¼ 1 −
1

Nc
hTrfVFðx0ÞV†

Fðx1Þgi; ð3Þ

N012 ¼ 1 −
1

CFNc
hVba

A ðx2ÞTrftbVFðx0ÞtaV†
Fðx1Þgi;

≈ 1 −
Nc

2CF

�
S02S12 −

1

Nc
2
S01

�
; ð4Þ

where S01 ¼ 1 − N01. Here we took the mean field
limit where the average over the target color charge
configurations denoted by h� � �i factorizes. These correla-
tors satisfy the BK evolution equation discussed in Sec. II C
and depend implicitly on evolution rapidity, which we will
specify later.
We only consider forward production in this work even

though this framework can also be extended to calculate the
momentum transfer dependent cross section. The momen-
tum transfer is the Fourier conjugate to the impact param-
eter, and thus being able to calculate the cross section at
finite momentum transfer is an advantage of exclusive
processes as this can be used to do spatial imaging of the
hadron structure [13]. On the other hand, this means that
calculating vector meson production at t ≠ 0 would require
us to implement a model to describe the nonperturbative
spatial structure of the proton. As the purpose of this work
is to focus on a rigorous NLO calculation of a vector meson
production cross section we choose not to employ any such
modeling and limit our studies to t ¼ 0 where only the
dipole amplitude integrated over the impact parameter is
required. The same quantity is also probed in structure
function measurements that are used to constrain the initial
condition for the BK evolution of the dipole scattering
amplitude N01 [37].

B. Twist expansion

The meson light-front wave function is highly non-
perturbative. For heavy vector mesons one can model
the wave function based on the nonrelativistic nature of
heavy quarks [22] but this simplification cannot be made
for light mesons. On the other hand, the high-virtuality
limit Q2 ≫ M2

V , which is justified for light mesons, can
be used to simplify the mathematical description of the
process. In this limit transverse momentum scales on the
meson side become corrections suppressed by powers of
1=Q2, leading to the twist expansion of the meson wave
function [23,24]. The leading-twist term then does not
depend on the transverse momentum scales of the meson,
meaning that only the dependence on the longitudinal
momenta remains.
The twist expansion can be explained formally using

the virtual photon wave function. The photon wave
function is exponentially suppressed in Q2r2, where r is
the dipole size, which renders the relevant dipole sizes
to be r2 ∼ 1=Q2. We can then do a Taylor expansion

for the meson wave function ΨVðr;zÞ¼ΨVð0;zÞþ
1
6
r2∇2

rΨVð0;zÞþ…¼ΨVð0;zÞþOð 1
Q2Þ (see also Ref. [22]).

Thus, only the dependence on the momentum fraction z
remains at leading order in the twist expansion. The
momentum space equivalent of this is a delta function in
terms of the quark transverse momentum k: ΨVðk; zÞ ¼
ð2πÞ2δ2ðkÞΨVðr ¼ 0; zÞ þOð 1

Q2Þ. This first term in the

wave function corresponds to the twist-2 distribution
amplitude ϕðzÞ of the meson. In an NLO calculation the
distribution amplitude has to be renormalized as we will
demonstrate explicitly below, and the scale dependence
of the renormalized distribution amplitude is described
in terms of the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) evolution equation [20,56], which is discussed
in more detail in Sec. IV C.
The twist expansion also guarantees that we need the

nonperturbative part of the meson wave function only for
the qq̄ state. The nonperturbative part for other Fock states,
such as qq̄g, is higher order in twist and can therefore be
neglected at high Q2 [57,58]. This means that the meson
wave function for the qq̄g state can be calculated pertur-
batively by considering a gluon emission from the qq̄ state,
i.e., at high virtualities the Fock state qq̄g is created through
the process V → qq̄ → qq̄g [see Figs. 1(f) and 1(g)].
Another consequence of the high virtuality is that we

need to consider only the longitudinal polarization for both
the photon and the meson. A polarization flip is highly
suppressed in coherent vector meson production such that
the meson and photon effectively have the same polariza-
tion [59] (see also Ref. [60]). In fact, in the limit of zero
momentum exchange t ¼ 0 the polarization flip contribu-
tion vanishes exactly in our calculation. In the case of
transverse production the leading-twist distribution ampli-
tude is twist 3 [23], meaning that transverse production is
suppressed relative to longitudinal by σT=σL ∼M2

V=Q
2 for

high virtualities. Thus, total light vector meson production
is given by the longitudinal cross section σðγ�L þ A →

VL þ AÞ up to corrections of order OðM2
V

Q2 Þ.

C. High-energy evolution

The dipole amplitude, given by the correlator N01 ¼
1 − S01, satisfies the perturbative BK equation describing
its energy dependence. At leading order the BK equation
reads [18,19]

∂

∂Y
S01 ¼

Z
d2x2KBKðx0;x1;x2Þ½S02S12 − S01�: ð5Þ

This equation is written in terms of a rapidity variable Y,
which is discussed in more detail shortly. The kernel KBK
describes the probability density for a dipole with trans-
verse coordinates x0 and x1 to emit a gluon at the transverse
coordinate x2. Including the running coupling corrections
following Ref. [61], the kernel can be written as
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KBKðx0;x1;x2Þ ¼
Ncαsðx2

01Þ
2π2

�
x2
01

x2
21x

2
20

þ 1

x2
20

�
αsðx2

20Þ
αsðx2

21Þ
− 1

�

þ 1

x2
21

�
αsðx2

21Þ
αsðx2

20Þ
− 1

��
; ð6Þ

where we use the notation xij ¼ xi − xj. The BK equation
effectively resums the contributions αs ln 1=x ∼ 1 from
small-x gluons, which is necessary for the stability of
the perturbative calculations at high energy.
When higher-order corrections enhanced by large double

transverse logarithms are resummed [62], the NLO BK
equation [25] becomes stable and can in principle be
used in phenomenological applications [27]. A usual and

numerically convenient approach, however, is to include
resummations of the most important higher-order cor-
rections to the leading-order BK equation. The leading-
order BK equation with such resummations can be used to
accurately approximate the full NLO BK equation [27,63].
Several resummation schemes exist, and in this work the
following equations are used (we adopt the terminology
used in Ref. [37]): KCBK [55], ResumBK [62,64], and
TBK [65]. The nonperturbative initial conditions for these
evolution equations have been determined in Ref. [37] by
performing a fit to the HERA structure function data [1]. Of
these, the evolution rapidity in the KCBK and ResumBK
equations is the projectile rapidity Y ¼ ln kþ

Pþ, where kþ and
Pþ are the gluon and target plus momenta. We work in the

FIG. 1. NLO corrections to the meson light-front wave function. (a) and (b) propagator corrections, (c) and (d) regular gluon exchange,
(e) instantaneous gluon exchange, (f) and (g) perturbative generation of the qq̄g Fock state.
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frame where the photon plus momentum qþ is large and the
photon has no transverse momentum. The target plus
momentum is obtained as Pþ ¼ Q2

0=ð2P−Þ, where the
target transverse momentum scale is taken to be Q2

0 ¼
1 GeV2 (note that the photon-nucleon center-of-mass
energy reads W2 ¼ 2qþP−).
Both KCBK (“kinematically constrained BK”) and

ResumBK (“resummed BK”) involve a resummation of

double transverse logarithms ∼αs ln
jx02j
jx01j ln

jx12j
jx01j, with

ResumBK also resumming single transverse logarithms
αs ln 1

x2ijQ
2
s
at all orders. In the KCBK equation the double

logarithms are resummed by explicitly requiring a time
ordering between the subsequent gluon emissions, which
results in a nonlocal equation. The third evolution equation,
TBK (“BK equation in target rapidity”), uses the target
rapidity η as an evolution variable. This rapidity variable is
related to the fraction of the target longitudinal momentum
fraction transferred in the scattering process in the frame
where the target has a large longitudinal momentum (see
Ref. [65] for a detailed discussion). This evolution rapidity
corresponds to

η ¼ ln
1

xP
¼ ln

W2 þQ2

Q2 þM2
V
: ð7Þ

Consequently, the TBK evolution can be thought as
evolution in ln 1=xP whereas the KCBK and ResumBK
equations correspond to evolution in lnW2. In order to use
dipole amplitudes as a function of the target rapidity η in the
impact factors written in terms of the projectile rapidity Y,
we use the same shift as in Ref. [37]:

η ¼ Y − ln
1

minf1;x2
01Q

2
0g

: ð8Þ

The BK equation contains a transverse-coordinate de-
pendent coupling constant. We model the running of the
coupling in the coordinate space following Ref. [37]:

αsðx2
ijÞ ¼

4π

β0 ln
h�

μ2
0

Λ2
QCD

�
1=c þ

�
4C2

x2ijΛ
2
QCD

�
1=c

i
c : ð9Þ

This running coupling approaches a constant value in the
infrared region 1=jxijj ≳ ΛQCD, with the constants μ0 and c
controlling its behavior there. The values of these constants
are chosen as in Ref. [37]. The constantC2 is a fit parameter
that describes the relation between momentum and coor-
dinate spaces, k2 ¼ 4C2=r2, with the expected value C2 ¼
e−2γE from Fourier analysis [66,67]. The same coordinate
space coupling constant is used when calculating the
scattering amplitude, Eq. (1), where the coupling constant
is included in the next-to-leading order photon and meson
wave functions. As the running coupling prescription (6)

can be seen to effectively choose the smallest of the three
distance scales x2

01;x
2
12;x

2
02, when calculating the qq̄g

contribution in Eq. (1) we choose to evaluate the coupling
at the scale set by the smallest of the daughter dipoles, as in
Ref. [37]. When evaluating the qq̄ term the scale choice
is x01.

III. LIGHT-FRONT WAVE FUNCTIONS
AT NEXT-TO-LEADING ORDER

The NLO corrections to exclusive vector meson pro-
duction can be calculated in terms of the NLO wave
functions for the photon and meson. In this section, we
first list the relevant photon light-front wave functions at
NLO accuracy calculated in Refs. [29–31]. Then, we
proceed to calculate the light vector meson wave function
at NLO in terms of the twist-2 distribution amplitude, and
present the results Fourier transformed to mixed transverse
coordinate, longitudinal momentum fraction space.

A. On the regularization scheme

The calculation will be done in two different regulari-
zation schemes. The first one is the conventional dimen-
sional regularization (CDR) where the momenta and
polarization vectors of all particles are continued to D
dimensions. The second one is the four-dimensional
helicity (FDH) scheme where the polarization vectors are
kept in four dimensions [68,69]. In our case, this amounts
to real gluons having two polarization states.
To do the calculations simultaneously in both schemes

we follow the notation of Ref. [32]. The dimension arising
from the gluon polarization vectors is denoted as Ds to
distinguish it from the dimension D in the dimensional
regularization. The CDR scheme corresponds to the case
Ds ¼ D, and for the FDH scheme we have Ds ¼ 4. Sums
over gluon helicities can be calculated as

P
λ ϵ

i
λϵ

j�
λ ¼ δijðDsÞ

where the subscript denotes that this Kronecker delta has
Ds − 2 transverse dimensions. In the sums over spin and
Lorenz indices we take Ds ≥ D so that the following
relations for the Kronecker deltas hold:

δijðDsÞδ
ij
ðDsÞ ¼Ds−2; δijðDÞδ

ij
ðDÞ ¼D−2; δijðDsÞδ

jk
ðDÞ ¼ δikðDÞ:

ð10Þ

Wewill also make use of the following spinor identity [29]:

ūh0 ðp − kÞ=ϵ�λðkÞuhðpÞ ¼ ðv̄h0 ðp − kÞ=ϵλðkÞvhðpÞÞ�

¼ 2pþ

kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ

pþ − kþ

s
δhh0ϵ

j�
λ

×

�
ki −

kþ

pþ pi

�
Vij
h

�
kþ

pþ

�
; ð11Þ

where h ¼ �1 is the quark helicity and
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Vij
h ðzÞ ¼

�
1 −

z
2

�
δijðDsÞ þ ih

z
2
ϵijðDsÞ: ð12Þ

Here the Ds-dimensional Levi-Civita tensor has to be
understood through the Fierz identity

ϵijðDsÞϵ
kl
ðDsÞ ¼ δikðDsÞδ

jl
ðDsÞ − δjkðDsÞδ

il
ðDsÞ: ð13Þ

B. Photon wave function

The photon light-front wave functions in the massless
quark case have been calculated in Refs. [29–31] and are
shown here for completeness. In our notation, an additional
factor of 1

2qþ
Q

i
1ffiffiffi
zi

p appears in the wave functions. This

additional factor follows from a different choice of the

integration measure, which we choose to be
Q

i
d2xidzi
4π . With

this choice the leading-order wave function for the virtual
photon in the mixed transverse coordinate and plus
momentum fraction space is

Ψγ�→qq̄
f;LO ðz0;x01Þ ¼

eefQ

π
δα0α1δh0;−h1z0ð1 − z0ÞKD−4

2
ðjx01jQÞ

×

�
Q

2πjx01j
�D−4

2

: ð14Þ

We always work in the frame where the photon transverse
momentum is zero. Here ef is the fractional charge of
the quark with flavor f, Q2 is the virtuality of the photon,
zi ¼ kþi =q

þ is the (anti)quark’s fraction of the photon plus
momentum, and αi and hi are the color and helicity indices.
We also use the short-hand notation Q2 ¼ z0ð1 − z0ÞQ2.
Quantities corresponding to the quark are denoted with
i ¼ 0 and antiquark with i ¼ 1. We note that the last
factor, which is equal to 1 at D ¼ 4, is absent in Ref. [29]
where the transverse momenta of the observed par-
ticles are kept in two dimensions. Here “observed”
particles are those that appear as the final state in the
wave function, not including soft or collinear particles.
In this paper, we choose to evaluate the transverse
momenta of the observed particles in D − 2 dimensions,
as this is necessary for regularizing the NLO meson wave
function. However, this term does not have any contri-
bution to the final cross section where all 1

D−4 divergences
have been canceled. In principle, this factor multiplied by
Kγ�L contributes a finite logarithm term ∼ ln jx01j. It
however cancels when we perform the UV subtraction
in Sec. IV B.
The next-to-leading order correction to the photon wave

function can be written as

Ψγ�→qq̄
f;NLOðz0;x01Þ ¼

eefQ

π
δα0α1δh0;−h1z0ð1 − z0ÞKD−4

2
ðjx01jQÞ αsCF

2π
Kγ�L ×

�
Q

2πjx01j
�D−4

2

; ð15Þ

where

Kγ�L ¼
�
3

2
þ ln

�
α2

z0ð1 − z0Þ
���

2

4 −D
þ γE þ lnðπx2

01μ
2Þ
�
þ 1

2
ln2

�
z0

1 − z0

�
−
π2

6
þ 5

2
þ 1

2

Ds − 4

D − 4
: ð16Þ

Here α is the infrared cutoff for the gluon plus momentum fraction and μ is the mass scale for dimensional regularization,
and the last term depends on the regularization scheme.
The virtual photon wave function for the Fock state qq̄g can be written as

Ψγ�→qq̄g
f ðzi;xiÞ ¼ 4eefQgtaα0α1δh0;−h1

1ffiffiffiffiffi
z2

p ϵj�h2

�
z1ð1 − z1ÞVij

h0

�
z2

z0 þ z2

�
IiðlÞ − z0ð1 − z0ÞVij

−h0

�
z2

z1 þ z2

�
IiðmÞ

�
; ð17Þ

where

IiðlÞ ¼ Iiðx102;x20; Q
2
ðlÞ;ωðlÞÞ; IiðmÞ ¼ Iiðx012;x21; Q

2
ðmÞ;ωðmÞÞ;

Q2
ðlÞ ¼ z1ð1 − z1ÞQ2; Q2

ðmÞ ¼ z0ð1 − z0ÞQ2 ¼ Q2;

ωðlÞ ¼
z0z2

z1ðz0 þ z2Þ2
; ωðmÞ ¼

z1z2
z0ðz1 þ z2Þ2

;

xijk ¼ xij −
zk

zj þ zk
xkj; ð18Þ

and

Iiðb; r; Q2;ωÞ ¼ ð4π2μr2Þ4−D2 i
8π2

ri

r2

Z
∞

0

du u1−D=2e−uQ
2

e−
b2
4uΓ

�
1þD − 4

2
;
ωr2

4u

�
: ð19Þ
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Quantities with the subscript 2 correspond to the emitted
gluon. The function Ii differs from the similar one inRef. [29]
by an additional power 4−D

2
for the variable u, which has the

same origin as the last factor in Eqs. (14) and (15).

C. Light vector meson wave function

In this section, we calculate the NLO corrections to the
light vector meson light-front wave function. The calcu-
lation is done in the limit where the transverse coordinate
dependence of the meson leading-order wave function can
be neglected. As discussed in Sec. II, this follows from the
large photon virtuality. This means that we can neglect all
mass scales in the meson, allowing us to set the meson mass
MV to zero along with the transverse momenta ki of the
quark and the antiquark. We work in a frame where both the
photon and the vector meson transverse momenta are zero,
as we consider forward production. Consequently, at
leading order the meson wave function is given by a delta
function in the transverse plane:

ΨV→qq̄
f;LO ðz0;k0Þ ¼ cf

δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p ϕ0ðz0Þ

× ð2πÞD−2δD−2ðk0Þ: ð20Þ

Here ϕ0ðzÞ is the (bare) distribution amplitude of the meson
that describes how the meson plus momentum is shared by
the two quarks. This wave function is normalized in such a
way that it gives the correct decay constant fV given that
the distribution amplitude is normalized asZ

1

0

dzϕ0ðzÞ ¼ 1: ð21Þ

The decay constant fV is related to the leptonic width by

ΓðV → lþl−Þ ¼ 4πα2emf2V
3MV

: ð22Þ

The wave function (20) describes the probability of the
meson to split into a quark-antiquark pair with the flavor f.
Here cf is a normalization factor needed for mesons that
consist of a superposition of different flavored quark-
antiquark states. For example, the ρ meson can be written
at leading order as jρi ¼ 1ffiffi

2
p ðjuūi − jdd̄iÞ, giving us cu ¼

1ffiffi
2

p and cd ¼ − 1ffiffi
2

p . The normalization factors are also

related to the effective charge fraction of the meson that
is defined by eV ¼ P

f cfef. We emphasize that in the
high-Q2 limit the dependence on the vector meson type is
included in the nonperturbative distribution amplitude
ϕ0ðz0Þ (in addition to the normalization factors fV , eV ,
and cf).
At next-to-leading order, we get perturbative corrections

to the meson wave function from Feynman diagrams shown
in Fig. 1. Of these, the Figs. 1(a) and 1(b), corresponding to
the self-energy corrections of the quark and antiquark,
evaluate to zero. This is a consequence of the dimensional
regularization used in the calculation, as these diagrams
give transverse integrals with no mass scales (in the high-
Q2 limit considered here where we neglect the quark and
meson masses and the quark transverse momenta) such

as
R dD−2k0

ð2πÞD−2
1
k2
0

¼ 0.

To calculate the rest of the diagrams we use the Feynman
rules of the light cone perturbation theory from Ref. [29].
For Fig. 1(c) this gives

Ψ1 c
f ¼

Z
dD−2k0

0dk
0þ
0

ð2πÞD−24π

1

4kþ2 k
0þ
0 k0þ1 ðP− − k−0 − k−1 ÞðP− − k−0 − k0−1 ÞΨ

V→qq̄
LO ðz00;k0

0; α
0
0; α

0
1; h

0
0; h

0
1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0ð1 − z0Þ
zð1 − zÞ

s

× μ4−Dg2tα2α0α00
tα2α0

1
α1
ūð0Þ=ϵ�h2ð2Þuð00Þv̄ð10Þ=ϵh2ð2Þvð1Þ;

¼ −4π
αsCF

2π

μ4−D

k2
0

cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p

×
Z

1

z0þα
dz0ϕ0ðz0Þ

z0
z0

1

ðz0 − z0Þ2
�
z0ð1 − z0Þ þ z0ð1 − z0Þ þ

Ds − 4

2
ðz0 − z0Þ2

�
; ð23Þ

where the identity (11) has been used to simplify the result. The square root factor in the first line comes from
our choice for the integration measure, and the quark and antiquark transverse momenta after the gluon exchange are
k0 and k1 ¼ −k0. We use a notation uð0Þ ¼ uh0ðk0Þ; vð1Þ ¼ vh1ðk1Þ for the quark and antiquark spinors, and the
primed quantities correspond to the intermediate quark and antiquark whose spins and helicities are summed over
(see Fig. 1).
The contribution of Fig. 1(d) is similar to Fig. 1(c). An explicit calculation gives the result Eq. (23) with the substitutions

z0 → 1 − z0 and z0 → 1 − z0:
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Ψ1 d
f ¼ −4π

αsCF

2π

μ4−D

k2
0

cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p

×
Z

z0−α

0

dz0ϕ0ðz0Þ
1 − z0
1 − z0

1

ðz0 − z0Þ2
�
z0ð1 − z0Þ þ z0ð1 − z0Þ þ

Ds − 4

2
ðz0 − z0Þ2

�
: ð24Þ

Here we used the symmetry condition ϕðz0Þ ¼ ϕð1 − z0Þ that follows from the parity of the vector meson.
The final contribution to the NLO qq̄ wave function comes from Fig. 1(e) describing an exchange of an instantaneous

gluon between the quark and the antiquark. The contribution from this diagram can be evaluated to give

Ψ1 e
f ¼ 8π

αsCF

2π

μ4−D

k2
0

cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p
Z

1

0

dz0ϕ0ðz0Þ
z0ð1 − z0Þ
ðz0 − zÞ2 ½θðz0 − z0 − αÞ þ θðz0 − z0 − αÞ�: ð25Þ

Summing these contributions together, we get the NLO correction to the meson qq̄ wave function:

ΨV→qq̄
f;NLOðz0;k0Þ ¼ cf

δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p αsCF

2π

× 4π
μ4−D

k2
0

Z
1

0

dz0ϕ0ðz0Þ
�
θðz0 − z0 − αÞ z0

z0

�
1þ 1

z0 − z0

�
þ θðz0 − z0 − αÞ 1 − z0

1 − z0

�
1þ 1

z0 − z0

�

þDs − 4

2

�
1 − z0
1 − z0

θðz0 − z0Þ þ z0
z0
θðz0 − z0Þ

��
: ð26Þ

It should be noted that this NLO correction does not affect the normalization (21) of the distribution amplitude. The reason
for this is that the decay constant is given by fV ∼

R
dz0

R
dD−2k0ΨV→qq̄ðz0;k0Þ, and this integral vanishes for Eq. (26) in

dimensional regularization.
We also need the wave function for the qq̄g state. This is simply given by the sum of Figs. 1(f) and 1(g), which evaluates to

ΨV→qq̄g
f ðzi;kiÞ ¼ cf

πfV
eV

ffiffiffiffiffiffi
Nc

p 2gtaα0α1ffiffiffiffiffiffiffiffiffiffi
Ncz2

p ϵj�h2δh0;−h1μ
4−D
2
ki
2

k2
2

×

�
ð2πÞD−2δD−2ðk1Þϕ0ðz1ÞVij

h0

�
z2

z0 þ z2

�
− ð2πÞD−2δD−2ðk0Þϕ0ðz0ÞVij

−h0

�
z2

z1 þ z2

��
: ð27Þ

Note that the momentum conservation implies z0 þ z1 þ z2 ¼ 1 and k0 þ k1 þ k2 ¼ 0.
These wave functions are presented in the momentum space. For the meson production calculation we need the mixed

space wave functions, which can be calculated from the momentum space wave functions by a Fourier transform in the
transverse plane. The leading-order wave function in the mixed space is given by

ΨV→qq̄
f;LO ðz0;x01Þ ¼

Z
dD−2k0dD−2k1

ð2πÞ2ðD−2Þ eiðk0·x0þk1·x1Þð2πÞD−2δD−2ðk0 þ k1ÞΨV→qq̄
LO ðz0;k0Þ;

¼ cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p ϕ0ðz0Þ: ð28Þ

The NLO correction to the qq̄ wave function is given by

ΨV→qq̄
f;NLOðz0;x01Þ ¼

Z
dD−2k0dD−2k1

ð2πÞ2ðD−2Þ eiðk0·x0þk1·x1Þð2πÞD−2δD−2ðk0 þ k1ÞΨV→qq̄
NLO ðz0;k0Þ;

¼ cf
δα0α1ffiffiffiffiffiffi
Nc

p δh0;−h1
πfV

eV
ffiffiffiffiffiffi
Nc

p αsCF

2π
ðπx2

01μ
2Þ4−D2 Γ

�
D − 4

2

�

×
Z

1

0

dz0ϕ0ðz0Þ
�
θðz0 − z0 − αÞ z0

z0

�
1þ 1

z0 − z0

�
þ θðz0 − z0 − αÞ 1 − z0

1 − z0

�
1þ 1

z0 − z0

�

þDs − 4

2

�
1 − z0
1 − z0

θðz0 − z0Þ þ z0
z0
θðz0 − z0Þ

��
; ð29Þ
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and the wave function for the qq̄g state is

ΨV→qq̄g
f ðzi;xiÞ ¼

Z
dD−2k0dD−2k1dD−2k2

ð2πÞ3ðD−2Þ eiðk0·x0þk1·x1þk2·x2Þð2πÞD−2δD−2ðk0 þ k1 þ k2ÞΨV→qq̄gðzi;kiÞ;

¼ cf
πfV

eV
ffiffiffiffiffiffi
Nc

p 2gtaα0α1ffiffiffiffiffiffiffiffiffiffi
Ncz2

p ϵj�h2δh0;−h1μ
4−D
2

Z
dD−2k2

ð2πÞD−2
ki
2

k2
2

×

�
ϕ0ðz1ÞVij

h0

�
z2

z1 þ z2

�
eik2·x20 − ϕ0ðz0ÞVij

−h0

�
z2

z0 þ z2

�
eik2·x21

�
;

¼ cf
πfV

eV
ffiffiffiffiffiffi
Nc

p 2gtaα0α1ffiffiffiffiffiffiffiffiffiffi
Ncz2

p ϵj�h2δh0;−h1

�
ϕ0ðz1ÞVij

h0

�
z2

z0 þ z2

�
Jiðx20Þ − ϕ0ðz0ÞVij

−h0

�
z2

z1 þ z2

�
Jiðx21Þ

�
; ð30Þ

where

JiðrÞ ¼ i
2π

ri

r2
ðπμr2Þ4−D2 Γ

�
1þD − 4

2

�
: ð31Þ

IV. LIGHT VECTOR MESON PRODUCTION AT NEXT-TO-LEADING ORDER

A. Production amplitude

Having determined the NLO corrections to the meson wave function, we now have all the ingredients to calculate the
exclusive light meson production amplitude. We substitute the photon wave functions for the qq̄ [sum of Eqs. (14) and (15)]
and qq̄g [Eq. (17)] states, along with the meson wave functions for the qq̄ [sum of Eqs. (28) and (29)] and qq̄g [Eq. (30)]
states, into Eq. (1) to obtain the production amplitude and keep terms up to OðαsÞ. The production amplitude can then be
divided into the dipole (qq̄) and real emission (qq̄g) parts. The dipole part contains the leading-order result

−iALO ¼ eQfV
π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2bN01z0ð1 − z0ÞKD−4

2
ðjx01jQÞϕ0ðz0Þ ×

�
Q

2πjx01j
�D−4

2

; ð32Þ

and the NLO correction

−iAqq̄
NLO ¼ eQfV

π

αsCF

2π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2bN01z0ð1− z0ÞKD−4

2
ðx01QÞ×

�
Q

2πjx01j
�D−4

2

×



ðπx2

01μ
2Þ4−D2 Γ

�
D− 4

2

�Z
1

0

dz0ϕ0ðz0Þ
�
θðz0 − z0 − αÞ z0

z0

�
1þ 1

z0 − z0

�
þ θðz0 − z0 − αÞ1− z0

1− z0

�
1þ 1

z0 − z0

��

þϕ0ðz0ÞKγ�L þDs − 4

D− 4

Z
1

0

dz0ϕ0ðz0Þ
�
1− z0
1− z0

θðz0 − z0Þ þ z0
z0
θðz0 − z0Þ

��
; ð33Þ

where b ¼ ðx0 þ x1Þ=2. The real emission part reads

−iAqq̄g ¼ eQfV
π

αsCF

2π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2b

Z
1−z0

α
dz2

Z
dD−2x20N012

×
−8π2

z2



ϕ0ðz1ÞJiðx20Þ

1

1 − z1
½z1ðz20 þ ð1 − z1Þ2ÞIiðlÞ − z0ðz0ð1 − z0Þ þ z1ð1 − z1ÞÞIiðmÞ�

þ ϕ0ðz0ÞJiðx21Þ
1

1 − z0
½z0ðz21 þ ð1 − z0Þ2ÞIiðmÞ − z1ðz0ð1 − z0Þ þ z1ð1 − z1ÞÞIiðlÞ�

þDs − 4

2
z22

�
ϕ0ðz1Þ

z1
1 − z1

Jiðx20ÞIiðlÞ þ ϕ0ðz0Þ
z0

1 − z0
Jiðx21ÞIiðmÞ

��
; ð34Þ

where b ¼ z0x0 þ z1x1 þ z2x2. These choices for the impact parameter b follow Ref. [37], but we note that in the t ¼ 0
case the weighting of the coordinates by the momentum fractions zi in the definition of b does not affect the results.
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The coherent vector meson V electroproduction cross
section (2) can now be evaluated using the scattering
amplitude

iA ¼ iAqq̄
LO þ iAqq̄

NLO þ iAqq̄g: ð35Þ

When squaring the amplitude, we keep terms up to OðαsÞ.
However, the iAqq̄g amplitude also contains a large con-
tribution enhanced by a large logarithm ln 1=z2 ∼ 1=αs, and
as such this contribution has to be considered as being part
of the leading order amplitude. This is in practice done by

taking into account the BK evolution as we will discuss in
more detail in Secs. IV D and V.

B. UV subtraction

The dipole (−iAqq̄
NLO) and real emission (−iAqq̄g) parts of

the amplitude are separately UV divergent. However, most
of the divergences cancel in their sum. Therefore it is useful
to subtract the UV divergent part of the real emission and
combine it with the dipole part. The subtracted term is
chosen to be

−iAqq̄g
UV ¼ eQfV

π

αsCF

2π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2b

Z
1−z0

α
dz2

Z
dD−2x20N01

×
−8π2

z2



ϕ0ðz1ÞJiðx20ÞIiUVðx20; z1ð1 − z1ÞQ2Þ z1

1 − z1
ðz20 þ ð1 − z1Þ2Þ

þ ϕ0ðz0ÞJiðx21ÞIiUVðx21; z0ð1 − z0ÞQ2Þ z0
1 − z0

ðz21 þ ð1 − z0Þ2Þ

þDs − 4

2
z22

�
ϕ0ðz1Þ

z1
1 − z1

Jiðx20ÞIiðlÞ þ ϕ0ðz0Þ
z0

1 − z0
Jiðx21ÞIiðmÞ

��
; ð36Þ

where

IiUVðr; Q2Þ ¼ i
4π2

ðπμr2Þ4−D2 ri

r2
Γ
�
1þD − 4

2

�
e
− r2

x2
01

eγEKD−4
2
ðjx01jQÞ ×

�
Q

2πjx01j
�D−4

2

: ð37Þ

This choice for the UV subtraction term is analogous to the one in Ref. [29] and also what is used when considering heavy

vector meson production in Ref. [41]. Unlike in Ref. [29], we choose to include the additional factor ð Q
2πjx01jÞ

D−4
2 to the UV

subtraction to cancel the same factor in the dipole part.
The integrals over x20 and z2 can be done analytically, which simplifies the UV subtraction term to

−iAqq̄g
UV ¼ −

eQfV
π

αsCF

2π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2bN01ϕ0ðz0Þz0ð1 − z0ÞKD−4

2
ðx01QÞ ×

�
Q

2πjx01j
�D−4

2

×



Γ
�
1þD − 4

2

�
Γ
�
4 −D
2

�
ðπμ2x2

01e
γEÞ4−D2

�
3þ 2 ln

�
α2

z0ð1 − z0Þ
��

þDs − 4

D − 4

�
: ð38Þ

We then add this to the dipole part, which gives us

−iAqq̄
sub ¼

eQfV
π

Z
1

0

dz0

Z
dD−2x01

Z
dD−2bN01z0ð1 − z0ÞKD−4

2
ðx01QÞ ×

�
Q

2πjx01j
�D−4

2

×
Z

1

0

dz0ϕ0ðz0Þ


δðz0 − z0Þ

þ αsCF

2π

�
Kðz0; z0Þ

�
2

D − 4
− lnðπμ2x2

01e
γEÞ

�
þ δðz0 − z0Þ

�
1

2
ln2

�
z0

1 − z0

�
−
π2

6
þ 5

2

��

þ αsCF

2π

Ds − 4

D − 4

�
−
1

2
δðz0 − z0Þ þ 1 − z0

1 − z0
θðz0 − z0Þ þ z0

z0
θðz0 − z0Þ

��
: ð39Þ

Here Kðz; z0Þ is the kernel of the ERBL equation [20,56], which describes the scale dependence of the distribution
amplitude as we will discuss in Sec. IV C:
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Kðz; z0Þ ¼ z
z0

�
1þ 1

z0 − z

�
θðz0 − z − αÞ þ 1 − z

1 − z0

�
1þ 1

z − z0

�
θðz − z0 − αÞ þ

�
3

2
þ ln

�
α2

zð1 − zÞ
��

δðz0 − zÞ: ð40Þ

This form for the ERBL kernel is equivalent to the usual one written in terms of the plus distributions in the limit α → 0.
After the UV subtraction, the real emission part becomes finite and reads:

−iAqq̄g
sub ¼ eQfV

π

αsCF

2π

Z
1

0

dz0

Z
d2x01

Z
d2b

Z
1−z0

α
dz2

Z
d2x20

2

πz2
ϕ0ðz0Þ

×



N012K0ðRQÞ 1

1 − z0

�
z0ðð1 − z0 − z2Þ2 þ ð1 − z0Þ2Þ

1

x2
21

− ð1 − z0 − z2Þðz0ð1 − z0Þ

þ ð1 − z0 − z2Þðz0 þ z2ÞÞ
x20 · x21

x2
20x

2
21

�
− N01

z0
1 − z0

ðð1 − z0 − z2Þ2 þ ð1 − z0Þ2
�

1

x2
21

e
−

x2
21

x2
01

eγEK0ðx01Q̄Þ
�
; ð41Þ

where R2 ¼ z0z1x2
01 þ z1z2x2

21 þ z0z2x2
20.

C. ERBL evolution and the renormalized
distribution amplitude

The dipole part −iAqq̄
sub, Eq. (39), still contains a diver-

gence of the form 1
D−4, which is canceled when the

distribution amplitude is renormalized. We define the
renormalized distribution amplitude ϕðz; μFÞ as

ϕðz; μFÞ ¼ ϕ0ðzÞ þ
αsCF

2π

Z
1

0

dz0Kðz; z0Þϕ0ðz0Þ

×

�
2

D − 4
þ γE − lnð4πÞ þ ln

�
μ2F
μ2

��
; ð42Þ

where μF is the factorization scale. This choice for the finite
terms in the subtraction corresponds to the MS scheme. We
note that the distribution amplitude depends on the regu-
larization scheme (FDH or CDR), as in practice it has to be
determined from some experimental process for which an
NLO calculation also depends on the same scheme choice.
In principle the scheme-dependent term ∼ðDs − 4Þ=
ðD − 4Þ in Eq. (39) could be also included in the definition

of the renormalized distribution amplitude (42). However,
in this work we choose to keep the scheme dependence
explicitly visible in the dipole term, Eq. (39). This allows us
to straightforwardly quantify the scheme dependence
which is shown in the Appendix to be negligible.
The renormalized distribution amplitude satisfies the

ERBL evolution equation [20,56]

∂ϕðz; μFÞ
∂ ln μ2F

¼ αsCF

2π

Z
1

0

dz0Kðz; z0Þϕðz0; μFÞ; ð43Þ

where the kernel Kðz; z0Þ is given in Eq. (40). We note that
this renormalization does not change Eq. (21) for the
normalization of the distribution amplitude as the z integral
over the ERBL kernel vanishes:

R
1
0 dzKðz; z0Þ ¼ 0.

Next we use Eq. (42) to write the bare distribution
amplitude ϕ0ðzÞ in −iAqq̄

sub, Eq. (39), in terms of the
renormalized distribution amplitude. We also choose to
use the scale dependent renormalized distribution ampli-
tude instead of the bare distribution in the NLO part, as
their difference is now formally higher order in αs. This
results in the finite expression

−iAqq̄
fin ¼

eQfV
π

Z
1

0

dz0

Z
d2x01

Z
d2bN01z0ð1 − z0ÞK0ðx01QÞ

×
Z

1

0

dz0ϕðz0; μFÞ


δðz0 − z0Þ þ αsCF

2π

�
−Kðz0; z0Þ ln

�
μ2Fx

2
01e

2γE

4

�
þ δðz0 − z0Þ

�
1

2
ln2

�
z0

1 − z0

�
−
π2

6
þ 5

2

��

þ αsCF

2π

Ds − 4

D − 4

�
−
1

2
δðz0 − z0Þ þ 1 − z0

1 − z0
θðz0 − z0Þ þ z0

z0
θðz0 − z0Þ

��
: ð44Þ

Similarly we can replace ϕ0ðzÞ by ϕðz; μFÞ in the real
emission part (41).
Let us briefly consider the evolution of the renormalized

distribution amplitude. It is useful to write the distribution
amplitude in terms of the eigenfunctions fnðzÞ of the ERBL
kernel

Z
1

0

dz0Kðz; z0Þfnðz0Þ ¼ λnfnðzÞ: ð45Þ

The eigenfunctions can bewritten in terms of theGegenbauer

polynomials C
ð3
2
Þ

n as fnðzÞ ¼ 6zð1 − zÞCð3
2
Þ

n ð2z − 1Þ, and the
corresponding eigenvalues are given by [20]
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λn ¼ −
1

2
þ 1

ðnþ 1Þðnþ 2Þ − 2
Xnþ1

k¼2

1

k
: ð46Þ

Writing the distribution amplitude as a sum of the eigen-
functions, the ERBL equation then tells us that the coef-
ficients in the sum depend on the factorization scale:

ϕðz; μFÞ ¼
X∞
n¼0

anðμFÞfnðzÞ: ð47Þ

Taking into account the running of the coupling constant as
αsðμ2FÞ ¼ 4π

β lnðμ2F=Λ2
QCDÞ

, we can solve the evolution of the

coefficients an explicitly [20]:

anðμFÞ ¼ an ln

�
μ2F

Λ2
QCD

�2CF
β λn

: ð48Þ

Here ΛQCD¼0.241GeV and β¼ð11Nc−2NfÞ=3 with
Nf ¼3. Values for the coefficients an at an initial scale
are a nonperturbative input for the calculation. These
coefficients also depend on the considered vector
meson, and should be determined from experimental
data. It should be noted that the eigenvalue λn is zero
for the term n ¼ 0 and negative for the n > 0 terms. This
means that the first term is actually constant in μF, and the
higher-order terms become suppressed as μF increases.
In the asymptotic limit μF → ∞ only the first term con-
tributes, and the distribution amplitude then simplifies to
ϕðz; μF ¼ ∞Þ ¼ 6zð1 − zÞ. Here we have also used the fact
that the coefficient a0 of the first term is actually determined
by the normalization condition Eq. (21), as the orthogon-
ality of the Gegenbauer polynomials guarantees that only
the first term contributes to the normalization, giving us
a0 ¼ 1. It should also be noted that parity conservation
demands that the distribution amplitude is invariant under
the substitution z ↔ 1 − z, meaning that all terms with
n ¼ odd are zero in the sum.
We point out that Eq. (48) is divergent for μF ¼ ΛQCD. In

practice, we avoid this singularity by introducing an
infrared (IR) cutoff μF0 for the ERBL evolution and freeze
the distribution amplitude below this scale: ϕðz; μFÞ ¼
ϕðz; μF0Þ for μF < μF0. We choose the value of the IR
cutoff to be μF0 ¼ 1 GeV. The dependence on the IR cutoff
is quantified in the Appendix.

D. Soft gluon divergence

The real emission part still has an IR divergence from the
lower limit α of the z2 integral. This is related to the
emission of soft gluons from the dipole, and to the rapidity
evolution of the dipole amplitude. This can be seen by
noting that the singular part of the real emission can be
written as

−iAqq̄g
sing ¼

eQfV
π

Z
1

0

dz0

Z
d2x01

Z
d2bϕðz0;μFÞz0ð1− z0Þ

×K0ðjx01jQÞαsCF

2π

Z
1−z0

zmin

dz2

Z
d2x20

2

πz2

× ½N012−N01�
x2
01

x2
20x

2
21

; ð49Þ

where the identity [29]Z
d2x2

�
x2
01

x2
20x

2
21

−
1

x2
20

e−x
2
20
=ðx2

01
eγE Þ −

1

x2
21

e−x
2
21
=ðx2

01
eγE Þ

�
¼ 0

ð50Þ
has been used. Note that as we do not have an explicit
dependence on the infrared cutoff α in the integrands any-
more, from now on the lower limit of the z2 integral is
denoted by zmin whose value will be discussed shortly. We
can recognize the integrand in Eq. (49) as the kernel of the
(fixed coupling leading order) BK equation (5). This can
then be combined with the leading-order term [α0s part of
Eq. (44)], and the sumof these two contributions corresponds
to using in the leading-order term a dipole amplitude evolved
from the initial rapidity Y0 to the rapidity

Ydip ¼ Y0 þ ln
1 − z0
zmin

: ð51Þ

At finite center-of-mass energy the lower limit zmin of the z2
integral should not be taken to zero. In particular, the invariant
massof theqq̄g systemshouldbemuch less thanW2 inorder to
justify the usage of the eikonal approximation, which imposes
the lower limit zmin. We follow Refs. [37,41] and choose

zmin ¼ min

�
eY0

Q2
0

W2 þQ2 −m2
N
; 1 − z0

�
: ð52Þ

Here the minimum comes from the kinematic constraint
z0 þ z2 ≤ 1, which guarantees that the dipole does not evolve
backwards in rapidity.Aswe are interested in the high (but finite)
energy limit, theminimum is only needed in a small subset of the
integration region and in practice the evolved rapidity is

Ydip ¼ ln

�
ð1 − z0Þ

W2 þQ2 −m2
N

Q2
0

�
: ð53Þ

For theαs-suppressed terms thedependenceon theevolution
rapidity is formally of higher order in the coupling constant.
Following again Refs. [37,41] we choose to use the same evo-
lution rapidity Ydip when evaluating the next-to-leading order
terms in the dipole part, Eq. (44). The z2-dependent evolution
rapidityusedwith realgluonemission termisobtained fromthe
definition Y ¼ ln kþ

Pþ and can be written as [41]

Yqq̄g ¼ ln z2 þ ln
W2 þQ2 −m2

N

Q2
0

: ð54Þ
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E. Full result

We can now write the scattering amplitude for light meson electroproduction in its full form. It reads

−iA ¼ eQfV
π

Z
d2x01

Z
d2b

Z
1

0

dz0



KLO

qq̄ ðY0Þ þ
αsCF

2π
KNLO

qq̄ ðYdipÞ þ
Z

d2x20

Z
1−z0

zmin

dz2
αsCF

2π
Kqq̄gðYqq̄gÞ

�
; ð55Þ

where the LO part is

KLO
qq̄ ðY0Þ ¼ N01ðY0Þz0ð1 − z0ÞK0ðjx01jQÞϕðz0; μFÞ; ð56Þ

and the NLO corrections are

KNLO
qq̄ ðYdipÞ ¼ N01ðYdipÞz0ð1 − z0ÞK0ðjx01jQÞ



ϕðz0; μFÞ

�
1

2
ln2

�
z0

1 − z0

�
−
π2

6
þ 5

2

�

− ln

�
μ2Fx

2
01e

2γE

4

�Z
1

0

dz0Kðz0; z0Þϕðz0; μFÞ

þDs − 4

D − 4

Z
1

0

dz0ϕðz0; μFÞ
�
−
1

2
δðz0 − z0Þ þ 1 − z0

1 − z0
θðz0 − z0Þ þ z0

z0
θðz0 − z0Þ

��
ð57Þ

for the dipole part and

Kqq̄gðYqq̄gÞ ¼
2

πz2
ϕðz0; μFÞ



N012ðYqq̄gÞK0ðRQÞ 1

1 − z0

�
z0ðð1 − z0 − z2Þ2 þ ð1 − z0Þ2Þ

1

x2
21

− ð1 − z0 − z2Þðz0ð1 − z0Þ þ ð1 − z0 − z2Þðz0 þ z2ÞÞ
x20 · x21

x2
20x

2
21

�

− N01ðYqq̄gÞ
z0

1 − z0
ðð1 − z0 − z2Þ2 þ ð1 − z0Þ2Þ

1

x2
21

e
−

x2
21

x2
01

eγEK0ðx01QÞ
�

ð58Þ

for the real emission. The lower limit for the z2 integral is
given by Eq. (52). This expression is finite and suitable for
numerical evaluation. The rapidity scales at which the
different dipole amplitudes are evaluated, Y0, Ydip, and
Yqq̄g, are shown explicitly. In numerical calculations we
follow Ref. [37] and take Y0 ¼ 0.
The NLO correction to the dipole part has a depen-

dence on the regularization scheme given by a term
proportional to

Ds − 4

D − 4
¼



1 for CDR

0 for FDH
: ð59Þ

This regularization scheme dependence is in principle
canceled by the regularization scheme dependence of
the distribution amplitude at the given order in αs. The
distribution amplitude is a nonperturbative quantity that has
to be determined from some process where the same
regularization scheme dependence should also appear. In
this paper, we choose to use the CDR regularization scheme
when we show numerical results in Sec. V. However, it will
turn out that the regularization scheme dependence is very
small even if the same distribution amplitude is used in both

schemes, which is a consequence of the fact that for the first
term in the Gegenbauer expansion (47) of the distribution
amplitude this regularization scheme dependent term van-
ishes. The regularization scheme dependence of the cross
section will be discussed quantitatively in the Appendix.
The dependence on the factorization scale μF is of higher

order in αs, as can be verified by taking into account
the ERBL equation. However, as we are keeping terms
only to the order αs, the results do have a dependence on
the factorization scale. The value of μF can be chosen
in different ways. Equation (44) suggests the choice
μ2F ¼ 4e−2γE=x2

01, as with this choice the logarithm multi-
plying the ERBL kernel Kðz; z0Þ vanishes (we will refer to
this term as the “ERBL term”). Note that the factor 4e−2γE is
the same one that appears in the Fourier analysis of the
coordinate space running coupling [66,67]. This choice
for the factorization scale will be referred to as the r scheme
to emphasize its dependence on the dipole size. In the
qq̄g term we choose to use the smallest dipole size
minfjx01j; jx20j; jx21jg for the factorization scale, in accor-
dance with the running of the coupling constant αs. Another
possible choice for the factorization scale is to use μF ¼ Q,
which is supported by the fact that the relevant length scales
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for meson production are Q ∼ 1=jx01j, meaning that the
logarithm lnðQ2x2

01Þ of the ERBL term in Eq. (44) should
also be small in this scheme. This will be referred to as the
Q scheme, and its main advantage is that the hard scale
does not depend on the integration variable. In this paper,
we will use the r scheme in our calculations as then the
ERBL term vanishes completely. In the Q scheme, there
can in practice be a large contribution from the ERBL term
as the dipole amplitude amplifies the contribution of larger
dipoles that can have a numerically significant contribution
even at moderately large virtualities [70,71]. This scheme
dependence is studied in more detail in the Appendix,
where it is shown that the factorization scale dependence at
the cross section level is a few percent.
The result (55) can be compared to the previously

calculated NLO light vector meson production from
Ref. [53]. In that paper the production amplitude is
presented in the momentum space as opposed to the mixed
space used in this paper. Comparing these results is
nontrivial, as one has to perform complicated Fourier
transforms from momentum space to coordinate space to
match the results. We have only been able to make
comparisons for the dipole part of the amplitude, finding
that the result of Ref. [53] matches to our result in the CDR
scheme, except that our result corresponds to having a
factor þ3=2 instead of −3=2 multiplying the logarithm in
Φþ

1 shown in Eq. (25) of Ref. [53]. The real gluon emission
part is much more complicated, and so far we have not been
able to make actual comparisons of the results.

V. NUMERICAL RESULTS

In this section, we present numerical results for coherent
light vector meson electroproduction at next-to-leading
order, calculated using Eq. (55). As our default setup,
we use the CDR scheme for regularization and r scheme
for the factorization scale μF. For the distribution ampli-
tude, we choose to keep only the first two terms in the

Gegenbauer expansion (47). The reason for this is that the
exact values for the higher-order terms are not well known
but estimated to be small [72]. For the ρ meson, the
coefficient of the second term has been extracted in many
different ways, with relatively large uncertainties [73]. We
choose to use the value a2ðμF ¼ 1 GeVÞ ¼ 0.1, which is in
agreement with most of the values tabulated in Ref. [73].
We also choose to use this same value for the ϕ meson, as
current analyses suggest that they are of the same order of
magnitude [57,72]. As we then use the same distribution
amplitude for both mesons, the only difference between
ρ and ϕ production is the decay constant fV , which appears
as an overall coefficient in Eq. (55). These decay constants
can be calculated from the experimental values for the
leptonic widths [74] using Eq. (22).
The numerical results are calculated using the dipole

amplitude fits from Refs. [37,75] for the different schemes
of the BK evolution equation discussed in Sec. II C. We use
the fits where the “Balitskyþ smallest dipole” running
coupling scheme is used, and use both fits with initial
evolution rapidities Y0;BK; η0;BK ¼ 0 and Y0;BK; η0;BK ¼
4.61 (in which case the dipole amplitude is frozen in the
region Y0 ¼ 0 < Y < Y0;BK or η0 ¼ 0 < η < η0;BK). In
these fits the impact parameter dependence is assumed
to factorize and one can replace

R
d2b → σ0=2, and the

proton transverse area σ0=2 is a fit parameter which is also
determined in Ref. [37].
In Fig. 2, we show different contributions to the

exclusive ρ production amplitude at NLO as a function
of the center-of-mass energy W [Fig. 2(a)] and photon
virtuality Q2 [Fig. 2(b)]. The same dipole amplitude,
corresponding to the KCBK equation with the initial
rapidity Y0;BK ¼ 4.61 for the BK evolution [37], is used
in these figures. Here the leading-order result is denoted by
LOðYdipÞ, which is calculated from the leading-order part
of Eq. (55) with the dipole amplitude evaluated at rapidity
Ydip. Using the evolved rapidity Ydip means that the
LOðYdipÞ contains the resummation of large logarithms

(a) (b)

FIG. 2. Different parts of the longitudinal NLO amplitude for exclusive ρ production. (a) Dependence on the center-of-mass energy of
the γ� − p system. (b) Dependence on the photon virtuality Q2. The amplitude has been scaled by Q3 for easier readability.
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∼αs ln 1=x included in the BK evolution. The result LOðY0Þ
is the leading-order term of Eq. (55) at the initial rapidity
Y0, and NLOdip is the NLO correction to the dipole term
corresponding to Eq. (57). The contribution from the qq̄g
term, Eq. (58), has been divided into two parts: the result
NLOqq̄gðBKÞ contains only the part corresponding to the
BK equation, Eq. (49), and NLOqq̄gðno BKÞ is Eq. (58)
from which the BK contribution has been subtracted. The
total NLO result is then the sum

NLO ¼ LOðY0Þ þ NLOdip þ NLOqq̄gðBKÞ
þ NLOqq̄gðno BKÞ: ð60Þ

From these plots we see that the contributions from the
LO result at the initial rapidity and from the NLO dipole
term are small. Both qq̄g contributions are large, but they
mainly cancel each other. These findings are similar to
what has been observed in the case of heavy vector
meson production [41]. The total NLO correction, the
difference between NLO and LOðYdipÞ, is large and
positive. However, we point out that in these plots the
same NLO fitted dipole amplitude was used to calculate all
of the results. Consequently, these results only quantify the
largeness of the NLO correction terms in Eq. (55) and not
the actual difference between the NLO and LO results
where the corresponding dipole amplitude fits should
be used.
We also note that at fixed coupling the identification

LOðYdipÞ ¼ LOðY0Þ þ NLOqq̄gðBKÞ would be exact if the
dipole amplitude satisfied the leading-order fixed coupling
BK equation. In that case there would be no ambiguity in
defining the leading-order amplitude. In our setup this is
not the case, and consequently the leading-order amplitude
is not uniquely defined. In this work we choose it to be
LOðYdipÞ following Ref. [41], as this is the most natural
choice when using a dipole amplitude that satisfies a

resummed BK evolution equation. Identifying LOðY0Þ þ
NLOqq̄gðBKÞ as a leading order term instead would have
maximally a ∼20% effect on the calculated cross sections
discussed below.
Next we show numerical comparisons to the existing

coherent vector meson production data for ρ and ϕ mesons
at (moderately) largeQ2. The H1 data is from Ref. [59], and
the ZEUS data is from Ref. [76] for ϕ and Ref. [77] for ρ.
The results are shown with various different dipole ampli-
tude fits that all give a good description of the HERA
structure function data. As discussed above, the NLO
results use fits from Ref. [37]. For the leading order, the
dipole amplitude used is the “MVe” fit from Ref. [35]. In
the leading-order calculation the evolution rapidity is

chosen as Y ¼ ln 1
xP

¼ ln W2þQ2

Q2þM2
V
, consistently with the fit.

The differential cross section is proportional to the square
of the production amplitude as given by Eq. (2). When
calculating the cross section at NLO, we drop the higher-
order terms proportional to α2s so that we only keep the
genuine NLO correction at the cross section level.
In Fig. 3, we show the differential cross section for

the longitudinal ϕ and ρ production at t ¼ 0. Here the
experimental data is for the total production, which is
the sum of the longitudinal and transverse channels.
However, the longitudinal production dominates at
Q2 ≫ M2

V , and therefore it is expected that for high
virtualities these data points accurately correspond to the
longitudinal case.
In general, we see that both the LO and NLO results

describe the H1 data well. The difference between the
LO and NLO results is smaller than one would expect based
on Fig. 2, as in the leading-order fit the nonperturbative
parameters describing the initial condition of the dipole
amplitude effectively capture part of the higher-order
effects. This difference becomes small at high virtua-
lities, where our approach is expected to be most reliable.

FIG. 3. Photon virtuality dependence of the longitudinal cross section at t ¼ 0 for various different dipole amplitude fits, compared
to the H1 data for the sum of longitudinal and transverse productions [59]. (a) Cross section for ϕ production. (b) Cross section
for ρ production.
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The NLO results also give a surprisingly accurate description
of the data for smaller values of the photon virtuality where
the framework cannot be trusted (we have assumed that
Q2 ≫ M2

V). We consider this agreement to be accidental for
two reasons. First, we have only calculated the longitudinal
cross section, leaving out the transverse contribution which
is significant at small Q2. Second, we neglect any depend-
ence on the dipole size in the meson wave function, keeping
only the r ¼ 0 case which corresponds to the distribution
amplitude. In general, the wave function is expected to be a
decreasing function of jrj, meaning that this approximation
overestimates the results. These two corrections, which may
have significant numerical contributions at small virtualities,
affect the result in opposite ways and therefore their total
contribution at least partially cancels.
Next we will consider the t-integrated cross sections for

which more data exists. To avoid additional modeling for
the impact parameter dependence of the dipole amplitude,
we evaluate the t integral by using the following exper-
imental parametrization for the t dependence of the cross
section:

dσ
dt

¼ e−bjtj ×
dσ
dt

ðt ¼ 0Þ: ð61Þ

Here b is the slope parameter that in general depends onQ2

andW. It has been measured for both ϕ and ρ [59,76,77] at
different values of the virtuality atW ¼ 75 GeV. The slope
parameter can be thought of as the effective transverse area
of the meson-target system, and we model its dependence
on virtuality and center-of-mass energy by assuming the
parametrization

b ¼ b0 þ
b1

Q2 þM2
V
þ 4α0 ln

W
W0

: ð62Þ

TheW dependence determined from HERA data [59] gives
α0 ¼ 0.12� 0.04. The model for the virtuality dependence
is chosen for its simplicity and that it approaches a constant
value at highQ2. Also, the dependence on the virtuality and
the center-of-mass energy does not seem to be correlated
[59]. We fit the parameters b0 and b1 to H1 and ZEUS data
atW0 ¼ 75 GeV, with the fit shown in Fig. 4, and note that
the errors on these fitted parameters are significant, which
results in ∼10% uncertainty in the calculated total cross
sections.
The virtuality dependence of the coherent ϕ and ρ

production cross sections is shown in Figs. 5 and 6. In
Fig. 5, the results are calculated using different dipole
amplitudes fitted to the HERA structure function data
in Ref. [37], using fits with both choices for the initial
evolution rapidities Y0;BK (η0;BK in the case of TBK
evolution). The H1 collaboration has measured, in addi-
tion to the total production cross section, the longitudi-
nally polarized ρ production, which exactly corresponds
to the presented theory calculations. In general we find
an excellent agreement with the H1 and ZEUS data
[59,76,77], except that the ϕ production cross section
is overestimated at low virtualities where our approxima-
tions are not justified.

FIG. 4. The measured slope parameter b for ρ and ϕ production
as a function of photon virtuality [59,76,77] and a fit to this data.

FIG. 5. Photon virtuality dependence of the integrated longitudinal cross section for various different dipole amplitude fits, compared
to the HERA data [59,76,77]. (a) Cross section for ϕ production. (b) Cross section for ρ production.
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In Fig. 6, we show results obtained using the dipole
amplitudes fitted to the structure function pseudodata
generated in Ref. [37] such that it includes only the
approximative light quark contribution. For comparison,
the results calculated with the dipole amplitudes fitted to
the full HERA structure function data are also shown. In the
fit process of Ref. [37] only the light quark contribution is
calculated, and as such the fit to light quark pseudodata is in
principle better motivated than the fit to the full HERA
structure function data. On the other hand, the light-quark-
only data contains a larger nonperturbative contribution,
and the determined parametrizations describing the initial
condition of the dipole amplitude are not physically as well
motivated. Here we use these light quark fits with the
KCBK evolution equation, but different schemes for the
BK evolution result in very similar cross sections at all Q2.
We see that the results calculated with dipole amplitudes

fitted to the light quark pseudodata also show a relatively
good agreement with the virtuality dependence of the H1
and ZEUS light meson production data. However, the cross

sections at large virtualities are somewhat underestimated.
This difference inQ2 dependence between the two fit setups
is expected, as the light-quark-only pseudodata is close to the
full structure function data at lowQ2where similar results for
other observables are also expected. On the other hand, at
high Q2 the charm contribution on structure functions is
significant, and consequently the light quark fit should result
in smaller cross sections in this kinematical region, which is
exactly what we observe in Fig. 6.
In Figs. 7 and 8, we show the dependence of the

integrated cross section on the photon-proton center-of-
mass energy W. Again, Fig. 7 shows results obtained with
the dipole amplitudes fitted to the HERA data, and Fig. 8
shows results calculated with dipole amplitudes fitted to the
light quark pseudodata for comparison. The center-of-mass
energy dependence of the results agrees with the data,
although the results with the light quark fit seem to
underestimate the data by a constant factor as already seen
in Fig. 6. The differences in the results with different
schemes for the BK evolution start growing at larger W, as

FIG. 6. Photon virtuality dependence of the integrated cross section for longitudinal production, with dipole amplitudes fitted to
HERA structure function data and pseudodata consisting of only light quark production. (a) Cross section for ϕ production. (b) Cross
section for ρ production.

FIG. 7. Center-of-mass dependence of the integrated longitudinal cross section compared to the H1 data [59]. (a) Cross section for
ϕ production. (b) Cross section for ρ production.
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at high W one starts to be sensitive to the region not
constrained by the structure function data. This suggests
that light meson production data can provide additional
constraints when the nonperturbative initial condition for
the BK evolution is extracted from experimental data. The
dependence on the center-of-mass energy is similar for the
HERA and light quark fitted dipole amplitudes.
In Fig. 9(a), we show the dependence of the cross section

on the distribution amplitude. We have normalized the
results by the cross section calculated using the asymptotic
form for the distribution amplitude that corresponds to the
case where the higher-order terms in the Gegenbauer
expansion (47) vanish, i.e., an ¼ 0 for n > 0. The case
a2ð1 GeVÞ ¼ 0.1 corresponds to our default setup, and the
cases a2ð1 GeVÞ ¼ �0.2 are estimates for the upper and
lower bounds for the coefficient, chosen based on Ref. [73].
The final setup shown has the coefficients a2ð1 GeVÞ ¼
−0.054 and a4ð1 GeVÞ ¼ −0.022 chosen such that the

distribution amplitude matches the boosted Gaussian wave
function parametrization for the ρ meson from Ref. [16] at
r ¼ 0, where the higher Gegenbauer terms are neglected.
The reason for this choice is that the distribution amplitude
should roughly correspond to the wave function at r ¼ 0,
and the boosted Gaussian is a phenomenological wave
function that describes well vector meson production at
leading order [16]. We see that the dependence on the
distribution amplitude is moderate, and maximally ∼30%
in the considered kinematical domain.
The different distribution amplitudes are illustrated in

Fig. 9(b), both at the initial scale μ2F ¼ 1 GeV2 and after the
ERBL evolution up to μ2F ¼ 50 GeV2 using the extreme
values for a2. While the form of the distribution amplitude
depends considerably on the value of a2, the effect on the
cross section in Fig. 9(a) is small. In Fig. 9(b), we also see
that as the factorization scale μF increases the distribution
amplitude approaches the asymptotic form, but there is still

FIG. 8. Center-of-mass dependence of the integrated longitudinal cross section, with dipole amplitudes fitted to HERA structure
function data and pseudodata consisting of only light quark production. (a) Cross section for ϕ production. (b) Cross section for
ρ production.

FIG. 9. Dependence of the cross section on the distribution amplitude. (a) Ratio of the cross section with varied coefficients in the
Gegenbauer expansion to the default setup. (b) Distribution amplitude with different coefficients a2 and the effect of the ERBL
evolution. The asymptotic form withan>0 ¼ 0 is also shown.
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a significant deviation from the asymptotic shape
at μ2F ¼ 50 GeV2.

VI. CONCLUSIONS

In this paper, we have presented a next-to-leading
order calculation of exclusive light vector meson pro-
duction in the dipole picture using the light cone
perturbation theory. The main result of this work is
the scattering amplitude for longitudinally polarized light
vector meson production at high Q2 given in Eq. (55).
This amplitude is finite and directly suitable for numeri-
cal evaluations. In particular the 1

D−4 divergences have
been canceled between the real and virtual diagrams after
the ERBL evolution of the renormalized distribution
amplitude is also taken into account. The apparent soft
gluon divergence is shown to be factorizable into the
small-x Balitsky-Kovchegov evolution of the dipole
amplitude. While a similar calculation has already been
done in the momentum space [53] (using also a different
scheme to subtract the rapidity divergence), the results
presented in this paper are in the mixed transverse
coordinate-longitudinal momentum fraction space where
the numerical calculations using existing results for the
dipole-target scattering amplitude are straightforward.
Comparing the results in the different spaces is cumber-
some due to the requirement of calculating complicated
Fourier transforms, and thus an explicit comparison of
the two results has been made only partially.
We have also calculated numerically exclusive light

meson production at NLO and compared the results to
the existing HERA data for ρ and ϕ mesons. The NLO
corrections are numerically important, but their effect can
be partially captured when the initial condition for the
small-x evolution of the dipole amplitude is fitted to the
structure function data. Consequently, the differences
between LO and NLO results are moderate in the high
virtuality region Q2 ≫ M2

V where our framework is valid.
The different schemes used to capture higher-order effects
in the small-x evolution result in similar cross sections for
vector meson production. Some deviations can be seen in
the center-of-mass energy W dependence, which means
that the exclusive vector meson production data can further
constrain the nonperturbative initial condition for the small-
x evolution. Both the Q2 and W dependencies of the
production cross section are in excellent agreement with the
HERA data. If a dipole amplitude with an initial condition
fitted to the structure function pseudodata that only
includes a light quark contribution is used, the experimental
cross sections are underestimated at high Q2. We also note
that there is some overall normalization uncertainty due to,
e.g., modeling the t dependence of the vector meson
production cross section. We additionally left out the
commonly used phenomenological corrections (see, e.g.,
[16]) whose role should be further clarified.

Our result for the analytic expression of the production
amplitude is presented in two different schemes for
regularization in the transverse plane: the CDR and FDH
schemes. The regularization scheme dependence is shown
to be very small. The results also depend on the choice for
the factorization scale μF, for which we present two
different choices, taking this scale to be either a func-
tion of the dipole size or of the photon virtuality. The
dependence on the factorization scale is also relatively
small. Both of these scheme dependencies have numeri-
cally small effects because the distribution amplitudes for
the ρ and ϕ mesons are close to the asymptotic form,
and the dependence on regularization scheme and fac-
torization scale vanishes in the Q2 → ∞ limit. The
dependence on the exact form of the distribution ampli-
tude, on the other hand, is somewhat larger with effects
of up to ∼30% in the HERA kinematics at the cross
section level for realistic values of the higher-order terms
in the Gegenbauer expansion.
The results in this paper are calculated at zero momen-

tum transfer t ¼ 0. Calculating the t dependence of
exclusive vector meson production is also interesting as
it allows access to the spatial distribution of the target color
field including its event-by-event fluctuations [14,78,79].
This requires additional nonperturbative modeling of the
dipole amplitude that we wanted to avoid in this paper. We
also note that the dipole amplitudes used in numerical
calculations in this paper were fitted to HERA data using
only massless quarks, while there is a significant contri-
bution from the massive c quark to the structure functions
in HERA kinematics. As the NLO photon wave functions
with massive quarks are becoming available [32,33], it will
be possible to make a new NLO fit for the dipole amplitude
to the HERA data including heavy quark contributions.
This is needed for accurate phenomenological comparisons
with the HERA data. The results of this work can then be
used for predicting exclusive light vector meson production
in the future Electron-Ion Collider which will also produce
data for DIS off heavy nuclei, allowing for precision studies
of saturation phenomena.
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APPENDIX: SCHEME DEPENDENCE

In this appendix, we quantify the dependence of the light
vector meson production cross section on the choices for
regularization and factorization schemes. The cross sec-
tions have been calculated as described in Sec. V, and our
default setup is the same. The dipole amplitude used in this
appendix is the KCBK evolved one from Ref. [37] with the
initial rapidity Y0;BK ¼ 4.61.
First, we show the dependence of the cross section on the

regularization scheme in the transverse plane. The cross
section has been calculated in both the CDR and FDH
schemes and their ratio is shown in Fig. 10. This ratio
depends on the distribution amplitude, and it is equal to
unity in the asymptotic limit μ2F → ∞, where only the first
term in the Gegenbauer expansion (47) contributes. For this
reason we show the ratio with two different distribution
amplitudes: one with a2ð1 GeVÞ ¼ 0.1 (our standard
setup), and one with a2ð1 GeVÞ ¼ 0, a4ð1 GeVÞ ¼ 0.1.
Higher-order terms are set to zero. We see that the
dependence on the regularization scheme is very small
in both cases, of the order 0.2% at most. Small scheme
dependence is expected, as the first dominant term in the
Gegenbauer expansion vanishes when one calculates the
scheme dependent term in Eq. (44). It should be noted that
the ratio does not seem to approach the asymptotic limit in
the considered kinematics. This is a consequence of the
ERBL evolution with running coupling being extremely
slow, and the scheme dependence vanishes if we go to even
higher values of virtuality.
The cross section depends on the factorization scale μF

at which the distribution amplitudes are evaluated as
discussed in Sec. IV C. In Fig. 11, the cross sections have
been calculated evaluating the distribution amplitude in
both the r and Q schemes using our default choice for the
distribution amplitude with a2ð1 GeVÞ ¼ 0.1. The factori-
zation scale has also been scaled by factors of 0.5 and 2.
These results have been normalized by our default setup

(r scheme with μF ¼ 2e−γE=r). In the Q scheme, varying
the factorization scale by a factor of 2 has a very small
effect. For the r scheme the cross section varies somewhat
more, but the variation is still only ∼2%. The difference
between the r and Q schemes is also only a few percent at
most, meaning that the dependence on the factorization
scale is small. This follows from the fact that the distri-
bution amplitude receives only a small correction from the
second scale-dependent Gegenbauer term, and the domi-
nant term is factorization scale independent.
Finally, we show the dependence on the infrared cutoff

μF0 in Fig. 12 using our default setup [r scheme and
a2ð1 GeVÞ ¼ 0.1]. There is some dependence on the IR
cutoff, almost 5% at most with our choice for a2. The
reason for the cutoff dependence is that the dipole ampli-
tude amplifies the contribution of large dipoles, meaning
that dipoles of size 1=r ∼ 1 GeV may have a numerically
significant contribution even when Q2 ≫ 1 GeV2. The
dependence on the IR cutoff vanishes exactly in the limit
Q2 → ∞.

FIG. 10. Ratio of the ρ production cross sections calculated in
FDH and CDR regularization schemes.

FIG. 11. Ratio of the cross section with different choices for the
factorization scale μF to the default setup.

FIG. 12. Ratio of the cross section with different IR cutoffs μF0
for the ERBL evolution to the default setup.
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