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Abstract

We develop the Seiberg-Witten map using the gauge-covariant star product with the noncommutativity 
tensor θμν(x). The latter guarantees the Lorentz invariance of the theory. The usual form of this map and its 
other recent generalizations do not consider such a covariant star product. We construct the Seiberg-Witten 
map for the gauge parameter, the gauge field and the strength tensor to the first order in the noncommu-
tativity parameter θμν(x). Prescription for the generalization of the map to higher orders is also given. 
Interestingly, the associativity of the covariant star product both in the first and second orders requires the 
same constraints, namely, on the θμν(x) and on the space-time connection. This fact suggests that the same 
constraints could be enough to ensure the associativity in all orders. The resulting Seiberg-Witten map ap-
plies both to the internal and space-time gauge theories. Comparisons with the Seiberg-Witten map based 
on other (non-covariant) star products are given and some characteristic properties are also presented. As an 
application, we consider the GL(2, C) noncommutative gauge theory of gravitation, in which it is shown 
that the connection determines a space-time with symplectic structure (as proposed by Zumino et al [33]). 
This example shows that the constraints required for the associativity of the gauge-covariant star product 
can be satisfied. The presented GL(2, C) noncommutative gauge theory of gravitation is also compared to 
the one (given by Chamseddine [44]) with non-covariant star product.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Noncommutative field theories have been intensively studied in the last years, especially due 
to the hope of developing a quantum theory of gravitation, or at least to give an idea of how 
this could be achieved [1–10]. The need for such a hope is emphasized since there is no way 
to quantize gravity in the canonical Hamiltonian formalism due to its nonlinearity and a formal 
way of using the path integral starting with the Lagrangian of the theory, but not the Hamiltonian, 
cannot be justified. One important problem which has no yet a solution is the implementation of 
space-time symmetries in such theories. Among the obstructions for such implementation there 
is the following fundamental one. If we define the noncommutativity of the space-time through 
the commutation relation

[xμ, xν] = i θμν, (1)

where θμν is a constant anti-symmetric matrix, then we arrive to the violation of the Lorentz 
symmetry [11]. There are different possibilities to work with the symmetries in noncommutative 
field theories. One of them is to accept from the beginning that Lorentz symmetry is lost in non-
commutative space-time, with all the consequences that this breakdown carry on the formulation 
of a given field theory. Another possibility is to consider that θμν(x) depends on coordinates 
and preserve the Lorentz symmetry [12–14]. In this case we have to define a star product on 
the space-time and assure its property of associativity, considering the dependence of θμν(x) on 
coordinates. Other approaches are based on the change of space-time symmetry transformations. 
For example, we can impose the restriction that these transformations do not change the star 
product [15].

The Seiberg-Witten map [2] relates gauge field theories on noncommutative spacetime to 
commutative theories; for recent developments see [16–31].

Having an adequate star product defined on the space-time we can develop a noncommutative 
gauge theory. Then, using the Seiberg-Witten map we can manage many of the above prob-
lems. This map can be considered as a deformation of the standard commutative gauge theory 
or as a low energy limit of string theory with modified backgrounds [2]. An extension of the 
Seiberg-Witten map for x-dependent θμν(x) was provided by [12] relating the non-abelian non-
commutative gauge fields with their commutative counterparts. It is based on the introduction of 
covariant coordinates X̂μ = xμ + Âμ. Here, Âμ(x) is considered as a field connected with the 
gauge potential Âμ(x) through relation Âμ = θμν(x) Âν(x). Then, the noncommutative tensor 

field F̂ μν = −i
([

X̂μ, X̂ν
]
�
− i θμν(X)

)
is constructed, where the star commutator is defined 

as 
[
X̂μ, X̂ν

]
�
= X̂μ � X̂ν − X̂ν � X̂μ. The strength tensor F̂μν associated to the gauge potential 

Âμ(x) is defined by the relation F̂ μν = θμρ(x) θνσ (x) F̂ρσ . But, it can be verified that F̂μν does 

not transform properly [32], i.e. δ
�̂

F̂μν �=
[
�̂, F̂μν

]
�
, despite that F̂ μν does have the correct 

law: δ
�̂
F̂ μν =

[
�̂, F̂ μν

]
�
. Therefore, the method of covariant coordinates does not seem to be 

adequate, in general, to develop a noncommutative gauge theory. Even more, it is suspected that 
the quantity Âμ(x) above defined do not represent the true noncommutative gauge potential.

An alternative way to develop a noncommutative gauge theory of gravitation is to endow 
the space-time manifold with a gauge-covariant star product [33,34] and generalize the Seiberg-
Witten map to the case when the ordinary derivative ∂μ is replaced with the covariant derivative 
∇μ and the Moyal product is replaced by a gauge-covariant one.
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In this work we obtain the Seiberg-Witten map for the case when a gauge-covariant star prod-
uct is defined on the space-time. We distinguish between two types of background space-times:

i the space-time is a symplectic manifold with curvature and torsion [33–35];
ii the space-time is a Poisson manifold with curvature only (torsion-free) [36].

We have to mention that in the second case the covariant star product is defined only between 
functions. In order to apply the corresponding Seiberg-Witten map to a gauge theory we need to 
generalize the respective star product [36] to differential forms. In order to realize this, we can 
extend the space-time to one with curvature and torsion, i.e. to consider the case (i).

The following argument is to invoke the justification for the use of the covariant star product 
and, consequently to obtain the corresponding covariant Seiberg-Witten map. A gauge theory 
involves differential forms like A = Aμdxμ (the 1-form gauge potential), F = 1

2Fμν dxμ ∧ dxν

(the 2-form of curvature), etc. Then we need to introduce a gauge-covariant star product between 
such differential forms. It has been proven that the definition of a star-product between differen-
tial forms on the space-time requires the introduction of a connection with curvature and torsion 
on the corresponding symplectic manifold. Therefore, we need to extend the Seiberg-Witten map 
to the case of noncommutative space-time endowed with such a connection.

The plan of this work is as follows.
In Section 2 we give the definition of the covariant star product between two arbitrary Lie 

algebra-valued differential forms and present some of its more important properties.
Section 3 is devoted to the formulation of the noncommutative gauge theory by replacing 

the ordinary product with the gauge-covariant star product. The integral of action for the gauge 
field is defined by using a volume form on the symplectic space-time manifold M of the form: 
(det θμν)−1/2 d4x [see equation (29)]. The noncommutative gauge transformations that leave 
invariant this action are written in the usual form and we suppose that they are valid for any type 
of star product (Moyal, covariant, with θμν a constant anti-symmetric matrix or depending on 
coordinates).

In Section 4 we use the covariant star product to obtain the Seiberg-Witten map for a general 
gauge group. We name this map the covariant Seiberg-Witten map. The basic hypothesis we use 
to construct this map is to start from the standard gauge equivalence relation [see equation (32)], 
which we suppose to be satisfied by any type of star product (covariant or not). Then in Section 5
we consider the GL(2, C) group in order to develop a noncommutative gauge theory of gravi-
tation. The covariant Seiberg-Witten map allows us to connect the associated noncommutative 
gauge potential and strength tensor with their commutative counterparts.

Section 6 is devoted to the discussion of the results and some concluding remarks on the co-
variant Seiberg-Witten map. The possibility of applying this map to the case of any gauge group 
is also discussed. This needs of course the extension of the Lie algebra to its universal envelop-
ing. Some open questions connected with the covariant Seiberg-Witten map and its applicability 
to the construction of a gauge theory for gravitation are also remarked.

In the Appendices A and B we verify that the first order deformations of the gauge parameter 
and gauge potential are indeed solutions of the standard gauge equivalence equation (relation). 
The other appendices contain the expressions for the noncommutative gauge fields and strength 
tensor in the case of GL(2, C) gauge theory of gravity.
3
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2. Gauge-covariant star product

We consider a noncommutative space-time M endowed with the coordinates xμ, μ =
0, 1, 2, 3 satisfying the commutation relation

[xμ, xν] = i θμν(x), (2)

where θμν(x) = −θνμ(x) is a Poisson bivector [33–35]. The space-time M is organized as a 
Poisson manifold by introducing the Poisson bracket between two functions f (x) and g(x) by

{f,g}P = θμν∂μf ∂νg. (3)

In order that the Poisson bracket satisfies the Jacobi identity, the bivector θμν(x) must obey the 
condition [33,34,37,38]

θμρ∂ρθνσ + θνρ∂ρθσμ + θσρ∂ρθμν = 0. (4)

If a Poisson bracket {, }P is defined on M , then M is called a Poisson manifold (see [37] for 
mathematical details).

Suppose now that the bivector θμν(x) has an inverse ωμν(x), i.e.

θμρωρν = δμ
ν . (5)

If ω = 1
2 ωμν dxμ ∧ dxν is nondegenerate (det ωμν �= 0) and closed (dω = 0), then it is called a 

symplectic 2-form and M is a symplectic manifold. It can be verified that the condition dω = 0
is equivalent with the equation (4) [33,34,37,39]. In this paper we will consider only the case 
when M is symplectic.

Because the gauge theories involve Lie algebra-valued differential forms such as A =
Aα

μ(x) Tαdxμ, Aμ = Aα
μ(x) Tα , where Tα are the infinitesimal generators of a symmetry Lie 

group G, we need to generalize the definition of the Poisson bracket to differential forms and 
define then an associative star product between such quantities. These problems were solved 
in Ref. [33–35,37–39] and here we only report the results. Assuming that �

μν �= �

νμ are the 

components of a nonsymmetric connection on M , we can define two 1-forms of connection

�̃μ
ν = �μ

νρ dxρ, �μ
ν = dxρ �μ

ρν. (6)

Then we can introduce two kinds of covariant derivatives ∇̃ and ∇ , respectively. The curvatures 
for these two connections are respectively

R̃ν
λρσ = ∂ρ�ν

λσ − ∂σ �ν
λρ + �ν

τρ �τ
λσ − �ν

τσ �τ
λρ, (7)

Rν
λρσ = ∂ρ �ν

σλ − ∂σ �ν
ρλ + �ν

ρτ �τ
σλ − �ν

στ �τ
ρλ. (8)

Because the connection coefficients �ρ
μν are not symmetric, the symplectic space-time manifold 

M has also a torsion defined as [40]

T ρ
μν = �ρ

μν − �ρ
νμ. (9)

The connection ∇ satisfies the identity [33,35][∇μ,∇ν

]
α = −Rσ

ρμν dxρ ∧ iσ α − T ρ
μν∇ρα, (10)

and an analogous formula applies for ∇̃. Here, α is an arbitrary differential k-form, and iσ α

denotes the interior product which maps α into a (k − 1)-form (see [33] for definition).
4



M. Chaichian, M.N. Mnatsakanova and M. Oksanen Nuclear Physics B 980 (2022) 115831
It has been proven that in order for the Poisson bracket {, }P to satisfy the Leibniz rule

d {f,g} = {df,g} + {f,dg}, (11)

the bivector θμν(x) has to obey the property [33–35]

∇̃ρθμν = ∂ρθμν + �μ
σρ θσν + �ν

σρ θμσ = 0. (12)

Thus θμν is covariant constant under ∇̃, and ∇̃ is an almost symplectic connection. If in addition 
to ∇̃ρθνν = 0, one imposes ∇ρθμν = 0, then the torsion vanishes, T ρ

μν = 0, and there is only 
one covariant derivative ∇̃ = ∇ . As a consequence, it will not be possible to construct a gauge-
covariant (associative) star product in such a case. In this paper, we do not require that ∇ρθνν = 0.

Now, using the graded product rule for {, }P , one arrives at the following general expression 
of the Poisson bracket between differential forms [33,34,39]

{α,β}P = θρσ ∇ρα ∧ ∇σ β + (−1)|α| R̃ρσ ∧ (
iρα

) ∧ (iσ β) , (13)

where |α| is the degree of the differential form α, and

R̃ρσ = 1

2
R̃ρσ

μν dxμ ∧ dxν, R̃ρσ
μν = θρλ R̃σ

λμν. (14)

In order that (13) satisfies the graded Jacobi identity (see [33,35,39,41] for details), the connec-
tion �ρ

μν must satisfy the following additional conditions [33]

Rν
λρσ = 0, (15)

∇λR̃
μν
ρσ = 0. (16)

Having all these properties established, we can define a gauge-covariant star product between 
arbitrary differential forms. Its general expression is

α � β = α ∧ β +
∞∑

n=1

(
i

2

)n

Cn(α,β), (17)

where Cn(α, β) are bilinear differential operators satisfying the generalized Moyal symmetry 
[33,35,39,41]

Cn

(
αa,βb

)
= (−1)|α| |β|+n Cn

(
βb,αa

)
. (18)

The operator C1 (α,β) coincides with the Poisson bracket defined in equations (13) and (14), i.e. 
C1 (α,β) = {α,β}P . An expression for C2 (α,β) has been also obtained in [33] so that the star 
product (17) satisfies the property of associativity

(α � β) � γ = α � (β � γ ). (19)

Namely, C2 (α,β) has the following general form

C2 (α,β) = 1

2
θμν θρσ ∇μ∇ρα ∧ ∇ν∇σ β

+ 1

3

(
θρσ ∂σ θμν + 1

2
θμσ θνλ T

ρ
σλ

)(∇ρ∇μα ∧ ∇νβ − ∇μα ∧ ∇ρ∇νβ
)

− 1
R̃μν ∧ R̃ρσ ∧ (

iμiρα
) ∧ (iνiσ β)
2

5
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− 1

3
R̃μν ∧ (

iνR̃
ρσ

) ∧
[
(−1)|α| (

iμiρα
) ∧ (iσ β) + (

iρα
) ∧ (

iμiσ β
)]

+ (−1)|α| θμνR̃ρσ ∧ (
iρ∇μα

) ∧ (iσ ∇νβ) . (20)

A generalization of these results to the case of Lie algebra-valued differential forms was done 
in [35,38].

Now, taking into account the graded structure of our Poisson algebra, we define the �-
commutator of two Lie algebra-valued differential forms α = αa Ta and β = βb Tb by

[α,β]� = α � β − (−1)|α||β| β � α. (21)

If α and β are Lie algebra-valued one-forms, we have

[α,β]� = αa ∧ βb [Ta,Tb] + i

2
C1

(
αa,βb

)
{Ta,Tb} +

(
i

2

)2

C2

(
αa,βb

)
[Ta,Tb]

+O
(
θ3

)
. (22)

This result shows that the �-commutator of Lie algebra-valued differential forms does not close, 
in general, in the Lie algebra but in its universal enveloping algebra. Exceptions are the unitary 
or some general linear complex groups where the Lie algebra closes both under the commutator 
[Ta, Tb] and the anticommutator {Ta, Tb} of the infinitesimal generators. As an example, we will 
use the GL(2, C) group in order to develop a noncommutative gauge theory of gravitation. The 
covariant Seiberg-Witten map, obtained in Section 4, will allow us to connect the associated 
noncommutative gauge potentials and strength tensors with their corresponding commutative 
quantities.

3. Noncommutative gauge theory

A non-Abelian gauge theory assumes a Lie algebra of a local symmetry group, whose equa-
tions of structure are

[Ta,Tb] = i f c
ab Tc, a, b, c = 1,2, . . . ,m. (23)

In the usual (commutative) formulation of the theory, the gauge transformations are defined as

δα = i α(x) = αa(x)Ta. (24)

It follows from (23) and (24) that

δα δβ − δβ δα = δ−i[α,β]. (25)

The Lie algebra valued gauge potential Aμ(x) = Aa
μ(x) Ta transforms as

δαAμ = ∂μα + i
[
α,Aμ

]
. (26)

This property allows us to define the covariant derivative and the field strength as follows

Dμ = ∇μ − i
[
Aμ,

]
, (27)

Fμν = ∂μAν − ∂νAμ − i
[
Aμ,Aν

]
. (28)

We remember here that the space-time M is endowed with a connection �ρ
μν , so that

∇μAν = ∂μAν − �ρ
μνAρ.
6
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The noncommutative gauge theory is obtained by replacing the ordinary product with the covari-
ant star product and the integral of action reads as

S = −1

4
T r

∫
d4x |Pf (B)| F̂ μν � F̂μν, (29)

where F̂μν is the noncommutative field strength of the NC gauge potential Âμ, F̂ μν =
θμρθνσ F̂ρσ , and B = θ−1, |Pf (B)| = √

detB , (see [35] and [39] for details). We use the hat 
symbol “ ˆ” to denote the noncommutative quantities of our gauge theory. The action (29) is 
invariant under the noncommutative gauge transformations

δ̂
λ̂
Âμ = ∂μ�̂ + i

[
�̂, Âμ

]
�
, δ

λ̂
F̂μν = i

[
�̂, F̂μν

]
�
, (30)

where �̂ is the noncommutative gauge parameter (0-form) and[
Â, B̂

]
�
= Â � B̂ − B̂ � Â. (31)

The equation (31) applies when one of Â and B̂ is a 0-form as is the case of (30) (see (21) for the 
general definition of the �-commutator of two arbitrary differential forms). We mention also that 
the formulas in (30) are in accord with the gauge equivalence relation (32) for any star product.

In what follows, we will use the gauge-covariant star product, defined in Section 2, to ob-
tain the Seiberg-Witten map for a general gauge group. We will name this map the covariant 
Seiberg-Witten map. Then in Section 5 we will use the GL(2, C) group in order to develop a 
noncommutative gauge theory of gravitation. The covariant Seiberg-Witten map will allow us to 
connect the associated noncommutative gauge potential and strength tensor with the correspond-
ing commutative quantities.

4. Covariant Seiberg-Witten map

The Seiberg-Witten map is defined by the gauge equivalence relation [2,42]

Âμ(A; θ) + δ̂
�̂
Âμ(A; θ) = Âμ(A + δα A; θ), (32)

where A and α are the ordinary (commutative) gauge field and gauge parameter, respectively, 
and δα is the ordinary gauge transformation given by (24). The equation (32) can be rewritten as

δ̂
�̂
Âμ(A; θ) = Âμ(A + δα A; θ) − Âμ(A; θ) = δα Âμ(A; θ). (33)

The ordinary gauge transformation δα on the right hand side of equation (33) acts on the compo-
nents of Â when it is expanded as a power series in θ .

Due to noncommutativity, commutators like 
[
�̂, Âμ

]
�

take values in the enveloping algebra 

in the case of an arbitrary gauge group, not necessarily of the type U(n). Therefore �̂ and Âμ

will also take values in this enveloping algebra. For example, for the parameter �̂ we have [43]

�̂ = �aTa + 1

2
{Ta,Tb}�ab + · · · (34)

The price we have to pay when use the enveloping algebra is that there are infinitely many param-
eters in the expansions of the form (34). However, it is possible to define gauge transformations 
where all these infinitely many parameters depend on the usual gauge parameter α(x) and the 
gauge potential Aμ(x) and on their derivatives. In what follows, the parameters associated to 
7



M. Chaichian, M.N. Mnatsakanova and M. Oksanen Nuclear Physics B 980 (2022) 115831
transformations of this type will be denoted by �̂α(α, A; θ). In other words, we restrict the en-
veloping algebra valued quantities to depend on their ordinary Lie algebra valued counterparts 
[42,43]. Moreover, by allowing the theory to be an enveloping algebra valued one, one can con-
struct the NC gauge theory for an arbitrary gauge group like SU(n) [43].

4.1. Case of Poisson manifold with curvature and torsion

First, let us observe that the noncommutative gauge potential Âμ, the field strength F̂μν and 
the parameter �̂ have the following functional dependence

Âμ = Âμ(A; θ), F̂μν = F̂μν(A; θ), �̂ = �̂α(α,A; θ). (35)

Then it follows that we have to solve equation (32) simultaneously for Âμ and �̂ and this is a 
disadvantage, specially when we like to find the higher order solutions in θ [42].

This difficulty can be avoided by generalizing the ordinary gauge consistency condition (25)
to the noncommutative case in the form [42,43]

i δα�̂β − i δβ�̂α −
[
�̂α, �̂β

]
�
= i �̂−i[α,β]. (36)

Clearly, (36) is an equation only for the gauge parameter �̂α and the solutions can be found order 
by order.

Let us expand the noncommutative parameter �̂α and the gauge potential Âμ as power series 
in θμν

�̂α = α + �(1)
α + �(2)

α + · · · + �(n)
α + · · · , (37)

Âμ = Aμ + A(1)
μ + A(2)

μ + · · · + A(n)
μ + · · · . (38)

In order to obtain the gauge parameter to different orders, we introduce (37) in the gauge con-
sistency condition (36). For the gauge-covariant star product we use expression (17) (for some 
generalizations see also [41]). Applied to the calculation of products like �̂α � �̂β, �̂α � Âμ or 
Âμ � Âν , this star product gives the following results up to the first order in θμν

�̂α � �̂β = αβ + i

2
θρσ ∇ρα∇σ β +O(θ2), (39)

�̂α � Âμ = αAμ + i

2
θρσ ∇ρα∇σ Aμ +O(θ2), (40)

Âμ � Âν = AμAν + i

2

(
θρσ ∇ρAμ∇σ Aν − 1

2
R̃ρσ

μν AρAσ

)
+O(θ2). (41)

For different star products (Moyal, covariant, etc.), the first order term in θμν in (39), (40) or (41)
is the Poisson bracket {α,β}P , {α,Aμ}P or {Aμ,Aν}P respectively, whose definition depends 
on the particular form of the considered star product.

Now, introducing (37) in (36) and using (39) we find in the zeroth order in the equation (25), 
while in the first order we obtain

i δα�
(1)
β − i δβ�(1)

α −
[
α,�

(1)
β

]
−

[
�(1)

α , β
]
− i �

(1)
−i [α,β] = i

2
θρσ {∇ρα,∇σ β}. (42)

Here, ∇ρα = ∂ρα and ∇σ β = ∂σ β because α and β are 0-forms (functions). In the same way, 
from gauge equivalence relation (32) we deduce in the first order in θ
8
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δαA(1)
μ = ∂μ�(1)

α + i
[
�(1)

α ,Aμ

]
+ i

[
α,A(1)

μ

]
− 1

2
θρσ {∇ρα,∇σ Aμ}. (43)

The solutions of the equations (42) and (43) are respectively

�(1)
α = 1

4
θρσ {∇ρα,Aσ }, (44)

and

A(1)
μ = −1

4
θρσ {Aρ,∇σ Aμ + Fσμ}, (45)

where Fσμ is given by (28). We will verify that (44) and (45) are indeed solutions of the equations 
(42) and (43) in the Appendix A.

One can find also the noncommutative field strength F̂σμ from the definition:

F̂μν = ∂μÂν − ∂νÂμ − i
[
Âμ, Âν

]
�
.

In the first order in θ we obtain

F (1)
μν = ∂μA(1)

ν − ∂νA
(1)
μ − i

[
Aμ,A(1)

ν

]
− i

[
A(1)

μ ,Aν

]
− i

[
Aμ,Aν

]
�1 , (46)

where 
[
Aμ,Aν

]
�1 is the star commutator in the first order of θ given in (22), that is

[
Aμ,Aν

]
�1 = i

2
θρσ

({∇ρAμ,∇σ Aν

} − 1

2
R̃λ

σμν

{
Aρ,Aλ

})
.

Then using (45) we can write (46) in the equivalent form

F (1)
μν = −1

4
θρσ

({
Aρ,∇σ Fμν + Dσ Fμν

} − 2
{
Fμρ,Fνσ

})
, (47)

where

Dσ Fμν = ∇σ Fμν − i
[
Aσ ,Fμν

]
(48)

is the gauge covariant derivative of Fμν (see the definition (27)), and

∇σ Fμν = ∂σ Fμν − �ρ
σμFρν − �ρ

σνFμρ. (49)

4.2. Case of Poisson manifold with curvature only - torsion-free

Suppose now that the noncommutative space-time is a Poisson manifold (M, θμν(x)) en-
dowed with a torsion-free connection ∇ . In Ref. [36] a covariant star product which is associative 
was obtained to the third order in θ . In the first order in θ , this product is given by the Poisson 
bracket with covariant derivative. For example, if α = αa Ta is the Lie algebra valued gauge 
parameter, and Aμ = Aa

μ Ta is the Lie algebra valued gauge potential, then

α � Aμ = αAμ + i

2
θρσ ∇ρα ∇σ Aμ +O(θ2), (50)

where ∇ρα ≡ ∂ρα.
As in previous case, using the gauge equivalence relation (32), we obtain the following con-

sistency relation for Âμ(x)

δαA(1)
μ = ∂μ�(1)

α + i
[
�(1)

α ,Aμ

]
+ i

[
α,A(1)

μ

]
− 1

θρσ
{∇ρα,∇σ Aμ

}
, (51)
2

9
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where we used (50) for the star product. This result coincides with that derived in the Section 4.1
because, in the first order in θ , the star products are identically in both cases. The gauge consis-
tence condition for �(1) is given also by the equation (42) as in previous case of Section 4.1.

The equations (42) and (51) have the solutions

�(1)
α = 1

4
θρσ

{∇ρα,Aσ

}
, (52)

and respectively

A(1)
μ = −1

4
θρσ

{
Aρ,∇σ Aμ + Fσμ

}
, (53)

where

Fσμ = ∂σ Aμ − ∂μAσ − i
[
Aσ ,Aμ

]
. (54)

We verify that (52) and (53) are solutions of the equation (42) and respectively (51) as shown 
in the Appendix B. It is important to observe that in this case the connection ∇ is symmetric, 
i.e. �ρ

μν = �
ρ
νμ. As a consequence, we will see that (53) is a solution of equation (51) only if 

∇ρθμν = 0, i.e. if the parameter θμν(x) is covariant constant. However, this does not mean that 
θμν(x) is constant, and therefore the covariant Seiberg-Witten map differs from the usual one 
with θμν(x) ≡ const . This result shows again the very restrictive conditions imposed by Jacobi 
identity and associativity of the covariant star product.

The case presented in Section 4.2 appears more convenient for developing a gauge theory on 
a Riemannian noncommutative space-time (i.e. torsion-free). But we have to extend the corre-
sponding star product [36] to Lie algebra valued differential forms and achieve the property of 
associativity for the star product of such quantities. Since the covariant derivative ∇μ acts differ-
ently on functions, tensors or differential forms, the property of associativity is not automatically 
assured when we go from functions to the tensors in the star-product. Having this property satis-
fied as described in Section 2, we can calculate also the higher order terms A(2)

μ and A(3)
μ of the 

noncommutative gauge field Âμ, because the star product is defined to the third order in θ in this 
case in Ref. [36].

We make now the following important observation. In both cases presented in Section 4.1 and 
Section 4.2, the gauge equivalence condition (32) is satisfied, and this leads us to the following 
generally accepted transformation law of the noncommutative gauge field Aμ

δ
�̂
Âμ = ∂μ�̂ + i

[
�̂, Âμ

]
�
. (55)

This transformation law is not assured in this form when one uses covariant coordinate method 
(see Ref. [12]). Therefore, we suspect that Âμ, defined in these references by the relation Âμ =
θμνÂν using the covariant coordinates X̂μ = xμ + Âμ, do not represent, in general, the true 
noncommutative gauge potential.

It is also possible to obtain general expressions for the noncommutative gauge parameter, 
gauge field and strength tensor in higher orders in θμν , starting from the gauge equivalence 
relation (32). The results have the same form as in the case of Moyal star product [42], but they 
differ by the covariant star product which we are using here. Thus, in the order (n + 1) in θμν

we have

�(n+1) = − 1

4(n + 1)
θρσ

∑ {
A(p)

ρ ,∇σ �(q)
}

�r
, (56)
p+q+r=n

10
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A(n+1)
μ = − 1

4(n + 1)
θρσ

∑
p+q+r=n

{
A(p)

ρ ,∇σ A(q)
μ + F (q)

σμ

}
�r

, (57)

F (n+1)
σν = − 1

4(n + 1)
θρσ

∑
p+q+r=n

({
A(p)

ρ ,∇σ F (q)
μν + Dσ F (q)

μν

}
�r

− 2
{
F (p)

μρ ,F (q)
νσ

}
�r

)
,

(58)

with n = 0, 1, 2, · · · and where {, }�r denotes the term of r order in the θ expansion of the star-
anticommutator

{α,β}� = α � β + (−1)|α||β| β � α.

As a conclusion, we emphasize again that the coordinate dependence of θμν appears in the 
expression of the covariant star product only, while the general expressions for the gauge param-
eter, gauge potential and strength tensor have the same general forms for any star product we use 
in a noncommutative gauge theory. Of course, in our case, the ordinary derivative ∂μ is changed 
by covariant derivative ∇μ as we can see in equations (56) - (58).

5. Noncommutative gauge theory of gravity

As an application of the covariant Seiberg-Witten map obtained in Section 4.2, we consider the 
case when the symplectic space-time manifold M is associated to a gauge theory of gravitation 
with the GL(2, C) group as local symmetry (see [44–47] for notations and definitions). The 
infinitesimal generators of GL(2, C) group are (σab, γ5, I ), where

σab = − i

4

[
γa, γb

]
, γ5 = iγ0γ1γ2γ3. (59)

Here, γa, a = 0, 1, 2, 3 denote the Dirac matrices and I is the unit matrix.
The commutative GL(2, C) gauge theory of gravitation is expressed in terms of gauge poten-

tial one-form

A = Aμ dxμ = (ωμ + aμ I + i bμ γ5) dxμ, (60)

where ωμ = i
2 ωab

μ (x) σab is the spin connection, and aμ = aμ(x) and bμ = bμ(x) are two U(1)

gauge potentials [44,46,47]. The corresponding 0-form of gauge parameter is

� = λ + α I + i β γ5, (61)

where λ = 1
2 λab σab , and α and β are two infinitesimal gauge parameters associated to the gen-

erators I and γ5 respectively.
In addition, one introduces the 1-form of vierbein fields

E = Eμ dxμ = (
ea
μ γa + f a

μ γ5 γa

)
dxμ. (62)

The commutative GL(2, C) gauge transformations of A and E are

δ�A = d� + i [�,A] (63)

and

δ�E = i [�,E] , (64)

respectively.
11
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The 2-forms of the curvature F and torsion T are

F = dA − i

2
[A,A] =

(
1

2
Rab

μν σab + Gμν I + i Hμν γ5

)
dxμ ∧ dxν (65)

and

T = dE − i [E,A] = 1

2

(
T̃ a

μν γa + Ũa
μν γ5 γa

)
dxμ ∧ dxν, (66)

respectively. Here

Rab
μν = ∂μωab

ν − ∂νω
ab
μ +

(
ωac

μ ωdb
ν − ωac

ν ωdb
μ

)
ηcd, (67)

T̃ a
μν = T a

μν − 2
(
f a

μ bν − f a
ν bμ

)
,

T a
μν = ∂μea

ν − ∂νe
a
μ +

(
ωab

μ ec
ν − ωab

ν ec
μ

)
ηbc, (68)

and

Ũa
μν = Ua

μν − 2
(
ea
μ bν − ea

ν bμ

)
,

Ua
μν = ∂μ f a

ν − ∂νf
a
μ +

(
ωab

μ f c
ν − ωab

ν f c
μ

)
ηbc. (69)

In these expressions Rab
μν and T a

μν are the usual strength tensors connected with the curvature 
R̃ν

λρσ and torsion T ρ
μν of the symplectic space-time manifold M (see equations (81) and (82)). A 

second torsion Ũ a
μν defined with the vierbein f a

μ is obtained in the case of the GL(2, C) gauge 
theory. Also, we denoted by Gμν and Hμν the strength tensors associated to the two U(1) gauge 
potentials aμ(x) and bμ(x):

Gμν = ∂μaν − ∂νaμ, Hμν = ∂μbν − ∂νbμ. (70)

Let us formulate the noncommutative gauge theory of gravitation with GL(2, C) as gauge 
group. The 1-form of the gauge gravitational potential and 0-form gauge parameter in the non-
commutative case can be written, in analogy with (60) and (61), as

Â = Âμ dxμ =
(
ω̂μ + âν I + i b̂μ γ5

)
dxμ (71)

and

�̂ = λ̂ + α̂ I + i β̂ γ5 (72)

respectively. Remember that we use the hat symbol “ ˆ” to denote the noncommutative quantities 
of our gauge theory. In addition, the noncommutative vierbein 1-form is introduced in analogy 
with (62)

Ê = Êμ dxμ =
(
êa
μ γa + f̂ a

μ γ5 γa

)
dxμ. (73)

As a result, additional degrees of freedom, i.e. the gauge fields âμ, b̂μ and f̂ a
μ , compared to 

the case when SL(2, C) would be considered as gauge group, appear. However, we can use our 
covariant Seiberg-Witten map obtained in Section 4.1 to relate the noncommutative quantities 
Âμ and �̂ on their commutative counterparts Aμ and �. We obtain with (52) and (53) to the first 
order in θ , the following expressions

�̂ = � + 1
θρσ

{∇ρ�,Aσ

}
, ∇ρ� ≡ ∂ρ� (74)
4

12
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and

Âμ = Aμ − 1

4
θρσ

{
Aρ,∇σ Aμ + Fσμ

}
, (75)

where Fσμ is given by (28). These results generalize those of [44] by using the covariant star 
product instead of the usual Moyal star product.

Thus the covariant Seiberg-Witten map for the vierbein Êμ can be obtained from the gauge 
equivalence condition [44]

Êμ + δ
�̂
Êμ = Êμ (E + δ�E,A + δ�A) . (76)

The solution of this equation up to the first order in θμν is

Êμ = Eμ − 1

2
θρσ

{
Aρ,∇σ Eμ + i

2

[
Eμ,Aσ

]}
. (77)

The resulting first order expressions for the components of 1-forms Â and Ê are given in 
Appendix C.

Now we have to impose the restrictions which assure the associativity of the gauge-covariant 
�-product. To end this, we define a nonsymmetric connection �ρ

μν on the symplectic space-time 
manifold M by

�ρ
μν = ēρ

a

(
ωab

ν ebμ + ∂νe
a
μ

)
, (78)

where ēρ
a is the inverse vierbein, i.e.

ēρ
a ea

σ = δρ
σ , ēρ

a eb
ρ = δb

a, (79)

and ηab = diag(1, 1, 1, −1) is the Minkowski metric. The definition (78) assures us that ω and �
represent one and the same object in two different frames on M [40].

Because �ρ
μν �= �

ρ
νμ, the symplectic space-time manifold M can be endowed with a torsion 

having the components [40]

T ρ
μν = �ρ

μν − �ρ
νμ. (80)

Also, we can define two different curvatures R̃ν
λρσ (see equation (7)) and Rν

λρσ (see equation 
(8)). We can prove [40,48] that the torsion T ρ

μν and the curvature R̃ν
λρσ associated to the non-

symmetric connection (78) are given, equivalently, by

T ρ
μν = ēρ

a T a
μν, (81)

and respectively

R̃ν
λρσ = ēν

σ ebλ Rab
ρσ . (82)

We define then the curvature tensor R̃ρσ
μν as in (14), and impose the restrictions (12), (15)

and (16) in order to assure the associativity of the gauge-covariant star product (17) [33,35,41]. 
Therefore, we have to select only those GL(2, C) gauge fields ωab

μ and ea
μ which satisfy the 

above mentioned restrictions. It is important to emphasize that we postulate that the curvature 
and torsion of our symplectic space-time manifold M are determined only by the gauge fields 
ωab and ea , while the other gauge fields aμ, bμ and f a are considered as auxiliary fields.
μ μ μ

13
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Now, we can use the expression (17) to obtain the components of the strength tensor F̂μν , 
associated to the gauge potential Âμ, in the first order in θμν . The results are presented in Ap-
pendix D.

Furthermore, the components of the noncommutative torsion T̂ are obtained from the expres-
sion

T̂ = dÊ − i
[
Ê, Â

]
�
= 1

2

(
T a

μν γa + Û a
μν γ5 γa

)
dxμ ∧ dxν, (83)

which is an extension of the definition (66) to the noncommutative case. The results are presented 
in Appendix E.

Having the expression for F̂μν and Êμ we can construct an action which is gauge invariant 
under GL(2, C) [44]

S =
∫

d4x
(
det θμν

)− 1
2 εμνρσ tr

(
(α1 + β1 γ5) Êμ � Êν � F̂ρσ

+ (α2 + β2 γ5) Êμ � Êν � Êρ � Êσ

)
+ h.c., (84)

where α1, β1, α2 and β2 are arbitrary constants. The first nonvanishing correction of the action 
is of the second order in θμν [49]. Here, the volume form on the symplectic space-time manifold 
M , i.e. (det θμν)−

1
2 d4x (see equation (29)), appears naturally and it assures the following trace 

property of the integral to any order in θμν .∫
d4x

(
det θμν

)− 1
2 tr (α � β) =

∫
d4x

(
det θμν

)− 1
2 tr (β � α) . (85)

It can be verified that the action in equation (84) is gauge invariant under GL(2, C) because 
using the property (85) we have

δ
�̂
S =

∫
d4x

(
det θμν

)− 1
2 εμνρσ tr

(
i
[
�̂, (α1 + β1 γ5) Êμ � Êν � F̂ρσ

+ (α2 + β2γ5) Êμ � Êν � Êρ � Êσ

]
�

)
= 0. (86)

Using the expression (84) we can obtain the field equations for the component gauge fields of Âμ

and Êμ by imposing the principle of minimum action δS = 0. The resulting equations would be, 
in general, very complicated which shows that the Seiberg-Witten map is preferable in obtaining 
the noncommutative gauge fields as functions of their commutative counterparts.

As a very simple example illustrating this GL(2, C) noncommutative model we consider 
case when our symplectic space-time manifold M has spherical symmetry and is associated with 
a teleparallel gauge theory of gravitation. Namely, we choose the gauge fields ea

μ and ωab
μ as [35]

ea
μ = diag

(
A,1,1,

1

A

)
, ēa

μ = diag

(
1

A
,1,1,A

)
, ωab

μ = 0, (87)

where A = A(r) is a function depending only on the radial coordinate r . Then denoting the co-
ordinates on M by (xμ) = (r, θ,ϕ, t), μ = 1, 2, 3, 0, the non-null components of the connection 
coefficients �ρ

μν defined in (78) are

�0
10 = −A′

A
, �1

11 = A′

A
. (88)

The only non-null components of the torsion defined in (80) are
14
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T 0
01 = −T 0

10 = A′

A
. (89)

The covariant derivative of the torsion tensor with the components (89), defined as

∇μT ν
ρσ = ∂μT ν

ρσ + �ν
μλ T λ

ρσ − �λ
μρ T ν

λσ − �λ
μσ T ν

ρλ, (90)

has the following non-null components

∇1T
0
01 = −∇1T

0
10 = AA′′ − 2A′2

A2 . (91)

As a result, for the two curvatures defined in (7), (8) we obtain

R̃
μ
νλρ = 0, R̃0

101 = −R̃0
110 = AA′′ − 2A′2

A2 , (92)

and all other components of R̃μ
νλρ vanish. In these expressions, we denoted the first and second 

derivative of A(r) by A′ and A′′ respectively.
In accord with (15) we have to impose the restriction of vanishing of the curvature R̃μ

νλρ , 
which is realized if the function A(r) satisfies the differential equation [see (92)]

AA′′ − 2A′2 = 0. (93)

The solution of this equation is

A(r) = − 1

θ1 + θ2 r
, (94)

where θ1 and θ2 are two constants of integration. Therefore, our symplectic space-time manifold 
M has no curvature (R̃μ

νλρ = 0, Rμ
νλρ = 0) but only torsion (T ρ

μν �= 0) if we chose A(r) as in 
(94), i.e. it corresponds to a teleparallel gauge theory of gravitation. Moreover, because of the 
restriction (93), the torsion T ρ

μν is covariant constant, ∇λT
ρ
μν = 0, a result which is in concordance 

with the general property

R̃
μ
νλρ − R

μ
νλρ = ∇λT

μ
ρν + ∇P T

μ
νλ + T

μ
λσ T σ

ρν + T μ
ρσ T σ

νλ + T μ
νσ T σ

λρ.

We chose then the noncommutative parameters θμν under the form

θμν =

⎛
⎜⎜⎜⎝

0 − a
A(r)

− b
A(r)

0
a

A(r)
0 0 −cA(r)

b
A(r)

0 0 −d A(r)

0 cA(r) d A(r) 0

⎞
⎟⎟⎟⎠ , (95)

where a, b, c, d are constants supposed to satisfy the condition ad − bc �= 0, which ensures that 
det θμν = (ad − bc)2 does not vanish. It is easy to verify that the parameters θμν defined in (95)
satisfy the restriction (12).

Collecting all these results, we can obtain the expressions of the gauge fields and strength 
tensor to the first order in θ . The results are given in the Appendix F. We can see from these 
results that the first order corrections to the noncommutative gauge field ω̂ab

μ and curvature tensor 

R̂ab
μν are vanishing.
Unfortunately, all previous corrections of first order and of course of second order are very 

complicated even in this very simple illustrative example. They can simplify if we choose 
some particular expressions for the two U(1) gauge fields aμ(x), bμ(x) and the vierbeins 
15
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ea
μ(x), f a

μ(x). However, the physical significance of the two U(1) gauge fields and the addi-
tional vierbein field f a

μ(x) remains an open problem. Perhaps this problem could be solved in a 
unified gauge theory for gravitation with the other fundamental interactions.

It would be very interesting to develop a noncommutative gauge theory of gravity using other 
gauge groups like the Poincaré group. In such cases it may be necessary to extend the Lie algebra 
to its universal enveloping algebra. The covariant star product and Seiberg-Witten map defined in 
previous sections can in principle be applied to any gauge symmetry, including the ones whose 
gauge algebra does not close under the star product, since the Seiberg-Witten map enables us to 
work with the universal enveloping of the gauge algebra [43]. However, there is a major difficulty 
in defining the noncommutative curvature and torsion tensors using expressions similar with (81)
and (82). This problem remains open for new researches on the applicability of the Seiberg-
Witten map to the different types of star products.

6. Conclusions and discussions

In our work we obtained the Seiberg-Witten map for a noncommutative gauge theory de-
veloped over a symplectic space-time manifold endowed with the covariant star-product. By 
these means we can achieve noncommutative gauge theories that are Lorentz invariant and 
gauge covariant. The covariant star-product is defined for any differential forms (17), and then 
applied to the quantities of gauge theory like A = Aμ dxμ (the gauge potential 1-form) and 
F = 1

2Fμν dxμ ∧ dxν (the strength 2-form). The symplectic space-time manifold used in our 
approach has both curvature and torsion, and our formulation of noncommutative gauge theory 
with the covariant star product is also suited for gauge theories of gravity more general than 
General Relativity, e.g. Poincaré gauge theory and its extensions. As an example we considered 
noncommutative GL(2, C) gauge theory of gravity.

The basic idea which we adopted to construct the covariant Seiberg-Witten map was to impose 
the standard gauge equivalence relation (see equation (32), which we supposed to be satisfied by 
any type of star-product (covariant or not). Then we obtained the first order deformations in θμν

for the gauge parameter and gauge potential. It was possible also to express the higher order 
deformations for gauge parameter, gauge potential and strength tensor in the same form as in 
the standard case of a noncommutative theory. We concluded that the dependence of θμν(x)

on coordinates appears in the expression of the covariant star product only, while the general 
expressions for the gauge parameter, gauge potential and strength tensor have the same general 
forms for any star product we use in a noncommutative gauge theory.

We applied our results to the case when the space-time is a symplectic manifold M associated 
to a gauge theory of gravitation with the local group of symmetry. We determined the gauge 
parameter, gauge potential and strength tensor in the first order in noncommutativity parameters. 
Their expressions are similar with those obtained by using a Moyal star-product [42], but with 
the ordinary derivative changed by the covariant derivative. However, in higher orders in θμν

they will be different because the covariant star-product differs from the Moyal product not only 
by the covariant derivative but even by terms which include the derivatives of the parameters 
θμν .

As a very simple example illustrating the GL(2, C) noncommutative model we considered 
case when the symplectic space-time manifold M has spherical symmetry and is associated with 
a teleparallel gauge theory of gravitation. This example showed that it is possible to accommodate 
the gauge connection so that it determines a space-time having a symplectic structure and which 
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is endowed with a covariant star-product. This means that it is possible to impose on the gauge 
connection all the restrictions required by the covariant star-product.

In order to apply the covariant Seiberg-Witten map to other gauge theories of gravitation, as 
would be for example those where the gauge group is Poincaré or de-Sitter [50,51], we need to 
extend the Lie algebra to its universal enveloping. However, there is a major difficulty in defining 
the noncommutative curvature and torsion tensors using expressions similar with those from the 
case when Lie algebra closes both under commutator and anti-commutator of the infinitesimal 
generators.

It would be also interesting to obtain the covariant Seiberg-Witten map in the case of a gauge 
theory defined on a noncommutative space-time endowed with curvature only (torsion-free). 
However, this will require the construction of a covariant star-product between differential forms 
on such a space-time. For example, we could try to extend the results of [36], which are valid 
for the star-product between functions only, to the case of differential forms. We believe that this 
extension will impose the introduction of a connection with curvature and torsion, i.e. we will 
arrive to the structure described in [33]. Therefore, the construction of a covariant star-product 
between differential forms defined over a space-time manifold having only curvature (without 
torsion) remains an open problem for new researches.
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Appendix A. Solution for �(1)
α and A(1)

μ

Here we verify that (44) and (45) are indeed solutions of (42) and respectively (43). Because 
the equation (42) is identically with that from the case when θμν is constant, i.e. the dependence 
of θμν on coordinates does not bring supplementary terms in (42), the solution (44) is the same 
as for θμν = constant .

This is not the case for the equation (43). Indeed, using the solutions (44) and (45), we can 
write the equation (43) under the form

δαA(1)
μ = δαĀ(1)

μ + 1

4

(
∂μθρσ

) {
∂ρα,Aσ

} + i

4
θρσ �λ

σμ

[
α,

{
Aρ,Aλ

}]
+ 1

2
θρσ �λ

σμ

{
∂ρ α,Aλ

}
, (A.1)

where we denoted

A(1)
μ = Ā(1)

μ + 1

4
θρσ �λ

σμ

{
∂ρα,Aλ

}
, (A.2)

and

Ā(1)
μ = −1

θρσ
{
Aρ, ∂σ Aμ + Fσμ

}
. (A.3)
4
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Now we compute δαA
(1)
μ using the solution (A.2)

δαA(1)
μ = δαĀ(1)

μ + 1

4
θρσ �λ

σμ δα

{
Aρ,Aλ

}
. (A.4)

But

δα

{
Aρ,Aλ

} = {
∂ρα,Aλ

} + {
∂λα,Aρ

} + i
[
α

{
Aρ,Aλ

}]
, (A.5)

and therefore we can write (A.4) as

δαA(1)
μ = δαĀ(1)

μ + 1

4
θρσ �λ

σμ

{
∂ρα,Aλ

} + 1

4
θρσ �λ

σμ

{
∂λα,Aρ

}
+ i

4
θρσ �λ

σμ

[
α,

{
Aρ,Aλ

}]
. (A.6)

Identifying (A.1) with (A.6) we obtain the following condition that assures that (45) is solution 
of the equation (43)

1

4

(
∂μθρσ

) {
∂ρα,Aσ

} + i

4
θρσ �λ

σμ

[
α,

{
Aρ,Aλ

}] + 1

2
θρσ �λ

σμ

{
∂ρα,Aλ

}
= 1

4
θρσ �λ

σμ

{
∂ρα,Aλ

} + 1

4
θρσ �λ

σμ

{
∂λα,Aρ

} + i

4
θρσ �λ

σμ

[
α,

{
Aρ,Aλ

}]
. (A.7)

Equivalently, (A.7) can be written as[
∂μθρλ + �ρ

σμ θσλ + �λ
σμ θρσ

] {
∂ρα,Aλ

}
. (A.8)

It is known that in order that the Poisson bracket {, }P satisfies the Leibniz rule, the bivector 
θμν(x) has to obey the property (12), i.e.

∇̃μθρλ = ∂μθρλ + �ρ
σμ θσλ + �λ

σμ θρσ = 0. (A.9)

Then the condition (A.8) is verified and this means that (45) is indeed the solution of the equation 
(43).

We remark here that on a Poisson manifold endowed with a non-symmetric connection, there 
is another covariant derivative ∇μ with the property that, in general,

∇μθρλ = ∂μθρλ + �ρ
μσ θσλ + �λ

σμ θρσ �= 0

(for details see Refs. [33] and [35]).
As a conclusion, we stress that because of the restrictions imposed on bivector θμν(x) (Jacobi 

identity and property (A.9)), the derivatives of θμν(x) do not appear at first order in the Seiberg-
Witten map.

Appendix B. Solution for �(1)
α and A(1)

μ in the torsion-free case

Here we verify that (53) is a solution of the equation (51). The consistency condition for the 
gauge parameter is the same as in the case of a noncommutative Minkowski space-time. So it 
remains to verify the consistence condition (51) for the gauge field only.

As in Appendix A, we find that (53) is a solution of the equation (51) if the following relation 
is satisfied:[

∂μθρλ + �ρ
σμ θσλ + �λ

σμ θρσ
] {

∂ρα,Aλ

} = 0. (B.1)
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But in this case the connection ∇ is symmetric, i.e. �ρ
μν = �

ρ
νμ. As a consequence, the relation 

(B.1) can be written as

[
∂μθρλ + �ρ

μσ θσλ + �λ
μσ θρσ

] {
∂ρα,Aλ

} ≡ ∇μθρλ
{
∂ρα,Aλ

} = 0. (B.2)

Equivalently, the relation (B.2) imposes the restriction

∇μθρλ = 0. (B.3)

The conclusion is that in the first order in θ , the Seiberg-Witten map is identically in the two 
cases 4.1 and 4.2, but in the case 4.2 we have to impose the condition of constant covariance 
for deformation parameter θμν(x). This restriction is not necessary in the case 4.1 where the 
connection ∇ is non-symmetric, i.e. �ρ

μν �= �
ρ
νμ, and where the condition ∇̃μθρλ = 0 assures 

that (53) is a solution of the equation (51) (see Refs. [33], [35], [38] and [39] for details).

Appendix C. Noncommutative GL(2, C) gauge fields

Here we give the expressions of the noncommutative GL(2, C) gauge fields by using the 
covariant Seiberg-Witten map to the first order in θμν :

ω̂ab
μ = 1

2
θρσ

[
ωab

ρ

(∇σ aμ + Gσμ

) + aρ

(
∇σ ωab

μ + Rab
σμ

)
− 1

2
εab
cd ωcd

ρ

(∇σ bμ + Hσμ

) − 1

2
εab
cd bρ

]
, (C.1)

âμ = aμ − 1

2
θρσ

[
aρ

(∇σ aμ + Gσμ

) − bρ

(∇σ bμ + Hσμ

)
− 1

8
ηac ηbd ωcd

μ

(
∇σ ωab

μ + Rab
σμ

)]
, (C.2)

b̂μ = bμ − 1

2
θρσ

[
aρ

(∇σ bμ + Hσμ

) + bρ

(∇σ aμ + Gσμ

)
− 1

16
εabcd ωab

ρ

(
∇σ ωcd

μ + Rcd
σμ

)]
, (C.3)

êa
μ = ea

μ − θρσ

[
aρ

(
∇σ ea

μ + 1

2
ωab

σ ebμ + bσ f a
μ

)

+1

4
εa
bcd ωbc

ρ

(
∇σ f d

μ + 1

2
ωde

σ feμ + bσ ed
μ

)]
, (C.4)

f̂ a
μ = f a

μ − θρσ

[
aρ

(
∇σ f a

μ + 1

2
ωab

σ f a
μ + 1

2
ωab

σ fbμ + bσ ea
μ

)

+1

4
εa
bcd ωbc

ρ

(
∇σ ed

μ + 1

2
ωde

σ eeμ + bσ f d
μ

)]
, (C.5)

where ebμ = ηbc ec and fbμ = ηbc f c .
μ μ
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Appendix D. Strength tensor in noncommutative GL(2, C) gauge theory

If we write F̂μν as

F̂μν = 1

4
R̂ab

μν σab + Ĝμν I + i Ĥμν γ5, (D.1)

then we obtain from (47)

R̂ab
μν = Rab

μν − 1

2
θρσ

[
ωab

ρ

(∇σ Gμν + Dσ Gμν

) + aρ

(
∇σ Rab

μν + Dσ Rab
μν

)
−1

2
ωcd

ρ

(∇σ Hμν + Dσ Hμν

)
εab
cd − bρ

(
∇σ Rcd

μν + Dσ Rcd
μν

)
εab
cd

−2Rab
μρ Gνσ + Rcd

μρ Hνσ εab
cd + Hμρ Rcd

νσ εab
cd

]
, (D.2)

Ĝμν = Gμν − 1

2
θρσ

[
aρ

(∇σ Gμν + Dσ Gμν

) − Gμρ Gνσ

− bρ

(
∇σ Hab

μν + Dσ Hμν

)
+ Hμρ Hνσ

−1

8
ωab

ρ

(
∇σ Rcd

μν + Dσ Rcd
μν

)
ηac ηbd + 1

4
Rab

μρ Rcd
νσ ηac ηbd

]
, (D.3)

Ĥμν = Hμν − 1

2
θρσ

[
aρ

(∇σ Hμν + Dσ Hμν

) + bρ

(∇σ Gμν + Dσ Gμν

)
− 2Gμρ Hνσ − 2Hμρ Gνσ − 1

16
ωab

ρ

(
∇σ Rcd

μν + Dσ Rcd
μν

)
εabcd

+1

8
Rab

μρ Rcd
νσ εabcd

]
. (D.4)

Appendix E. Torsion in noncommutative GL(2, C) gauge theory

If we expand the noncommutative quantities in (83) as

T̂ = T + T (1) + T (2) + · · · , (E.1)

Ê = E + E(1) + E(2) + · · · , (E.2)

Â = A + A(1) + A(2) + · · · , (E.3)

then we obtain in the first order in θμν the following results

T a
μν

(1) = ∂μea
ν
(1) − ∂νe

a
μ

(1) +
(
ωab

μ ebν
(1) − ωab

ν ebμ
(1)

)
− 2

(
f a

μ
(1)

bν − f a
ν

(1)
bμ

)
+

(
ωab

μ

(1)
ebν − ωab

ν

(1)
ebμ

)
− 2

(
f a

μ b(1)
ν − f a

ν b(1)
μ

)
+ [

C1
(
ea
μ, aν

) − C1
(
ea
ν , aμ

)] − εa
bcd

[
C1

(
f b

μ,ωcd
ν

)
− C1

(
f b

ν ,ωcd
μ

)]
, (E.4)

Ua
μν

(1) = ∂μf a
ν

(1) − ∂νf
a
μ

(1) +
(
ωab

μ fbν
(1) − ωab

ν fbμ
(1)

)
− 2

(
ea
μ

(1)
bν − ea

ν
(1)

bμ

)
+

(
ωab

μ

(1)
fbν − ωab

ν

(1)
fbμ

)
− 2

(
ea
μ b(1)

ν − ea
ν b(1)

μ

)
+ [

C1
(
f a

μ, aν

) − C1
(
f a

ν , aμ

)] − 1

4
εa

bcd

[
C1

(
eb
μ,ωcd

ν

)
− C1

(
eb
ν,ω

cd
μ

)]
, (E.5)
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where ωab
μ

(1)
, aμ, ea

μ
(1), f a

μ
(1) are determined from the equations (C.1) - (C.5), and the bilinear 

operators C1(, ) are given by expressions of the form (13). For example, we have

C1
(
ea
μ, aν

) = θρσ

(
∇ρea

μ ∇σ aν − 1

2
R̃λ

σμν ea
ρ aλ

)
, (E.6)

and similar expressions can be written for other bilinear operators in (E.4) and (E.5). In obtaining 
the expression (E.6) we used, in addition to (13), the definitions (14).

Appendix F. First-order corrections in noncommutative GL(2, C) gauge theory

Using the expressions (C.1) - (C.5), we obtain

ωab
μ = O(θ2), (F.1)

âμ = aμ − 1

2
θρσ

[
aρ

(∇σ aμ + Gσμ

) − bρ

(∇σ bμ + Hσμ

)] + O(θ2), (F.2)

b̂μ = bμ − 1

2
θρσ

[
aρ

(∇σ bμ + Hσμ

) + bρ

(∇σ aμ + Gσμ

)] +O(θ2), (F.3)

êa
μ = ea

μ − θρσ
[
aρ

(∇σ ea
μ + bσ f a

μ

)] +O(θ2), (F.4)

f̂ a
μ = f a

μ − θρσ
[
aρ

(∇σ f a
μ + bσ ea

μ

)] +O(θ2). (F.5)

Correspondingly, the first order noncommutative corrections of the strength tensor F̂μν and tor-
sion T̂μν are

R̂ab
μν = O(θ2), (F.6)

Ĝμν = Gμν − 1

2
θρσ

[
aρ

(∇σ Gμν + Dσ Gμν

) − 2Gμρ Gνσ

−bρ

(∇σ Hμν + Dσ Hμν

) + 2Hμρ Hνσ +O(θ2), (F.7)

Ĥμν = Hμν − 1

2
θρσ

[
aρ

(∇σ Hμν + Dσ Hμν

) − 2Gμρ Gνσ

+bρ

(∇σ Gμν + Dσ Gμν

) − 2Hμρ Gνσ +O(θ2), (F.8)

T̂ a
μν = T̃ a

μν + ∂μea
ν
(1) − ∂νe

a
μ

(1) − 2
(
f a

μ
(1)

bν − f a
ν

(1)
bμ

)
− 2

(
f a

μ b(1)
ν − f a

ν b(1)
μ

)
+ [

C1
(
ea
μ, aν

) − C1
(
ea
ν , aμ

)] +O(θ2), (F.9)

Ûa
μν = Ũ a

μν + ∂μf a
ν

(1) − ∂νf
a
μ

(1) − 2
(
ea
μ

(1)
bν − ea

ν
(1)

bμ

)
− 2

(
ea
μ b(1)

ν − ea
ν b(1)

μ

)
+ [

C1
(
ea
μ, aν

) − C1
(
ea
ν , aμ

)] + [
C1

(
f a

μ, aν

) − C1
(
f a

ν , aμ

)] +O(θ2). (F.10)
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