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Abstract

Our devices have become accustomed to being always connected to the
Internet. Our devices from handheld devices, such as smartphones and
tablets, to our laptops and even desktop PCs are capable of using both
wired and wireless networks, ranging from mobile networks such as 5G
or 6G in the future to Wi-Fi, Bluetooth, and Ethernet. The applications
running on the devices can use different transport protocols from traditional
TCP and UDP to state-of-the-art protocols such as QUIC. However, most
of our applications still use TCP, UDP, and other protocols in a similar
way as they were originally designed in the 1980s, four decades ago. The
transport connections are a single path from the source to the destination,
using the end-to-end principle without taking advantage of the multiple
available transports.

Over the years, there have been a lot of studies on both multihoming and
multipath protocols, i.e., allowing transports to use multiple paths and in-
terfaces to the destination. Using these would allow better mobility and
more efficient use of available transports. However, Internet ossification has
hindered their deployment. One of the main reasons for the ossification is
the IPv4 Network Address Translation (NAT) introduced in 1993, which
allowed whole networks to be hosted behind a single public IP address.
Unfortunately, how this many-to-one translation should be done was not
standardized thoroughly, allowing vendors to implement their own versions
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of NAT. While breaking the end-to-end principle, the different versions of
NATs also behave unpredictably when encountering other transport proto-
cols than the traditional TCP and UDP, from forwarding packets without
translating the packet headers to even discarding the packets that they
do not recognize. Similarly, in the context of multiconnectivity, NATs
and other middleboxes such as firewalls and load balancers likely prevent
connection establishment for multipath protocols unless they are specially
designed to support that particular protocol.

One promising avenue for solving these issues is Software-Defined Network-
ing (SDN). SDN allows the forwarding elements of the network to remain
relatively simple by separating the data plane from the control plane. In
SDN, the control plane is realized through SDN controllers, which control
how traffic is forwarded by the data plane. This allows controllers to have
full control over the traffic inside the network, thus granting fine-grained
control of the connections and allowing faster deployment of new proto-
cols. Unfortunately, SDN-capable network elements are still rare in Small
Office / Home Office (SOHO) networks, as legacy forwarding elements that
do not support SDN can support the majority of contemporary protocols.
The most glaring example is the Wi-Fi networks, where the Access Points
(AP) typically do not support SDN, and allow traffic to flow between clients
without the control of the SDN controllers.

In this thesis, we provide a background on why multiconnectivity is still
hard, even though there have been decades worth of research on solving
it. We also demonstrate how the same devices that made multiconnec-
tivity hard can be used to bring SDN-based traffic control to wireless and
SOHO networks. We also explore how this SDN-based traffic control can be
leveraged for building a network orchestrator for controlling and managing
networks consisting of heterogeneous devices and their controllers. With
the insights provided by the legacy devices and programmable networks,
we demonstrate two different methods for providing multiconnectivity; one
using network-driven programmability, and one using a userspace library,
that brings different multihoming and multipathing methods under one
roof.

Computing Reviews (2012) Categories and Subject
Descriptors:

Networks → Network components → Middle boxes / Network
appliances
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Networks → Wireless access networks
Networks → Network layer protocols
Networks → Transport protocols
Networks → Session protocols
Networks → Network Components → Bridges and switches
Networks → Control path Algorithms

General Terms:
Software-Defined Networking, Multipath, Multihoming,
Multiconnectivity, Network orchestration, IoT, Wi-Fi Networks

Additional Key Words and Phrases:
Middleboxes, Legacy Hardware, Wireless Access Points, Programmable
Networks
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Chapter 1

Introduction

Internet connectivity is a mainstay of the modern world. We are all al-
most always connected to the Internet, usually through our smartphones.
The advances in technology have made it possible for us to be connected
even when we are moving, and at the same time, fixed landline connections
have become rarer over the years. Nonetheless, our devices still connect
to the Internet using a single active network connection, even though our
networked devices could use multiple different transport technologies and
protocols. We are still unable to leverage on these for seamless multicon-
nectivity, as the choices of how the Internet was designed limits our choices
for implementing multiconnectivity. At best, our devices can switch from
one transport to another, but this transition is not seamless, nor can we
easily control it through programmatic approaches.

To understand why this is so, we need to examine the history of the
Internet and re-evaluate past design decisions. Since the 1990s, Internet
connectivity has become faster, cheaper, and available almost everywhere.
Many of the regions that are sparsely populated are increasingly being
connected to the Internet. These regions are mostly covered with some form
of broadband, be it either cellular networks or satellite-based connections.

Earlier, fast Internet connectivity was mainly limited to fixed places
such as homes, workplaces, or Internet cafes. However, when the mobile
networks started deploying 3G networks, the increased network speeds al-
lowed us to start using the Internet anywhere where there was connectivity.
With the 4G networks, the mobile Internet was brought closer to the level
of fixed broadband, and with the 5G networks being currently deployed
and 6G in the future, mobile broadband has already surpassed many of the
older fixed broadband technologies.

This proliferation of Internet connectivity has changed our lives dramat-
ically. We can now access almost every content available on the Internet
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2 1 Introduction

from almost everywhere. At the same time, most of the tasks that we need
to do to live our lives normally have moved to the Internet. Services such
as banking, mails, teleconferencing, and watching TV have moved to the
Internet, and social media and video streaming use up a large part of the
bandwidth we use daily.

However, how we define an Internet connection has not changed much
since the ARPANET. Our devices still use a point-to-point connection to
our Internet Service Provider (ISP), which provides us with a single IPv4
address to use. Although IPv6 is gaining a foothold, especially in mo-
bile networks, only a few services on the Internet are accessible with both
IPv4 and IPv6 [1, 2]. At the same time, while broadband technologies
have evolved into much faster connections, what remains the same as the
traditional connections is the nature of the link; a single line to the ISP.

Our modern devices typically have at least two or more ways to connect
to the Internet. All of our laptops, tablets, and smartphones support Wi-
Fi; while the cellular network is supported by phones and laptops, at least
via tethering or USB modem dongles. Ethernet is supported by laptops,
and many phones and tablets can actually use USB Ethernet dongles. If
we look at how connectivity has changed over the years, wireless networks
have started to surpass wired networks. Both Wi-Fi and cellular have be-
come faster and there are more wireless devices than ever before, including
Internet-of-Things devices [3]. But, due to various reasons, we cannot use
available networks together, i.e., we are bound to the single connection
paradigm instead of being able to combine them.

1.1 Motivation

Internet usage has grown exponentially over the years, and with the higher
speeds of 5G and beyond, the broadband speeds are expected to increase
even more [4]. At the same time, the Internet and transport protocols have
remained mostly the same as they have been for decades. We use cable
and DSL modems, Wi-Fi, Ethernet, and cellular broadband for connec-
tivity. Even though the available bandwidth and the latency of especially
cellular broadband have advanced dramatically, the way we use them re-
mains the same. Almost all of our network traffic uses a single network
interface connected to one of the above technologies as before. We do not
aggregate or use other available interfaces for backup connections, instead,
our devices only switch between different interfaces depending on the con-
nectivity, and end up breaking the existing connections.
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For transport protocols, even though there are newer protocols such as
QUIC [5], we still mostly use both Transmission Control Protocol (TCP) [6]
and User Datagram Protocol (UDP) [7] as we have done since the 1980s.
The changes in the transport protocols are essentially optimizations to the
existing protocols, such as better congestion control, but very few new
protocols have been deployed on the Internet. For example, while multiple
new protocols have been introduced, such as Stream Control Transmission
Protocol (SCTP) or Datagram Congestion Control Protocol (DCCP), or a
multipath variant of TCP called Multipath TCP (MPTCP), most of these
protocols have not been taken into use on a large scale. Instead, some of
them, such as MPTCP, are used in controlled environments or not at all [8].

There are several factors why the current status quo of Internet con-
nectivity has remained the same. The Internet is primarily operated with
equipment that has a long life span. These routers and switches can operate
for years without significant upgrades, or with upgraded modules, such as
line cards. This comes with the cost of ossifying the network as the older
equipment may not be capable of handling new transport protocols.

This is especially true with consumer Internet connections. In most
cases, the ISP provide their consumers with home gateways such as broad-
band or cable modems. These devices connect the home networks to the
ISP networks and remain largely untouched for years, i.e., their capabilities
remain the same as they were when first installed [9, 10].

To summarize, Internet connectivity has remained the same for decades,
with only small steps taken to break free from the way connectivity has
always been. This serves as the motivation to examine why things are
currently as they are, and how the knowledge claimed could be used to bring
better connectivity to users. The above factors serve as the motivation for
this thesis.

1.2 Problem Statement and Methodology

The research questions can be divided into two categories that form the
topic of the thesis, seamless programmable multiconnectivity. These ques-
tions delve into the current state of network connectivity and how we can
extend the state-of-the-art methods to solve them.

The first set of questions explores how Internet connectivity works from
the consumer point of view and what problems these home gateway devices
bring. They also explore how these devices could be used in future networks,
as they remain usable well beyond their expected life span.
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RQ1 How do middleboxes hinder connectivity?

RQ2 How can we make contemporary non-programmable hardware evolv-
able through software extensions?

The first research question, RQ1, outlines one of the big problems of
the current Internet: ossification. Over the years, there has been signifi-
cant anecdotal and observed evidence that middleboxes such as the home
gateways, and especially how home gateways perform Network Address
Translation (NAT), are not well-defined and in some cases broken [11, 12].
We, therefore, explore what the NAT characteristics of the home gateways
are and try to find out common features that would allow us to design new
protocols.

The second question, RQ2 delves into how we can evolve existing net-
work devices for future networks. Many of these devices have an expected
life span of years. In many cases, updating them to the newest, most ad-
vanced equipment is cost-prohibitive, especially in large installations. As
they fulfil the traditional network requirements, replacing them before their
expected end-of-life date is not cost-effective. However, many of these de-
vices could still be updated through other means than replacing them to
have similar capabilities as newer equipment. We, therefore, explore how
we can bring SDN to these devices without major modifications or cus-
tomization.

The second category of research questions explores the topic of multi-
connectivity.

RQ3 How can we offer multiconnectivity in a programmable network?

RQ4 How can we achieve user-driven multiconnectivity over arbitrary net-
works?

The third research question, RQ3, explores how we can use SDN to offer
multiconnectivity in a programmable network. Traditionally connectivity
is driven by the host device’s network stack, which makes decisions based on
pre-existing rules and heuristics on which network interfaces to use. While
this usually allows the host device to be connected to the Internet, it is often
not optimal. For example, a mobile network could offer better connectivity
than a congested Wi-Fi network, but Wi-Fi is chosen as the predetermined
rules give higher priority to Wi-Fi and do not take the network state into
account. Similarly, switching between network interfaces causes existing
connections to break, and recovering from those is left to the applications.
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Research Paper RQ1 RQ2 RQ3 RQ4
1. An Experimental study of Home Gate-
way Characteristics

�

2. SWIFT: Bringing SDN-Based Flow Man-
agement to Commodity Wi-Fi Access Points

�

3. Orchestrating Intelligent Network Oper-
ations in Programmable Networks

�

4. An SDN Perspective on Multi-
connectivity and Seamless Flow Migration

�

5. Programmable Session Layer MULTI-
Connectivity

�

Table 1.1: The research questions addressed in this thesis. For each
question, we indicate which publication addresses it.

The host device’s network stack contains limited information of the
networks. While some network characteristics can be gleaned through pas-
sive monitoring or probing, the network stack does not have the full view
of the network. Here, the paradigm of programmable networks offer new
venues for how networks and their controllers can be leveraged to perform
multiconnectivity. With the network controller’s information, the multi-
connectivity decisions can be made with better knowledge.

The fourth research question, RQ4, explores multiconnectivity in het-
erogeneous networks. Unlike the networks that RQ3 targets, i.e., networks
that support multiconnectivity, the heterogeneous networks do not have a
controller with whom the host device can communicate. Most networks fall
into this category. As such, finding solutions to multiconnectivity in those
networks remains an important topic.

1.3 Thesis Contributions

The research contributing to this thesis is described in the five included
publications, which form the basis of the thesis. In the following, we show
the details of the publications, highlighting the specific contributions of
the author. Table 1.1 summarizes which publications addresses particular
research questions.

Publication I: An Experimental Study of Home Gateway Characteristics.
S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and M. Kojo.
Published in the Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement (IMC ’10), pages 260-265, Melbourne, Australia,
November 1-3, 2010.
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Contribution: Aki Nyrhinen and the author developed the Home Gate-
way testbed and were responsible for developing the tests, analysing, and
reporting the results. All authors contributed to the test designs and were
involved in all phases of the work.

Publication II: SWIFT: Bringing SDN-Based Flow Management to Com-
modity Wi-Fi Access Points. S. Hätönen, P. Savolainen, A. Rao, H. Flinck,
and S. Tarkoma. Published in the Proceedings of the 2018 IFIP Networking
Conference (IFIP Networking) and Workshops, pages 1-9, Zurich, Switzer-
land, May 14-16, 2018.

Contribution: The author was in charge of designing and implementing
the SWIFT system, gathering the evaluation data and writing the paper.
The ideas behind the system were extensively discussed with all of the
authors.

Publication III: Orchestrating Intelligent Network Operations in Pro-
grammable Networks. S. Hätönen, I. Hafeez, J. Mineraud A. Rao, and
S. Tarkoma. Published in the Proceedings of the IEEE Conference on
Standards for Communications and Networking (CSCN’21), pages 148-154,
Thessaloniki, Greece, December 15-17, 2021.

Contribution: The author developed both the SDN controller and the
management bus of the modularized system. Julien Mineraud and the
author developed the PraNA orchestrator together. The author was also
in charge of evaluating the system. Ashwin Rao and the author were in
charge of writing the paper, while all other authors provided feedback and
text in all phases of the work.

Publication IV: An SDN Perspective on Multi-connectivity and Seamless
Flow Migration. S. Hätönen, T. Huque, A. Rao, G. Jourjon, V. Gramoli,
and S. Tarkoma. Published in IEEE Networking Letters (Volume: 2, Issue:
1, pages 19-22, March 2020).

Contribution: The author was in charge of building the physical migra-
tion testbed and implementing the Meghna system with Ashwin Rao. The
author was also in charge of writing, while all other authors provided both
feedback and ideas behind the system in all the phases of the work.

Publication V: Programmable Session Layer MULTI-Connectivity. S.
Hätönen, A. Rao, and S. Tarkoma. Published in IEEE Access, vol. 10,
pages 5736-5752, 2022.

Contribution: The author was in charge of writing the paper. Ashwin
Rao and the author both developed MULTI, and the author was in charge
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of evaluating MULTI in a physical test environment. All authors were
involved in writing the paper and contributed ideas.

1.4 Thesis Structure

The thesis is organized as follows. Chapter 2 provides the background
knowledge to this thesis and discusses various reasons why certain aspects
of the Internet are as they are today. We also take a look into RQ1 in
this chapter and present our contributions that address RQ1. Chapter 3
concentrates on RQ2, and explores how different legacy devices can be
used in future networks. To achieve this, we present the SWIFT system
to bring Software-Defined Networking to off-the-shelf legacy Wi-Fi devices
in Section 3.1. We also present the PraNA framework for programmable
network orchestration using off-the-shelf controllers in Section 3.2. Chap-
ter 4 discusses multiconnectivity in general and presents two different ways
to tackle the problems inherent in the multiconnectivity, namely Meghna
in Section 4.1 and MULTI in Section 4.2, and attempt to answer RQ3 and
RQ4. Finally, Chapter 5 concludes the thesis by revisiting the research
questions and summarising the contributions of the thesis and discusses
future work.
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Chapter 2

Background

Many of the challenges for seamless multiconnectivity stem from past design
decisions on how networks work. When these decisions were made, the
connected world was very different, and technological advances like mobile
smartphones were decades in the future.

In this chapter, we present the background to the topics in this thesis.
We start by describing what middleboxes are and how they affect Inter-
net connectivity. We focus on the home gateways, i.e., the devices that
connect our home networks to the Internet. After discussing the middle-
boxes, we describe what programmable networks are, and how they work.
We then touch on multiconnectivity by briefly describing different methods
to achieve both multihoming and multipathing. These methods form the
basis of multiconnectivity, as they allow us to break away from the tradi-
tional way we connect to the Internet. Finally, we present our Publication
I, a study on home gateway characteristics and how they have affected the
transport protocol designs over the years.

2.1 Middleboxes

Originally what we now call the Internet was a much simpler network.
There were only a fraction of hosts connected to the network, and they
could all communicate directly with each other using the End-to-End prin-
ciple without having any devices in the network that would break the prin-
ciple [13]. Many contemporary transport protocols were designed with this
principle in mind in the 1980s, i.e., the connections are between two hosts
with fixed network addresses. Protocols such as Transmission Control Pro-
tocol (TCP) [6] and User Datagram Protocol (UDP) [7] use the End-to-End
principle and are still in use in everyday Internet traffic. Both protocols

9



10 2 Background

have seen modifications, but the basic operation principle is still the same,
transfer data from one fixed network location to another network location.

The transport layer connections or datagram flows are defined as five-
tuples, consisting of a source IP address and a protocol port number, a
destination IP address and protocol port, and the protocol in use. While
this five-tuple is a straightforward way to define a connection, it has some
serious limitations. Over the years, the Internet has seen an influx of devices
that do more than forward packets towards their destination. These mid-
dleboxes can alter the packet headers traversing them, redirect the flows to
different destinations depending on their function, or drop them. Nonethe-
less, the middleboxes obfuscate the actual source and destination of the
flows and thus break the End-to-End principle.

Next, we detail several types of the most widely used types of middle-
boxes that are relevant to this thesis.

2.1.1 Network Address Translation

Network Address Translation (NAT) allows whole private networks to be
hosted behind a single public IPv4 address. The basic principle of NAT is
simple; when a packet traverses a NAT device, either the source or destina-
tion IP address and port number is mapped either to the public IP address
of the NAT device when the packet is traversing from the private network
to the outside, or destination IP address is mapped to the destination IP
address inside the private network. The NAT was originally proposed in
1993 [14], and standardized in 1994 by the Internet Engineering Task Force
(IETF) in Request For Comments (RFC) 1631 and updated later [15, 16].
The NAT defines how a middlebox could translate a network address into
another address and maintain a mapping between the addresses. The NAT
was designed to alleviate the already foreseen IPv4 address space exhaus-
tion, which eventually happened in 2017 when AFRINIC ran out of avail-
able general use /8 address blocks [17].

The NAT principle is illustrated in Figure 2.1. Here, the private network
using 192.168.0.0/24 address space is connected to the Internet through
a public IPv4 address 1.2.3.4. Now, when a client, with an IP address
192.168.0.2, connects to a destination at 8.8.8.8, the gateway performs the
source address translation from 192.168.0.2 to 1.2.3.4, and adds this transla-
tion in the NAT mapping table. When a reply comes from 8.8.8.8 to 1.2.3.4,
the gateway makes a translation lookup and finds that 192.168.0.2 had con-
nected to 8.8.8.8 and replaces the destination address with 192.168.0.2.

This one-to-one NAT is not sufficient when there are multiple hosts
behind the NAT. Normally, the NAT also uses the transport protocol and
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Figure 2.1: Network Address Translation. The graph shows how a
NAT device changes different fields of a packet when it traverses a NAT
middlebox.

protocol port in addition to the source and destination IP addresses to
perform the translation. With this, the source port is also translated into
an unused port by the gateway, allowing multiple hosts to connect to the
same destination address and port.

In addition to extending the IPv4 address space, the NAT is sometimes
seen as a security measure. From the outside of the NAT, none of the hosts
behind the NAT are visible to the outside. This can be seen as a cheap
firewall solution, although it is not a firewall.

However, the NAT process was not specified properly partly because
NAT was only intended as a stop-gap measure before IPv6 would solve the
IPv4 address shortage with a much larger address space and other features.
IPv6 would have allowed the End-to-End principle to be used once more
and allowed the Internet to have a clean design.

Instead, the Internet continued to grow explosively, and it was much
cheaper for network device vendors and operators to embrace the NAT. As
of 2021, IPv6 has only reached a portion of all Internet traffic, almost three
decades after the NAT was standardized.

In Section 2.5, we detail the results of a study on home gateway charac-
teristics, which examined multiple different NAT implementations. These
results provide tangible proof of how varied different NAT implementations
are over a large set of devices from different manufacturers. The results help
us understand why Internet connectivity is still similar to what it was in
the 1990s and what measures protocol designers need to take to ensure that
their protocols work.
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2.1.2 Firewalls

Another example of middleboxes is firewalls. Firewalls are security devices
that monitor and control network traffic traversing them. The main goal
of a firewall is to protect the hosts behind the firewall from outside by
only allowing traffic that has been approved to pass through them. This is
done through a set of rules, against which all traffic passing the firewall is
matched. If there is a rule denying the traffic, the traffic is blocked.

A simple firewall will block all incoming traffic from the public network
to the private network while allowing the traffic from the private network
to the public. The firewalls carry a state that tracks outgoing connections
so that returning traffic can pass the firewall. The firewalls can filter out
outgoing traffic to specific ports that are deemed to either carry security
risks or are used in denial of service attacks. For example, port 25 used
by mail servers is typically blocked as it is used for sending spam emails.
More complicated firewalls will have a larger, more sophisticated rule set
that can allow different operations to be performed on the traffic.

2.1.3 Load Balancers and Reverse Proxies

Load balancers are a category of the middleboxes that distribute the in-
coming load to multiple destinations [18, 19]. A single server can become
congested if there are more concurrent users at a given time than the server
can handle. For example, a website served by a single server will reach the
limit of how many requests it can serve when its popularity increases. Using
a more powerful server would solve the issue for a while; however, this does
not scale as powerful servers are expensive and will reach their maximum
capacity at some point.

The load balancers alleviate this problem by distributing the load to
multiple servers. This balancing can be done either based on the network
or transport layer protocols or at the application layer based on the protocol
headers. Regardless of the protocols, the balancing of incoming connections
can be done using different methods. Common methods include Round-
Robin, least connections, and least response time.

2.2 Programmable Networks

Programmable networks are networks whose network operations can be
managed through software-defined rules. Traditional networks are con-
trolled through command-line interfaces or employ routing protocols. Still,
the scope of the control is closer to the individual switches instead of cen-
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tralized control. For larger routed networks, different routing protocols
decide how the traffic is forwarded. However, the routing protocols are
slow to react to changes, and controlling them is not straightforward.

Software-Defined Networking (SDN) is a paradigm where the traditional
network elements have been split into control and data planes [20, 21]. This
split moves the forwarding decisions away from the network switches to a
logically centralized network controller. Here, the switches no longer decide
themselves how to forward the network traffic but ask the controller for
instructions over a control protocol such as OpenFlow (OF) [21]. Using
this logically centralized approach allows a more fine-grained approach to
network traffic management. The SDN controllers can achieve a full view
of the network state and affect changes on how the network forwards traffic
without individually configuring each switch.

While there are different types of networks that can be called software-
defined, in this thesis, we use the term SDN to mean networks that use
OpenFlow for the control.

2.2.1 Programmable Switches

For decades, the network switches have supported configuration over differ-
ent methods. These switches contain both the control and the data planes,
allowing them to forward traffic independently but making the configura-
tion unwieldy and prone to mistakes.

The Software-Defined Networking removes the control plane from the
switches and moves the configuration elements to an SDN controller. This
allows switches to be relatively simple as they do not need the control plane.

In SDN, switches and controllers use Northbound and Southbound APIs
to perform the SDN-based control. The SDN switches and controllers use
the Southbound API to communicate with each other, while the North-
bound is reserved for the communications between users and the servers.
The typical Southbound API used in the context of this thesis is Open-
Flow [21].

With OpenFlow, the switches report their state changes to the con-
troller. Such state changes are, for example, changes in which switch ports
are active. The switches also do not make autonomous decisions on how
to forward the traffic. Instead, they use an OpenFlow match-action rule
set, against which the traffic entering the switch is matched. If the traffic
matches a rule in the ruleset, the appropriate action defined by the rule is
taken to process the traffic. If the traffic matches no rules, the switch sends
a request to the SDN controller on how to handle the traffic and does not
forward the traffic before receiving an answer.
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The OF also allows the SDN switches to change headers in the network
packets. For example, the SDN controller could perform the NAT function
described in Section 2.1.1, or remove and add new header fields.

2.2.2 Programmable Network Controllers

The second part of the SDN are the SDN controllers. In short, the SDN
controller act a as the controlling intelligence of the network, and commu-
nicates with the SDN switches using southbound APIs like OpenFlow [21].
The SDN controllers control and manage the traffic passing SDN switches
by installing the match-action rules either proactively or when a switch
makes a request to the controller about how a packet should be treated.
A simple SDN controller might only install forwarding rules based on the
topology of the network, but more advanced controllers can use more in-
telligent approaches, and also perform other functions.

Most controllers also expose the network state to the outside using a
northbound API, for example, a REST API. As they have the full view of
the network, they can optimize the traffic forwarding, or forward it through
third party services such as traffic analysis systems like Snort [22].

2.3 Multihoming and Multipathing

Traditional network connections between hosts are single path connections
that are defined by the 5-tuple. This ties the connections to particular net-
work interfaces, as used IP address defines which interface is used. However,
if multiple addresses and interfaces are used, the hosts become multihomed
and can use multiple paths between them.

In general, multiconnectivity is traditionally separated into two cate-
gories, namely multihoming and multipathing. A host is multihomed if
it is connected to the Internet through more than one network interface
and IP address. For example, a multihomed server could be connected to
two or more Internet Service Providers (ISP) and would have multiple IP
addresses from both of the ISPs.

Multipathing, on the other hand, means using multiple paths between
hosts. This usually requires one or both of the hosts to be multihomed,
but in some cases network topology and routing rules can also achieve
multipathing through the network.

When a multipath protocol is used, usually, one available path between
the hosts is chosen as the primary path. This path is used to initiate
the connection, and when the connection is made, other possible paths
are probed and opened between the hosts. After the paths are open, the
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multipath schedulers on the hosts decide how to use the available paths and
send packets accordingly. One prominent example of a multipath transport
protocol is Multipath TCP (MPTCP) [23]. The MPTCP is implemented
over the regular TCP with special MPTCP options. These options carry
Connection IDs and other information required to exchange and manage
the multipath connections.

2.4 Internet of Things

Over the last decade, we have seen an influx of small, Internet-connected
devices in our homes and offices. These devices range from small sensors
such as temperature sensors, small appliances like remote-controlled power
switches and smart fridges, to larger devices like smart TVs, tablets, and
to an extent, laptops and computers. Common to all of them is that they
are all connected to the Internet, either directly over the local network
or through specialized hubs and gateways. These devices are commonly
known as Internet-of-Things (IoT) devices [24, 25, 26].

In general, a typical IoT device has only a few functions. For example,
sensors, which are one of the most common types of IoT devices, measure
their values and publish them either through their respective IoT hubs
or through a cloud service, accessible over the Internet [27]. The devices
use either low-power and short-range communication technologies such as
ZigBee [28], Z-Wave [29], and Bluetooth [30], Wi-Fi, or even Ethernet to
communicate with the Internet or their hubs.

There are also vendor-specific ecosystems built around the IoT devices
known as silos [31, 32]. For example, Philips Hue’s ecosystem includes
devices ranging from lights and power switches to window blind controls
and sensors. These ecosystems can sometimes also be tied with other vendor
systems such as Logitech Harmony or Home Assistant [33], which allow the
building of larger home automation systems.

The IoT devices are typically designed to be as simple as possible to
reduce the manufacturing costs [3]. This drives the manufacturers to use as
cost-effective parts as possible. This limits the computational capacity of
the IoT devices, and, depending on the manufacturer, the amount of work
done on securing the IoT devices [34, 35].

2.5 Characteristics of Home Gateways

Over the years, there has been a swath of both anecdotal and observed
evidence that home gateways, and in particular, their NAT function does
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not function well [11, 12]. In many cases, the NATs drop packets that
they do not understand, such as new transport protocols, translate them
improperly, or show other unexpected behaviours. These issues are largely
due to NAT originally not being defined well, and the home gateways had
been largely ignored by standardizing bodies like IETF for years. Only in
around 2009 were specifications on how the home gateways should behave
published, over a decade after NAT was introduced in 1993 [36, 37, 38].

In Publication I, we performed an extensive study of 34 home gateways
and their characteristics [9]. The publication was later extended into two
technical reports for both Layers 3 and 4 [39, 40]. In Publication I, we
explored how some of the most widely used protocols like TCP, UDP, and
Internet Control Message Protocol (ICMP) were treated by the gateways
and how long the gateways kept the NAT mapping entries in the mapping
tables before removing them. Our findings confirmed how poorly the NATs
behaved. In most cases, it was difficult to find two NAT devices with the
same characteristics. This was not vendor-independent as devices from the
same vendor had different characteristics, and in one case, three different
firmware versions for a single device had different characteristics.

When we compared the characteristics against the NAT behavioural
requirement RFCs for UDP [36] and for TCP [37], we found out that in
many cases, the gateways manufactured after the publication of the RFCs
did not follow them. One of the key discoveries was how varied the NAT
binding timeouts were. The timeouts manage how long the NAT devices
keep translation entries in their translation tables, and when the timeout
expires, that particular binding is removed and cannot be used again. This
kind of behaviour is particularly important to those connections that can be
dormant for long time and then see activity. For example, many IoT sensors
only publish their data periodically, and if the binding has expired between
transmissions, a new data connection has to be established every time.
While outgoing connection establishment is straightforward, no connection
can be established to the device from the outside through the NAT.

In Figure 2.2, we show the results for NAT binding timeouts for both
UDP and TCP. For unicast UDP, the IETF requires that NAT bindings
must not expire in less than 120 seconds and recommends 300 seconds or
longer. Here, we observe that many NAT devices use much shorter binding
expiration values, and only some use the recommended value or larger, with
the median being 180 seconds.

Similarly, IETF requires established TCP bindings to last at least two
hours and four minutes due to the requirements for Internet hosts defined
in [41]. We observed that more than half of the devices tested used timeouts
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(b) TCP timeouts.

Figure 2.2: NAT binding timeouts. These results show that NAT de-
vices use different timeouts depending on the vendor. Device models shown
at the X-axis can be found in Appendix A. When the binding timeout is
reached, the NAT closes the binding and incoming traffic cannot be mapped
to its destination. These figures were taken from Publication I.
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Figure 2.3: TCP Connections. The maximum number of concurrent
TCP connections. If the maximum number of connections is reached, the
NAT must either drop an existing mapping, or it cannot create a new
mapping. This figure was taken from Publication I.

that were less than the IETF requirement, and in one case, one device used
less than four minutes before the binding expired.

While the NAT binding characteristics may not be critical for typical
Internet usage, i.e. for short-lived connections like web browsing, or for
active connections like video streaming and gaming, they can cause prob-
lems for multiconnectivity. If a multiconnectivity solution does not use any
keepalives or take other measures like using identifiers in the protocol pay-
load like QUIC [42], the connections that are used for backup connections,
i.e., connections that are mainly dormant, may be closed by the NAT de-
vices. If this is not detected, it may cause problems when the connection
is assumed to be open and instead it is closed.

In Figure 2.3 we show our results for the maximum number of simul-
taneous TCP connections. While many of the devices supported over a
hundred simultaneous connections, some devices supported less than thirty
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Table 2.1: DCCP, SCTP and ICMP results. The table shows if the
NAT devices support protocols like DCCP and SCTP, and if different ICMP
messages are properly translated. This table was taken from Publication I.

connections. In earlier days, when the websites were simpler, the maximum
number of connections was not a problem. However, these days, many web-
sites consist of hundreds of elements. If the maximum number of concurrent
connections is reached, it will cause problems for browsers when fetching
the web pages, leading to either delays as multiple tries are needed to fetch
all elements or partial web pages.

Table 2.1 shows if different NAT devices translated ICMP messages
correctly and if other protocols like Datagram Congestion Control Protocol
(DCCP) or Stream Control Transmission Protocol (SCTP) work. None
of the devices supported DCCP, and for the SCTP, we were unable to
determine if the devices that allowed SCTP connections to be established
really supported SCTP or just translated the IP headers.

Similarly, the table shows how the NAT devices translated ICMP mes-
sages traversing the devices. While most of the devices translated some
ICMP messages properly like TTL Exceeded and Port Unreachable, many
devices do not translate other messages. The worst device did not translate
any of the ICMP messages, and one device generated TCP resets for all
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TCP-related ICMP messages. In addition to these, roughly half of the de-
vices did not translate transport headers inside the ICMP messages. These
results show that relying on external protocols like ICMP for messaging
network state is not reliable as many of the messages can be lost.

We also studied different TCP options were treated by home gate-
ways [40]. Our findings were that the NAT gateways either dropped the
TCP packets with lesser used or unknown TCP options, forwarded them,
or even added their own options. These findings suggest that even extend-
ing well-known protocols is hard with NAT devices. Similar findings have
been reported in other publications [10, 43]. As such, IPv4 NAT devices
contribute hugely to the ossification of the Internet. In most cases creating
a new transport protocol is practically impossible as the NAT gateways will
not work with them. This means that the only truly viable path left for
protocol designers is to create protocols on top of already existing proto-
cols like UDP so that the NAT devices only see well-known protocols. For
example, QUIC [5] has taken this path. It is implemented completely over
UDP and carries its own headers inside the UDP payload.

While the NAT gateways typically behaved with IPv4 and basic TCP
or UDP, i.e., all devices could be used to connect to the Internet, the same
could not be said about other protocols. In most cases, protocols such
as DCCP, SCTP, and similar did not work at all; the NAT devices either
did not forward the packets or did some address translation for the IPv4
headers but not for the transport headers. Our conclusion was that as no
devices supported the less-known protocols properly, they cannot be relied
on to work properly on the Internet, and application developers need to
aim for the lowest common denominator, the basic TCP or UDP.

2.6 Summary

In this chapter, we have introduced several concepts and technologies that
lay the groundwork for this thesis. The middleboxes discussed here have
greatly influenced how the Internet currently works and have an effect on
how transport protocols need to be designed in the modern world. In many
cases, the middleboxes hinder the protocol designs as they are not origi-
nally designed to work with those protocols. In Publication I, we presented
our study on home gateway characteristics and discussed how our measure-
ments could be used to influence the protocol designs.

In addition to middleboxes, we also explore programmable networks and
their principles. We also introduce the basic concepts of multiconnectivity,
namely multipath and multihoming. These concepts will be touched upon
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in all parts of the thesis, and the insights from the gateway study allow us
to answer the research questions in Chapters 3 and 4.



Chapter 3

Current Devices in Future
Networks

The middleboxes discussed in Chapter 2 and other devices like Wi-Fi APs
are usually designed with a well-defined purpose. However, these can
be versatile devices, especially if they support the installation of custom
firmware or new software modules. In this chapter, we show how some of
these older APs and middleboxes can be extended to work in future net-
works and discuss what they can achieve. One tangible way that they can
be used is to deploy SDN on them. Using the existing devices can, for
example, cut deployment costs as they would not need to be replaced.

In this chapter, we focus on SDN solutions that are based on Open-
Flow (OF) [21]. OpenFlow is one of the implementations of programmatic
networks. Depending on the definition, for example, Cisco’s Wireless LAN
Controller (WLC) [44] can be defined as software-defined, as the networks
defined through the WLC are automatically provisioned over the APs, and
the WLC can automatically handle channel assignments. In this thesis, we
limit the term SDN to mean OF-based software-defined networks.

SDN has seen deployments in almost all main types of networks that we
encounter. In the Wide Area Networks (WAN), Google introduced their B4
solution in 2010 [45]. Similarly, many vendors such as Cisco, HP, and Dell
have introduced SDN in their Ethernet switches over the years. However,
one significant area where SDN has not gained traction is Wi-Fi. Over the
years, there have been several attempts to bring SDN to Wi-Fi networks.
The seminal work was done in OpenRoads [46]. Following the work done
in OpenRoads, the BeHop [47], ÆtherFlow [48], and OpenSDWN [49] re-
fined the approaches to the problem. However, all these approaches have
limitations; most commonly, they require specific agents running on the
APs. While these agents allow a more detailed view into the network and

21
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more fine-grained control, in many cases, they make the usage of these ap-
proaches very hard in commodity networks. Another approach that some
of these solutions took was to use multiple Service Set Identifiers (SSID).
Each Wi-Fi network is identified by a name, which is provided as the SSID.
In this case, each client associated with the AP is given its own virtual AP,
usually realized through an SSID. While these allow the particular SDN
controller to control the client traffic, the multiple SSIDs pollute the air
with beacons and control frames that limit the usable bandwidth [50].

In this chapter, we focus onRQ2: how can we make contemporary, non-
programmable hardware evolvable through software extensions? To answer
this, we present SWIFT, a solution for bringing SDN-based flow manage-
ment to the existing commodity access points. The SWIFT is designed
to provide as straightforward as a possible way to deploy SDN on existing
devices with minimal software changes. As such, SWIFT brings the bene-
fits of a programmable network to networks that are already in existence
and would be cost-prohibitive to replace with programmable hardware. We
detail the SWIFT architecture and implementation in Section 3.1, with dis-
cussion of the possible use cases in Section 3.1.6. We also present PraNA,
a framework for network orchestration that brings together different con-
trollers, IoT devices, and SDN. We then present the SWIFT evaluation in
Section 3.1.5 and finally conclude the chapter in Section 3.3.

3.1 SWIFT: Bringing SDN to Commodity Wi-Fi
Access Points

In Publication II, we present SWIFT, our solution for bringing SDN-based
flow management to commodity off-the-shelf Wi-Fi access points. The goal
of SWIFT is not to fully manage the Wi-Fi network; instead, it focuses on
traffic control. This work was presented as a demo in ACM SIGCOMM
2016, and the article describing it is in Appendix B [51].

We focused on the commodity APs as replacing existing hardware is
costly for large deployments, and to the best of our knowledge, there are
almost no OF-capable APs available. Similarly, another main goal was to
use the commodity APs with minimal changes. The more specialized solu-
tions like BeHop [47] and others used firmware that was customized to the
particular APs used. This dependency may cause them to be undeployable
in the future if newer AP models do not support those changes. Keeping
this in mind, SWIFT was designed to use existing software as much as
possible to keep the changes SWIFT required minimal.



3.1 SWIFT 23

SWIFT is not meant to be the Wi-Fi management system for the net-
work; instead, it is envisioned to work alongside other dedicated platforms
such as Cisco Wireless LAN Controllers (WLC) [44]. The WLC would han-
dle the provisioning and management of the access points, while SWIFT
controls the traffic flows traversing the APs.

The off-the-shelf APs can be divided into two main categories; namely,
those which are supported by open firmware like OpenWrt, and those whose
firmware is locked by their vendors and to support customization. To sup-
port both types of APs, we designed two approaches: Intelligent AP and
Thin AP. The Intelligent AP is for those APs that allow us to modify the
software of the AP directly. The Thin AP is meant for those APs that do
not support custom firmware or software.

3.1.1 Client Isolation

The key obstacle for bringing SDN-based flow management to the Wi-Fi
was that all Wi-Fi clients associated with the same AP could communicate
freely with each other. In a normal wired Ethernet network, each client is
connected to a fixed switch port. The switches in the network build their
own local forwarding tables based on which ports they have seen different
MAC addresses and forward packets accordingly. As such, each client has
their unique physical location in the network, for example, a workstation
on an office desk.

An SDN-based network operates in a similar manner, with the exception
of the SDN controller keeping track of where each client is connected to
the network instead of the switches. When a packet originating from a
client enters a port on an SDN switch, the switch first checks if there are
any matching SDN rules to the packet, and if there are none, the switch
forwards the packet to the controller and requests instructions. This allows
the controller to build a topology map of the network with the location of
each connected client.

However, in Wi-Fi networks, multiple clients are connected to the same
SSID, for example eduroam. In practice, each AP in the network broadcasts
the SSID, and when the client connects to the SSID, the client associates
with the nearest AP. The SSID is visible to the network stack as a wireless
interface, behind which all associated clients are connected.

Typically, the Wi-Fi drivers used by the APs optimize traffic forwarding
inside the wireless interface. If the destination of the traffic is not local, the
drivers forward the traffic to the network stack of the AP [52]. However,
if the destination of the traffic is a client associated with the same SSID
and AP, the drivers forward the traffic directly between the clients, without
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the traffic passing through the AP or an SDN switch. This means that the
SDN switch and the controller never see the traffic, making it impossible
for the SDN controller to manage and control the traffic between Wi-Fi
clients.

While conducting our research, we noticed that many, if not all, access
points support a feature called client isolation.1 This feature blocks clients
connected to the same SSID and AP from communicating with each other,
thus providing a simple layer of security in the network.

When we examined the client isolation more closely, we found that there
are at least three different variants of how it is implemented:

• Permissive Isolation: When the isolation is enabled, in Permissive
Isolation, the AP sends all traffic from the clients to the AP’s network
stack but does not forward the traffic between clients.

• Restrictive Isolation: The AP sends only the ARP broadcasts to the
network beyond the AP while discarding other traffic between clients.

• Total Isolation: All packets between the clients are discarded by the
AP, including ARP.

In general, OpenWrt-based APs use Permissive Isolation, but enterprise
APs may use any of the above implementations. While there is no way to
know the isolation style beyond testing the behaviour, the manuals of the
APs may give hints on the isolation implementation.

Both Permissive Isolation and Restrictive Isolation can be used to allow
the SDN controllers to manage the traffic. However, their implementation
details need to be taken into account when designing the SDN controller.
When using Permissive Isolation, the Wi-Fi driver sends all traffic to the
AP’s network stack. The network stack compares the traffic to its ARP
table, and if the destination is also associated with the AP, the network
stack discards the packets as they would be sent back out from the network
interface where they came from. This behaviour is prevalent in all network
devices since if a packet is sent back out from the port it arrives at, a
network loop is created, leading to a packet storm that can, and has brought
down networks. Now, if there is an SDN switch running on the AP, the
switch and the SDN controller can perform SDN actions to the packets and,
for example, send them back to the interface where they came from. How
this behaviour can be used is detailed in Section 3.1.2.

1Client isolation has different names between various vendors. For example, Cisco
calls it Peer-to-Peer Blocking in their Wireless LAN Controller [44].



3.1 SWIFT 25

So
ft

w
ar

e
B

ri
d

ge
Hardware Switch

LAN
Port

LAN
Port

LAN
Port

LAN
Port

WAN
Port

CPU

eth0

Radio0
2.4GHz

Radio1
5GHz

wlan0

wlan1

br0

wan0

VLANs

Figure 3.1: Interfaces on an
OpenWrt router. Regardless of
the internal wiring, OpenWrt uses a
Software bridge to manage the Wi-
Fi network and the LAN. This figure
was taken from Publication II.

Open
vSwitch

Hardware Switch
LAN
Port

LAN
Port

LAN
Port

LAN
Port

WAN
Port

CPU

eth0

Radio0
2.4GHz

Radio1
5GHz

wlan0

wlan1
br0

wan0

VLANs

Figure 3.2: AP configured for
the Intelligent AP. OVS re-
places the default bridge provided
by OpenWrt, and Client Isolation is
enabled on the AP. This allows the
OVS to manage the flows traversing
the AP. This figure was taken from
Publication II.

Restrictive Isolation on the other hand allows broadcasts to leave the
AP while discarding other packets. This allows the SDN controller to detect
the hosts behind the AP and take actions based on the network topology.
We detail how this behaviour can be leveraged to bring SDN to those APs
that do not allow custom firmware in Section 3.1.3.

Total Isolation prevents all traffic between Wi-Fi clients from reaching
the network stack of the AP or beyond. If the AP uses Total Isolation, it
cannot be used for SDN using the methods of SWIFT.

3.1.2 Intelligent AP

The Intelligent AP technique is aimed at those APs that allow installation
of custom firmware or software and use Permissive Isolation. The typical
examples of these are OpenWrt-based APs, of which a typical design is
shown in Figure 3.1. Normally, the OpenWrt-based AP includes a System
on a Chip (SoC), which has several Ethernet and Wi-Fi interfaces included
on the chip. In addition to these, the APs usually have a small hardware
switch with 802.1Q Virtual Local Area Network (VLAN) capabilities in-
stalled on the device [53]. The devices run a Linux bridge, which has all
Wi-Fi interfaces and an Ethernet interface installed into it. The Ether-
net interface (eth0 in Figure 3.1) is connected to the hardware switch that
allows several other network devices to be connected to the AP with cables.

In this technique, as illustrated in Figure 3.2, we replace the normal
Linux Bridge in the AP with the Open vSwitch (OVS) [54]. We then plug
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Figure 3.3: APs configured for the Thin AP. The APs have Client
Isolation enabled, and an external SDN switch manages the network traffic
flows traversing the AP. This figure was taken from Publication II.

all Wi-Fi interfaces that were plugged in the original Linux Bridge into OVS
and enable the Permissive Isolation on the Wi-Fi interfaces. The Permissive
Isolation then forwards all packets to the OVS, allowing the SWIFT SDN
controller and the OVS to manage all traffic between Wi-Fi clients and the
wired network.

To also allow the OVS to manage the traffic traversing the LAN inter-
faces, each LAN port is assigned a separate VLAN. These VLANs show as
separate Ethernet interfaces on the OS and are also plugged into the OVS.

This technique also supports multiple Wi-Fi networks, i.e., SSIDs on
the AP. Each SSID appears as a logical Wi-Fi interface on the AP, which
can be inserted into OVS. For the SWIFT SDN controller to manage the
traffic properly, enough metadata on what SSID is connected to which OVS
port needs to be provided to the controller. This requires either manual
configuration or parsing OpenWrt configurations.2

3.1.3 Thin AP

The Thin AP approach is suitable for those APs that do not allow installa-
tion of custom firmware but support restrictive isolation. This approach is
also suitable for those APs that have hardware limitations, such as too small
a flash memory that does not allow installation of larger custom firmware
or software packages.

How the Thin AP works is that the AP works as a remote interface for
an SDN switch as illustrated in Figure 3.3. Each of the SSIDs configured

2All traffic with Ethertype 0x888e (EAP over LAN) needs to be forwarded to the AP
to allow encrypted Wi-Fi to work.
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Figure 3.4: SWIFT Thin AP sequence. When Client 1 needs to send
a packet to Client 2, the following sequence of events occurs. Red denotes
the ARP Requests and Responses, blue denotes the OpenFlow rules, and
green the actual packet transfer.

on the AP becomes a port on that switch through VLANs. In essence, the
combination of the AP and the switch port create the Thin AP.

As discussed above, the key to this is how restrictive client isolation
is implemented. The AP sends the Address Resolution Protocol (ARP)
broadcasts to the wired network, i.e., to the SDN switch and beyond. The
controller keeps track of where each client is located and the client’s MAC
address. If two or more clients share the same SDN switch port that is
defined to be a Thin AP, the controller knows that the clients are connected
to the Wi-Fi.

After the controller has learned the client’s MAC addresses, the con-
troller can then manage the flows using the MAC address. We draw in-
spiration from Proxy ARP for Private VLANs (PVLAN), also known as
VLAN Aggregation, to implement the Thin APs [55, 56]. The sequence of
how Thin AP works is illustrated in Figure 3.4. In this technique, when
the SDN controller sees an ARP request from a Wi-Fi client for another
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Wi-Fi client’s address, the SDN controller replies with the MAC address of
the SDN switch.

Now, the first client has a MAC address that it uses to send the packets
to the other client. When these packets arrive to the switch, the switch
performs the MAC address translation by replacing the destination MAC
address with the real destination MAC address and the source MAC address
with its own MAC address. Now the destination client learns the SDN
switch’s MAC address as the MAC address of the original Wi-Fi client and
uses it to send packets back to the original client. The controller adds
relevant rules to perform this MAC address translation to the SDN switch.
With these, the Wi-Fi clients think that they are communicating with each
other while in reality, they are using the SDN switch as a relay.

3.1.4 SWIFT SDN Controller

The heart of SWIFT is its SDN controller. SWIFT is a set of techniques
that can be implemented using any SDN controller. We now detail the
main steps the SDN controller needs to take beyond the normal traffic
management in the wired network also to support Wi-Fi.

Intelligent AP Support. As discussed above, the Intelligent AP is re-
alized through an SDN switch running on the AP, on which each SSID is
represented as a port in the switch. This information, i.e., which SSID is
on which port, needs to be available to the controller. When the controller
detects traffic from this port, the hosts beyond the port need to be labelled
as clients associated with the AP and the SSID. This information is then
used to send relevant packets back to the port where they came from if the
clients need to communicate with each other or perform other actions such
as isolating any clients by dropping their traffic.

Thin AP Support. Thin APs require more actions to be taken by the
controller than the Intelligent APs. In addition to the above requirements,
the SDN controller also needs to track the ARP messages sent by the clients.
The SDN controller needs to examine the ARP requests and keep track of
the IP and MAC addresses of each of the clients. If the clients associated
with the Thin AP want to communicate with each other, the SDN controller
has to reply to the ARP requests with a pseudo-MAC address having that
particular IP address. When the client communicates with the other client
using the pseudo-MAC address, the SDN controller translates the pseudo-
MAC address with the appropriate MAC address so that the clients think
they are communicating with each other instead of using the SDN switch
and the pseudo-MAC address as a relay.
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Client Mobility. The clients associated with the APs may roam between
APs, unlike clients in the wired network. To allow this, the SDN controller
needs to track where the client is connected at any point in time and update
the location and the SDN rules if the client roams to another AP.

Isolation Policies. The above steps give the SDN controllers the basic
steps to control the traffic in the Wi-Fi network. In addition to these,
to realize the programmatic client isolation, the SDN controller needs to
implement isolation-specific policies. Each client needs to have a default
network isolation policy assigned to it. In our example implementation, the
policy can be permitted, restricted, denied, or custom. These levels allow
SWIFT to support client isolation from everything allowed to everything
denied or something in between. This is a minimal set of policies that allow
us to demonstrate the capabilities of SWIFT.

When the clients need to communicate with each other, the controller
needs to check the level of isolation policy each of the hosts is assigned.
These policies are network-wide, i.e., they affect all clients in the Wi-Fi
regardless of the AP they are connected to. For example, a video-streaming
device like a Chromecast could have a custom level, which would restrict
its communications only to those hosts that are nearby, i.e., in the same
room and to the Internet. If the policy is restricted, the client is effectively
isolated from the network.

Any SDN controller can be used to implement the above steps. We have
aimed to keep the steps as simple as possible to provide a stepping stone
for more advanced techniques. With these steps, and the AP techniques
detailed in Section 3.1.2 and Section 3.1.3, many of the existing Wi-Fi
networks can be converted to support SDN-based flow management.

3.1.5 SWIFT Evaluation

Replacing the original software bridge on the APs in the case of Intelligent
APs, or forcing the traffic to traverse an SDN switch beyond the AP when
using the Thin approach, may cause overheads in the packet forwarding
and processing. To evaluate the overheads caused by our approaches, we
designed a testbed that included both Intelligent and Thin APs, SWIFT
controller, and multiple Wi-Fi clients. The full details are available in
Publication II [57]. The testbed schema is presented in Figure 3.5. We used
three different APs; Netgear WNDR-4300v1 (ng), TP-Link WR1043NDv2
(tp), and Cisco 1131ag (cisco), for our evaluation. Both the Netgear and
the TP-Link are OpenWrt-based APs and thus support the three different
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Figure 3.5: Example SWIFT topology. The SWIFT controller manages
the flows traversing the network. The Intelligent AP consists of an AP with
OVS installed, while the Thin AP consists of an OVS switch and an AP
without SDN support. This figure was taken from Publication II.

configurations: Stock, Intelligent, and Thin APs. In Stock configuration,
the APs used their stock OpenWrt firmware. In Intelligent configuration,
we applied our Intelligent AP technique, and in Thin mode, the Thin AP.
The Cisco is a representative of a device that does not allow firmware or
software modifications, so it can only be configured as Stock or Thin AP.
In addition to the APs, we use two identical laptops as clients to measure
the changes our techniques cause.

The evaluation had several main goals. The first goal was to show that
SWIFT could be operated as described in Section 3.1. To achieve this,
we used 20 different devices connected to both Intelligent and Thin APs.
As expected, the SWIFT controller was able to allow or deny clients from
communicating with each other dynamically.

The second goal was to evaluate the overheads caused by the SWIFT
approach. Both the Intelligent and Thin APs have different implementa-
tions, either of which adds overheads in different places in the system.

For the Intelligent APs, the addition of a software SDN switch, i.e., the
OVS, requires modifications to the AP firmware. The OVS replaces the
traditional Linux bridge on the AP. While both operate in the kernel of
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Figure 3.6: Performance of SWIFT Techniques. The error bars repre-
sent 99% Confidence Intervals for the mean TCP goodput. S, I, T, and W
denote Stock, Intelligent, Thin, and Wired configurations of the three APs.
The figure was taken from Publication II [57].

the operating system, the Linux bridge is a more mature implementation
and may benefit from hardware accelerators. The OVS, on the other hand,
operates without hardware support, which may limit its performance. With
SWIFT, all traffic must traverse the OVS on the device and not be directly
forwarded by the Wi-Fi driver of the AP.

For the Thin APs, the overheads come from two different places. The
main reason for the overheads is that as there is no SDN switch on the AP,
the traffic must first be forwarded to an external SDN switch. This brings
two penalties. First, as with the Intelligent AP, the Thin AP no longer has
the benefit of directly bridging clients that are connected to the AP as all
traffic must pass through the external SDN switch. Second, the external
SDN switch has several costs. The Round-Trip-Time (RTT) between the
switch and the AP causes a slight additional increase in the total RTT.
Similarly, the traffic between the clients congests the link between the AP
and the switch.

To evaluate these, we used Flent to generate test traffic [58]. Flent is
a tool specifically developed to expose buffers in the network and measure
the effect of the bufferbloat [59]. Flent is designed to fill all buffers in the
networking equipment, allowing us to gauge the effect of SWIFT on the
performance of the APs.

The details of the evaluation are presented in Publication II [57]. In
general, the effects of our modifications to the APs were negligible compared
to when the AP had their stock configurations. Figure 3.6 highlights the
effects of our Intelligent and Thin AP techniques. In the figure, we have
plotted the changes in goodput of APs and clients in different combinations;
for example, in S-S the cisco-ng pair denotes that both APs are in their
stock configuration, and one of the client laptops is connected to the Cisco
AP and the other to the Netgear. The numbers under the error bars show
the percentage change compared to the relevant Stock configuration.
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The testing highlighted that the performance of the APs mainly depends
on their hardware. In some cases, especially with a slower AP, the Thin
and Intelligent AP techniques slightly increased their throughput. This
is mostly due to the lower hardware requirements of Thin AP, i.e., the
traffic can traverse directly from Wi-Fi to wired network and back, and
more optimized queue management of the OVS. These results show the
benefit of offloading the flow management to external switches when using
commodity APs.

In general, the results presented in Publication II show that both Intel-
ligent and Thin AP techniques are viable for converting commodity APs
into SDN-capable APs. This in turn enables the benefits of the SDN to be
brought into existing networks.

3.1.6 Applications

In this section, we present several use cases for SWIFT. These use cases
highlight the possibilities that Wi-Fi combined with SDN can bring to both
enterprises, campus networks, and home users.

Dynamic Client Isolation.

The typical client isolation supported by the APs and Wi-Fi controllers is
a blunt instrument. In most cases, it is a binary on or off implementation,
i.e., either the Wi-Fi clients can or cannot communicate with each other.
This can prevent wireless streaming devices, such as Google Chromecast,
from working if no clients can communicate with them.

The SWIFT approach makes the client isolation programmable. The
SWIFT controller can decide which clients can communicate with which
other clients network-wide, i.e., the isolation is no longer limited to a single
AP or full network.

1) Location Based Services. Some network devices advertise their exis-
tence by broadcasting their presence in the network using, for example,
multicast DNS (mDNS) [60]. These devices include networked printers and
multimedia devices such as Google Chromecast.

The following example shows how this could be a problem and how
SWIFT can help. The Chromecast is typically connected to a screen and
broadcasts its presence and name. The user can then see the Chromecast
in a browser menu or in a media player application. However, if there are
multiple Chromecasts, the user needs to find out which device is the one
connected to a nearby screen. If there are many screens with Chromecast
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across the building, the list can be very long and may cause showing media
on the wrong screen across the building.

With SWIFT, this can be alleviated. The Chromecasts and their lo-
cation can be registered with SWIFT. When a user device searches for
Chromecasts, SWIFT can filter out those responses that are not near the
user, thus limiting the list of devices to a large degree. The filtering can
be done through the OpenFlow match-action rules, which match on well-
known fields of the response packets from the Chromecasts.

2) Device Based Services. Another similar feature is device-based services.
When SWIFT has recognized a registered device, it can allow or deny
different services for that particular device. Example services could include
access to restricted services for employee devices while at the same time
denying those for guest devices. For example, local file servers should only
be accessible to employees but restricted from guests.

3) Network Slicing. Network slices can offer different levels of service to the
devices. For example, some slices can offer guaranteed Quality of Services
(QoS) or lower latency, while a general slice could offer best-effort network
service. While SWIFT cannot directly affect the radio interfaces, SWIFT
can prioritize traffic flows. With the prioritization, SWIFT can offer traffic-
based slicing, and with coordination with a WLC or similar, also perform
it in the radio links.

4) Network Security. Since all traffic needs to be checked first at the con-
troller due to SDN switches and client isolation, SWIFT can provide sup-
port for network security. When a new device first joins the network and is
not previously registered to the SWIFT controller, the controller can redi-
rect the traffic to different network functions such as security functions. One
example is Snort [22], which can perform deep packet inspection (DPI) on
the traffic.

After the inspection, the security function will report its findings to the
SWIFT controller, and the controller can then decide how to handle the
traffic. Typically these would include actions such as forward, block, or
restrict.

Bring SDN to Existing Networks.

One major obstacle to SDN proliferation is the existing hardware that
does not support SDN. While major network hardware vendors have slowly
brought SDN capabilities to their switches, many existing networks still
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use older equipment. In many cases, the existing hardware can handle the
network needs of the venue, and replacing them would not be cost-efficient.

For example, a home network may consist of only a few devices, includ-
ing the home gateway. The general cost of a new access point or home
gateway is typically between 100 and 200 Euros. However, off-the-shelf
SDN-capable devices either cost several times more than these devices or
are not available at all. In most cases, consumers are not willing to spend
the extra money to replace working equipment unless the speeds and other
common features exceed the performance of the current equipment.

Similarly, more extensive networks have the same issue. The networking
equipment is usually more expensive than consumer equipment, and in
many cases, especially with the more extensive networks, is supplied by
a single vendor. Replacing these networks with devices that have native
support for SDN is not financially possible.

However, as we have demonstrated with the Thin and Intelligent AP
designs, using these methods would not require replacing all of the network
equipment. Instead, only the key points in the network would require new
hardware that would allow deployment of the SWIFT. For example, to get
the SDN capabilities to the Wi-Fi network would only require replacing a
few traditional switches where the APs are connected to with SDN switches.
This would allow the Thin AP approach to be deployed in the network.

Use Existing Wi-Fi Testbeds for SDN Experiments

Similar to bringing SDN to the existing network, SWIFT can bring SDN to
existing Wi-Fi testbeds. While Wi-Fi and other network testbeds are com-
mon in universities and research institutes, they do not typically support
SDN. However, these commonly already use OpenWrt-capable hardware
due to the ease of experimenting that OpenWrt brings. With our methods,
these testbeds can be converted into SDN testbeds without requiring to
buy new hardware.

Client Mobility

Over the years, there has been much work to support client mobility in
Wi-Fi networks. In non-managed networks, the mobility is handled by the
Wi-Fi clients themselves by deciding when the Wi-Fi signal is weak enough
to trigger roaming to another AP whose signal is stronger. In managed
networks, the roaming may be initiated by the wireless controller.

In both cases, the switches in the network need to update their forward-
ing tables. This will take some time, attributing to lost packets when the
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client switches between the networks. SWIFT can alleviate this by coordi-
nating with the other controllers by either rerouting the traffic to the new
location or duplicating the traffic to the AP where the client is connected
and to the AP where the client is expected to connect.

Limit Number of SSIDs

In many SOHO networks, there are typically at least two network IDs
broadcasted by the APs, namely Guest and Private. In addition to these,
there may be multiple additional networks for additional services, such as
services that are limited to certain locations or for particular user groups.

Similarly, vulnerable devices like the IoT devices are sometimes re-
stricted to their own VLAN and SSID, where they cannot be accessed
by other devices, at least not directly [61]. To make matters worse, in some
large venues like fair centres or shopping malls, there could be even more
SSIDs for different shops and cafes. While the location of these is restricted
to small areas, the Wi-Fi signal can travel well beyond the premises.

However, each SSID broadcast uses a bit of available bandwidth as they
are control frames and not data frames [50]. In the end, these broadcast
beacons use up all available bandwidth. Using client isolation and, for
example, security groups, the number of SSIDs broadcasted by the APs
can be reduced. The security groups would allow registering the client
device to certain groups with different permission into different networks.
This would allow dispensing some of the SSIDs as the controller takes care
of which networks the devices can communicate with.

3.2 PraNA: Programmable Network Analytics

Our networks have grown from what they used to be just a decade ago,
and this growth is expected to continue at even increasing pace [4, 62].
Traditional networks typically consist of regular network elements such as
switches, routers, and APs. Alongside the regular devices, the networks
have also witnessed a new category of devices connected to the network,
namely the Internet-of-Things (IoT) devices. These IoT are generally de-
signed for a limited set of functionalities such as temperature sensing,
remote-controlled switches, and similar, simple use cases for home automa-
tion and remote sensing. As such, their capabilities, including computing
power and network connectivity, have been optimized to make them as
low-cost as possible [3]. At the same time, the IoT hubs are bringing more
network services inside the network [27, 63]. All these network elements,
from IoT to APs and routers, are either manually managed, or in the case of
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Vendor SNMP Proprietary REST Command
Line

Cisco Wireless LAN
Controller � � �
Aruba Mobility
Controller � � � �
Ubiquiti UniFI � � � �

Table 3.1: Control interfaces of Wi-Fi Controllers.All controllers sup-
port both SNMP and command line interfaces in addition to their propri-
etary APIs. Some controllers also support REST APIs. This table origi-
nally appeared in Publication III.

large Wi-Fi networks, controlled by specific Wireless Network Controllers
(WNC). For example, Cisco offers Wireless LAN Controller [44], with sim-
ilar offerings from Aruba and Ubiquiti [64, 65]. Similarly, the IoT devices
installed in the network are typically controlled by their own hubs or con-
trollers [32], creating silos in the network that operate individually.

This growth has already started to reach the point where managing
these networks is starting to be an impossible task, as the management
has fragmented into multiple autonomous controllers. To regain control,
we present PraNA in Publication III [66]. PraNA is a framework for pro-
grammable network management, where we tie together individual con-
trollers using their Northbound APIs through a shared management bus.
Using the SWIFT SDN controller allows us to manage the traffic flows,
and with the help of WNCs, IoT hubs, and other elements, allows us to
bring these heterogeneous networks under the management of the PraNA
orchestrator. We envision PraNA as a network orchestrator that can com-
municate with other controllers inside the network and provide network
management and orchestration.

However, the challenge is how PraNA can communicate with the con-
trollers. Previously, network management systems from prominent vendors
have concentrated on their own ecosystems [67]. However, as shown in Ta-
ble 3.1, different controllers do support standardized APIs such as Simple
Network Management Protocol [68], or vendor-specific REST APIs. At a
minimum, at least the advanced systems also support command-line con-
figuration, which allows configuration tools like Ansible [69] to access them.
With these APIs, we can build agents that allow PraNA to communicate
with the controllers and devices over a shared management bus.

PraNA is not limited just to the network orchestration. We designed
PraNA to be a highly modular system that allows new features to be
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brought to the network using third-party services. To exemplify this, we
focused on using PraNA to secure the network from the inside. As our
networks have witnessed the influx of devices, especially the IoT platforms
and devices have brought new security vulnerabilities to the network [34].
Many of these IoT devices are cheap, with varying levels of support from
their vendors, and typically little effort has been made to secure them [70].

To minimize this attack surface, PraNA uses SDN to secure the network.
Over the years, multiple different SDN-based security systems have been
designed [35, 71, 72]. These systems use different approaches, from Machine
Learning (ML) fingerprinting to deep packet inspections to detect malicious
traffic and devices.

Our PraNA framework uses the capabilities provided by the SWIFT [57]
described in Section 3.1 to allow PraNA to isolate devices inside both the
wired and Wi-Fi network. To know which devices are vulnerable, PraNA
uses ML-based device classification to detect vulnerable devices [73]. How-
ever, PraNA is not limited to this approach, instead, it can also use other
approaches for providing security and other services.

3.2.1 PraNA Design

The PraNA framework is a modular system, where the control plane of the
networks consists of the PraNA orchestrator, the SWIFT SDN controller
with PraNA augmentations, and elastic computing engines that can per-
form different operations such as machine learning-based device classifica-
tion. The modularity allows PraNA to communicate with other controllers
and network equipment to bring centralized network orchestration to the
network. To achieve this, we separate the control plane and the data plane
of PraNA as described below.

Control Plane

The control plane of PraNA consists of all the different controllers inside the
network. In Figure 3.7, we showcase an example control plane for PraNA.
The control plane consists of autonomous elements tied together with a
common bus. The PraNA deployment can include the following elements,
though only a subset of them are required for the network orchestration:

• SDN Controller is responsible for running the network and providing
the network view and events to the PraNA Orchestrator. The SDN
controller is also responsible for implementing the network policies
set by the PraNA Orchestrator.
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Figure 3.7: PraNA architecture. Flows traversing the network are con-
trolled by our SDN Controller, while Wi-Fi APs are managed by the Wi-Fi
Controllers and IoT devices are managed by their respective controllers.
This illustration is taken from Publication III.

• Wireless Network Controller (WNC) manages the Wi-Fi network and
its characteristics. The WNC provisions the managed APs points,
including provisioning configurations and updates to the APs, and on
which channels each AP should be to provide the best coverage. The
WNC also provides Wi-Fi-related events to the PraNA Orchestrator.

• Cellular Core manages the local 5G network and its successors. It is
expected that enterprises, factories, and other venues will run their
own network slices to provide the best local connectivity [62, 74, 75].
The base stations in these networks are expected to provide both Wi-
Fi and cellular networks [76], while the cellular core can provide open
northbound APIs for integration [77].

• IoT Hubs manage their own IoT equipment. Many of the IoT devices
are vendor-specific, and typically do not integrate easily with other
IoT devices [63]. Nonetheless, protocols such as ZigBee [28] provide



3.2 PraNA: Programmable Network Analytics 39

standardized interfaces for devices to use, which in turn allow solu-
tions like Home Assistant [33] to provide an aggregation point for the
PraNA framework.

• Elastic Engines are computing units that provide different services
to PraNA. In the testbed presented in Publication III, the Elas-
tic Engines provide device fingerprinting and classification service to
the Orchestrator [73]. They can also provide other services such as
security services provided by the IoT Sentinel or other network func-
tions [72].

• PraNA Orchestrator is the heart of PraNA. The PraNA Orchestrator
is the main source of network orchestration and has the complete view
of the network. The orchestrator aggregates the information provided
by the other control plane elements and disseminates the results over
the management bus. It provides network policy decisions to the
SDN controller and presents the view of the network to the network
administrators.

• Management Bus ties the above control plane elements together by
providing a common publish-subscribe bus. The current topics pro-
vided by PraNA are shown in Table 3.2, which include topics for
network events such as ”new device” or ”new switch,” classification-
related topics, and network policy topics. Each control plane element
can subscribe to the relevant topics and publish new events or re-
sponses to commands it has received. In our proof-of-concept PraNA
deployment, we use MQTT to implement the bus [78].

• PraNA agents are software components that allow the PraNA orches-
trator and different controllers to communicate over the management
bus. The agents translate messages from different entities to a form
that particular control plane elements understand, creating a shim
between them and PraNA.

PraNA is not limited to the above list of elements, nor does it require
all of them to operate. The modular design with preconfigured default
rules and policies allows PraNA to operate with a reduced capacity. For
example, if the elastic engines are offline, the PraNA orchestrator will not
receive classification updates. The orchestrator can still assign predefined
policies to hosts, both known and unknown.
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Topic Description
prana/status Status of network elements.
prana/network/device/switch/new New switch added.
prana/network/device/switch/update Update switch information.
prana/network/device/switch/remove Switch removed from network.
prana/network/topology/links/new New link between switches or between

a switch and a device.
prana/network/topology/links/update Update link information.
prana/network/topology/links/remove Removed link from the network.
prana/network/device/host/new New host added to the network.
prana/network/device/host/update Update host information.
prana/network/device/hosts/remove A host is removed from the network.
prana/classification/result Result of the classification.
prana/classification/update Update classification information.
prana/classification/pcap/request Request a capture from a host.
prana/classification/pcap/response Capture available for classification.
prana/policy/allow Change device policy to Allow.
prana/policy/block Change device policy to Block.
prana/policy/restrict Change device policy to Restrict.
prana/policy/implemented A policy has been implemented.

Table 3.2: Example PraNA MQTT topics.The MQTT topics shown
in this table are currently implemented in our PraNA framework. These
topics allow network orchestration and management. This table is taken
from Publication III.

Data Plane

The data plane of PraNA consists of both non-SDN and SDN capable
switches, APs, and routers. However, our deployment requires some SDN
capabilities, as the SDN-capable devices are used to detect and capture
traffic from the hosts in the network for classification and applying network
policies inside the network. Still, traditional network equipment can be used
for similar purposes, although not as efficiently. The WNC can inform the
PraNA orchestrator of new devices through SNMP messages, and regular
switches allow the usage of monitor ports, where network traffic is mirrored
from other ports. Nonetheless, SDN is required at the network level to get
the full benefits of PraNA.

Network policies

Network policies are inherent in every network. In a small home network,
the main network policy inside the network is to allow all traffic between
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the hosts, and only Internet access is limited by the firewall of the home
gateway, i.e., the NAT device. In more extensive networks, a more complex
set of policies is required for the network to operate properly. A typical
office network usually has at least two policies beyond the firewall rules,
namely a guest network and employee network. The devices inside the
guest network are barred from communicating with the devices inside the
employee network and vice versa. Beyond these, large networks can have
more complex rules for network operations.

For our PraNA framework, we created a minimal set of policies to
demonstrate the capabilities and the dynamicity the SDN offers. This set of
policies is not comprehensive but serves as a foundation for more complex
policies. The PraNA policies include the following policies: allow, restrict,
and block. Each of these policies is applied to individual devices, but the
PraNA orchestrator can change the policy of each device at will.

The allow policy allows any host it is applied to have full access to the
network, i.e., the access is completely unrestricted. In contrast, the block
policy denies all traffic to or from the device, for example, a malicious host
can be quarantined from infecting other hosts using this policy. Lastly, the
restrict policy allows the host only limited access to the network. In our
example deployment, the restrict policy allows the host to receive an IP
address from the DHCP server, communicate with the DNS server, and
have access to the Internet. No other services are available for the host.

The SDN controller enforces these policies through OF rules installed
on the SDN switches. All known devices will be applied with its default
policy, and when an unknown device joins the network, it is first given the
default Restrict policy, which is then updated when the device is classified
if needed. When the PraNA orchestrator applies a policy update to a host,
the SDN controller updates the relevant rules in the switches and informs
the orchestrator when the policy is in place.

This is only a very basic set of rules. A more fine-grained set of policies
is required for larger networks, where hosts have different levels of network
access or some other requirements. For example, the applications described
in Section 3.1.6 could be implemented through the PraNA orchestrator and
the SDN controller.

3.2.2 PraNA Evaluation

We evaluated PraNA using a testbed that contained different types of IoT
devices from simple power switches to video streaming devices, and even a
smartphone and a laptop. The devices were chosen to represent different
categories of IoT devices and had varying levels of both computing and
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Figure 3.8: Sequence of messages over the management bus. Open-
Flow control messages between the SDN controller and the network are
denoted in blue. This diagram was taken from Publication III.

networking capacities. Each of the devices generates a different number of
packets when it powers on and joins the network, including ARP, DHCP,
and other packets if and when it connects to the Internet.

The control plane of the testbed consisted of the PraNA orchestrator,
SDN controller, and device classifiers. The different control plane elements
were tied together using MQTT-based management bus. The data plane of
the testbed included multiple SDN-capable switches and APs, which used
the SWIFT techniques to control the traffic between devices, and provided
traffic captures for our ML-based device fingerprinting.

For our evaluation, we powered the devices and measured how long
it took for PraNA to detect the device, get a packet capture of 30 pack-
ets, classify it, and apply a network policy to it. The sequence of events
and management bus messages is shown in Figure 3.8, and the results are
shown in Figure 3.9. When the network, i.e., the SDN switches, detects a
new device, they inform the SDN controller over OF messages. The SDN
controller assigns a default policy to the device and informs the PraNA
orchestrator. The orchestrator requests a packet trace from the device for
the classifiers. When the trace is available, the classifiers classify the device
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Figure 3.9: Total time. We present a) total time taken by the PraNA
Orchestrator from the moment a device is detected to the time a network
policy has been implemented, b) time for the packet capture, and c) time
for classification, and d) time to implement the policy. The figure was taken
from Publication III.

and inform the orchestrator of their results. The orchestrator then assigns
a revised network policy to the device through the SDN controller.

In general, the full sequence of events took roughly 500 ms, out of which
the packet capture used the most time, roughly 400 ms. The rest of the
events, i.e., classification and policy implementation, used on average 80 ms,
with the classification taking 40 to 50 ms.

This testbed is only a small-scale testbed with negligible network la-
tency. However, in the current form, many of the PraNA elements are
single-threaded systems. If we compare the performance of the testbed to
a eduroam dataset from 2014 [79], where at the peak hour there were 9.6
network association events per second, the PraNA framework can easily
be made to handle the load. The packet captures are handled by individ-
ual switches and APs, and the device classifiers can be made to operate
in parallel. With these tweaks, PraNA should be able to handle the loads
presented in the dataset.
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3.3 Summary

In this chapter, we have shown a way to deploy SDN on existing devices.
The previous approaches for converting existing devices to support SDN
have limitations such as allocating too many resources for each client or
requiring custom firmware. Our SWIFT approach, namely the Intelligent
and Thin AP, does not require massive changes to the devices. The main
requirement is the client isolation in either permissive or restrictive form.
The Intelligent AP approach also requires the AP to support OpenWrt or
similar firmware; however, the firmware does not need to be customized in
any other way than installing OVS on the device and replacing the default
Linux bridge with it. The Thin AP technique, on the other hand, does
not require changes to the device, but it requires the AP to be connected
to an SDN switch. Our evaluation shows that the techniques do not have
a significant impact on the device performance, and in some cases, may
actually increase the performance of the less powerful APs.

We also discussed different applications that SDN-based flow manage-
ment could bring to the Wi-Fi networks. These applications allow fine-
grained control over the Wi-Fi clients and can bring different services such
as location-based services to the client without special network designs. To
exemplify the benefits of the SDN, we presented PraNA, a framework for
network orchestration. PraNA ties together different network controllers,
including SDN and Wi-Fi controllers, over a common management bus.
This allows PraNA to orchestrate the network operations and bring other
services like ML-based security services to the network.



Chapter 4

Seamless Multiconnectivity

In this chapter, we discuss the challenges of multiconnectivity and our pro-
posed solutions to solve some of them. In general, almost all of our devices
are capable of using more than one communication interface to connect to
different networks [80]. For example, a typical laptop has at least three
communication interfaces, namely Wi-Fi, Ethernet, and Bluetooth [30]. In
addition to these, the laptops may also include a cellular modem to con-
nect to the mobile network, either as a built-in modem or as a USB dongle.
A smartphone usually has the same communication interfaces as laptops,
with the difference of having the cellular modem built-in and the Ethernet
as a USB dongle, although using a wired network with a phone is uncom-
mon [81]. Other devices such as smartwatches and tablets either have the
above interfaces available or a subset of them.

However, all these devices offer only a limited control to the users on
which communications interface to use beyond toggling them on or off. In
most cases, the communication interface is chosen by predefined metrics in
the operating system. If we consider the three most common interfaces,
namely Ethernet, Wi-Fi, and mobile networks like 5G, all of these have
their own priorities. Traditionally, the order from the highest to the lowest
priority is 1) Ethernet, 2) Wi-Fi, and 3) cellular. Why this order is such
is based on multiple reasons. Earlier, Ethernet was always the fastest net-
work available, while Wi-Fi was slowly catching up, and 3G had not become
available yet. Then there are different cost metrics, such as energy, band-
width, and monetary costs. They can be defined in different ways [82, 83].
Typically, the costs are expressed as power usage, bandwidth, latency, and
money. For example, Ethernet is typically considered the fastest available
network, while the mobile network is most expensive due to data plan costs.

In Table 4.1, we present pros and cons for different network interfaces.
The list is approximate, but it illustrates the reasoning behind the metrics.

45
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Interface Pros Cons
Ethernet Fast, cheap Requires cable
Wi-Fi Cheap, good speeds Limited range, can be congested, energy
Mobile Good coverage Data plan costs, speed varies, energy

Table 4.1: Pros and cons of the different interfaces. Different network
interfaces have different characteristics that affect what are benefits and
disadvantages of using them are.

Ethernet is typically very fast both in bandwidth and latency, at least in the
local area network (LAN). However, Ethernet requires a physical connection
to the LAN, i.e., a cable, which limits the mobility of the connected device.
This can also be considered a boon for Ethernet. There is usually also
power available near the physical network sockets, allowing devices to be
more powerful than fully wireless devices.

Typically Wi-Fi networks are available on an on-premises basis, i.e., a
home network, campus network, or workplace. However, these days In-
ternet connectivity is considered to be almost a basic need; many places
such as cafes, hotels, and airports offer complimentary free Wi-Fi. Wi-Fi
networks are typically slower than Ethernet as the users share the same
wireless medium. On the other hand, as Wi-Fi networks do not require a
cable, the mobility is greatly increased, as long as the device stays within
the range of the Wi-Fi network. Also, with the recent advances in Wi-Fi
technology, the achievable speeds of the Wi-Fi are starting to catch up with
Ethernet, at least in optimal conditions [84].

However, the use of the wireless medium has some drawbacks. Espe-
cially the older Wi-Fi networks can easily become congested as the avail-
able spectrum is shared by multiple devices. The Wi-Fi also covers only
the premises within the range of the APs, and within this area, there can
be areas where the signal strength is low due to thick walls, limiting the
speeds of the network. Finally, using Wi-Fi consumes energy. While Wi-Fi
itself may use less energy than Ethernet, there is typically a power socket
available with Ethernet. Due to this, in practice, Ethernet does not require
energy from the device’s battery, while Wi-Fi consumes it.

These days, mobile networks are available almost everywhere. This
makes them very attractive for Internet connectivity and is the reason why
the world has changed into a digital one. They allow connectivity from
places where no one would have thought connectivity would be possible
only a few decades ago. 5G and future networks have also improved the
speeds and latency dramatically. While they may not yet be on a par
with the above technologies, the mobile network is fast closing in on Wi-Fi.
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However, these come with costs. Mobile data plans are not cheap. The
speed and available amount of gigabytes per month can drive the cost of
mobile networks very high. As with Wi-Fi, mobile networks also require
energy, which can be modelled as battery costs. In addition to the above,
the coverage of mobile networks varies. Depending on the mobile operator,
cities and suburbs are usually covered with fast networks, but when moving
to more rural areas, the download speeds can drop dramatically from tens
of megabits per second to only a few. Upload speeds may only be a few
kilobytes per second at worst.

The above gives insights into why there are different priorities for differ-
ent interfaces. Ethernet has the highest priority, followed by Wi-Fi. Mobile
networks have the lowest priority, as they are considered to be the most
expensive. Typically when a device enters a known Wi-Fi range, the de-
vice automatically switches to the Wi-Fi network, and existing connections
are broken as the five-tuple defining the connection change. In most cases,
users have no control over the change beyond shutting Wi-Fi off before en-
tering the Wi-Fi range. Application developers may have some control over
it, but usually, it is very limited or requires getting superuser privileges.

Another reason why automatically switching to Wi-Fi is not always
the best idea is the network conditions. A Wi-Fi network may be very
congested, limiting the available bandwidth to less than the mobile network.
The uplink of the local network to the Internet can be a slow one, or it may
have so many other users that it is also congested. These and other reasons
make the automatic switching to Wi-Fi or Ethernet problematic at best.

In this chapter, we present two different approaches for multiconnec-
tivity. In both cases, the aim is to make multiconnectivity programmable,
allowing users and the network to influence the choice of interfaces and
protocols to be used.

The first approach, Meghna, uses SDN to achieve multiconnectivity at
Layer 3. The second approach, MULTI, is agnostic to underlying protocols
and interfaces and is targeted to the session layer.

4.1 Meghna: An SDN Perspective on Multicon-
nectivity

Currently, our devices make the decision on which network interface to use
to transfer data locally, without a proper network view beyond the first
link. As discussed earlier, this decision is based on predefined metrics that
do not take network state into account. SDN controllers, on the other
hand, have this view as they control all traffic in the network. SDN allows
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the SDN controllers to steer the traffic flows to paths that are best at any
point in time, allowing the traffic to avoid congestion if possible. However,
using SDN for multiconnectivity requires enabling the SDN on the host
device itself so that it also becomes a part of the network, not just a host
connected to the network. This allows the SDN controller to take over the
decisions on which network interface to use at any given time.

Earlier in this thesis, we presented SWIFT in Section 3.1. While SWIFT
brings SDN-based traffic management to Wi-Fi networks, it in itself is not
a multiconnectivity solution. Although SWIFT does not support multi-
pathing or multihoming, it can be used as a starting point for programmable
seamless multiconnectivity.

In a typical case, each network interface is assigned its own set of IP
addresses. When an application creates a connection to a remote host,
the routing elements of the device’s operating system check which of the
available interfaces can be used to connect to the destination and chooses
one accordingly. This choice is influenced by which network the destination
is located at, and if more than one interface can be used, the highest priority
interface is chosen. However, as discussed before, this choice is not always
the best one.

In Publication IV, we present Meghna, an SDN perspective on user-
centered multiconnectivity. Meghna takes the ability of SWIFT to manage
all network traffic one step closer to the user [85]. Meghna moves the soft-
ware SDN switch to the host device itself, with the Meghna SDN controller
located in the network.

Having the SDN switch at the host device simplifies traffic management.
It allows SDN controllers to leverage the known network state fully and
manage traffic accordingly. Moreover, as the host device is connected to the
network through multiple interfaces, the SDN controller can also perform
traffic migration based on different network inputs, such as signal strengths
and congestion notifications. When the SDN controller makes the decision
to move the traffic from one interface to another, the controller performs
make-before-break migration, i.e., install the required match-action rules
for the traffic inside the network before switching interfaces [86].

4.1.1 Meghna Design

The key design decision for Meghna is to leverage the knowledge that an
SDN controller has on the network state and not just the local information
available to the host. The SDN controller, namely the Meghna controller,
has the full information on the current network state, e.g., which links are
congested and how to optimize the network paths.
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(a) Laptop with 3 interfaces. (b) Network topology.

Figure 4.1: Multiconnectivity Setup for Meghna. The Ethernet, Wi-
Fi, and LTE interfaces of the laptop are plugged to an SDN switch running
on the laptop. These figures were taken from Publication IV.

Meghna design has two main assumptions. First, all interfaces of a
device are connected to a ”home” network, either through local Ethernet
or Wi-Fi links. If the device is not within the home network range, the
Meghna can use a Virtual Private Network (VPN) over the Internet to
connect to the home network. This home network shares a single IP address
space that all devices use and is SDN capable.

The second assumption is that devices participating directly in the
Meghna system are also SDN capable. This means that 1) they have an
SDN switch installed locally on the device, and all network interfaces are
connected to this switch, and 2) this SDN switch is registered to the Meghna
SDN controller. This allows the traffic to be controlled by the Meghna con-
troller when the device joins the network.

The above is shown in Figure 4.1. In Figure 4.1a, a laptop with mul-
tiple connections is shown, and in Figure 4.1b, we show how the laptop is
configured internally. Each of the Ethernet, Wi-Fi, and cellular are plugged
into the OVS, controlled by the remote SDN controller.

In addition to the above assumptions, we need to take one more step.
Generally, each network interface of a device has one or more IP addresses.
However, for Meghna to work, the SDN switch on the device is allocated
a single IP address from the home network. As the network interfaces are
directly connected to the OVS, they do not have separate IP addresses.
This allows the switch to connect to the Meghna controller, and more im-
portantly, allows applications to use the same IP address as their source
address regardless of which interface is actually used. Since the IP address
does not change, the applications can be agnostic on the underlying net-
work and location, i.e., the device can move from one location to another
location, and as long as a connection to the home network is maintained,
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Algorithm 1: The set of rules to add and delete

Data: P ′′: the new path, and P ′: the current path
Result: α: set of rules to add, and δ: set of rules to delete

1 S′ = {s(r) | r ∈ P ′}
2 S′′ = {s(r) | r ∈ P ′′}
3 θ′ = {〈s(r),m(r), a(r)〉 | r ∈ P ′, s(r) ∈ S′ ⋂S′′}
4 θ′′ = {〈s(r),m(r), a(r)〉 | r ∈ P ′′, s(r) ∈ S′ ⋂S′′}
5 α = {r | r ∈ P ′′, s(r) ∈ S′′ \ S′}
6 δ = {r | r ∈ P ′, s(r) ∈ S′ \ S′′}
7 foreach j ∈ S′′ ⋂S′ do
8 rα = r | r ∈ P ′′, s(r) = j
9 rβ = r | r ∈ P ′, s(r) = j

10 if 〈s(rα),m(rα), a(rα)〉 /∈ θ′
⋂

θ′′ then
11 π(rα) ⇐ π(rβ) + 1
12 α = α

⋃
rα

13 δ = δ
⋃

rβ
14 end

15 end

the IP address does not change. As the IP address does not change, it
allows the applications to maintain a constant connection to their destina-
tions and do not have to recover from broken connections when the device
moves and the IP address changes.

Devices that are not SDN-capable are not excluded from Meghna. They
can connect to the network like any other device but do not participate
directly on the Meghna. This means that they are plain clients with a
single connection to the network; however, beyond the first link to the
network, Meghna can control the traffic.

To facilitate the seamless multiconnectivity in Meghna, we use the al-
gorithm shown in Algorithm 1. This algorithm is used by the Meghna
controller when the controller decides to migrate all traffic from one inter-
face into another interface, and the detailed description can be found in
Publication IV.

The algorithm is implemented using the techniques of Huque et al. [87].
These techniques are built on the two-phase-commit [88], and the reverse
rule update techniques [89]. However, using these techniques directly would
also require updating rules on the switches that are common on both the
new and old paths. We, therefore, improve on the rule update techniques
so that we avoid modifying the rules that do not need modifications.

The rule update sequence is illustrated in Figure 4.2, where the initial
path from source (SRC) to destination (DST) is illustrated in red and passes
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Figure 4.2: Meghna rule update sequence. The figure depicts an old
path and a new path, shown in red and green respectively.

through Node 1. Each node, including SRC and DST, represents an SDN
switch. The sequence of steps shown in Figure 4.2 shows how a one-way
path, i.e., the path from SRC to DST, is migrated from the old path, shown
in red, to the new path. To allow full communications between SRC and
DST, a reverse path from DST to SRC must also be installed. However, to
simplify the figure, the reverse path is omitted.

When the Meghna controller initiates the migration to the new path,
shown in green, it first calculates the path shown in Step I. Note that Node 6
is common to both paths, so the Meghna controller does not need to update
the rules in Node 6 during Step II. After Step II has been completed, the
Meghna controller redirects the outgoing traffic at SRC to use the new path
through Node 3, completing Step III.

The last step, Step IV, is removing the old path. Here, the Meghna
ensures that each hop of the path is clear, i.e., there are no packets in flight
on that hop. After each hop is clear, the Meghna controller removes the
relevant OF rules from the nodes so that the set of rules present in each
node does not grow too large.

As noted above, this sequence is for a single direction only. Similar
operations also need to be performed in a reverse direction to allow two-
way communications.

4.1.2 Meghna Evaluation

For our evaluation for Meghna, we built a migration testbed illustrated in
Figure 4.3. The testbed can be split into three parts. First, the SDN test
network contains multiple SDN switches marked OVS. These are based
on Linksys WRT3200ACM APs that are running OpenWrt and OVS as
described in Section 3.1.2. Each AP also includes four 1 Gbps Ethernet
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Figure 4.3: Meghna Testbed. Our test network contains interlinked SDN
switches, an SDN capable AP, and an LTE connection via a VPN tunnel.
This illustration is taken from Publication IV.

ports and a WAN port. The WAN ports connect the APs to the SDN
controller to allow out-of-band management.

In addition to the SDN test network, we use an external LTE network to
add a cellular capability to the testbed. The LTE is realized through a USB
LTE dongle and OpenVPN tunnel through the external mobile network to
a specific OVS AP inside the test network.

The last part of the Meghna testbed is the test laptop depicted in Fig-
ure 4.1a and Figure 4.1b. This laptop includes the following physical inter-
faces: Wi-Fi (802.11ac) interface, 1 Gbps Ethernet interface by default, and
a USB LTE dongle to connect to the LTE network. To combine these, we
installed an OVS switch on the laptop and plugged the Wi-Fi and Ethernet
interfaces directly into the OVS.

Since the USB LTE dongle acts as a NAT device between the LTE
network and the laptop, it gives out a private IP address to the host different
from the address range used in the testbed. To work around this, we use an
OpenVPN tunnel in TAP-mode to allow us to connect the VPN interface to
the OVS. The TAP interface created by the OpenVPN is a virtual Ethernet
device, and as such, can be added to the OVS.

After all interfaces are connected to the OVS, it acts as a bridge inter-
face to the operating system. We allocate a single IP address to this bridge
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interface from the testbed. As all interfaces are connected to the test net-
work either directly or through the OpenVPN tunnel, we can migrate the
traffic over any of the interfaces without breaking connectivity.

However, as the laptop is a mobile device, it does not have an out-
of-band connection to the Meghna SDN controller. Instead, it has to use
an in-band control channel through the data plane of the test network to
connect the OVS to the controller. This requires specific default match-
action rules to be installed into the laptop’s OVS to allow it to forward
traffic even if it is not connected to an SDN controller. These rules allow
the OVS to reach and register to the SDN controller, after which the SDN
controller can take over controlling the OVS bridge and manage all traffic
flowing inside the network.

The evaluation results are shown in Figure 4.4, and the detailed anal-
ysis can be found in Publication IV [85]. The results show that when the
network links are not congested, the migration time remains mostly un-
der 100 ms. However, when the links are congested, the effect of scheduling
wireless frames or the effect of bufferbloat, i.e., large buffers in the network,
can cause major latency in migration. This is due to the control messages
from the Meghna server to the OVS running on the laptop being buffered
alongside the other in-band traffic. A similar effect can be observed with
the power-saving features of the wireless links. If there is no traffic, the
transmitters do not need to be powered on and require waking up [90].

Similarly, the TCP retransmissions increase dramatically when the links
are congested. While the Meghna ensures that all paths are clear before
dismantling them, the large network buffers may cause the destination to
discard packets during the migration if the packets on the new path start
arriving well before the old path is clear. However, when the links are not
congested, there are only under 30 retransmissions during the migration.

4.1.3 Meghna Discussion

Meghna is one way to perform multiconnectivity and traffic migration. The
benefits of the network-triggered traffic migration are better network uti-
lization and better Quality of Experience (QoE) as the disruption to net-
work traffic is minimized. The main part of this is the algorithm that
allows the Meghna controller to build a new path through the network
before tearing up the old path.

Similarly, the Meghna design of using a single IP address assigned to the
bridge interface on the host device simplifies the design of applications. This
allows the application to maintain a network connection without breaking
the 5-tuple that defines the connections.



54 4 Seamless Multiconnectivity

unlimited 10 Mbps idle
(pwr mgmt)

idle
(no pwr mgmt)

Workload

0

100

200

300

400

500

600

700

M
ig

ra
ti

o
n
 T

im
e
 (

m
s
e
c
)

L→W

L→E

W→L

W→E

E→L

E→W

(a) Mean time to migrate a flow.

0.0 0.2 0.4 0.6 0.8 1.0

Workload

0.0

0.2

0.4

0.6

0.8

1.0

unlimited
0

200

400

600

800

1000

1200

1400

1600

1800

R
e
tr

a
n
s
m

it
s

10 Mbps
0

5

10

15

20

25

30
R

e
tr

a
n
s
m

it
s

(b) Number of TCP retransmissions during flow migration.

Figure 4.4: Evaluation results. We consider all 6 combinations of flow
migrations between Ethernet (E), LTE (L), and WiFi (W) links. The
common legend is shown in the top figure and L→W implies migrating
a flow from LTE to Wi-Fi. The error bars represent the 95% confidence
interval across 30 iterations. These figures were taken from Publication IV.

However, the main drawback of the Meghna is the home network. When
the host device is on-premises of the home network, the Meghna performs
optimally. However, if the host device is roaming in another network, the
connection to the home network must be established over a VPN tunnel.
While this allows retaining the IP address the application uses, the extra
cost of tunnelling the traffic to the home network and back causes extra
latency. This can be mitigated by having regional home networks that
allow traffic to enter the network from a closer end-point.

However, if no connection to the home network can be established, the
Meghna system must be able to operate without the home network. This
is also a requirement for establishing the connection to the home network
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in all cases, i.e., when the host device, for example, wakes up from sleep,
its old network connections are disconnected, and it must join the network.

This is achieved by installing low-priority default rules on the OVS
running on the device. These allow normal connectivity to be established,
and when the connection to the Meghna controller has been established,
the controller can take over handling the traffic rules.

4.2 MULTI: Programmable Session Layer MULTI-
Connectivity

Earlier in Section 4.1, we presented how SDN can be used to bring mul-
ticonnectivity to the host devices and perform seamless traffic migration
from one interface to another interface. However, Meghna suffers from the
fact that it requires an SDN-capable home network, thus making it unsuit-
able for general multiconnectivity. In addition to this, Meghna relies on
relaying the traffic through the home network when the device is roaming.

While this kind of traffic relaying is not unheard of, it is suboptimal. To
a degree, Meghna’s approach is similar to Mobile IP, where the Mobile IP
always relays the traffic through the home network [91]. Another example,
Host Identity Protocol (HIP), uses a rendezvous server to keep track of the
location of the host [92, 93].

The second problem with Meghna is that it is not an end-to-end mul-
tipath solution. While the traffic flows of Meghna can take multiple paths
through the home network, beyond the home network, the traffic flows just
like any other traffic. For an end-to-end multiconnectivity solution, the
traffic must be able to use multiple paths to the destination. This can be
achieved using transport protocols that are designed with multipathing and
multihoming in mind. These protocols carry relevant information for mul-
ticonnectivity somewhere inside the packet headers instead of relying on
the network infrastructure for multiconnectivity. At a minimum, the infor-
mation carried must include a Connection ID, which identifies a connection
to which the packet belongs. The receiver then uses this ID to associate all
packets with the same ID to the same connection regardless of the source
of the packets.

The seminal example is Multipath TCP (MPTCP) [23, 94]. MPTCP
is an extension to TCP, and as such, operates in the TCP stack of the
kernel. The support for multiple paths in MPTCP is implemented through
MPTCP TCP options. When an MPTCP-capable host connects to an-
other host, it adds MPTCP options to the SYN packet. If the destination
also supports MPTCP, it replies with an MPTCP option acknowledging
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that it also supports MPTCP. During the initial exchange, the two hosts
exchange their available network addresses. After the initial exchange has
been completed, the hosts can add parallel flows using different endpoints.

The MPTCP can use these subflows of the connection to aggregate
different paths for added bandwidth, use them for backup connections, or
find the lowest latency path. MPTCP is also backward compatible with
regular TCP. If a non-MPTCP capable receives a TCP SYN with MPTCP
options, it should reply without the options it does not understand. As
such, if the reply, i.e., the TCP ACK, does not contain the MPTCP option,
the initiating host treats the connection as regular TCP.

However, the MPTCP has not yet been widely deployed. As discussed
in Section 2.5, different middleboxes behave unpredictably when faced with
packets with unknown headers. For example, a home gateway may drop
the MPTCP packets, remove the option or otherwise behave erratically.
Another problem is the load balancers. Load balancers distribute the in-
coming load to multiple servers, which allows for higher capacity than what
a single server could provide. If the load balancer does not understand the
MPTCP options, or there are multiple load balancers facing different IP
address blocks, the load balancer cannot bridge different MPTCP subflows
together, instead, it may distribute the subflows to different servers.

Another example of a protocol that provides mobility is QUIC [5, 42,
95]. QUIC is a transport protocol built over UDP to allow better connec-
tivity and mobility. The main use case for QUIC is better performance for
HTTPS. Many websites contain multiple elements and traditionally require
the opening of a new TCP connection to the web server, which is costly.
QUIC, on the other hand, is designed to multiplex multiple data streams
into a single connection, allowing these elements to be fetched in parallel.

QUIC is not a multipath protocol in itself, but it supports mobility by
using Connection IDs like MPTCP. These IDs are carried inside the QUIC
headers, and as QUIC is implemented over UDP, the source address of
the UDP datagrams is not fixed. When the host moves between networks
and its IP address changes, the destination of the datagrams can associate
incoming datagrams to existing connections using the Connection IDs.

One of the main benefits of QUIC is that it is implemented in userspace.
This allows QUIC to be deployed faster than MPTCP as it does not require
changes in the kernel of the underlying operating system. This, in turn,
allows browsers and other applications to implement new features in QUIC
to increase its capabilities.

There has also been work to add multipath capabilities to QUIC. This
Multipath QUIC (MPQUIC) is an extension to the regular QUIC [96].
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MPQUIC operates in a similar way to MPTCP, i.e., when a connection
is established, the endpoints determine if both support MPQUIC and ex-
change other possible paths.

Nonetheless, neither QUIC nor MPTCP is currently able to solve all
issues of multiconnectivity by itself. Both are valid in their own area but
are susceptible to middleboxes and other network constraints. As such, a
method that combines different transports is required to solve multicon-
nectivity.

The IETF Transport Services Working Group (TAPS) is working on
architecture for exposing a Transport Services API to applications [97].
Traditional transport protocols have their own APIs, requiring application
developers to use protocol-specific calls to use them, even though concep-
tually similar protocols could share the calls. The transport API will allow
applications to query what transport options are available between the des-
tinations and use a standardized API for sending messages [97].

The NEAT library is an implementation of the TAPS framework [98,
99]. It is a userspace framework built on top of the socket API, allowing
NEAT to offer a flexible platform and protocol-independent transport API
to the applications. As the API is flexible, it can be easily extended to
support new protocols as they become available.

NEAT also allows applications to request a certain set of transport
options, including which protocols to use. When a connection is requested,
NEAT performs Happy Eyeballs (HE) connection candidate gathering for
each of the available transports [100]. This allows NEAT to build a list of
working protocols, and when the HE process finds a working connection, it
is returned to the application.

The MULTI framework introduced in Publication V [101], takes this
further. In addition to bringing multiple transports under one roof, the
MULTI also includes options to a) aggregate different transports together
and b) allow applications to decide which interfaces are to be used for which
transport protocols.

4.2.1 MULTI Design

The design of MULTI draws from the insights of both TAPS and NEAT,
QUIC, and other sources like the UrlSession [102]. MULTI aims to provide
a framework that brings different multiconnectivity approaches under one
roof and provides simple interfaces for applications for transferring data
over multiple transport interfaces and protocols.
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Goals

With MULTI, we aim to address the following features:

1. End-to-end exchange of data streams. One of the largest
obstacles for multiconnectivity is the five-tuple, discussed in Section 2.1.
The five-tuple denotes both end-points of the connections, with the source
address being the address of one of the device’s network interfaces. If the
device is connected to multiple networks or roams between networks, the
five-tuple is broken as the IP addresses change. Meghna handles this with
a bridge interface and is always connected to its home network. However,
this is not possible with MULTI, as there is no home network.

MULTI takes another approach. Instead of directly binding to a net-
work interface, MULTI is a connectivity layer between the application and
the available networks. MULTI exposes the application read and write
queues and handles required socket and other connectivity operations in-
visibly to the application. This provides MULTI with the capability to offer
multiconnectivity in arbitrary networks.

2. Support for different transport, network, and link layer
protocols. Even though most of our devices support multiple transport
interfaces and protocols, not all the devices support all of them. Laptops
typically support Wi-Fi and Ethernet for transport interfaces, while phones
support Wi-Fi and cellular networks. All devices support the normal trans-
port protocols like TCP and UDP, but may not have support for protocols
that require kernel support like MPTCP. We have designed MULTI to be
transport agnostic, i.e., MULTI should be able to use whatever interfaces
and protocols are available on the device. Depending on the situation,
MULTI should be able to establish a connection to the remote host regard-
less of the network state, as long as there is a path available.

3. Allow applications to specify and suggest configurations.
With MULTI designed to be a network agnostic library, we also allow ap-
plications to have more control over how different networks and protocols
are used. As discussed earlier, different networks and protocols have dif-
ferent costs or connectivity issues. For example, cellular data could be
more expensive than Wi-Fi, however, MPTCP might not work in the Wi-
Fi network. MULTI should allow users and applications to specify their
connectivity preferences and fulfil them as well as possible.

4. Simultaneously use multiple transport protocols and inter-
faces. Simultaneously using multiple types of transport allows MULTI to
achieve and retain connectivity over heterogeneous networks. As middle-
boxes are prevalent in practically all networks [103], the set of transport
protocols that will work is not known beforehand [9, 10]. For example, if
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Figure 4.5: Example MULTI Session. Processes can use MULTI to
exchange bi-directional data streams. MULTI multiplexes the data over
multiple bi-directional transport connections. This figure was taken from
Publication V.

QUIC has been selected as the transport protocol, and the device changes
into a network that discards QUIC packets, the connectivity is lost even
though there could be other protocols that would retain it. Using multiple
protocols prevents this, especially if some protocols are specifically chosen
as a backup from well-known protocols like TCP or UDP.

5. Seamlessly react to network changes. The different connections
available to a device will change when the device roams between networks.
MULTI needs to be able to both prepare and recover from the connection
changes caused by the roaming. To achieve this, MULTI needs to be able
to detect network changes and react to them.

6. Userspace implementation. As we have discussed before, using
protocols that require changes to the operating system slows their deploy-
ment. To prevent this, we draw from QUIC and NEAT to implement
MULTI in userspace. This allows faster deployment and the introduction
of new features.

Architecture

In Figure 4.5, we show how two MULTI-enabled hosts transfer data. MULTI
exposes Read (RX) andWrite (TX) queues to the application. As discussed
below, when the application requests MULTI to open a connection to the
destination, MULTI negotiates bidirectional streams over the requested
transports. When the application sends data, the data is encapsulated in
MULTI segments to be transferred over the available connections.

The header fields of the MULTI segments used in our prototype imple-
mentation are shown in Table 4.2 and are influenced by QUIC. The key
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Field Description
Version Version number
Segment type Indicates the type of segment. Our prototype for MULTI

currently supports segments for data, acknowledgement,
keep-alives, and for closing a MULTI session.

Header length The length of the header. This is used to indicate when
the payload begins.

Session ID The session id to which the segment belongs.
Sequence Number Contains the sequence number if the segment contains

data.
Segment length The total length of the segment including the segment

header.

Table 4.2: Fields in the MULTI header for each MULTI segment.

{'connection_priority': [('mptcp','ipv6',['eth', 'wifi']),

('quic','ipv6', 'cellular'),

('tcp','ipv6','cellular')],

'multi_config': {'connect':'seq', 'scheduler':'RR'},

'mptcp_config': {'scheduler':'RR'},

'quic_config' : {'idle_timeout':5},

'remote_host' : 'mcserver',

'session_id' : 'random',

'ssl_config' : {'cert':'cert_name', 'tls':'TLS_v3'},

'tcp_config' : {'nagle':false, 'idle_timeout':10},

'wifi_config' : {'low_latency':true}}

Figure 4.6: Example MULTI Configuration. Applications can specify
the priority for the protocols along with the configuration for each protocol.

fields inside the header are the Session ID and Sequence Number. These
allow MULTI to associate incoming connections and segments to their par-
ticular session. The Version field allows MULTI to distinguish between
different versions of MULTI. This field allows newer versions of MULTI
to remain compatible with earlier versions of MULTI. If a vulnerability
has been found in a particular version, it can be mitigated by choosing a
non-vulnerable version.

In Figure 4.6 we show a sample configuration for MULTI. The con-
figuration example is inspired by URLSession, which allows fetching URLs
with different connection configurations [102].

A more detailed explanation of the configuration can be found in Pub-
lication V. The configuration can be divided into several main parts. First,
the connection priority defines which transport layer protocols over which
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interfaces should be used. Each connection entry has three parts, namely
transport protocol, IP version, and a list of network interfaces to use. How
the connections are opened and used are defined in the subsequent op-
tions. For example, the multi config defines how the connections should be
established and used.

In the example, the connections are opened simultaneously, and a Round-
Robin scheduler is to be used to distribute the data packets over the con-
nections The example also provides configuration options for the protocols
to be used. In the example, MPTCP is set to prefer the Round-Robin
scheduler, and the QUIC timeout is set to five seconds.

4.2.2 MULTI Evaluation

Using a multipath protocol always brings overheads. The additional head-
ers take space and the schedulers who decide which connections to use
cause overheads in scheduling the traffic [96]. As these are inherent to any
multipath system, MULTI also suffers from them. The main details of the
evaluation can be found in Publication V, including connection establish-
ment times and duration to transfer both small and large files. Here, we
focus on aggregating different transport over wireless links.

For evaluating MULTI, we use the testbed shown in Figure 4.7. The
testbed contains a laptop with multiple network interfaces, namely Ether-
net, Wi-Fi, and tethered 5G through a mobile phone. Each of the wired
network links shown in Figure 4.7 is at least 1 Gbps, with the server using
a 10 Gbps link to the network. We use 802.11ac for the Wi-Fi, reaching
200 Mbps network speeds. The 5G connection reached 190 Mbps when
downloading, and 35 Mbps when uploading. This eliminates link bottle-
necks and allows the full utilization of the network.

Each connected link provides both IPv4 and IPv6 addresses to the lap-
top. While the Ethernet and Wi-Fi addresses are internal to the testbed,

Cellular link

Test laptop
AP

Internet

Server

Switch

Figure 4.7: MULTI testbed. The MULTI testbed contains a laptop with
an Ethernet, a Wi-Fi, and a 5G connection, through which the laptop is
connected to the server. This figure was taken from Publication V.
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(a) Two aggregated transport links
over TCP.

(b) Aggregating, both QUIC.

(c) Two aggregated transport links,
5G-TCP, Wi-Fi-QUIC.

(d) Aggregating 5G-QUIC, Wi-Fi-
TCP.

Figure 4.8: MULTI performance when aggregating connections.
Figures (a) and (b) show how MULTI behaves when moving from 5G net-
work to the range of a Wi-Fi network using TCP or QUIC. Figures (c)
and (d) show how MULTI behaves when using either TCP over Wi-Fi and
QUIC over 5G or vice versa. These figures are taken from Publication V.

the 5G phone offers public addresses through a cellular operator. These
allow us to evaluate both IPv4 and IPv6 with the MULTI system.

We studied how MULTI performs with different transport combinations
in Publication V. We examined the performance using TCP and QUIC
for the transport protocols, and Ethernet, Wi-Fi, and 5G for the network
connections. We show here several key findings, and the detailed evaluation
can be found in Publication V.

Figure 4.8 shows our results for aggregating our wireless links in the
testbed. In this test, we began the test initially using only 5G and then
aggregating the Wi-Fi. This simulates the case when the device is first only
connected to the 5G network, and then moves into the Wi-Fi range.

For the first 15 seconds, we only used one transport for the data trans-
fer. This was done to establish the baseline and allow transports to reach
maximum speeds. At 15 seconds, we began aggregating the other transport
with the original transport.

In the figures, we can see the benefits of aggregating streams. However,
there are several notable observations to be made here. In Figures 4.9a
and 4.9b, the total bandwidth is roughly the sum of separate streams.
However, in Figure 4.8a, TCP stream over 5G takes a longer time to reach
its sustained throughput, while the stream over Wi-Fi reaches it almost
instantly. This is mainly due to the larger RTT over 5G link, 46 ms over
5G versus 2 ms over Wi-Fi. Another observation is that the Python asyncio
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QUIC version we used cannot reach the capacity of the links. We believe
this to be due to the nature of Python, i.e., the userspace QUIC process
performance is capped due to the single threaded implementation of our
prototype and the signaling overheads caused by the TLS encryption and
the RTT over 5G.

When we used different transport protocols in Figures 4.9c and 4.9d, we
observed that in 4.9c the TCP stream over 5G loses some of its throughput
when the QUIC over Wi-Fi is included. Still, the total throughput is larger
than the individual stream.

We also observed some abnormal drops in the throughput in all tests
shown here. While we could not reach any conclusive reason, we believe
these could be due to various factors, including full network buffers and
background traffic in the network.

The tests shown here, and the other tests in Publication V, highlight
both benefits and disadvantages of aggregating different transport proto-
cols. Clearly, the benefit of aggregating links allows us to reach higher
throughput, but the asymmetry of the links can cause problems.

4.2.3 MULTI Discussion

MULTI exemplifies the benefit of using a transport library for handling
multiconnectivity. As MULTI is agnostic to both the available networks and
transport protocols, it can achieve connectivity regardless of the situation.

Another benefit of MULTI is that it hides the network operations from
the application. While the application defines how it should be connected
to the remote host, MULTI performs the connectivity establishment oper-
ations by itself. The application is provided with handles for reading and
writing data, but beyond that, the application has no part in the commu-
nications. This allows MULTI to handle seamless multiconnectivity, as the
five-tuple defining a single network connection is rendered meaningless from
the application point of view. Under the hood, all connections have their
own five-tuples. However, as long as there is a working five-tuple available,
MULTI will be able to provide connectivity to the application even if some
of the connections break.

MULTI does come with drawbacks. While deploying MULTI is straight-
forward as it operates in userspace, it is affected by the overheads of
userspace. For example, the default Python asyncio implementation hin-
ders the performance of MULTI, especially when using QUIC. Our cur-
rent proof-of-concept prototype also requires both end-points to support
MULTI. While this limits the current usage of MULTI, it is straightfor-
ward enough to add a protocol negotiation similar to MPTCP or TAPS



64 4 Seamless Multiconnectivity

to MULTI. If the other end-point cannot use MULTI, this would allow
MULTI to fall back to TCP or UDP. Finally, implementing an optimized
scheduler for sending traffic over multiple transports requires more work.
Our implementation uses simple schedulers, but a more intelligent sched-
uler that takes different characteristics of transport protocols and interfaces
into account is needed. In any case, as MULTI operates in userspace, the
schedulers are straightforward to upgrade.

4.3 Summary

In this chapter, we presented Meghna and MULTI, two different approaches
for multiconnectivity from different perspectives. Meghna provides an
SDN-based approach for multiconnectivity, in which a local SDN switch on
the host device is used to steer traffic through various network interfaces
based on the rules given by the remote SDN controller. MULTI is a session
layer framework that acts as an umbrella for various existing multiconnec-
tivity protocols and methods. MULTI also allows users and applications to
compose requirements and preferences for used connections, for example,
which protocols to use over which interfaces.

Both approaches have their benefits and disadvantages. While Meghna
has more stringent requirements for the network infrastructure, MULTI,
on the other hand, suffers the typical multipath protocol problems such
as Head-of-Line blocking and increased scheduling latencies. Nonetheless,
both have their benefits. Meghna does not carry the extra bandwidth costs
of adding additional headers, while MULTI is agnostic to the underlying
network and can determine which protocols are available.

Both Meghna and MULTI draw from the insights of the earlier work
presented in this thesis. The design of MULTI attempts to be resilient
to different middleboxes by using multiple different transport protocols to
achieve end-to-end connectivity. Similarly, Meghna uses the lessons learned
from SWIFT to take a step further and bring SDN to the host device itself.



Chapter 5

Conclusion

In this chapter, we summarize the research and outcomes of the work pre-
sented in this thesis. First, we revisit the research questions presented in
the beginning of the thesis in Section 5.1. We then highlight the scientific
contributions presented in this thesis in Section 5.2. Finally, we discuss the
future work envisioned based on the findings of this thesis in Section 5.3.

5.1 Research Questions Revisited

RQ1 How do middleboxes hinder connectivity?

The home Internet connections still largely use NAT for IPv4. In Publi-
cation I, we studied 34 different home gateway devices and their NAT char-
acteristics. This testbed was later increased in size to incorporate almost
100 devices. The testing done with both the original testbed and the larger
set showed almost limitless variations in how different home gateways per-
form the NAT function. The testing showed that there is no way to predict
how the devices will react to packets that are unknown to them; the devices
may forward them unmodified, drop them, or perform some NAT opera-
tions to the packets. As such, they ossify the Internet as any new protocol
will face a significant amount of problems traversing these NAT devices.
Nonetheless, the study performed in Publication I has helped design new
state-of-the-art transport protocols like QUIC. The study has brought to
light the lowest common denominators of NAT binding timeouts, and how
badly protocols are treated. The study also shows that unless a protocol
behaves outwardly like TCP or UDP, it may not work well over the Internet.

65
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RQ2 How can we make contemporary non-programmable hardware evolv-
able through software extensions?

In Publication II, we presented two methods for bringing SDN-based
traffic management to Wi-Fi networks using legacy devices. The two meth-
ods, namely Intelligent and Thin APs, allow the usage of older, originally
non-SDN-capable APs with SDN. The Thin AP method is viable for those
APs that do not allow custom firmware or software installation, while the
Intelligent AP is viable for, for example, OpenWrt-based APs.

There may be some performance loss with the Intelligent AP approach
as the computing capacity of especially the older APs is not as powerful
as newer APs, and running the OVS on AP consumes computing power.
However, based on our testing, the performance hit of the OVS is not a
major issue. The OpenWrt-based APs can also serve as small switches, so
the benefits of the SDN are not limited just to the Wi-Fi.

Meanwhile, the performance of the Thin APs is largely unaffected by
the Thin technique. As our changes do not directly change how the APs
operate, the APs themselves do not take a performance hit. However, for
the Thin APs, the main bottleneck will be the Ethernet connection to the
external SDN switch. All traffic needs to traverse the external SDN switch,
this indirection may cause the Ethernet link between the AP and the switch
to become congested. Still, this bottleneck problem also affects new APs
that support the higher speeds of Wi-Fi6 or newer standards.

We also exemplified how these devices can be used for network orches-
tration in Publication III. The PraNA framework uses the SWIFT SDN
controller and both the Intelligent and the Thin AP techniques to support
the PraNA network orchestrator. The fully SDN-capable network allows
PraNA to achieve a full view of the network, and with the help of other
controllers and network functions, protect the network using SDN-based
traffic management.

PraNA also exemplifies the advantages gained from a common network
orchestrator. Our networks are growing, and specific controllers control
different parts of the networks. Without a common network orchestrator
like PraNA, managing these networks is almost impossible.

RQ3 How can we offer multiconnectivity in a programmable network?

Seamless multiconnectivity is hard to achieve. One of the key problems
of multiconnectivity is that the devices have only a limited view of the
network state. The programmable networks, on the other hand, can achieve
this view through the programmable switches and their controller, which
can be leveraged to achieve better multiconnectivity.
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The key component is the network controller, which allows the logically
centralized approach to utilize the benefits of the full network view available
to the controller. In Publication IV, we present a way for SDN to manage
multiconnectivity. Meghna utilizes an SDN switch installed on the host
devices to steer the traffic between the host and the Internet over the links
that are most suitable at any given time.

The Meghna allows applications to be agnostic to the underlying net-
work connections. This is achieved through the SDN switch on the device,
which is assigned a static IP address from the home network. As long as the
device is connected to the home network either locally or through a VPN
tunnel, the Meghna can route the traffic through the home network, and
the IP address that applications uses never changes. These allow Meghna
to achieve seamless programmable multiconnectivity, with the caveat that
Meghna requires a home network to route the traffic.

RQ4 How can we achieve user-driven multiconnectivity over arbitrary net-
works?

Heterogeneous networks consist of different transport technologies and
network policies, which make it impossible for a single multiconnectivity
solution to fulfil all application needs. A typical router or a firewall is likely
to reject or drop packets that it does not recognize. This can be due to
different reasons, including unknown protocols or protocol options, or the
device could not associate the packet with an existing connection. If we
also include multiple networks from different service providers, the problem
is even harder.

In Publication V, we presented MULTI, which combines different mul-
ticonnectivity solutions and is designed with the end-to-end principle in
mind. By using multiple solutions, MULTI can determine which solutions
work in a particular network or networks. Similarly, MULTI can use tra-
ditional transport protocols such as TCP as they currently operate; the
necessary metadata for multiconnectivity is carried inside the userspace
protocol carried inside the packet payloads. This allows MULTI to oper-
ate in environments where the network prevents protocols like QUIC or
MPTCP from working properly and achieve multiconnectivity.

5.2 Scientific Contributions

In the works presented in this thesis, we provide a number of contributions
to the network research community. First, our measurements and analysis
of how different middleboxes behave provide better stepping stones than
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just anecdotal evidence for new transport protocol development, and what
challenges different middleboxes pose for multiconnectivity. Understanding
how past decisions affect the Internet of today and why they were made is
important. This knowledge will allow us to learn from the past to design
better solutions in the future.

Second, we show how SDN can be deployed on existing, off-the-shelf
equipment. The methods presented in Section 3.1 allow already deployed
equipment to be converted into supporting SDN-based traffic management
without major modifications. Using the existing hardware cuts down costs
and increases the life span of the existing devices, as they do not need to
be replaced with newer equipment and also allows converting wireless test
environments to support SDN research. We also show how our approach
can be used to orchestrate state-of-the-art networks that use a combination
of legacy and new devices.

Third, our two approaches for multiconnectivity tackle it from differ-
ent directions. Our Meghna system allows the network to decide which
interfaces to use, allowing better service as the network state can be fully
taken into account. On the other hand, MULTI explores how different
multiconnectivity protocols and transports could be combined into a sin-
gle solution. While there still remains a large amount of work to be done,
MULTI highlights both the benefits and the problems that combining dif-
ferent interfaces and protocols will have. These insights will allow for better
multiconnectivity solutions to be developed in the future.

5.3 Future Work

This thesis provides several stepping stones for programmable seamless
multiconnectivity. The work presented in Chapter 3 allows existing net-
works to adopt a more programmable approach to network management
and orchestration. Similarly, the work presented in Chapter 4 leverages
on the insights gained from deploying SDN on existing networks and our
proof-of-concept network orchestration.

The network orchestration could be extended beyond the normal net-
work operations presented in Section 3.2.1. The modular system is not
limited just to the network controllers, it could be extended to, for ex-
ample, containers or similar services. The presented classification-based
use case is straightforward to extend to encompass containers and other
services, allowing our networks to become more secure.

Nonetheless, our solutions are not yet ready for wide-scale adoption.
When we look at our solutions for multiconnectivity, there is a gap between
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the SDN-based multiconnectivity and MULTI; namely, these solutions do
not operate together. One clear way forward would be defining a local con-
troller running on hosts that would act as the coordinator between the user,
the applications, and the network. Here, we envision the local controller
and the controllers in different networks to be able to exchange network
state information and pass the requests from the users and applications
to the network controllers, so that we could offer better connectivity. For
example, the IETF Multi-Access Management Services (MAMS) could be
used as a starting point [104].

MULTI also exposes other underlying problems of combining different
transport technologies and protocols. As those have been designed individ-
ually, combining them is not always optimal. For example, using MULTI
with QUIC can lead to encrypting the data flows twice, which in turn
may cause load balancers and other network elements to send traffic to
the wrong destination. Similarly, managing the Head-of-Line blocking and
packet scheduling requires more work before MULTI can be adopted for
wider use.

If we think about how future networks such as 6G would operate, there
are venues where this kind of cooperation would be beneficial. Current net-
works are from the application point of view only pipes that provide network
connectivity. If we can devise a way that would allow other benefits to be
gained from the networks, for example, estimates on the current network
capacity, this could benefit both the network operators and the users. If a
network cannot provide the requested capacity due to congestion or other
reasons, exchanging state information could allow the application to use al-
ternative paths and allow the congested network to recover. However, this
depends on how our access networks continue to evolve. Even now, the
operators are removing landlines as offering wireless connectivity is easier
and cheaper. It remains to be seen how this will affect multiconnectivity
if there are only limited ways to connect to the Internet. Nonetheless, the
work presented in this thesis shows that seamless programmable multicon-
nectivity can be achieved, but the work is not yet finished.
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YouTube Content Delivery Over IPv6,” ACM SIGCOMM Computer
Communication Review, vol. 47, no. 5, pp. 2–11, 2017.

[2] E. Pujol, P. Richter, and A. Feldmann, “Understanding the share of
IPv6 traffic in a dual-stack ISP,” in Proceedings of the International
Conference on Passive and Active Network Measurement. Springer,
2017, pp. 3–16.

[3] M. Bauer, M. Boussard, N. Bui, J. D. Loof, C. Magerkurth, S. Meiss-
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Appendix A

List of Middleboxes

The following middleboxes were used in the home gateway study presented
in Publication I.

Vendor Model Firmware Tag

A-Link WNAP e2.0.9A al
Apple Airport Express 7.4.2 ap
Asus RT-N15 2.0.1.1 as1

Belkin
Wireless N Router F5D8236-4 WW 3.00.02 be1
Enhanced N150 F6D4230-4 WW 1.00.03 be2

Buffalo WZR-AGL300NH R1.06/B1.05 bu1

D-Link

DIR-300 1.03 dl1
DIR-300 1.04 dl2
DI-524up v1.06 dl3
DI-524 v2.0.4 dl4
DIR-100 v1.12 dl5
DIR-600 v2.01 dl6
DIR-615 v4.00 dl7
DIR-635 v2.33EU dl8
DI-604 v3.09 dl9
DI-713P 2.60 build 6a dl10

Edimax 6104WG 2.63 ed
Jensen Air:Link 59300 1.15 je

Linksys

BEFSR41c2 1.45.11 ls1
WR54G v7.00.1 ls2
WRT54GL v1.1 v4.30.7 ls3
WRT54GL-EU v4.30.7 ls5
WRT54G OpenWRT RC5 owrt
WRT54GL v1.1 tomato 1.27 to
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84 A List of Middleboxes

Vendor Model Firmware Tag

Netgear

RP614 v4 V1.0.2 06.29 ng1
WGR614 v7 (1.0.13 1.0.13) ng2
WGR614 v9 V1.2.6 18.0.17 ng3
WNR2000-100PES v.1.0.0.34 29.0.45 ng4
WGR614 v4 V5.0 07 ng5

Netwjork 54M Ver 1.2.6 nw1
SMC Barricade SMC7004VBR R1.07 smc
Telewell TW-3G V7.04b3 te
Webee Wireless N Router e2.0.9D we
ZyXel P-335U V3.60(AMB.2)C0 zy1

Table A.1: Home gateway models used in Publication I.
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ABSTRACT
Wi-Fi networks were one of the first use-cases for Software-
defined networking (SDN). However, to deploy a software-
defined Wi-Fi network today, one has to rely on research
prototypes with availability, documentation, hardware
requirements, and scalability issues. To alleviate this
situation, we demonstrate two simple techniques to bring
SDN functionality to existing Wi-Fi networks and dis-
cuss their benefits and short-comings. Researchers can
use our techniques to convert their existingWi-Fi testbeds
into software defined Wi-Fi testbeds. Our two tech-
niques thus significantly lower the barrier-to-entry for
deploying software-defined Wi-Fi networks.

CCS Concepts
•Networks → Wireless local area networks;

1. INTRODUCTION
Wi-Fi is becoming synonymous with Internet connec-

tivity. However, in spite of its growing importance, Wi-
Fi has received limited attention in the SDN commu-
nity. Wi-Fi access points (APs) including those cre-
ated using open-source solutions, such as OpenWrt [2]
and hostapd [1], act as bridges or hubs between Wi-Fi
clients. These Wi-Fi APs cannot take intelligent for-
warding decisions because they cannot be programmed
to process the complex match/action rules used by SDN
switches such as Open vSwitch (OVS) [4].
In this paper, we present two simple techniques, namely

Intelligent Edge and Thin Edge, that bring SDN func-
tionality to Wi-Fi networks. These techniques leverage
on wireless isolation and SDN switches such as OVS to
simplify the integration of Wi-Fi networks and SDN.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
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permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22–26, 2016, Florianopolis, Brazil
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2959071

The Intelligent Edge technique empowers devices run-
ning OpenWrt with OVS. In contrast, the Thin Edge
technique allows existingWi-Fi APs which support wire-
less isolation to offload the flow management to SDN
switches and be integrated as-is into SDN.
Our key contributions are as follows.
• Our two techniques enable existing SDN controllers

to manage the flows traversing Wi-Fi networks built us-
ing off-the-shelf components. Using these components,
we significantly lower the barrier-to-entry to deploy and
experiment on software-defined Wi-Fi networks.
• Our Intelligent Edge technique allows SDN con-

trollers to leverage the processing power of the APs for
managing the edge of Wi-Fi networks. Furthermore, by
combining OVS with OpenWrt, this technique opens
avenues for SDN research on existing Wi-Fi testbeds
which use devices running OpenWrt.
• Our Thin Edge technique offloads the flow man-

agement to either SDN switches or hosts running OVS.
This technique is useful for managing Wi-Fi networks
and testbeds which use APs and routers that either can-
not support SDN, or are not powerful enough to run
OVS and process the complex match-action rules sup-
ported by OpenFlow [3] and other SDN protocols.
The seminal work on bringing SDN to Wi-Fi net-

works was OpenRoads [7], which used protocols such
as the Simple Network Management Protocol (SNMP)
to manage the Wi-Fi APs. Based on the insights of
OpenRoads, several solutions such as BeHop [8], Æther-
Flow [6], and OpenSDWN [5] have been proposed. How-
ever, these solutions suffer from deployability issues which
make it hard to convert existing Wi-Fi networks and
testbeds into software-definedWi-Fi networks. We there-
fore focus on enabling SDN in Wi-Fi networks built us-
ing off-the-shelf components.

2. OUR SOLUTION
We present two techniques to create software defined

Wi-Fi networks using off-the-shelf components. Our
techniques build on Wireless Isolation, a feature that
configures an AP to process all the wireless frames in the
network stack instead of just bridging wireless clients as-
sociated with that AP. Wireless Isolation is supported
by many APs including those running OpenWrt, and
some enterprise APs such as the Cisco 1131 AP.
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Figure 1: Our Intelligent Edge and Thin Edge
techniques. For the Intelligent Edge, OpenWrt’s soft-
ware bridge is replaced with an OVS and wireless isola-
tion is enabled on the AP; a patched hostapd uses the
OVS while allowing Wi-Fi clients to encrypt their Wi-Fi
frames. For the Thin Edge, Wireless Isolation is enabled
on the APs and the forwarding decisions are taken on
an external SDN switch; all the data encapsulated in
Wi-Fi frames traverse the external SDN switch.

Intelligent Edge. In this technique, we run OVS on
an AP running OpenWrt. As shown in Figure 1(a), we
replace the software bridge created by OpenWrt with
an OVS; all the interfaces that used the software bridge
now use the OVS. This step is not enough for the OVS
to manage flows between two Wi-Fi clients associated
with the AP. To manage this Wi-Fi traffic, we configure
the Wi-Fi interfaces to send all the packets encapsulated
inside the Wi-Fi frames to the OVS. We also use a
patched hostapd to use the OVS while allowing Wi-Fi
clients to encrypt their Wi-Fi frames. The Intelligent
Edge technique also supports multiple (virtual) Wi-Fi
networks on the same AP. Each virtual network appears
as a logical Wi-Fi interface on OpenWrt, which is added
to the OVS. These interfaces can be treated as virtual
APs and the network flows are controlled by OVS.

Thin Edge. In this technique, an external SDN switch
manages all the flows traversing the Wi-Fi APs. Thin
Edge can be used with APs which support Wireless
Isolation but do not support custom firmware such as
OpenWrt, allow installing an SDN switch, or have hard-
ware limitations such as CPU or flash memory size. Fur-
thermore, as this technique only requires Wireless Iso-
lation, many older devices which support OpenWrt can
now be used for SDN research. At the same time, enter-
prise equipment which do not support custom firmware
but support Wireless Isolation can also be integrated
into these testbeds. Thus the Thin Edge can bring
SDN to existing Wi-Fi networks or testbeds. In this
technique, the AP acts as a remote Wi-Fi interface for
the SDN switch and each Wi-Fi network of the AP be-
comes a port on that switch. A key shortcoming of this
technique is that all the Wi-Fi traffic needs to traverse
an external switch; the flows are not routed optimally
and the network can become congested.

Discussion. Our techniques combine widely deployed
technologies, Wireless Isolation and SDN switches such
as OVS, and can therefore be used in almost all existing
networks including Wi-Fi testbeds and also enterprise

networks. Furthermore, our techniques enable networks
running legacy Wi-Fi devices such as Wi-Fi testbeds to
be powered by SDN, thus lowering the barrier-to-entry
for doing SDN research on Wi-Fi networks.

3. DEMO DESCRIPTION
We use an OpenWrt AP with OVS for the Intelligent

Edge, and an enterprise AP (Cisco 1131 Autonomous
AP) without any firmware changes for the Thin Edge.

We demonstrate our techniques using Google Chrome-
cast. A Chromecast device is typically visible to all
clients in its same network, which may not be desirable
in campus or enterprise networks. Our two techniques
that leverage on SDN and Wireless Isolation restrict ac-
cess to the Chromecast device to a given Wi-Fi client.
In its default mode, Wireless Isolation blocks all Wi-
Fi clients associated to a given AP from communicat-
ing with each other. We use SDN to extend Wireless
Isolation to selectively enable a given Wi-Fi client to
communicate with the Chromecast device.

We use Chromecast to exemplify that our techniques
can be used to programmatically manage the Wi-Fi
flows in smart spaces. Furthermore, we demonstrate
that bringing SDN to Wi-Fi networks does not require
specialized hardware, large changes in devices or soft-
ware, and can be accomplished using existing devices
whether they support custom firmware or not. Our
techniques open existing Wi-Fi testbeds for experiments
on next generation applications which leverage the pro-
grammability offered by SDN. The steps required for
using our two techniques for bringing SDN to Wi-Fi
networks are documented on the following web page:
https://wiki.helsinki.fi/display/WiFiSDN/

To conclude, our techniques can be used to convert
existing Wi-Fi networks and testbeds created using off-
the-shelf devices into software-defined Wi-Fi networks.
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