
https://helda.helsinki.fi

NoSQL stores for coreless mobile networks

Ojala, Frans

IEEE

2017-10-30

Ojala , F , Rao , A , Flinck , H & Tarkoma , S 2017 , NoSQL stores for coreless mobile

networks . in 2017 IEEE Conference on Standards for Communications and Networking

(CSCN) . IEEE , New York , pp. 200-206 , IEEE Conference on Standards for

Communications and Networking , Helsinki , Finland , 18/09/2017 . https://doi.org/10.1109/CSCN.2017.8088622

http://hdl.handle.net/10138/347910

https://doi.org/10.1109/CSCN.2017.8088622

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



NoSQL Stores for Coreless Mobile Networks

Frans Ojala†, Ashwin Rao∗, Hannu Flinck‡, Sasu Tarkoma∗
∗University of Helsinki †Avarko OY ‡Nokia Bell Labs

Abstract—The goals of 5G networks—low latency, high band-
width, and support for fast mobility—are non-trivial and they
demand improvements across all involved technology fields.
Researchers are therefore exploring approaches that leverage on
network function virtualization and software-defined networking
for meeting the demands of verticals expected to use 5G networks.
One approach which appears promising is the concept of a
coreless mobile network where the key network functions are
placed at the edge of the network. In this article we focus
on management of the user-context state in a coreless mobile
network, and posit that these network functions can use a NoSQL
data store for maintaining the user-context and other state
variables. We first present an overview of promising NoSQL data
stores and evaluate their suitability. We then present the results
of benchmarking the Apache Geode data store as an example of
a state management solution which could serve a coreless mobile
network. During our tests we observe that the Apache Geode
data store is, subject to its configuration, capable of delivering
the data model, consistency, and high availability required by a
coreless mobile network.

Keywords—NoSQL, mobile networks, 5G, coreless networks.

I. INTRODUCTION

In 5G networks, the communication infrastructure used
by our smartphones and tablets will be also used by a wide
range of devices and verticals. These verticals are expected to
generate data traffic [1], however current mobile networks were
conceptualized when the volume of traditional voice traffic
was comparable to the volume of data traffic. Furthermore,
the key network functions serving Long-Term Evolution (LTE)
networks have a convoluted control and data plane which
results in a congested control plane [2], [3].

Li et al. [2] argue that software defined networking (SDN)
can be leveraged to simplify the design and management
of cellular data networks. The key insights of their design
involves splitting the control and data plane. Hampel et al. [3],
and Osmani et al. [4] show that such a split is indeed possible.
The insights from these works have been built upon to explore
different ways in which the key network functions of the
LTE core can be refactored and coalesced to optimize the
cellular network [5], [6]. At the high level there are two
approaches for addressing some of the shortcomings of current
mobile networks: a) move functionality to the cloud and create
the Cloud Radio Access Network (C-RAN) [7], or b) move
functionality to the edge of the network on the lines of Multi-
access Edge Computing (MEC) [8].

While each of these approaches have their benefits and
shortcomings, in this article we focus on the later, i.e., a
coreless mobile network where all the functionality is moved
to the edge. We first present an overview of a coreless mobile
network. This concept can be seen as an evolution of MEC,

Frans Ojala did this work as a student at the University of Helsinki

featuring among others, a fully virtualized LTE core and an
interconnecting data layer for state management. We then
present an analysis of the properties required of a data store
serving coreless mobile networks. This is followed by an
evaluation of the Apache Geode NoQSL data store as an
example of a data storage system that could be leveraged by
coreless mobile networks. Our key contributions are as follows.

• We enumerate the state variables stored at each net-
work function, and discuss how they are updated
across five procedures. The small number of state
variables updated during the procedures motivates us
to explore NoSQL stores which support delta updates.

• We present an architecture for data storage and also
discuss the benefits of using a NoSQL store for the
state management information in coreless mobile net-
works. Specifically, we explore how the eventual con-
sistency property of NoSQL stores can be leveraged
for creating high-availability and consistency zones to
support mobility of UEs.

• We present an analysis of the desirable properties from
a NoSQL data store serving coreless mobile networks.
We also present results of preliminary experiments
to quantify the performance of the Apache Geode
NoSQL data store serving a coreless mobile networks.

Roadmap. In §II we motivate the requirements of a data store
serving a coreless mobile networks, and we discuss the avenues
opened by using a NoSQL store in §III. We then present the
results of benchmarking the Apache Geode NoSQL store in
§IV, and we finally conclude in §V.

II. BACKGROUND AND MOTIVATION

In this section we first present an overview of the key network
functions serving current mobile networks. We then discuss the
user-context which is stored in each of the network functions,
followed by a discussion on coreless mobile networks.

A. Architecture of Current Mobile Networks

The System Architecture Evolution (SAE), also known as
the Evolved Packet System (EPS), is the current evolutionary
step of the General Packet Radio Service (GPRS) core net-
work. SAE has a flat all-IP protocol stack, supports higher
throughput Radio Access Networks (RANs), and supports
mobility to and from legacy systems in addition to supporting
other wireless access technologies such as WiFi. An SAE
based LTE network has the following two key components.

a) Radio Access Network (RAN). The Evolved Node B (eNB)
is a key network function in the RAN. Each eNB is responsible
for managing a number of cells and the connectivity of the UE



Fig. 1. A Coreless Mobile Network. The network functions are virtualized
and moved to the edge of the network. Each box placed at the edge is capable
of providing connectivity to the UE. These boxes communicate with each other
to replicate the user context in real-time, and this replicated user context can be
leveraged for supporting mobility.

within the geographical area covered. Some of the core respon-
sibilities of the eNB include: a) radio resource control which
includes activities such as scheduling and dynamic allocation
of resources; b) compressing packet headers for reducing the
overheads; and c) providing security by encrypting of all data
sent over the radio link [9].

b) Evolved Packet Core (EPC). Some of the key network
functions in the EPC are as follows.

1) The Mobility Management Entity (MME) is responsible
for managing the mobility of the user equipment (UE), and in
particular selecting the Serving gateway for the UE during the
initial attach and handover procedures.

2) The Packet Data Network Gateway (P-GW) is the gate-
way to IP networks used by the UE.

3) the Serving Gateway (S-GW) is like a switch in an IP
network, and it also acts as a mobility anchor.

4) The Home Subscriber Server (HSS) is largely responsi-
ble for storing information relating to the subscribed users.

5) The Policy and Charging Rules Function (PCRF) is
largely responsible for making decisions for ensuring com-
plying with policies and service level agreements.

6) The Access Network Discovery and Selection Function
(ANDSF) provides the UE with information about nearby
access networks, including those offering services over other
technologies such as WiFi.

B. Coreless Mobile Networks

The current mobile networks are largely inflexible and they
cannot be leveraged to achieve the planned advancements in
5G [10]. Furthermore, the S-GW, the P-GW, and the eNB
serve both the control and data plane [2], [3]. This distribution
of the control layer across several disparate entities causes
a plethora of problems. To address these shortcomings, two
approaches have been proposed: a) move all the functionality
to the cloud [7], or b) move functionality to the edge of the
network for creating a coreless mobile network.

As shown in Figure 1, in a coreless mobile network all
of the network functionality is moved to the edge of the
network. Our previous works which leverage the advances
in software defined networking (SDN) and network function
virtualization (NFV) show that it is indeed possible to build
such a network [4], [5], [6]. This architecture follows along the
themes of Mobile Edge Computing MEC [8], as well as the
concept of a Shared Data Layer by Nokia [11]. Some of the
key requirements of a coreless mobile network are as follows.

1) In-situ computing. The network functions are co-located
at the network edge, and all computing is done locally.
Contrasting to the centralized nature of the traditional EPC,
this model is entirely decentralized. Each smart-box can be
viewed as an access point into any connected PDN.

2) Distributed data store for state management. The network
functions are required to maintain the state of the UEs being
served, and this state information must be consistent across all
the network functions. Furthermore, to support mobility, this
state information needs to be propagated across the various
smart-boxes serving the coreless mobile network. A coreless
network will therefore require a distributed data store for state
management.

We believe that such a distributed data store can be
implemented using NoSQL data stores because these data
stores have proved their mettle in large scale clouds [12],
[13], [14]. Furthermore, in §III-A we posit that the UE context
information stored at the network functions serving mobile
networks can be represented as key-value pairs. In the rest of
the paper we discuss our approach of using a NoSQL data
store to serve a coreless mobile network.

III. NOSQL DATA STORES FOR CORELESS NETWORKS

An objective of our work is to discover a data storage
solution which can be employed to manage the state of UEs in
a coreless mobile network. Clearly, distribution of data storage
is necessary, however distribution brings its own problems.
Specifically the problem of dealing with the CAP-theorem
which states that one may be required to choose any two of
a) consistency, b) availability, and c) partition tolerance [15],
[16]. In this section, we first present our motivation for using
NoSQL stores in coreless mobile networks. We then compare
popular NoSQL stores which can be leveraged on for managing
the state of the UEs in coreless mobile networks.

A. NoSQL for Storing User Context

The distributed data store is expected to store the UE
context for the use of the network functions serving the
network. In Table I we summarize the transition of the key state
variables of the UE context during the Initial Attach, Detach,
S1-release, Service Request, and X2 handover procedures.1

The network functions maintain a consistent UE state and
context by exchanging signaling messages. For instance, it
is estimated that in regular conditions each UE may require
the network functions to exchange more than 500 signaling
messages per hour in the EPC [17], [18]. Furthermore, the
number of signaling messages increases for always-on UEs.

1We obtained these values from the documentation of LTE procedures avail-
able at http://www.netmanias.com/en/?m=view&id=techdocs&no=6002 (Ref-
erenced on 14.05.2017)



TABLE I. UE CONTEXT STORED AND USED BY NETWORK
FUNCTIONS

Variable Procedure
C

at
eg

or
y

N
am

e

In
iti

al
A

tta
ch

D
et

ac
h

S1
-r

el
ea

se

Se
rv

ic
e

R
eq

ue
st

X
2

H
an

do
ve

r

U
E

id
en

tifi
er

s C-RNTI + × × + ∪
eNB S1AP UE ID + × × + ∪
GUTI + • • • •
IMSI • • • • •
IP + × • • •
MME S1AP UE ID + × × + •

L
oc

at
io

n ECGI + × × + ∪
MME ID + • • • •
TAI + • • • •
TAI-list + • • • •

Se
cu

ri
ty K master • • • • •

NAS security + • • • •
AS security + × × + ∪

E
PS

B
ea

re
rs

APN • • • • •
APN in use + × • • •
EPS bearer ID + × • • •
E-RAB ID + × • • •
DRB ID + × × + ∪
S1 TEID (UL) + × • • •
S1 TEID (DL) + × × + ∪
S5 TEID (UL/DL) + × • • •

Q
oS

Pa
ra

m
et

er
s Access profile • • • • •

APN-AMBR (UL/DL) + • • • •
ARP + × • • •
UE-AMBR (UL/DL) + • • • •
Subscriber profile • • • • •
QCI + × • • •
TFT (UL) + × • • •

The table summarizes the life of a state variable during the Initial Attach, Detach, S1-
release, Service Request, and X2 handover procedures. The values of the symbols are as
follows: + implies that the variable is added to the user-context during the procedure, and it
becomes available after the procedure is completed;× implies that the variable is removed
from the user-context, and becomes invalid after the end of the procedure; • implies that
the variable is not modified during the procedure; ∪ implies that the variable is modified
during the procedure, and the new values become available after the procedure has been
completed. UL indicates the variable corresponding to the uplink, and DL corresponds to
the variable corresponding to the downlink.

This is a serious shortcoming because some verticals such as
hospitals can require the devices to be always-on.

As shown in Table I, the UE context is comprised of
identifiers and cryptographic keys. In particular, the UE context
always contains at least one identifier which does not change
during the lifetime of the subscriber: the IMSI; another par-
tially static identifier is the GUTI. These static identifiers can
be used as keys and the entire context can be the value object.
Thus the data model is most easily described in terms of key-
value pairs of NoSQL data stores.

B. NoSQL for High Availability and Consistency

The context data that governs UE connectivity has a spe-
cial property not seen in traditional cloud-based applications.
Specifically, a UE is tightly bound to a geographic location,
and can be assumed to move at a reasonable speed. Binding the
UE context data to a geographic location opens new avenues
for optimization. More specifically, it should be possible to
relax consistency and availability constraints on the data in
locations far away from the UE while still retaining the data
fully consistent and highly available near the UE. Thus, we
can form High availability and consistency zones, henceforth
referred to as HAC-zones. The data stored in the distributed
data store is eventually consistent, however the data is strongly

Fig. 2. High Availability and Consistency (HAC) Zones. The data store
consists of the HAC-zone and the Global data zone. The data is always available
and consistent in the HAC zones. The data stored in the Global data zone
is eventually consistent. TA denotes the tracking area, while SN denotes the
serving node, i.e, the node storing the data and responding to queries.

consistent and highly available in a small subset of the global
servers which are placed in geographical areas near a UE.

As shown in Figure 2, the data is available outside the
HAC-zone, however it might not contain the very latest update.
The data will be eventually consistent to enable the operator
to maintain coherent information on its subscribers. Enabling
such HAC-zones brings a new set of requirements from the
data store. It must support the creation and management of
data sets with varying degrees of consistency and availability.
It must also support restricting the data set to any set or subset
of servers that may or may not reside in the same data center
or geographical region. In order to enable the UE movement
between HAC-zones the system must also support mechanisms
of transferring data from one set of servers hosting one HAC-
zone to another set hosting the next HAC-zone.

In a coreless network, all signaling messages are exchanged
within the smart-box hosting the eNB and core network enti-
ties. Only fetches and updates to the distributed data storage
will traverse the interconnect. For instance, during the Initial
attach the UE context does not exist. Only the subscription
profile is installed, and the EPC controller in a smart-box
fetches the profile from the data store and constructs the
context and installs forwarding rules. During the subsequent
procedures, the updated UE context is pushed into the global
data store for ensuring eventual consistency.

C. Comparison of NoSQL stores

Numerous NoSQL stores exist, and discussing each one
of them is beyond the scope of this paper.2 In Figure 3 we
present a short comparison of some of the popular NoSQL
data stores. We restrict the comparison to the chosen set of
data stores because their data model most closely resembles
the one desired by the coreless mobile network architecture.

Specifically, we compare Apache Casandra,3 Memcached,4
Voldemort,5 Google Spanner [14], Infinispan,6 Apache Ignite,7

2A comprehensive listing of NoSQL data stores is available at http://nosql-
databases.org (referenced on 14.05.2017).

3http://cassandra.apache.org (referenced on 14.05.2017).
4https://memcached.org (referenced on 14.05.2017).
5http://www.project-voldemort.com/voldemort/ (referenced on 14.05.2017).
6http://infinispan.org (referenced on 14.05.2017).
7https://ignite.apache.org (referenced on 14.05.2017).



HBase,8 Redis,9 Amazon Dynamo [13], and Apache Geode.10

For our work, we chose Apache Geode primarily because
it supports delta updates, geolocation of data, and strong
consistency. From Table I, it is clear that during the procedures
only a small number of state variables are updated. Delta
updates can therefore be leverage for optimal usage of the
network bandwidth for ensuring consistency: when a state
variable is updated, only the difference with the previous state
is sent over the network. Furthermore, Apache Geode also
supports geolocation of data and strong consistency, making
it appropriate for the coreless mobile networks. In contrast,
one can argue that because in Apache Geode the data is
unavailable in the minority quorum, a more high availability
failure model should be adopted. However, we assume that the
interconnecting network is stable and that there are redundant
paths to keep it functioning properly even in the event of
network partitions. To reiterate: we assume that the consistency
of the UE context state in the local geographic region is more
important than extremely-high availability.

IV. BENCHMARKING APACHE GEODE

One of the standard methods to test a system is bench-
marking it with appropriate workloads. For evaluating the
performance of the Apache Geode NoSQL Store we chose
the Yahoo! cloud serving benchmark (YCSB) [19]. We had to
modify parts of YCSB testing framework to incorporate a) the
data model for user context, b) the workloads corresponding
to UE state changes, and c) the tests for delta updates which
are natively not supported by YCSB. Furthermore, we incor-
porated changes to demonstrate and evaluate HAC-zoning.11

A. Apache Geode Topology for Experiments

As shown in Figure 4, an Apache Geode cluster is com-
prised of two types of processes: locators and serving nodes.
The locators orchestrate the cluster. They connect to the
serving nodes for receiving load information and also for load
balancing. The client applications first connect to the locators
to request connections to serving nodes. The locator responds
with references to serving nodes in a least-loaded first fashion.
The serving nodes respond to the requests made by the clients
for adding, modifying, and removing data entries from the
NoSQL store. Each client pools the connections and uses the
available connections for single-hop querying of data to and
from the serving nodes. Please note that this cluster topology
is the same for replicated and partitioned regions discussed in
§IV-C. For our experiments, we use the YCSB client to add,
remove, and modify the data entries in the Apache Geode store.

B. Evaluation Setup

We used up to five Dell C6320 servers, and each server
had the following configuration.

1) CPU. Two Intel(R) Xeon(R) CPU E5-2680 v3 operating
at 2.50 GHz providing a total of 48 logical cores with hyper-
threading enabled.

8http://hbase.apache.org (referenced on 14.05.2017).
9http://redis.io (referenced on 14.05.2017).
10http://geode.apache.org (referenced on 14.05.2017).
11Our code is publicly available at the following URL:

https://github.com/Virta/YCSB/tree/geode-updates

TABLE II. PROCEDURES AND SIZE OF DELTA UPDATES.

Procedure Fraction Update size (bits)
Initial attach 0.011 3744
Detach 0.011 2400
Service request 0.313 1280
S1 release 0.313 1280
TA update 0.094 736
Handover 0.124 1088
Cell re-selection 0.065 0
Session management 0.069 152

Fraction represents the fraction of total procedures, and the update size represents the
number of bits of user context which were updated during the procedure. For example,
0.011 procedures emulated were of type Initial attach and each Initial Attach resulted in
the modification of 3744 bits.

2) Main memory. 256 GB DDR-4 dual rank 2133 MHz
main memory.

3) Network interface. Two 10 Gbps NICs with bonding
disabled.

5) Disk Storage. Two 600 GB 10000 rpm disks configured
as RAID 1.

6) Operating System. Each machine ran the Ubuntu 16.04
operating system.

Furthermore these servers were in an isolated network and
they were disconnected from the rest of the Internet during
the experiments. The Apache Geode cluster was built from
the incubating.M2-source12 with Oracle Java 1.8 as the com-
piler and runtime. The same Java version was also used for
compiling and running our customized YCSB. During the
benchmarking test we emulated 1 million UEs, each making 3
million operations. Note that each operation corresponds to a
procedure—initial attach, detach, etc.—which involve signal-
ing messages exchanged between the network functions, and
also between the network functions and the UE. Furthermore,
we also scaled the number of load generating threads of YCSB
incrementally to find the maximum throughput as it was not
possible to achieve maximum throughput with a single load
generating thread. While not strictly necessary, we included a
locator on each physical machine for two reasons: it eased the
automation of the scaling benchmark, and it provides extra
redundancy for the clients pool requests in the event of a
locator failure.

The workload used for the benchmarking was based on
signaling load distribution observed by Nokia in a tracking
area of 15 eNBs [17]. We use this dataset to obtain the fraction
of procedures which might be observed in a typical cellular
network. We then uses this fraction to emulate the signals
generated by one million UEs, where each UE has a context
of 4596 bits.13. The procedures emulated and the update sizes
are presented in Table II. Please note that this table is not a
comprehensive list of procedures, but we use it as an example
of a typical workload in a cellular network.

C. Results

We performed tests to evaluate the performance of Apache
Geode under the following three scenarios

1) Partitioned regions. In Apache Geode, each partitioned
region with redundant copies of data contains a copy called
the primary copy. This primary copy is the update anchor: all
writes first go to this copy from where they are synchronously

12https://github.com/apache/incubator-geode/tree/rel/v1.0.0-incubating.M2
13The details of information stored in each bit are available Table 6 of [20].



Fig. 3. Comparison of popular NoSQL stores. We use the following parameters to compare the solutions: a) technique for ensuring consistency across hosts,
b) the availability of the data for reading and writing in the event of network partitions, c) technique for partitioning, d) are all components the same (symmetrical),
or is there a hierarchy of dedicated controlling and serving components, e) how the data is seen by the system, f) technique for data replication across multiple hosts,
g) support for localization of data and support for geographical regions, h) the failure model, and i) the supported persistent storage options.

Fig. 4. Experiment Topology. The Apache Geode Locator orchestrates
the cluster while the Apache Geode Serving Nodes are responsible for storing
the data and responding to the queries. We use the Yahoo! Cloud Serving
Benchmark (YCSB) to benchmark Apache Geode using workloads which
emulate the queries made by the network functions serving mobile networks.

propagated to all secondaries. In contrast, the reads go to any
serving node with a copy of the data. During our evaluation,
we used a three-way redundancy policy which the locators try
to uphold in the event of a loss of serving nodes. Furthermore,
Apache Geode also tries to place the three copies of data into
serving nodes on different physical machines.

2) Replicated regions. A replicated region in Apache Geode
is a data set that is symmetrically stored at every serving node
that hosts the region. During our evaluation we configured a
replicated region to use the distributed-ack update procedure:
for each update the client receives an acknowledgement of
reception from all serving nodes before continuing. While this
technique is expected to be slower than no acknowledgement,
it is known to dramatically improve the cache consistency.

Fig. 5. Example of HAC Grouping with Apache Geode. This example
contains two machines, each containing one HAC-zone which are hosted by
two serving nodes on each machine while the global region is hosted by all four
serving nodes.

3) High Availability and Consistency (HAC). We also
demonstrate of a type of HAC-zoning discussed in subsec-
tion III-B. Specifically, for HAC-zoning we combine the
partitioned regions and replicated regions in the following
manner. For our evaluation, we split the 1 million UE objects
into 10 disjoint chunks of equal size. Each of these chunks
was assigned to a specific member group. As shown in
Figure 5, only the serving nodes initiated with the specific
group identifier hosted the data allocated to the said region.
Each group was made host of a replicated region, within which
the chunk of data is hosted. Further, all serving nodes were
made host of a global region of type partitioned with three
copy redundancy. In this scenario, we emulated the handover
procedure as follows. Once a UE object had been fetched and



mutated, a new group was randomly selected, a new connection
pool was established to the new group and the object was put
there and the global region, and finally the UE object was
removed from the old group.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

▲
✏
✑✒
✓
✔
✕
✖♠
s
✗

✵

✷

✹

✻

✽

✶✵

✶✷

✶✹

✶✻

✶✽ ★✘✁✙✚☛☞✞✎

✛
✜
✢

(a) Latency Partitioned No Delta.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

✏
✑
✒✓
✔
✕
✑
✖
✔
✗
✘✙
✚
✛
✛
✛
✓
✖
✜
✢✜
✣
✤
✥

✵

✷✵

✹✵

✻✵

✽✵

✶✵✵

✶✷✵

✶✹✵

✶✻✵ ★✦✁✧✩☛☞✞✎

✪
✫
✬

(b) Throughput Partitioned No Delta.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

▲
✏
✑✒
✓
✔
✕
✖♠
s
✗

✵

✷

✹

✻

✽

✶✵

✶✷

✶✹

✶✻

✶✽ ★✘✁✙✚☛☞✞✎

✛

✜

✢

(c) Latency Partitioned Delta.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

✏
✑
✒✓
✔
✕
✑
✖
✔
✗
✘✙
✚
✛
✛
✛
✓
✖
✜
✢✜
✣
✤
✥

✵

✷✵

✹✵

✻✵

✽✵

✶✵✵

✶✷✵

✶✹✵

✶✻✵ ★✦✁✧✩☛☞✞✎

✪

✫
✬

(d) Throughput Partitioned Delta.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

▲
✏
✑✒
✓
✔
✕
✖♠
s
✗

✵

✷

✹

✻

✽

✶✵

✶✷

✶✹

✶✻

✶✽ ★✘✁✙✚☛☞✞✎

✛

✜

✢

(e) Latency Replicated No Delta.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

✏
✑
✒✓
✔
✕
✑
✖
✔
✗
✘✙
✚
✛
✛
✛
✓
✖
✜
✢✜
✣
✤
✥

✵

✷✵

✹✵

✻✵

✽✵

✶✵✵

✶✷✵

✶✹✵

✶✻✵ ★✦✁✧✩☛☞✞✎

✪

✫
✬

(f) Throughput Replicated No Delta.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

▲
✏
✑✒
✓
✔
✕
✖♠
s
✗

✵

✷

✹

✻

✽

✶✵

✶✷

✶✹

✶✻

✶✽ ★✘✁✙✚☛☞✞✎

✛

✜

✢

(g) Latency Replicated Delta.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

✏
✑
✒✓
✔
✕
✑
✖
✔
✗
✘✙
✚
✛
✛
✛
✓
✖
✜
✢✜
✣
✤
✥

✵

✷✵

✹✵

✻✵

✽✵

✶✵✵

✶✷✵

✶✹✵

✶✻✵ ★✦✁✧✩☛☞✞✎

✪

✫
✬

(h) Throughput Replicated Delta.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

▲
✏
✑✒
✓
✔
✕
✖♠
s
✗

✵

✷

✹

✻

✽

✶✵

✶✷

✶✹

✶✻

✶✽ ★✘✁✙✚☛☞✞✎

✛

✜

✢

(i) Latency HAC.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

❚♦�✁✂ ✄☎✆✝✞✟ ♦✠ ✡✞✟✈☛☞✌ ✄♦✍✞✎

✏
✑
✒✓
✔
✕
✑
✖
✔
✗
✘✙
✚
✛
✛
✛
✓
✖
✜
✢✜
✣
✤
✥

✵

✷✵

✹✵

✻✵

✽✵

✶✵✵

✶✷✵

✶✹✵

✶✻✵ ★✦✁✧✩☛☞✞✎

✪

✫
✬

(j) Throughput HAC.

Fig. 6. Evaluation Results. Latency represents the average time required for
a given operation, and throughput represents the average number of operations
performed per second. Each operation emulates the state changes which take
place during a procedure (Initial attach, Detach, etc.). The low latencies are a
consequence of using the in-memory implementation of Apache Geode.

We present the outcome of our experiments in Figure 6. The
throughput represents the average number of operations per
second, and the latency represents the average amount of time
required to perform an operation. An operation corresponds to
a state change which take place during a procedure.

1) Partitioned regions (Figures 6(a), 6(b), 6(c) and 6(d)).
With only one machine in the cluster the throughput de-
creases quite rapidly with the addition of serving nodes. This
is largely due to resource contention. Clearly, adding more
machines increases the overall throughput. However, contrary
to expectations the non-delta update mechanism performs
constantly better. This is highly likely due to the overheads
incurred by the delta updates for our workloads. We discuss
these overheads later in this section. Furthermore, we observe
smaller throughputs when we increase the number of physical
machines but when each machine has a small number of
serving nodes. For example, when we have three machines and
a total of three serving nodes, or when we have five machines
and a total of five serving nodes. This behavior is expected
because when the data is partitioned and the number of serving
nodes is comparable to the number of physical machines, the
likelihood of a data item to be residing on another machine is
higher than with more serving nodes per machine.

2) Replicated regions (Figures 6(e), 6(f), 6(e) and 6(h)).
Similar to the behavior of the partitioned region, for the
replicated regions we observe that the non-delta updates per-
forms better than the delta updates in most cases. Further-
more, our observations for the latencies and throughput match
expectations: for a given number of physical machines, the
increase of serving nodes causes the latency for operations to
steadily increase and the throughput to decrease. The through-
put decreases because an increase in the number of serving
nodes increases the number of update acknowledgements,
consequently the latency increases.

3) HAC (Figures 6(i) and 6(j)). For this scenario, we
kept all the parameters the same but we started with two
physical machines to emulate HAC zones. Even though rela-
tively constant in throughput, we observe that the HAC-zoning
performed poorly in comparison to the other scenarios. The
poor performance in latency and throughput is most likely
due to our implementation of emulating workloads; we were
forced to introduce some synchronization of the YCSB threads
to emulate signals exchanged during handoffs in HAC zones.
Without the aforementioned locking, we expect that the HAC-
zone could perform as the replicated region because it is
largely implemented as one.

D. Discussion

The partitioned region with three copy redundancy demon-
strated good scaling properties with the addition of new
machines into the cluster, and retention of throughput when
adding serving nodes. Replicated regions demonstrated ex-
pected properties of diminishing throughput when new serving
nodes and machines were brought into the cluster. Between
both the partitioned and replicated regions the non-delta update
mechanism performed better than the delta counterpart. Even
though the resulting throughput in our experimental HAC-
zoning is poor compared to the other two types of regions, it
serves as a demonstration of the capabilities of Apache Geode.

We implemented the delta update using the internal delta-
interface recommended by Apache Geode. We believe that



the limited benefits of delta updates we observed during our
evaluation is a consequence of the processing overhead of the
delta update mechanism and our small UE object. Apache
Geode serializes the delta updates and this incurs additional
processing overheads. As shown in Table I and Table II, the
small size of the UE object can easily fit in a packet and
also in large segments created by offloading engines [21].
As a consequence, Apache Geode’s delta updates in their
current form do not significantly reduce the number of packets
exchanged.

This work was inspired by the work of
Kuhlenkamp et al. [22] who used YCSB to benchmark
the Cassandra and HBase data stores. They show that the
purpose of the data storage system, whether it be write or
read optimized, has a tremendous impact on the performance
of the system in different scenarios. For the workloads we
tested, we observe that the Apache Geode system can perform
well in both read and write intensive workloads. Furthermore,
the in-memory characteristic of the Apache Geode is clearly
visible in the extremely low latencies we observe in Figure 6.

V. CONCLUSION

A coreless mobile network opens avenues for meeting
some of the requirements of future mobile networks. While
a coreless mobile network can be seen as an evolution of
MEC [8], it demands the network functions to be placed at
the edge of the network. These network functions need to keep
the state information of the UEs they serve, and we therefore
discuss the benefits of using a NoSQL store for managing
the state of UEs in a coreless mobile network. We explore
how the eventual consistency property of NoSQL stores can be
leveraged for creating HAC zones to support mobility of UEs.
We compare different NoSQL stores and chose the Apache
Geode store for its support of delta updates and geolocation
of data. With the help of a dataset from a real cellular
network and the YCSB tool, we evaluate the performance of
the Apache Geode NoQSL data store. While the results of
benchmarking Apache Geode are promising we believe that
there is room for optimization. Specifically, it is important to
explore approaches for implementing HAC-zoning to meet the
mobility requirements from various verticals which demand
services from coreless mobile networks.

ACKNOWLEDGMENT

This work has been supported by the Nokia Center for
Advanced Research (NCAR) and the Tekes TAKE-5 project.

REFERENCES

[1] G. Press, “Internet of Things By The Numbers: Market Estimates And
Forecasts,” https://www.forbes.com/sites/gilpress/2014/08/22/internet-
of-things-by-the-numbers-market-estimates-and-forecasts; Referenced
on 14.05.2017.

[2] L. E. Li, Z. M. Mao, and J. Rexford, “Toward software-defined cellular
networks,” in Proceedings of the 2012 European Workshop on Software
Defined Networking, ser. EWSDN ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 7–12.

[3] G. Hampel, M. Steiner, and T. Bu, “Applying Software-Defined Net-
working to the telecom domain,” in IEEE INFOCOM Workshops, 2013,
pp. 133–138.

[4] L. Osmani, H. Lindholm, B. Chemmagate, A. Rao, S. Tarkoma,
J. Heinonen, and H. Flinck, “Building Blocks for an Elastic Mobile
Core,” in Proceedings of the 2014 CoNEXT on Student Workshop.
ACM, 2014, pp. 43–45.

[5] H. Lindholm, L. Osmani, H. Flinck, S. Tarkoma, and A. Rao, “State
Space Analysis to Refactor the Mobile Core,” in Proceedings of the
5th Workshop on All Things Cellular: Operations, Applications and
Challenges, ser. AllThingsCellular ’15. New York, NY, USA: ACM,
2015, pp. 31–36.

[6] M. Pozza, A. Rao, A. Bujari, H. Flinck, C. E. Palazzi, and S. Tarkoma,
“A Refactoring Approach for Optimizing Mobile Networks,” in 2017
IEEE International Conference on Communications (ICC), 2017, pp.
4001–4006.

[7] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud RAN for Mobile Networks:A Tech-
nology Overview,” IEEE Communications Surveys Tutorials, vol. 17,
no. 1, pp. 405–426, Firstquarter 2015.

[8] ETSI, “Mobile-edge computing,” Introductory Technical White Paper,
2014.

[9] Alcatel-Lucent, “The LTE Network Architecture: A Comprehensive
Tutorial,” 2009.

[10] F. Khan, “Coreless 5G Mobile Network,” CoRR, vol. abs/1508.02052,
2015.

[11] Nokia, “Creating a new data freedom with the Shared Data
Layer,” http://resources.alcatel-lucent.com/asset/200238, Referenced on
14.05.2017.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
Distributed Storage System for Structured Data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, pp. 4:1–4:26, Jun. 2008.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” in Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07. New York, NY, USA: ACM, 2007, pp. 205–220.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s Globally Distributed
Database,” ACM Transactions on Computer Systems, vol. 31, no. 3, pp.
8:1–8:22, Aug. 2013.

[15] A. Fox and E. A. Brewer, “Harvest, Yield, and Scalable Tolerant
Systems,” in Proceedings of the The Seventh Workshop on Hot Topics
in Operating Systems, ser. HOTOS ’99. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 174–.

[16] E. Brewer, “CAP twelve years later: How the ”rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, Feb 2012.

[17] D. Nowoswiat, “Managing The Signaling Traffic in Packet Core,”
https://insight.nokia.com/managing-lte-core-network-signaling-traffic;
Referenced on 14.05.2017.

[18] I. Widjaja, P. Bosch, and H. L. Roche, “Comparison of MME Signaling
Loads for Long-Term-Evolution Architectures,” in 2009 IEEE 70th
Vehicular Technology Conference Fall, Sept 2009, pp. 1–5.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proceedings
of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10. New
York, NY, USA: ACM, 2010, pp. 143–154.

[20] F. Ojala, “State management in coreless mobile networks,” Master’s
Thesis, University of Helsinki, December 2016. [Online]. Available:
https://helda.helsinki.fi/handle/10138/201587

[21] J. C. Mogul, “TCP Offload is a Dumb Idea Whose Time Has Come,” in
Proceedings of the 9th Conference on Hot Topics in Operating Systems -
Volume 9, ser. HOTOS’03. Berkeley, CA, USA: USENIX Association,
2003, pp. 5–5.

[22] J. Kuhlenkamp, M. Klems, and O. Röss, “Benchmarking Scalability and
Elasticity of Distributed Database Systems,” Proceedings of the VLDB
Endowment, vol. 7, no. 12, pp. 1219–1230, Aug. 2014.


