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Abstract: Among various drug administration routes, oral drug delivery is preferred and is consid-
ered patient-friendly; hence, most of the marketed drugs are available as conventional tablets or
capsules. In such cases, the administration of drugs with or without food has tremendous importance
on the bioavailability of the drugs. The presence of food may increase (positive effect) or decrease
(negative effect) the bioavailability of the drug. Such a positive or negative effect is undesirable since
it makes dosage estimation difficult in several diseases. This may lead to an increased propensity for
adverse effects of drugs when a positive food effect is perceived. However, a negative food effect may
lead to therapeutic insufficiency for patients suffering from life-threatening disorders. This review
emphasizes the causes of food effects, formulation strategies to overcome the fast-fed variability, and
the regulatory aspects of drugs with food effects, which may open new avenues for researchers to
design products that may help to eliminate fast-fed variability.

Keywords: bioavailability; fast-fed variability; food effect; formulation; pH dependent; pharmacokinetics

1. Introduction

Fast-fed variability is the alteration in the absorption of drugs predominantly due to the
presence or absence of food. It is a phenomenon that significantly alters the bioavailability
of several drugs [1]. Upon oral administration, drug absorption flux alters depending on a
plethora of factors that may increase or decrease absorption, leading to variation in bioavail-
ability [2]. In the case of potent drugs with a low therapeutic index, high fast-fed variability
leads to a tremendous increase or decrease in bioavailability, leading to acute/chronic
toxicities or therapeutic insufficiencies endangering the patient’s life [3]. Moreover, fast-
fed variability poses a great risk for drugs with multiple dosing frequencies, nonlinear
pharmacokinetics, greater half-life, etc. In the abovementioned circumstances, designing
the dosing regimen will be a challenging task for the physician. Human gastrointestinal
physiology is very complex and intricate and aids in the absorption of various nutrients,
xenobiotics, chemical moieties, etc., upon oral administration [4]. Highly lipophilic drugs,
such as griseofulvin, are more easily absorbed in the fed state than in the fasted state by
being solubilized into lipid matrices absorbed from food [5]. Based on the food effect,
medications are required to be administered either preprandial or postprandial for better
efficacy. This requirement is often problematic in patients with severe disorders treated
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with multiple medications. These patients often become confused or forget about the
dosing instructions, which may lead to incorrect dosing and compromised outcomes [6].
This is a critical issue in the case of geriatrics and pediatrics, wherein patients may forget to
take the right medication at the right time [7]. Drugs such as aprepitant [8], bosutinib [9],
lurasidone [10], and rivoceranib [11] have been well known to exert fast-fed variability.
After decades of development in medicine, this issue has still not been well addressed [12].

The FDA and EMA norms for bioavailability and bioequivalence (BA–BE) studies
include taking medication under a fasted state with approximately 240 mL of water after a
10 h overnight fasting period. This will prevent physiological variabilities such as the GI
fluid volume, pH, osmolality of gastric components, gastric emptying rate, and the transit
time of the drug administered [13]. Food plays a pivotal role in escalating or diminishing
the bioavailability of several drugs by mechanisms such as complexation with the drugs,
altering the pH-dependent solubility, micellar solubilization, etc. Figure 1 represents the
effect of food on pharmacokinetics, categorized into three types: The positive food effect
results in an increase in AUC0–t and Cmax with/without a decrease in Tmax, whereas the
opposite is seen with a negative food effect. The absence of any kind of effect is known as
the neutral food effect [14].
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Figure 1. Food role in escalating or diminishing the bioavailability of several drugs; a positive food
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effect. The absence of any kind of effect is known as the neutral food effect. Concept adopted
from [15].

Fast-fed variability can also increase intersubjective variability, which in turn increases
the need for personalized medications [16]. Therefore, instead of personalized medication,
it is advisable to develop a robust formulation with no variability irrespective of the state
of dosing. In this regard, this review emphasizes the need to overcome fast-fed variability,
factors influencing fast-fed variability, and the aspects with which it can be reduced. It is
the need to replace conventional therapy with novel approaches that may help to overcome
the adversities of fast-fed variability.

Furthermore, the physiological inter- and intraindividual variability in the fasted and
fed conditions factors, strategies to overcome oral drug exposure variability, and experimen-
tal methods for measuring or estimating solubility of drugs are discussed exhaustively in
the reported review papers [4,15,17,18]. A recently published review discusses pharmaceu-
tical formulation technologies to mitigate the effect of food on drugs and covers preclinical
models for forecasting human food [19]. The current review highlights the aspects related to
the various formulation-based strategies to overcome the fast-fed variability, patentability,
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and regulatory aspects, which are not addressed in the previously reported reviews. This
may open new avenues for the researchers to design products that may help to mitigate
fast-fed variability.

2. Factors Influencing Fast-Fed Variability

To develop a formulation that can diminish fast-fed variability, it is important to know
the factors influencing fast-fed variability, schematically described in Figure 2. A wide
variety of factors influence the fast-fed variability; further details are explained below.
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2.1. Anatomical and Physiological Factors
2.1.1. Gastrointestinal Transit

Gastric emptying is one of the predominant factors influencing fast-fed variability.
The gastric emptying rate is governed by the migrating myoelectric complex (MMC) in
the fasted state. The MMC cycle takes place specifically between digestion intervals to
remove the undigested residue throughout the gastrointestinal tract. In humans, each cycle
occurs for 1.5–2 h until the food is consumed. This is divided into four phases. Phase I is
the quiescent phase, where no activity occurs up to 40–60 min, to Phase II, where a gradual
increment in the frequency of contraction occurs. This is followed by Phase III, where the
highest contraction intensity and frequency are reached, and clearance of all undigested
chyme occurs, thereby entering the small intestine. This is followed by Phase IV, where the
relaxation of gastric muscles occurs [20].

In the fasted state or during intake of liquids, gastric emptying time is less than
30 min, whereas in the fed state, a delay in gastric emptying time is observed, which
may be approximately 120 min [21]. Prolongation of gastric emptying time enhances the
dissolution of poorly soluble drugs by increasing the time available for solubilization
and increases the absorption of drugs from the GIT [22]. Dressman et al. reported a
prolongation in the gastric emptying time from 57 min in the fasted state to approximately
102 min in the fed state [23]. The gastric transit time depends on the motility of the GI
tract. This motility in turn depends on various factors, such as age, disease conditions,
sex, and food content (proteins and fats slow down motility, while carbohydrates enhance
motility). Many inter- and intravariations occur that alter GI motility [24]. Other drugs,
such as halofantrine and mebendazole. showed increased absorption in the fed state due to



Pharmaceutics 2022, 14, 1807 4 of 28

prolongation of the gastric emptying time [25]. Few drugs enhance gastric motility owing
to their irritancy potential, e.g., cathartics. This reduces the transit time and absorption of
several drugs [26,27].

The gastric emptying of solid conventional dosage forms such as tablets and pellets
is variable, whereas for liquid solutions, emptying is invariable by the digestive state of
the individual. Ogata et al. (1988) reported that small pellets with a size ranging below
1 mm empty from the stomach more rapidly compared to their larger counterparts [28].
However, Clarke et al. reported that pellets of sizes 0.5 and 4.75 mm showed no significant
change in gastric emptying time [29]. The small intestine transit time is reported to be
constant, i.e., 3–4 h, and a study showed no significant difference between tablets, pellets,
and liquids [30]. Feeding and morning awakening have been proven to be major stimuli in
provoking colonic motility. The greater fecal bulk is related to a reduced colonic transit time;
however, there is no clear justification for the same. Irregular GI motility and variability of
bile salts in the different parts of the GI tract may govern drug absorption from the distal
parts [31]. Table 1 indicates the length, surface area, and residence time of the GI tract.

Table 1. Characteristics of gastrointestinal tracts, data references [32–34].

S. NO. Gastrointestinal Tract Length (m) Surface Area (m2) Residence Time

1. Esophagus 0.3 0.02 30 s
2. Stomach 0.2 0.2 1–5 h
3. Duodenum 0.3 0.02 5 min
4. Jejunum 3 100 1–2 h
5. Ileum 4 100 2–3 h
6. Colon 1.5 3 15–48

2.1.2. Gastric pH

Gastric pH is another major factor contributing to substantial fast-fed variability [35,36].
Dressman et al. explored the alterations in pH attributed to the buffering action mediated
by food [37]. The duodenal pH is affected by the fasted or fed state. In the fed state, the pH
of the small intestine first falls owing to the acidic chyme from the stomach; however, the
fasted state pH is again reached, which is attributed to pancreatic bicarbonate secretion.
The pH in the fed state in the duodenum was found to be significantly lower than that in
the fasted state, from 4.0–5.4 [22]. Studies show extensive intersubject variability. Among
39 healthy individuals, there was a pH difference of approximately 2 units at the same
site [38].

As shown in Figure 3, the pH of the gastrointestinal tract varies with fast and fed
states [39]. Such a variation in fasted and fed state pH alters the solubility of drugs having
pH-dependent solubility, thereby modifying the bioavailability of such drugs. As per the
pH partition hypothesis, weak bases exhibit high ionization in fasted pH conditions, while
weak acids exhibit high ionization in fed pH conditions, as shown in Figure 4.

Since the percentage ionization will determine the solubility of the drug, it can be
postulated that weakly acidic molecules in an acidic environment or weakly basic drugs in
an alkaline environment will result in decreased or no ionization, leading to an increased
percentage of unionized form. In contrast, the presence of food alters the pH, leading to
a change in the ionization. In the fed state, a weakly acidic drug is ionized, whereas the
weak base remains unionized. This increase in ionization contributes to the absorption flux,
leading to increased absorption of the ionized counterpart compared to the unionized form.
The unionized drug is also absorbed via passive diffusion with a slower absorption flux.
This difference in flux governs the fast-fed variability in drugs with pH-dependent solubility.
Most often, an increased unionized form leads to a significant reduction in bioavailability; in
such cases, the physician is provoked to administer conventional formulations at high doses,
which may subsequently lead to both localized and systemic adverse effects. Additionally,
food may increase or decrease the gastro irritancy of some drugs. Increased gastric pH
has been reported to reduce the oral bioavailability of several drugs that are acid-soluble,
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e.g., ketoconazole [40,41], itraconazole [42], dipyridamole [43], indinavir [44], enoxacin [45],
cinnarizine [46], and cefpodoxime proxetil [47]. Many drugs exhibit facilitated transport,
which becomes the rate-limiting step for their systemic absorption. The number of receptors,
as well as transporters, also varies depending on the fasted or fed state, which may change
the oral bioavailability of many drugs.
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2.1.3. Enzyme Content and Transporters

In the case of oral delivery of peptides, oligonucleotides, and proteins, fast-fed vari-
ability is of profound importance. The amounts of peptidases such as pepsin, trypsin,
chymotrypsin, etc., vary during the fast and fed states, which may increase or decrease
the metabolism of drugs, leading to fluctuations in bioavailability [48]. Subsequently,
the content of bile acids for chylomicron uptake of several lipophilic drugs also depends
on fast-fed states. Fed state increases bile acid secretion, which increases the amount of
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chylomicrons that emulsify and promotes the absorption of highly lipophilic drugs via
lymphatic uptake [49]. This prevents the first-pass metabolism of drugs, thereby prolonging
their circulation time, which increases their duration of action. This is where the drugs
with high potency or high dosing frequency need to be carefully monitored to prevent
overdosing and concentration-dependent adverse effects of some drugs.

Due to the presence of CYP3A4 enzyme, efflux transporters (ABCB1, MDR1/2/3/4,
BCRP, P glycoprotein, MCT1, ENT1/2), influx transporters (OCT 1/2/3, CNT1/2, OCTN1/2,
OATP1A2, ASBT, OATP2B1, OATP3A1, PEPT1/2), and variations in the enzyme functions
in fasted states can also affect the presystemic metabolism and ultimately the bioavailability
of the drugs [2,50]. The presence of food can increase the splanchnic blood circulation,
which in turn may increase lymphatic blood flow and may also decrease enzyme concen-
tration in the gut, thereby having a positive effect on bioavailability. Drugs that undergo
such a type of enhancement in bioavailability include cyclosporine, midazolam, felodipine,
HMG CoA reductase inhibitors, etc. [2]. Cytochrome enzyme activity is modified based on
the fasted and fed states. For example, if grapefruit, tomato, or orange juice is included
in the diet, they inhibit cytochrome enzymes that prevent the systemic metabolism of
several drugs that are CYP substrates, such as propranolol [51] and terfenadine [52]. This
leads to an increased residence time and increased bioavailability of the drugs, which may
precipitate adverse drug reactions and threaten the well-being of the patient.

2.1.4. Hormonal Changes

During stressful events, various neurotransmitters are released from the brain, thy-
roid, pituitary gland, and other glands. Few among them are adrenaline, noradrenaline,
dopamine, and serotonin, which elicit satiety even in fasted conditions. The body responds
in a way as directed by these hormones such that it behaves as it is in the fed state while it
is not. This enhances the differences in fasted and fed state bioavailability of drugs, leading
to inadequacy or over adequacy to attain desired therapeutic effects [53]. This may in turn
increase or decrease the adversity of side effects.

2.1.5. Gastric Fluid Volume and Micellar Solubilization of Lipophilic Drugs

Gastric fluid volume is a vital factor when absorption of a drug is taken into consid-
eration. Each drug molecule has saturation solubility in body fluids. An alteration in the
gastric fluid volume may tremendously change the saturation of the drug. During the
fasted state, the gastric volume ranges between 13 mL and 72 mL, while during the fed
state, the gastric volume ranges between 534 and 839 mL [54]. Gastrointestinal fluid is a
multifarious and continuously changing fluid that is indispensable for various rate-limiting
steps for dosage forms-disintegration, dispersion, dissolution, and absorption of drugs. It
is impacted by the volume of liquid consumed, secretion from the gastric and pancreatic
glands, gastrointestinal transit, and the efflux rate of liquids throughout the GI tract.

The flow of the cecum and colon is gradually dampened owing to the reabsorption
of water, thereby increasing the bulk phase, which increases the intestinal and colonic
transit time. Therefore, drug dissolution is poor due to water inadequacy. Gas bubbles
emerging in the colon due to microbial fermentation and degradation reactions may also
diminish the connection of the molecules with the mucosa [55]. The contents of the GI fluids
alter depending on the physiological stimuli and the rate of secretion. Gastric fluid is a
blend of water, hydrochloric acid, electrolytes, and enzymes [56]. Coming to the intestines,
the contents of the upper small intestine include chyme, which is passed on from the
stomach, along with secretions from different organs, such as the liver, pancreas, and outer
layer of the small intestine. The contents are impacted by compartmentalization, mixing
configurations, absorption rate, and transit rate [57–59].

During the fed state, an enhanced discharge of bile salts occurs compared to the fasted
state. Such an increase may be due to the neuronal stimulation of the parasympathetic
system sending signals to the liver, pancreas, and gallbladder through neurotransmitters
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such as dopamine and serotonin. This increases the secretion of bile salts consisting of
sodium taurocholate and sodium glycolate [60].

When these bile salts encounter hydrophobic drugs, they align themselves with their
hydrophobic surface toward the drug and the hydrophilic end away from the drug. Since
their concentration is above the critical micelle concentration, they form micelle-like struc-
tures that increase their solubility, reduce their size, and subsequently increase their absorp-
tion, leading to a positive food effect. This is mainly prominent in poorly soluble drugs
possessing a high partition coefficient. This leads to a significant variation in drug absorp-
tion compared to the fasted state [61]. Other drugs, such as halofantrine and mebendazole,
showed boosted absorption in the fed state due to micellar solubilization [25].

2.2. Demographic and Genetic Factors

Aging is the most important factor that may influence fast-fed variability. Gastric
pH, motility, enzyme contents of the body fluids, etc., further depend on the age of the
patient. GI transit time increases with age; however, the number of enteric neurons, Cajal
cells, and Connexin 43 increases until the adolescent stage and then decreases [62,63]. An
aging-associated decrease in peptidase enzymes could lead to decreased metabolism [64].
Fasted and fed state factors become more elaborate during aging, which may be attributed
to the variations among interindividual subjects in the aging or injury of their mucosal cell
layer and the genetic make-up governing enzyme regulation.

Other predisposing factors affecting fast-fed variability include the dimensional vari-
ability of the individual, e.g., height, weight, gender, etc., which influence the drug ADME
(absorption, distribution, metabolism, and excretion) properties [65]. The underlying rea-
son for such [66] variability lies within the phenotypic and genotypic variation in the
genome of the individuals. This also dictates the basal metabolic rate of the body, which in
turn governs the dimensional factors as well as the drug ADME properties. Among the
variability in sex, a slower gastric emptying rate is found in women than in men, which
may considerably postpone the onset of efficacy of enteric-coated and extended-release
forms. The differences in gastric pH may affect the solubility and absorption [67].

Dosage forms with reduced drug release rates may interact with various locations
throughout the GI tract, which may contribute to significant variability in terms of the
amount of intestinal and hepatic transporters, metabolizing enzymes, hormonal regulation,
etc., which may result in tremendous differences in fast and fed state intersex as well as
interrace variations [1]. Predisposing epigenetic factors influence enzyme expression and
the turnover rate, which dictates the metabolism of labile drugs [68,69]. The population is
classified based on the metabolizing rate of enzymes into fast and slow metabolizers. For
example, drugs such as caffeine, isoniazid, hydralazine, procainamide, etc., are metabolized
by acetylation. The population that has a high acetyl transferase concentration is known
as fast acetylators, i.e., Asians, while those having low acetyl transferase concentrations
are known as slow acetylators, i.e., African Americans and Caucasians [70]. Such ethnic
disparity is also found in other enzymes that contribute to large variability among different
races. Diseased states also contribute to fast-fed variability. They are restricted more toward
the intraindividual status of the GI tract. Inflammatory conditions such as ulcers, Crohn’s
disease, celiac diseases, ulcerative colitis, etc., compromise the permeability and absorption
characteristics of the GI tract, which may lead to significant variability. The liver and kidney
are the prominent organs for drug metabolism.

Precipitation of organ-related toxicity may further worsen the variability caused by
the food effect. This may be due to liver and kidney insufficiency during toxicity, which
may impair the functioning of the metabolizing cytochrome and other enzyme families,
which may lead to toxicity [71]. It is important to identify the interplay of an individual’s
factors that may result in optimal drug therapy [72].
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2.3. Drug-Specific Factors

The functional groups on the chemical entities play a very important role in contribut-
ing to fast-fed variability. These groups contribute to their identifying characteristics, such
as pKa, partition coefficient, solubility, and molecular weight. Each of these factors may
directly or indirectly contribute to fast-fed variability.

2.3.1. Charge

The acid dissociation constant or pKa gives an idea about the nature of the chemical
moiety depending on the functional groups present in it. Drugs may be weakly acidic,
basic, or neutral. This information can be extrapolated to the degree of its acidic or basic
nature, which indicates its pH-dependent solubility potential and the extent to which
variations in gastric pH during a fast and fed state affect its bioavailability thereafter.
For example, weakly basic drugs such as metformin, raloxifene, epinephrine, etc., exhibit
greater solubility in fasted gastric pH compared to fed gastric pH [73]. As mentioned earlier,
fasted gastric pH in humans lies around pH 1.7, which increases up to pH 5 in the fed
state. For Biopharmaceutical Classification System (BCS)-II drugs, which are weakly basic,
a wide variation in bioavailability exists since these drugs have high permeability, and the
rate-determining step for absorption is solubility. Since they tend to be more ionized in
acidic pH, an increase in solubility by a few fold subsequently increases the absorption flux,
resulting in enhanced bioavailability. Similarly, BCS Class II drugs with a weakly acidic
nature are better absorbed in the fed state than in the fasted state [74].

2.3.2. Partition Coefficient

The partition coefficient, or at times expressed as “log P”, is a measure of the hy-
drophilicity/lipophilicity of the drug. This depends on the functional groups present, un-
saturation, and molecular weight of the drugs. Generally, but not always, high-molecular-
weight drugs are more lipophilic than lower-molecular-weight compounds [75]. This
molecular weight governs the absorption mechanism of several drugs through the gastric
mucosa, i.e., highly lipophilic drugs are absorbed via passive diffusion, while drugs with
low lipophilicity are absorbed via carrier-dependent transport mechanisms. It has been
reported that passive diffusion is faster in the fed state. The lipophilic drug moiety is
solubilized inside the lipid, followed by micellar solubilization due to the presence of bile
salts and chylomicron core formation [76]. These processes make absorption relatively
faster than in the fasted state [77].

2.3.3. Molecular Weight

As discussed above, the molecular weight of the chemical moiety governs most of
the physical characteristics. Greater molecular weight imparts greater lipophilicity, which
may exert a positive food effect on the bioavailability of the molecule. A balance needs
to be maintained between hydrophilicity and lipophilicity of the molecule. This balance
is described by the Hansen solubility parameter, which is discussed in detail below. To
reduce lipophilicity, ionic groups must be attached to the active moieties by prodrugs,
complexation, salt forms, etc., which may enhance the solubility irrespective of the food
effect, thereby reducing the fast-fed variability [78].

2.3.4. Solubility

Alterations in fast and fed state pH and contents modify the saturation solubility of
drugs. As discussed previously, weakly acidic drugs precipitate in acidic pH to a greater
extent in a fasted state than in a fed state. When precipitation occurs, there are possibilities
of solid-state manipulations, transformations in crystal forms and habits that have even
reduced solubility compared to the drug administered [79]. This may be one of the reasons
for giving such drugs at high doses to achieve the minimum effective dose.
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2.3.5. Particle Size and Surface Area

Particle size and surface area are interrelated factors that affect the solubility of the
molecule, resulting in fast-fed variability. A decrease in particle size increases the surface
free energy, which subsequently increases the surface area exposed to the surrounding
continuous phase [80]. This leads to an enhancement of charged interactions or attraction
forces between the drug and the surrounding media, thereby enhancing the dissolution
rate of the drug. A significant increase in magnitude occurs in the case of drugs with high
pH-dependent solubility, wherein this property of the drug is increased by severalfold with
an increase in surface area. Drug entities with a reduced particle size have an enhanced
dissolution rate, along with an enhanced absorption flux compared to the particles with an
increased size [81]. During the fed state, where pH increases due to the presence of food,
lipophilic drugs with a reduced particle size show an enhanced dissolution rate and absorp-
tion owing to their size, surface area, micellar solubilization, and other mechanisms [22].
Drug nanonization follows a similar mechanism to drug micronization with only enhanced
attributes. Both approaches can be used to overcome fast-fed variability; however, the
flux of the drug across the membrane becomes greater in fasted as well as fed states for
nanonized systems compared to micronized systems irrespective of pH-dependent solu-
bility of the drugs. Jinno et al. reported no statistically significant difference in the fasted
and fed state absorption of Cilostazol nanocrystal® technology compared to jet-milled
and hammer-milled techniques owing to reduced particle size and subsequent increase in
dissolution rate far more superior to other techniques. Pharmacokinetic studies showed
statistically insignificant differences in the bioavailability of the drug in fasted and fed
states [82].

2.3.6. Pharmacokinetic Factors

Various pharmacokinetic factors may play a key role in worsening the effects of fast-
fed variability. The half-life, volume of distribution, plasma protein binding, etc., may
contribute to adverse drug-related toxicities if its absorption is increased when the dose is
consumed other than the directed indication. An increased bioavailability of high-protein-
bound drug was observed in the patient because of the food intake. As a result of the longer
residence period in the body, such patients need to be watched carefully to prevent serious
toxicities [83]. This may increase the propensity of severe side effects if the dosing regimen
is continued for a prolonged duration. Dosing frequency and the volume of distribution
govern the adversity and the location of potential toxicity, which needs to be anticipated by
the physician.

2.4. Formulation-Related Factors

Formulation-related factors are the pharmaceutical factors that play an important role
in contributing to fast-fed variability. These predominantly include the release rate kinetics
of a drug from the dosage form. The extent of a drug undergoing fast-fed variability can be
altered with the help of kinetics and the mechanism of drug release, i.e., pH-responsive,
osmotic, diffusion-controlled, erosion control [84]. A significant food effect is observed in
immediate release dosage forms if the drug is susceptible to the food effect [85]. Efficient
control of formulation-related factors can help to effectively reduce the effects of food on
changes in bioavailability variability. The rate-determining step could be drug dissolution,
which is influenced by pH, micellar solubilization, and other factors, i.e., BCS classes II
and IV. It is well known that food can change the solubility and permeability of drugs. Wu
and Benet predicted the influence of food on solubility and permeability as a function of
BCS [86]. Figure 5 summarizes the effects of food on bioavailability changes.

Therefore, formulation approaches implying amelioration of the solubility and dissolu-
tion rate independent of pH are desirable, i.e., lipidic emulsifying systems, solid dispersions,
cyclodextrin complexations, etc. Since they suffer from solubility challenges, the food effect
may be highly pronounced if they are incorporated into immediate release dosage forms.
For BCS class I drugs, immediate release dosage forms are preferable. For class III drugs,
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the use of prodrugs and lipidic systems may help improve the partition coefficient of these
hydrophilic drugs, enhancing drug absorption in the fed state owing to micellization and
other mechanisms [88]. Osmotic systems may also control drug release and cause pH-
and food-independent drug release. For BCS, class IV drugs suffer from solubility and
permeability challenges.
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3. Formulation Strategies to Overcome Fast-Fed Variability

As discussed previously, one can witness the apprehensive effects of the factors influ-
encing fast-fed variability. Figure 6 enumerates various formulation strategies to overcome
fast-fed variability. To overcome these obstacles, a series of methods were attempted.
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3.1. Prodrugs

The prodrug approach aims to form covalent bonds between functional groups, such
as hydroxyl, amide, acid, ester, etc., of the drug with different moieties, which alter the
partition coefficient and solubility in such a way that the final product formed is absorbed
irrespective of the fasted and fed state [89,90]. Once absorbed, the prodrug undergoes
metabolism and releases an active moiety into the circulation. Ximelagatran, a prodrug of
melagatran used for the treatment of platelet aggregation, was formulated by Astra Zeneca.
This drug is poorly bioavailable due to its high hydrophilicity, and its bioavailability is
greatly affected by food. Ximelagatran contains a carboxylic acid group that is transformed
into an ester group, while the imidine group is hydroxylated to decrease the basicity of
the molecule. It is unionized at alkaline pH, making it 170 times more lipophilic and
80 times more permeable than Melagatran [91]. Fosamprenavir is a prodrug of amprenavir
used as an HIV protease inhibitor. Commercial Fosamprenavir (Telzir®) tablets were
administered to five volunteers in the fasted and fed state. The results indicated that intake
of food delayed the gastric dissolution of the drug, leading to delayed absorption [92]. The
bioavailability of gabapentin is higher than that of its ester prodrug. Horizant®, consisting
of gabapentin enacarbil, needs to be administered in the fed state, while Neurontin®, which
contains gabapentin in its pure form, does not show fast-fed variability [93]. Lee et al.
reported the use of trypsin in binding with LB30870, a new direct thrombin inhibitor,
to reduce its negative food effect [94]. Azilarsartan medoxomil, a BCS class IV drug, is
hydrolyzed to release the active moiety azilsartan by esterase in the gastrointestinal tract,
which does not affect its bioavailability [95]. Other prodrugs whose absorption is unaffected
by food include enalaprilat [96], fesoterodine [97], and fludarabine phosphate [98].

3.2. Cyclodextrin Complexation

Cyclodextrin complexes are widely used to enhance the solubility and permeability of
several BCS Class II and IV drugs [99]. Cyclodextrins are known to incorporate hydrophobic
drugs into their inner cavity, while their outer hydrophilic surface surrounds the outer
aqueous environment. This approach also helps to overcome the pH-dependent solubility
of weak acids or bases since the reduced solubility at pH at which the drug is unionized is
compensated by complexation with cyclodextrin [100].

Itraconazole, a BCS class II drug, is known to show a positive food effect, i.e., its
bioavailability increases significantly in the presence of food [101]. Velde et al. reported
hydroxy propyl-β-cyclodextrin complexes of itraconazole to investigate its effect on fast-fed
variability [102]. The cyclodextrin complexes reported an increase in bioavailability in
healthy volunteers of itraconazole in a fasted state compared to the fed state owing to
its increased solubility and dissolution rate, thereby reducing the difference between the
bioavailability among fasted and fed state. Sporanox®, a product from Janssen Cilag, was
marketed as an oral hydroxy propyl-β-cyclodextrin inclusion complex solution. It showed
an enhanced bioavailability compared to conventional itraconazole capsules irrespective of
fasted or fed conditions [102].

Thombre et al. formulated amorphous, nanocrystalline, and crystalline ziprasidone
formulations, which subsequently improved solubility as well as bioavailability and eradi-
cated the fast-fed variability. The amorphous complex and the nanosuspension ziprasidone
formulations displayed enhanced absorption in fasted beagle dogs compared to Geodon®

capsules. These solubilization technologies have the potential to reduce the food effect in
humans, as shown in Figure 7 [103].

Similarly, Wang reported sulfobutyl ether (SBE) cyclodextrin complexes of amiodarone
hydrochloride (AME), a drug with high pH-dependent solubility toward acidic pH. The
cumulative dissolution of the cyclodextrin complex showed greater than 85% in vitro drug
release in water, pH 4.5 acetate buffer, and 0.1 N HCl buffer solutions. The pharmacokinetic
studies demonstrated no significant difference in the absorption of the AMI-SBE-β-CD
inclusion in both fast and fed states [104]. Recently, an inclusion complex of lurasidone
hydrochloride with SBE cyclodextrin was developed to reduce the food effect, and the
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authors demonstrated the improvement of bioavailability and showed elimination of the
food effect [105].
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3.3. Osmotic Delivery System

An osmotic delivery system could be ideal for overcoming fast-fed variability since
the coat is merely permeable to water and a zero-order release is obtained irrespective
of GI conditions. This may help in reducing the food effect of such drugs compared to
their conventional counterparts owing to the independence of drug release on pH or any
other factor [106]. Modi and coworkers investigated the effect of a high-fat meal on the
pharmacokinetics of OROS® (osmotic controlled-release formulation of methylphenidate
HCl) in healthy subjects [107]. They reported AUC0-∞ values of 1857 ng.h/mL for fasted
subjects and 1872 ng.h/mL for fed subjects and Cmax values of 112.6 ng/mL for fasted
subjects and 124.9 ng/mL for fed subjects. They concluded that the nonexistence of food
affects the absorption of methylphenidate in patients subjected to no food as well as a
high-fat meal [107].

Yanfei et al. developed ziprasidone solid dispersion-loaded osmotic pump tablets
to reduce the food effect of ziprasidone. They reported a fasted state and fed state Cmax
of 294.3 ± 74.5 ng/mL and 311.7 ± 64.5 ng/mL, respectively, with a fasted state AUC0-∞
of 3974 ± 314.5 ng.h/mL and a fed state AUC of 3812 ± 314.5 ng.h/mL. The food effect
was eradicated by a combination of solubility enhancement of solid dispersion and the
zero-order release of osmotic pump tablets [108].

3.4. Amorphous Solid Dispersion

Amorphous solid dispersions (ASDs) are well-known and popularly used techniques
in the pharmaceutical industries today to convert crystalline drugs into amorphous materi-
als via solid-state manipulations [109]. Lipinski et al. demonstrated that solute solubility
is dependent on the crystal packing energy, cavitation energy (energy required to shift
water and create a cavity into the solute molecular arrangement), and solvation energy
(energy released due to favorable interactions between the solvent and solute) [110]. This
approach enhances the solubility by fewfold since it increases the surface free energy and
entropy and breaks the molecular packing. ASDs also show a spring parachute effect
since they are a part of supersaturated systems. The spring parachute effect, a charac-
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teristic of cocrystals and ASD, is an effect where a burst increase in the drug dissolution
rate occurs, which is maintained over time. Once almost all the drug has been released
for a particular duration of time, the solubility then decreases. The burst release effect
corresponds to a spring, and its maintenance and a gradual decrease in the dissolution
rate with time are described as a parachute. The amorphous form of the drug is more
soluble than the crystalline form at different pH ranges, which improves its bioavailability
irrespective of the presence or absence of food [111]. This approach is suitable for BCS
Class II drugs whose bioavailability is hindered by limited solubility. For drugs that have
pH-dependent solubility and exhibit variations in absorption in fasted and fed states, this
approach can be used by taking advantage of the amorphous form and the hydrophilic
carrier to improve the dissolution rate of the drug. Hot-melt extrusion technology was em-
ployed to develop an amorphous solid dispersion of a fixed-dose combination of lopinavir
and ritonavir for AIDS treatment, commercially known as Kaletra® (AbbVie Inc., North
Chicago, IL, USA) [112,113]. Before ASD, it was originally dispensed as a soft gelatin
capsule with lipidic excipients with a high capsule burden and dosing frequency of four
capsules per day. Solid dispersion of the combination reduced the dosing frequency to
two tablets and successfully eradicated fast-fed variability [114]. AstraZeneca developed
ASD-based formulations with olaparib to improve solubility, which improved bioavail-
ability as well as drug loading along with a significant reduction in the food effect [115].
Ziprasidone solid dispersion resulted in significant improvement in solubility and bioavail-
ability, thereby abolishing the variability concerning an absence of statistically significant
differences in Cmax and AUC in fasted and fed states compared to the commercial Zeldox®

formulation [116]. Othman et al. prepared melt-extruded and spray-dried solid disper-
sions for the drug ABT-102. They reported an increased oral bioavailability compared
to the plain drug and similar Cmax and AUC for fasted and fed state (melt extruded
solid dispersion–fasted state Cmax 9.4 ± 2.3 ng/mL and fed state Cmax 9.4 ± 3.2 ng/mL;
AUCfasted 109 ± 35 ng.h/mL and AUCfed 112 ± 35 ng.h/mL) and for spray-dried solid
dispersion (fasted Cmax 8.6 ± 2.7 ng/mL and fed state Cmax 9.2 ± 3.0 ng/mL; AUCfasted
89 ± 37 ng.h/mL and AUCfed 107 ± 53 ng.h/mL) [117]. Table 2 lists the marketed formu-
lations that have successfully overcome fast-fed variability.

Table 2. Marketed formulations with innovators who have successfully diminished fast-fed variability.

S. NO. Branded Name Drug Formulation Manufacturer

1. Prograf® Tacrolimus Amorphous solid dispersion Astellas Pharma US, Inc.,
Northbrook, IL, USA

2. Kaletra® Ritonavir/lopinavir Amorphous solid dispersion AbbVie Inc., North Chicago, IL,
USA

3. Zortress®/Certican® Everolimus Amorphous solid dispersion
Novartis Pharmaceuticals

Corporation
East Hanover, NJ, USA

4. Zelboraf® Vemurafenib Amorphous solid dispersion Genentech, Inc., South San
Francisco, CA, USA

5. Ceftin® Cefuroxime axetil Amorphous form of drug GlaxoSmithKline Inc.,
Collegeville, PA, USA

6. Accupril® Quinapril HCl Amorphous form of drug Pfizer Inc., New York, NY, USA

7. Crestor® Rosuvastatin Calcium Amorphous form of drug AstraZeneca Pharmaceuticals LP,
Wilmington, DE, USA

8. Zepatier® Elbasvir/Grazoprevir Amorphous form of drug Merck & Co., Inc., Rahway, NJ,
USA

9. Agenerase® Amprenavir Lipid based formulation GlaxoSmithKline Inc.,
Collegeville, PA, USA
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Table 2. Cont.

S. NO. Branded Name Drug Formulation Manufacturer

10. Avodart® Dutasteride Lipid based formulation GlaxoSmithKline Inc.,
Collegeville, PA, USA

11. Procardia® Nifedipine Lipid based formulation Pfizer Inc., New York, NY, USA

12. Rapamune® Sirolimus Lipid based formulation Pfizer Inc., New York, NY, USA

13. Amitiza® Lubiprostone Lipid based formulation

Sucampo Pharma Americas LLC,
Bedminster, NJ, USA and Takeda

Pharmaceuticals U.S.A., Inc.,
Lexington, MA, USA

14. Hycamtin® Topotecan HCl Lipid based formulation
Novartis Pharmaceuticals

Corporation
East Hanover, NJ, USA

15. Akynzeo® Netupitant Lipid based formulation Helsinn Therapeutics (U.S.), Inc.
Iselin, NJ, USA

16. Prometrium® Progesterone Lipid based formulation Virtus Pharmaceuticals, LLC,
Langhorne, PA, USA

17. Absorica® Isotretinoin Lipid based formulation
Sun Pharmaceutical Industries,

Inc., Princeton,
NJ, USA

18. Zemplar® Paricalcitol Lipid based formulation AbbVie Inc. North Chicago, IL,
USA

19. Vyndaqel® Tafamidismeglumine Lipid based formulation Pfizer Inc., New York, NY, USA

20. Xtandi® Enzalutamide Lipid based formulation Astellas Pharma US, Inc.
Northbrook, IL, USA

21. Lipantil Supra® Fenofibrate Nanocrystal AbbVie Inc. North Chicago, IL,
USA

22. Emend® Aprepitant Nanocrystal Merck & Co., Inc., Rahway, NJ,
USA

23. Triglide® Fenofibrate Nanocrystal Skye Pharma Inc., San Diego,
CA, USA

24. Rapamune® Sirolimus Nanocrystal Pfizer Inc., New York, NY, USA

25. Sporanox® Itraconazole Cyclodextrin Janssen Pharmaceuticals, Inc.
Titusville, NJ, USA

26. Lynparza® (capsule) Olaparib Crystalline solid dispersion
AstraZeneca Pharmaceuticals LP,
Wilmington, DE, USA and Merck

& Co., Inc., Rahway, NJ, USA

27. Lynparza® (tablet) Olaparib
Hot-melt extrusion followed
by compression of crystalline

solid dispersion

AstraZeneca Pharmaceuticals LP,
Wilmington, DE, USA and Merck

& Co., Inc., Rahway, NJ, USA

3.5. Nanocrystal Technology

Nanotechnology offers a wide range of possibilities in improving the therapeutic
potential of various molecules in different indications [118–128]. Furthermore, nanon-
ized delivery systems have the potential to overcome fast-fed variability. Nanocrystals or
nanosuspension technology is one such technology that uses either “top down” or “bottom
up” approaches for particle size reduction using antisolvent addition, supercritical antisol-
vent techniques, and sonoprecipitation methods, respectively [129,130]. Nanosuspensions
enhance the dissolution and permeability characteristics of BCS Class II and BCS Class
IV drugs owing to their nanometric size range, greater surface area and surface energy,
amorphization taking place during the process of size reduction, etc., leading to an in-
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creased solubility and dissolution rate [10,103,131]. Rangaraj et al. developed an ibrutinib
nanosuspension and depicted a reduction in fast-fed variability via simulated gastric fluids
and in vivo pharmacokinetic studies [131]. Two marketed nanocrystal preparations of
fenofibrate-Tricor® and Triglide® were compared for their absorption with microcoated
fenofibrate tablets in the fasted and fed state. They revealed similar absorption character-
istics in the fed state, while absorption from the nanocrystal tablet was enhanced in the
fasted state, which led to the elimination of fast-fed variability [132,133].

Aprepitant (MK-0869), a BCS class IV drug, uses Nano Crystal® technology to im-
prove drug dissolution in the fasted state [134]. The formulation was found to eradicate
the positive food effect observed with tablet formulations. There was an enhancement in
both AUC (3.2-fold) and Cmax (2.3-fold) observed in the fed-state beagle dogs, as shown
in Figure 8 [134]. Megestrol acetate, a steroidal progestin, displays a positive food effect
when incorporated as an oral suspension. Megace ES® nanocrystals were developed,
which demonstrated a reduction in fast-fed variability [135]. Jinno et al. prepared a
spray-dried nanocrystalline suspension of cilostazol that diminished the positive food
effect seen with the micronized formulations (Cmax fed/fast = 0.91 ± 0.13 ng/mL AUC
fed/fasted = 0.76 ± 0.04 ng.h/mL and mean residence time fed/fast = 0.95 ± 0.13 h, re-
spectively). This was attributed to improved dissolution, which increased the absorption
flux [82].
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3.6. Lipid-Based Systems

Many lipid-based formulations have the potential to reduce fast-fed variability [136]. Among
these formulations, self-micro/nanoemulsifying delivery systems (SMEDDSs/SNEDDSs) are
one of the most efficient formulations and can be used to overcome the food effect [137,138].
Lipid-based formulations report an increase in bioavailability among both fasted and fed
states, which may be due to nanometric size in the fasted state and enhanced absorption
via micellar solubilization with the help of chylomicrons during the fed state [139]. Poorly
hydrophilic drugs are solubilized into the lipid matrix, which, with the help of emulsifiers
when encountering water in gastric fluid, forms a nanoemulsion. The lipid globules formed
during the o/w emulsion process promote the secretion of bile salts in the fasted state.
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The secreted bile salts form mixed micelles with the oil globules in which the drug is
dispersed and thereby aid in drug absorption [140]. Since the mixed micelles are formed
in both fasted and fed states, a significant difference in the absorption of drugs does not
exist. Additionally, these lipids may be absorbed via lymphatic transport with the help of
chylomicrons, which also helps prevent hepatic first-pass metabolism thereafter [141,142].

SNEDDSs are more stable than nanoemulsions since the nanoemulsion is formed in
situ. Porter et al. suggested three possible mechanisms for drug absorption: (1) alteration
of the composition and character of the intestinal secretion, (2) intestinal lymphatic drug
transport, and (3) enterocyte-based transport processes [143]. Lurasidone HCl, a BCS class
II drug, shows a positive food effect attributed to delayed gastric emptying in the fed state,
prolonging the time accessible for drug solubilization. Oral administration of lurasidone
into a phospholipid-based self-nanoemulsifying self-nanosuspension (p-SNESNS) system
demonstrated a reduction in fast-fed variability; this improvement is due to enhanced
solubility [144]. Another study included coadministration of Sepan®, a marketed conven-
tional cinnarizine tablet, along with placebo SNEDDS to investigate the role of SNEDDS in
emulsifying cinnarizine from the tablet. Failure to reduce fast-fed variability on cinnarizine
bioavailability to a statistically significant level was observed [145].

Miao et al. reported an elimination of fast-fed variability for lurasidone-loaded SNED-
DSs in beagle dogs with similar Cmax and AUC values in fasted and fed states [146]. A study
was performed to investigate the efficacy of ziprasidone-loaded SNEDDSs in sustained-
release pellets to improve oral bioavailability and mitigate the food effect on ziprasidone
absorption. They found a statistically insignificant difference between the increase in
bioavailability in the fed and fasted states, 1.578- and 1.501-fold, respectively, compared
to the Zeldox® capsule. The eliminated fast-fed variability was attributed to enhanced
lymphatic transport and increased dissolution rate due to increased surface area owing
to reduced droplet size [147]. Another study was employed to examine the differences in
gastrointestinal absorption between itraconazole-based SMEDDSs (equivalent to 15 mg
of drug/kg of body weight) and conventional Sporanox® capsules in Sprague Dawley
rats. Due to its enhanced solubility and in vitro dissolution of itraconazole in SMEDDS
preconcentrates, an increased oral bioavailability of itraconazole was observed in different
dietary conditions. This study concluded that the SMEDDS formulation showed increased
absorption in rats irrespective of fasted and fed states, as shown in Figure 9 [148].

Dening et al. reported a significant reduction in the variation of ziprasidone solubi-
lization between the fasted and fed states owing to its incorporation into SNEDDS. The
incorporation of ziprasidone into SNEDDS eliminated the dissolution step required for
drug absorption, thereby eliminating the effect of diet [149]. Apart from the fed state, self-
emulsifying delivery systems could be used to abolish the impact of certain food contents
on drug absorption. The oral bioavailability of itraconazole in SEDDS in the fasted state was
comparable to that in the fed normal food as well as fed lipidic food post-administration to
male Sprague Dawley rats [148]. In another study, commercial conventional cinnarizine
tablets (Sepan®) were administered to 10 human volunteers in both fasted and fed states,
with and without coadministration of a placebo SNEDDS capsule [145]. The SNEDDS
formulation study investigated the pharmacokinetic difference between the conventional
tablet of cinnarizine vs. the SNEDDS formulation, which resulted in a reduction in the
food effect and increased absorption (Figure 10). After co-administration of SNEDDS with
tablets, the pharmacokinetic study indicated an increased bioavailability of cinnarizine in
the fasted state and reduced bioavailability of cinnarizine in the food effect, as shown in
Figure 10 [145]. Table 3 indicates various strategies along with reported pharmacokinetic
study data for formulations reducing food effects.
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Figure 9. Plasma concentration of itraconazole versus time after oral dosing of the Sporanox® cap-
sule and itraconazole-based SEDDS. Fasted overnight (A), normal diet (B), and lipidic diet for 1 day 
(C). Reprinted with permission from Ref. [148]. Copyright 2006, Elsevier. 

Figure 9. Plasma concentration of itraconazole versus time after oral dosing of the Sporanox® capsule
and itraconazole-based SEDDS. Fasted overnight (A), normal diet (B), and lipidic diet for 1 day (C).
Reprinted with permission from Ref. [148]. Copyright 2006, Elsevier.
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Figure 10. (A) Normal scale, (B) log scale of mean plasma concentration of cinnarizine versus time 
curves in both fast and fed conditions; tablets in fasted state (ο); tablets in fed state (□); tablets + 
SNEDDS in fasted state (▲) and tablets + SNEDDS in fed state (▼) (n = 10). Reproduced with per-
mission from Ref. [145]. Copyright 2016, Elsevier. 
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Figure 10. (A) Normal scale, (B) log scale of mean plasma concentration of cinnarizine versus time
curves in both fast and fed conditions; tablets in fasted state (o); tablets in fed state (�); tablets
+ SNEDDS in fasted state (N) and tablets + SNEDDS in fed state (H) (n = 10). Reproduced with
permission from Ref. [145]. Copyright 2016, Elsevier.

Table 3. Formulation approaches for reducing fast-fed state variability with pharmacokinetic data.

Formulation
Approaches Drug

Fasted State Fed State
RefsAUC0–∞

(ng.h/mL)
Cmax

(ng/mL)
AUC0–∞

(ng.h/mL)
Cmax

(ng/mL)

Prodrug approach Enalapril 1209 ± 203 154 ± 39 1173 ±212 147 ± 36 [96]
Cyclodextrin
complexation Amiodarone HCl 1788 ± 121 3.024 ± 0.6631 1911 ± 141 3.314 ± 0.6139 [104]

Osmotic delivery system Methylphenidate HCl 1857 ± 224 112.6 ± 15.6 1872 ± 242 124.9 ± 17.9 [107]
Solid dispersion Ziprasidone HCl 874.265 ± 3.908 122.116 ± 2.081 988.67 ±4.234 123.457 ± 1.987 [116]

Nanocrystal technology Lurasidone HCl 4718.81 ± 638.37 353.72 ± 21.83 4796.30 ± 562.44 360.70 ± 20.71 [10]
SNEDDS Cinnarizine 1386 ± 474 372 ± 101 1961 ± 324 389 ± 57.0 [145]

4. Interplay of Different Molecular Properties Contributing to Fast-Fed Variability

The concepts of “like dissolves like” or often described as “like seeks like” given by
Hansen, Hildebrand, and Scott seem to play a key role in pH-dependent solubility, which
can be extrapolated to pharmacokinetic fast-fed variability. As per Hansen’s solubility
parameter, solubility depends on the sum of partial cohesive energies (dispersive forces, hy-
drogen bonding, and permanent dipoles) divided by its molar volume [150]. The strategies
discussed above use this principle to reduce the food effect. For instance, cyclodextrins,
solid dispersions, nanocrystals, etc., depend on these partial cohesive energies (mainly hy-
drogen bonding and dipolar interaction with the hydrophilic polymer), thereby increasing
the solubility of the drug irrespective of the variations in the gastrointestinal tract pH [19].
Prodrugs devoid of fast-fed variability aim to balance the partition coefficient of drugs
during absorption, i.e., highly hydrophilic drugs may require lipophilic moieties to impart
appropriate log p values to be absorbed in the present as well as the absence of food. Lipidic
emulsifying systems disperse the drug into their nanosized oil droplets, which increases
the surface area for increased dissolution and may also participate in bile-salt-aided mixed
micelle formation and lymphatic uptake. Out of a large array of drugs, some show variabil-
ity in absorption, which is measured in terms of fasted and fed state pharmacokinetics by
taking into consideration the area under the curve (AUC), which gives an idea about the
change in bioavailability and maximum plasma concentration (Cmax) concerning fasted
and fed state.

From Table 4, it is very much understandable that most of the drugs undergoing fast-
fed variability in vivo may be due to increased pH-dependent solubility. Of these drugs,
isotretinoin, fenofibrate, and elbasvir/grazoprevir show a positive food effect, which may
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be attributed to the pH-dependent solubility in the increased fed state pH as well as their
high lipophilicity compared to the fasted state. Other drugs, such as cefuroxime axetil and
olaparib, possess reduced lipophilicity and have greater solubility in the acidic pH of the
fasted state but surprisingly showed a positive food effect, i.e., AUCfed/AUCfast greater
than 1, which may be due to increased residence time during the fed state compared to the
fasted state. Drugs such as vemurafenib, sirolimus, netupitant, progesterone, and aprepi-
tant possess high lipophilicity and pH-dependent solubility in acidic pH; however, they
show a positive food effect, which may be due to the chylomicron-assisted emulsification
of the bile salts during the fed state contributing to enhanced bioavailability compared
to the fasted state. Drugs such as rosuvastatin calcium and topotecan HCl show reduced
lipophilicity and a negative food effect, which may be due to the formation of complexes
with the food contents, thereby reducing their bioavailability when taken with food [151].
The remaining drugs, including tacrolimus, ritonavir, everolimus, quinapril HCl, ampre-
navir, nifedipine, lubiprostone, paricalcitol, tafamidis meglumine, and itraconazole, show a
negative food effect even with increased lipophilicity, which may be due to their increased
solubility in the acidic pH of the fasted state. We can conclude that pH-dependent solubility
may play a prime role in contributing to the fast-fed variability of several drugs.

Table 4. Potential molecular factors contributing to fast-fed variability in terms of AUC and
Cmax of marketed drugs for which products have been developed claiming to reduce the food
effect. Data obtained from FDA Drug Label database and European Summary of Pharmaceutical
Characteristics (SPC).

S. NO.
Marketed Drugs

with High Fast-Fed
Variability

pH-Dependent
Solubility pKa

Partition
Coefficient

Molecular
Weight BCS Class AUCfed/AUCfast Cmaxfed/Cmaxfast

1. Tacrolimus Acidic 9.96 3.19 804.08 II 0.63 0.23
2. Ritonavir Acidic 13.68 3.9 720.946 II 0.79 0.78
3. Everolimus Acidic 9.96 7.4 958.224 III 0.84 0.40
4. Vemurafenib No 7.1 4.62 489.92 IV 4.6 2.5
5. Cefuroxime axetil Acidic 10.92 0.89 510.475 II 1.41 1.43
6. Quinapril HCl Acidic 5.2 1.96 438.516 II 0.75 -
7. Rosuvastatin Calcium Basic 4.6 1.92 1001.14 II 1 0.8
8. Elbasvir/Grazoprevir Basic 3.77 3.34 882.05 II 1.5 2.8
9. Amprenavir Acidic 13.61 2.2 505.628 II 0.79 0.64

10. Dutasteride Acidic 12.56 6.8 528.53 II - 0.85
11. Nifedipine No 3.93 2.5 346.335 II 1 0.74
12. Sirolimus Acidic 9.96 4.85 914.172 II 1.35 -
13. Lubiprostone No 4.3 2.76 390.462 II 1 0.45
14. Topotecan HCl Acidic 10.50 −0.88 457.9 IV 1 1
15. Netupitant Acidic 9 7.26 578.59 II 1.1 1.2
16. Progesterone Acidic 18.92 3.87 314.46 II 1.99 5.19
17. Isotretinoin Basic 5 6.3 300.44 II 1.5 1.26
18. Paricalcitol No 14.81 4.5 416.36 III 1 1
19. Tafamidismeglumine Basic 3.6 4.21 503.33 IV 1 1
20. Fenofibrate Basic 3.1 5.24 360.831 II 1.58 -
21. Aprepitant Acidic 9.7 4.8 534.427 IV 1.4 -
22. Itraconazole Acidic 3.7 5.56 705.64 II 0.76 0.42
23. Olaparib No 12.07 1.49 435.08 IV 1.2 1

5. Regulatory Aspects

Food plays a significant role in variations in intra- and interindividual bioavailability.
Factors influencing such variations have been explained previously. As per the study
carried out by the USFDA, guidance for the pharmaceutical industry was documented
and fabricated in December 2002 for directing bioavailability and bioequivalence (BA–BE)
studies. The protocol stated an improved standardization being achieved during the trials,
leading to a better knowledge of the observed mechanisms leading to fast-fed variability
as well as the effects of the same. Recently, the European Medicines Agency (EMA)
reformed its norms, taking into consideration the recommendations of the FDA. Today’s
FDA and EMA norms and guidelines demand the administration of a large calorific intake
of approximately 850–1000 kcal to check the fast-fed variability in the oral bioavailability of
the drugs under study. This meal should derive approximately 150 kcal of protein, 250 kcal
of carbohydrate, and approximately 500–600 kcal of fats. FDA and EMA norms together
consist of a protocol for BABE studies specifically for the diet of the subjects participating
in the study to maintain diet uniformity among individuals [152,153].
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The drug product required for testing was given 30 min postmeal consumption along
with 240 mL of water. The assessment of fast-fed variability is evaluated on the ratios of
AUC and Cmax acquired after drug incorporation under fasted and fed states, respectively.
The acceptance criterion may lie between 80–125% but may be wider or narrower depending
on the bioavailability of the drug. There is a wide opportunity for the ever-growing pharma
industry to extend the patent terms of their new molecular entities as well as marketed
drugs and formulations by exploiting the benefits offered by the previously discussed
pharmaceutical opportunities to diminish fast-fed variability. This may also help the
applicant seek approval of their products via the ANDA 505(b)(2) pathway, wherein a
formulation may be claimed superior compared to the innovator product by being able to
reduce the fast-fed variability, which is a whole new domain waiting to be explored. This
not only ameliorates patient compliance but also reduces the adverse effects of drugs due to
positive or negative food effects. To overcome patenting obstacles, the formulation data can
be projected in such a way as to prevent patent infringement from other inventors as well
as self-patented entities. Table 5 depicts the number of patents applied by various inventors
to date successfully without infringing the preexisting patents by overcoming the fast-fed
variability of several drugs by different formulation approaches. This not only contributes
to society but also helps generate revenues for the innovator company to encourage them
to promote further research and development to bring new molecules into the market.

Table 5. Patents filed exclusively to reduce fast-fed variability.

S. NO. Patent Title Formulation Approach Used Refs

1. US20110311594A1 Controlled release compositions with
reduced food effect. Bilayered controlled release. [154]

2. US20140212491A1 Combination formulation of two
antiviral compounds. Solid dispersion. [155]

3. CN103211759B
Puerarin nanocrystalline medical

composition and preparation
method thereof.

Nanocrystal. [156]

4. CN102497857A

Nanostructured sildenafil base, its
pharmaceutically acceptable salts and

cocrystals, compositions of them, process
for the preparation thereof, and
pharmaceutical compositions

containing them.

Cocrystals. [157]

5. WO2015145157A1 Pharmaceutical composition
comprising pazopanib. Nanoparticles. [158]

6. JP2004523552A Reduced food intake, fibrates with a
fasting effect, the combination of statins. Microparticles. [159]

7. KR101300654B1 Nanoparticulate fibrate formulations. Nanoparticles. [160]

8. US9504652B2

Nanostructured aprepitant compositions,
process for the preparation thereof, and

pharmaceutical compositions
containing them.

Polyvinyl caprolactam-polyvinyl
acetate-polyethylene glycol graft

copolymer nanoparticles.
[161]

9. ES2372746T3 Stabilized microparticles fibrate. Microparticles stabilized by
surface active phospholipids. [162]

10. US20090028935A1 Carvedilol forms, compositions, and
methods of preparation thereof.

Amorphous carvedilol phosphate
salt and a complexing agent and

controlled release of
amorphous form.

[163]
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Table 5. Cont.

S. NO. Patent Title Formulation Approach Used Refs

11. WO2014009436A1 Nanosuspension of abiraterone acetate. Nanosuspension of
abiraterone acetate. [164]

12. CH707330A2 Pharmaceutical compositions with
reduced dose of fenofibrate.

A mixture of fenofibrate
nanoparticles and micronized

fenofibrate.
[165]

13. US9012511B2 Nanoparticulate cinacalcet compositions. Cinacacalcet nanoparticles. [166]

14. US20080044486A1 Controlled food effect composition. Membrane lipids for
controlled release. [167]

15. WO2015145145A1 Pharmaceutical composition
comprising lapatinib. Nanoparticles. [158]

16. US20120135053A1 Nanoparticulate telmisartan compositions
and process for the preparation thereof. Nanostructured Telmisartan. [168]

17. US20130210794A1

Nanostructured ezetimibe compositions,
process for the preparation thereof, and

pharmaceutical compositions
containing them.

Nanostructured ezetimibe. [169]

18. CN101180038A Nanoparticulate corticosteroid and
antihistamine formulations.

Antihistamine corticosteroid
nanoparticles. [170]

19. KR20080024213A Nanoparticulate megestrol formulations. Megesterol acetate nanoparticles. [171]

20. JP2012530126A

Nanoparticulate Olmesartan medoxomil
composition, method for its preparation,

and pharmaceutical composition
containing them.

Nano cocrystals. [172]

21. ES2302925T3
Nanoparticle compositions, kinase

inhibitors, mitogen activated
protein (MAP).

Nanoparticles. [173]

22. US20090004262A1 Nanoparticulate formulations and
methods for the making and use thereof. Cyclodextrin inclusion complex [174]

23. JP2005535582A Coated tablets.
Phospholipid applied to the

surface of the fenofibrate
microparticles.

[175]

24. CN101132768A Nanoparticulate tacrolimus formulations. Nanoparticles. [176]

25. US20130303495A1 Emulsion formulations. SNEDDS, SMEDDS, and SEDDS [177]

26. US20170112775A1
Situ self-assembling pro-nanoparticle

compositions and methods of preparation
and use thereof.

Self-assembling pronanoparticles. [178]

27. WO2014132134A1

A composition comprising a lipid
compound, a triglyceride, and a
surfactant, and methods of using

the same.

SNEDDS, SMEDDS, and SEDDS [179]

6. Concluding Remarks

This review provides a critical evaluation of the various fast-fed variable-causing
elements, GIT consideration insights, and a thorough note on formulation techniques to
overcome the fast-fed challenges. Despite the plethora of research, a considerable transla-
tional gap hinders such formulations from becoming commercially viable. To anticipate the
effects of food in vivo more accurately, future research should concentrate on improving dy-
namic in vitro models that analyze dissolution, solubilization, and permeation concurrently.
Strategies such as prodrug approach, cyclodextrin complexation, osmotic delivery system,
solid dispersions, nanocrystal technology, and SNEDDS provide therapeutic benefit by
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mitigating the fast-fed variability. Several aspects drive the decision on final formulation,
such as cost–benefit analysis, ease of administration, and molecule properties. Since the oral
route is the simplest and most used route of delivery it is important to consider the strategy
that is not burdensome to the patients. Nanotechnological approaches sometimes offer
distinctive advantages over other traditional methods; however, the equipment used and
scalability add up cost on the final formulation. In addition, the regulatory guidelines vary
a great extent if one of the formulation components is in the nano range, i.e., at least one
component of final formulation is in the range of 1–100 nm. This could be one reason for
predominant usage of traditional methods. In a report by Kola and Landis, it was evident
that there was substantial reduction in attrition rate due to PK/bioavailability between 1991
to 2000 [180]. This was attributed majorly to the improved formulation strategies at early
stage of development. A further analysis is much needed for the last decade. Additionally,
it would be beneficial to have a framework to help with formulation strategy selection
to counteract the impacts of food. However, proper medication reformulation to lessen
the pharmacological food impact is very helpful in lowering pharmacokinetic variability,
allowing uniform drug administration regardless of ambient factors. Regulatory aspects
regarding the food effect and its importance in patents and ANDA applications were
discussed. We conclude that various approaches described in the review are useful in the
formulation process and can be used to eliminate the fast-fed variability of several drugs.
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