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A B S T R A C T   

The non-coding RNA (ncRNA) regulation appears to be associated to the diagnosis and targeted therapy of 
complex diseases. Motifs of non-coding RNAs and genes in the competing endogenous RNA (ceRNA) network 
would probably contribute to the accurate prediction of serous ovarian carcinoma (SOC). We conducted a 
microarray study profiling the whole transcriptomes of eight human SOCs and eight controls and constructed a 
ceRNA network including mRNAs, long ncRNAs, and circular RNAs (circRNAs). Novel form of motifs (mRNA- 
ncRNA-mRNA) were identified from the ceRNA network and defined as non-coding RNA’s competing endoge-
nous gene pairs (ceGPs), using a proposed method denoised individualized pair analysis of gene expression 
(deiPAGE). 18 cricRNA’s ceGPs (cceGPs) were identified from multiple cohorts and were fused as an indicator 
(SOC index) for SOC discrimination, which carried a high predictive capacity in independent cohorts. SOC index 
was negatively correlated with the CD8+/CD4+ ratio in tumour-infiltration, reflecting the migration and growth 
of tumour cells in ovarian cancer progression. Moreover, most of the RNAs in SOC index were experimentally 
validated involved in ovarian cancer development. Our results elucidate the discriminative capability of SOC 
index and suggest that the novel competing endogenous motifs play important roles in expression regulation and 
could be potential target for investigating ovarian cancer mechanism or its therapy.   

1. Introduction 

Ovarian cancer is the most lethal malignancy worldwide in gynae-
cology [1]. According to estimates from the American Cancer Society, 1 
in 78 women will suffer from ovarian cancer. Furthermore, around 21, 
750 will be newly diagnosed and 13,940 will die from ovarian cancer in 
2020. Epithelial ovarian carcinomas account for 90% of ovarian cancer 
cases and serous ovarian carcinoma (SOC) is thus far the most common 
subtype in epithelial ovarian carcinomas [2,3]. 

Non-coding RNAs (ncRNAs) are RNA molecules that are not trans-
lated into proteins, which include transfer RNAs, micro RNA (miRNAs), 

circular RNAs (circRNAs) and long ncRNAs (lncRNAs). It was found in 
the recent years that non-coding RNAs, especially miRNAs and circR-
NAs, were associated with complex diseases [4,5]. Many miRNAs were 
identified to be associated with diseases by computational methods such 
as learning based methods [6,7] and matrix factorization [8–11]. 
Therefore, ncRNAs are probably associated with SOC and may play 
critical role in the diagnosis and the treatment of SOC. 

NcRNA could exert its influence through gene regulatory network 
[12]. One type of the regulatory mechanism is the competing endoge-
nous RNAs (ceRNAs). CeRNA represents a regulation mode in which 
ceRNAs interact with other RNAs by competing for the shared target 
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microRNAs [13,14]. Chiu et al. validated the ceRNA regulatory network 
in prostate and breast adenocarcinomas [15]. Wang et al. found that 
lncRNA small nucleolar RNA host gene 16 (SNHG16), acting as a ceRNA, 
played important roles in the immune processes and was upregulated in 
myasthenia gravis patients [16]. Liang et al. constructed a ceRNA reg-
ulatory network for mesenchymal ovarian cancer and identified the 
downregulation of lncRNA pro-transition associated R (PTAR) poten-
tially inhibiting cancer metastasis by sponging miR-101 [17]. PTAF is a 
pivotal regulator of the epithelial-to-mesenchymal transition promoting 
the invasion–metastasis cascade of ovarian cancer. Furthermore, they 
demonstrated that the overexpression of PTAF can upregulate snail 
family zinc finger 2 (SNAI2) by directly sponging miR-25, leading to the 
promotion of ovarian cancer epithelial-to-mesenchymal transition and 
invasion [17]. 

Investigation about ceRNAs in SOC concentrated on the regulatory 
relation between individual ncRNAs and mRNAs, i.e., ncRNA – mRNA 
[10,18]. However, ncRNA may compete endogenous with several 
mRNAs at the same time. Moreover, current studies about ceRNA 
network in ovarian cancer did not cover circular RNA (circRNA) 
[19–23], given that no sufficient data are publicly available for ovarian 
cancer. As a layer of the gene regulatory network, circRNAs feature a 
variety of biological processes, including tumour cell proliferation, 
migration, and invasion [24]. Identifying motifs from ceRNA and 
investigating the correlation between circRNAs and other types of RNAs 
will shed light on the underlying molecular mechanisms of ovarian 
cancer. 

In this study, we hypothesized the triangular relationship of ncRNA’s 

competing endogenous gene pair (ceGP), where the genes and ncRNA 
composed a mRNA –ncRNA – mRNA motif in the ceRNA network and 
the two genes reversed in their expression between SOC and normal 
controls (Fig. 1A). First, we generated expression profiles from eight 
SOCs and eight normal ovary samples to characterise the full RNA 
expression pattern of human SOC using Agilent microarrays (Fig. 1B). To 
comprehensively understand the alteration of RNAs, we assessed the 
differentially expressed mRNAs, long non-coding RNAs (lncRNAs), and 
circular RNAs (circRNAs), and constructed a ceRNA network based on 
them. Next, we proposed the denoised individualized pair analysis of 
gene expression (deiPAGE) to select ncRNA’s ceGPs (nceGPs) and 
developed a diagnostic indicator (SOC index) for SOC discrimination 
based on three cohorts including the self-profiled one. Validation on two 
independent cohorts and one blood cohort were performed. After that, 
we investigated the correlation between the SOC index and tumour 
infiltrating cells including the two typical T cells, CD4+ and CD8+. 
Functional enrichment and literature study were also carried out for the 
gene pairs in SOC index. Finally, a cricRNA’s ceGP (cceGP) BBS4- 
circHUNK-PRC1 was illustrated as an example for the nceGP relation-
ship in SOC. 

2. Results 

2.1. Overall design of the study 

In this study, we first generated expression profiles from eight SOCs 
and eight normal ovary samples using microarrays (Fig. 1B). Then, we 

Fig. 1. Overview of this study. A) Illustration of circular RNA’s competitive endogenous gene pair (cceGP), where the two genes reversed in their expression between 
serous ovarian carcinomas (SOCs) and normal controls. Multiple pairs were identified to discriminate SOC from normal controls. B) The workflow to study cceGPs as 
signature in SOC. 

H. Li et al.                                                                                                                                                                                                                                        



Computers in Biology and Medicine 148 (2022) 105881

3

extracted the differentially expressed mRNAs, long non-coding RNAs 
(lncRNAs), and circular RNAs (circRNAs) and constructed a ceRNA 
network. Next, we proposed deiPAGE algorithm and identified ncRNA’s 
ceGPs (nceGPs). Using them, we developed a diagnostic indicator, called 
SOC index, from TCGA, GSE18520, and the self-profiled cohorts for SOC 
discrimination. We evaluated the performance of SOC index on two 
independent cohorts GSE6008 and GSE40595 and a blood-sample 
cohort GSE11545. Moreover, we proposed a hypothesis about the reg-
ulatory mechanism of cceGPs in SOC progression. 

2.2. Clinical characteristics and differential analysis 

Aged between 41 and 66 years, eight serous ovarian carcinoma 
(SOC) patients and eight patients without SOC were included in this 
study (Table 1). Patients with SOC had lymphatic metastasis and ascites, 
while patients without SOC did not. The clinical tumour marker cancer 
antigen 125 (CA125) in two of eight SOC patients was within normal 
range (<35 U/mL) and only one patient had an abnormal alpha feto-
protein (AFP) level (>7 ng/mL), which reflected the low sensitivity 
(75% for CA125 and 12.5% for AFP) of the existing clinical protein 
tumour biomarkers. 

We profiled these 16 samples by microarray using the Agilent plat-
form (Table 1), yielding comprehensive expression profiles for 17,972 
mRNAs, 19,394 lncRNAs, and 5,594 circRNAs. Among these, 3,876 
mRNAs, 2,567 lncRNAs, and 191 circRNAs were screened as differen-
tially expressed genes (DEGs) with an absolute fold change >2 and a 
false discovery rate (FDR) adjusted P-value from a Student’s t-test <0.01 
(Fig. 2A). Using GSEA [25], functional enrichment analyses showed that 
these DEGs are remarkably involved in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [26] pathways related to cancer immunity, 
including T-cell activation, cytokine production, immune regulation, 
and tumour-infiltrating lymphocyte differentiation and migration 
(Fig. 2B and Fig. S1). Therefore, we only concentrated on the 
immune-related genes for further analysis. According to InnateDB [27] 
and ImmLnc [28], 884 mRNAs and 426 lncRNAs of these DEGs are 
immune-related (Fig. 2C and D). 

2.3. Construction of competing endogenous regulatory network 

The competitive endogenous RNA (ceRNA) hypothesis revealed an 
intrinsic mechanism within RNAs that regulate biological processes and 
has been validated by many studies [29]. LncRNAs, circRNAs, and 
mRNAs act as miRNA sponges or ceRNAs by competing for the shared 
microRNAs (miRNAs). For instance, in the mRNA–miRNA–lncRNA 
interaction, changes in the expression of lncRNA alter the number of 
unbound miRNAs, thereby affecting the expression abundance of the 
target mRNA. To disclose the RNAs participating as ceRNAs in SOC, we 
screened the positively correlated circRNAs/lncRNAs and mRNAs in 
SOC samples (Pearson’s correlation coefficient (PCC) > 0.5) and 
selected those that have interactive miRNA in common based on 
RNAInter [30]. Ultimately, 526 mRNAs, 13 lncRNAs, and 111 circRNAs 
were identified and composed the competing endogenous regulatory 
network (Fig. 2E; Additional File 2: Table S1). Since all the competing 
endogenous partners are immune-related RNAs, the 111 circRNAs in the 
ceRNA network were determined as immune-related circRNAs for SOC. 
The detailed description of these immune-related circRNAs is listed in 
Additional File 2: Table S3. 

2.4. Identification of non-coding RNAs’ competitive endogenous gene pair 

In addition to our cohort, we collected all publicly available tissue 
expression cohorts of SOC from The Cancer Genome Atlas (TCGA) [31] 
and the Gene Expression Omnibus (GEO) [32], including GSE18520, 
GSE6008, and GSE40595 (Table 2; Fig. 1B). We paired two genes if they 
connected to the same lncRNA or circRNA in the ceRNA regulatory 
network (Figs. 1A and 3E) and obtained 186,294 pairs from our 
self-profiled cohort. Among them, 111,967 pairs existed in the other four 
public cohorts. We combined the two largest cohorts—TCGA and 
GSE18520—with our cohort to comprise the training set consisting of 
646 patients and 26 normal controls (Table 2). The remaining two co-
horts served as independent validation sets. 

As shown in Fig. 1A, if two genes that connected to the same non- 
coding RNA in ceRNA network reversed in their expression between 
SOC and controls, they were defined as non-coding RNA’s competitive 
endogenous gene pair (nceGP). 

Table 1 
Clinical characteristics of patients with ovarian cancer and control samples.  

ID Age FIGO staging system Tissue Lymphatic metastasis Ascites AFP CA125 Tumour size Tumour size 

(ng/mL) (U/mL) (left; cm) (right; cm) 

A1 53 Cervical squamous cell carcinoma stage IB1 NOET no no – – – – 
A2 52 Uterine sarcoma NOET unknown unknown – – – – 
A3 41 Endometrial carcinoma stage IA NOET no no – 522 – – 
A4 54 Cervical squamous cell carcinoma stage IB1 NOET no no – – – – 
A5 53 Cervical squamous cell carcinoma stage IB1 NOET no no – – – – 
A6 61 Cervical squamous cell carcinoma stage IIA2 NOET unknown unknown – – – – 
A7 55 Cervical squamous cell carcinoma stage IB1 NOET no no – – – – 
A8 51 Endometrial carcinoma stage IA NOET no no – – – – 
C1 66 Papillary serous cystadenocarcinomas stage IIIC SOC yes yes 6.37 122.5 5 × 2.5 × 2.5 2.5 × 2.5 × 1.2 
C2 66 Papillary serous cystadenocarcinomas stage IV SOC yes yes 3.44 15.53 8 × 7 × 7 4 × 3*3 
C3 50 Papillary serous cystadenocarcinomas stage IIIC SOC yes yes 2.77 3239 11 × 10 × 5 5.5 × 4 × 2.5 
C4 51 Papillary serous cystadenocarcinomas stage IIIC SOC yes yes 3.84 18.9 9 × 7 × 4 3 × 1.5 × 1,5 
C5 47 Papillary serous cystadenocarcinomas stage IIIC SOC yes yes 2.38 1818 15 × 14 × 5  
C6 41 Ovarian mucinous cystadenocarcinomas stage IIIC SOC yes yes 8.6 115 3 × 2*1 4 × 3 × 2 
C7 55 Papillary serous cystadenocarcinomas stage IIIC SOC yes yes 2.96 730.9 1.8 × 1.3 × 0.9 1.8 × 1.2 × 0,7 
C8 47 Papillary serous cystadenocarcinomas stage IIIC SOC yes yes 2.15 1278 15 × 2 × 10 3 × 2.5 × 2.5 

Note: FIGO, International Federation of Gynaecology and Obstetrics; NOET, normal ovarian epithelial tissue; AFP, alpha fetoprotein; SOC, serous ovarian carcinomas. 
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We proposed the denoised individualized pair analysis of gene 
expression (deiPAGE) (Fig. 3; see the Methods section) to select nceGPs 
and constructed a SOC index by extracting and summarising these 
nceGPs. For each sample in the training cohort, we first calculated the 
subtraction between two genes regulated by identical ncRNAs in the 
ceRNA regulatory network (Fig. 3A). Then, we converted the difference 
between a pair of genes into a ‘greater’ signal (1) or ‘smaller’ signal (− 1) 
with a noise interval of 0.5 to filter out some false discoveries due to 
technical variation (Fig. 3B). If the difference within a pair did not 
exceed 0.5, the pairing signal was assigned 0. The signals for all possible 
gene pairs were defined as the relative expression level and we derived a 
pairwise spectrum of 111,967 pairs. For each pair in the pairwise 
spectrum, we calculated the contingency table across the population 
(Figs. 3C), 48 and 388 DEPs were identified (P < 0.01, FDR corrected 
Fisher’s exact test). 

Next, we applied LASSO regression model to discriminate the SOC 
from the controls. After training in the training set, it selected eighteen 
most effective nceGPs (Table 3) to construct the SOC index as follows. 

Fig. 2. Construction of the competitive endogenous RNA (ceRNA) regulatory network. A) Volcano plot of differentially expressed mRNAs, lncRNAs, and circRNAs. B) 
Functional analysis of differentially expressed RNAs using GSEA. A majority of the enriched biological processes are associated with immunity. C) Venn diagram of 
the differentially expressed genes and immune-related genes. D) Venn diagram of the differentially expressed lncRNAs and immune-related lncRNAs. E) The immune- 
related ceRNA regulatory network composed of mRNAs, lncRNAs, and circRNAs. F) Sankey diagram of the competitive endogenous circRNAs and mRNAs identified 
by deiPAGE. The miRNAs interacting with them are in the middle layer. 

Table 2 
Gene expression datasets used in this study.  

Dataset Cohorts Platform SOC Control Total 

Training TCGA-Affy Affymetrix HG- 
U133A Array 

585 8 593 

GSE18520 Affymetrix HG-U133 
Plus 2.0 Array 

53 10 63 

Self- 
profiled 

Agilent- Arraystar 8 8 16 

Validation 1 GSE6008 Affymetrix HG- 
U133A Array 

41 4 45 

Validation 2 GSE40595 Affymetrix HG-U133 
Plus 2.0 Array 

32 6 38 

Blood samples 
Validation 

GSE11545 ABI Human Genome 
Survey Microarray 
V2 

8 9 17  
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Fig. 3. The workflow of denoised individualized pair analysis of gene expression (deiPAGE) to compute the SOC index. A) Subtraction of two genes within each 
sample of the expression matrix. B) Gene pairs with a large effect size (Δ) were converted to intrasample relative expression indicators (1 or − 1). Gene pairs with a 
small effect size possibly introduced from technical variation were filtered out (0). C) Based on the intra-sample rank, a Fisher’s exact test was performed across the 
population without considering a small effect size for each gene pair. D) Gene pairs were ranked by their P-value and differentially reversed gene pairs (DRPs) were 
screened. E) Feature selection and construction of SOC index by machine learning method, the least absolute shrinkage and selection operator (LASSO) regression. F) 
Heatmap showing the subtraction result of the 18 circRNA’s competitive endogenous gene pairs (cceGPs) identified by LASSO. G) Heatmap showing the subtraction 
result of the 18 cceGPs after conversion. 
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SOC  index= 0.1127∗f (TOP2A,  SNCA(circCFL1)) − 0.0384
* f (MYO1E,TOP2A(circCOL1A2))+ 0.0469
* f (TOP2A,  CRADD(circCOL1A2))+ 0.0287
* f (TOP2A,  SNCA(circCOL1A2))+ 0.0034
* f (TRIB3,  MEF2C(circDDAH1))+ 0.0133
* f (PRC1,  BBS4(circDTL))+ 0.0149
* f (TPX2,  GNE(cricHDGF))+ 0.0261
* f (TPX2,  PDGFD(cricHDGF))+ 0.0012
* f (PRC1,  BBS4(cricHUNK))+ 0.0525
* f (TOP2A,  MFAP4(cricKRT7))+ 0.0029
* f (TOP2A,  SNCA(cricKRT7))+ 0.0429
* f (NUSAP1,  XPA(cricMOB1B))+ 0.0476
* f (TOP2A,  LAMA4(cricSEL1L3))+ 0.0078
* f (SFN,  NDN(cricSFMBT2))+ 3.6106 * 10− 17

* f (SFN,  NDN(cricSLC22A3))+ 0.0022
* f (PRAME,  SELL(cricSNCAIP))+ 0.0238
* f (PRAME,  PTGER4(cricSORT1))+ 0.0027
* f (PRKCI,  SFRP4(cricULK4)) + 0.5066  

where f
(
gi, gj

)
=

⎧
⎨

⎩

1, gi − gj > Δ
− 1, gi − gj < − Δ,
0, otherwise

Δ = 0.5 

Notably, the 18 pairs selected by LASSO were all circRNA’s 
competing endogenous gene pairs (cceGPs). A heat map displays the 
effect size (difference between two mRNAs in a pair) of each pair 
(Fig. 3F). After conversion, the denoised relative expression shows a 
clear distinction between SOC patients and normal controls, since all the 
control samples were clustered in the same group (Fig. 3G). We further 

retrieved the 18 cceGPs in ceRNA regulatory network and their common 
interactive miRNAs (Fig. 2F; Additional File 2: Table S2). Their locations 
in the chromosome are shown in circos plot (Additional File 1: Fig. S4). 

Generally, the reversal relationships of the expression abundance of 
these cceGPs between SOC and control samples were consistent in the 
training and validation datasets (Additional File 1: Figure S5, S6 and 
S7). Overall, we developed a composite SOC index ranging from 0 to 1.0 
on 672 samples in the training set using the LASSO regression model. 

2.5. Performance of the SOC index 

We performed principal components analysis (PCA) of the 18 cceGPs 
on the training set and two validation sets (Fig. 4A). The 3D plot of the 
three principal components illustrates that the 18 pairs selected by 
deiPAGE revealed differences between the SOCs and controls. The SOC 
index of SOC samples also significantly differed from controls in the 
three data sets (Fig. 4B). Next, we applied the receiver operating char-
acteristic (ROC) curve and the precision-recall curve (PRC) to evaluate 
the model. The area under the receiver operating characteristic 
(AUROC) and the area under the precision-recall curve (AUPRC) of SOC 
index achieved 0.999 and 1.000 in the training set (Fig. 4C). The SOC 
index also demonstrated high sensitivity (99.7%) and specificity 
(92.3%) in discrimination (Fig. 4E). 

To determine if the SOC index obtained from the training set is 
reproducible in other SOC cohorts, we applied it to two independent 
validation cohorts (GSE6008 and GSE40595) measured by two different 
platforms (Affymetrix HG-U133A Array and Affymetrix HG-U133 Plus 
2.0 Array). The confusion matrix of GSE6008 (Affymetrix HG-U133A 
Array) indicated that the SOC index established by deiPAGE from the 
training set carried a sensitivity of 95.1%, a specificity of 75%, an 
AUROC of 0.982, and an AUPRC of 0.998 (Fig. 4C, D and 4E: GSE6008). 

Table 3 
Statistics of the 18 circular RNA’s competitive endogenous gene pairs.  

Non-coding RNA Fold change mRNA Experimental validation Fold change Correlation Reversal p value 

circCFL1 1.183 TOP2A [59,60] 5.692 0.529 1.98E-33 
SNCA [62,68] − 2.126 0.792 

circCOL1A2 1.056 TOP2A [58–60] 5.692 0.634 7.22E-35 
MYO1E  1.010 0.651 

circCOL1A2 1.056 TOP2A [58–60] 5.692 0.634 1.98E-33 
CRADD  − 1.057 0.738 

circCOL1A2 1.056 TOP2A [58–60] 5.692 0.634 1.98E-33 
SNCA [62,68] − 2.126 0.868 

circDDAH1 1.091 TRIB3 [69] 1.038 0.621 7.45E-25 
MEF2C [70] − 2.487 0.766 

circDTL 1.082 PRC1 [38,39] 2.426 0.525 5.69E-33 
BBS4 [40] − 1.273 0.965 

cricHDGF 1.269 TPX2 [71] 4.066 0.674 1.16E-31 
GNE  − 1.668 0.848 

cricHDGF 1.269 TPX2 [71] 4.066 0.674 1.66E-26 
PDGFD [72,73] − 4.153 0.624 

cricHUNK 1.666 PRC1 [38,39] 2.426 0.741 5.69E-33 
BBS4 [40] − 1.273 0.713 

cricKRT7 1.473 TOP2A [58–60] 5.692 0.626 6.43E-29 
MFAP4 [63] − 3.083 0.595 

cricKRT7 1.473 TOP2A [58–60] 5.692 0.626 1.98E-33 
SNCA [62,68] − 2.126 0.646 

cricMOB1B − 1.126 NUSAP1 [74] 1.913 0.575 2.52E-30 
XPA  − 1.184 0.583 

cricSEL1L3 1.225 TOP2A [58–60] 5.692 0.755 1.99E-35 
LAMA4 [61] − 1.415 0.835 

cricSFMBT2 − 1.625 SFN [75] 4.672 0.534 1.05E-19 
NDN [76] − 3.375 0.637 

cricSLC22A3 − 1.992 SFN [75] 4.672 0.645 1.05E-19 
NDN [76] − 3.375 0.522 

cricSNCAIP − 3.393 PRAME [77] 3.491 0.522 2.31E-22 
SELL  2.024 0.521 

cricSORT1 1.349 PRAME [77] 3.491 0.565 1.13E-24 
PTGER4  1.142 0.526 

cricULK4 1.064 PRKCI [78,79] 1.605 0.504 2.24E-22 
SFRP4 [80,81] − 3.105 0.607  
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In GSE40595, we assessed the performance of the SOC index to again 
distinguish SOC from normal using the Affymetrix HG-U133 Plus 2.0 
Array platform (Fig. 4C, D and 4E: GSE40595). SOC index demonstrated 
a 100% sensitivity and 100% specificity with an AUROC of 1.000 and an 
AUPRC of 1.000. Current molecular biomarkers ROMA, HE4, and CA125 
only achieve AUROC of 0.898, 0.857, and 0.877 [33]. In our cohort, 
CA125 only attains a sensitivity of 75%. Taken together, we observed 
highly accurate discrimination in the two independent cohorts, 

indicating that the SOC index carries a very high predictive value in 
assisting SOC detection, such as improving the accuracy of biopsy 
diagnosis. 

Furthermore, to evaluate the non-invasive diagnosis value of the SOC 
index, we examined its diagnostic performance in a blood dataset 
GSE11545. The SOC index achieved comparable AUROC of 0.819 and 
AUPRC of 0.832 (Fig. 5A and B). Among the 18 cceGPs, we observed that 
the expression reversal of PRKCI-cricULK4-SFRP4 and TOP2A-circKRT7- 

Fig. 4. Performance evaluation of the SOC index. A) The three principal components of the 18 cceGPs in the training and validation sets. B) Box plot of the SOC index 
in the training and validation sets. C) ROC curves of SOC index in the training and validation sets. D) Precision-recall curves of SOC index in the training and 
validation sets. E) Confusion matrix of SOC index in the training and validation sets. 
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MFAP4 indicated significantly better outcomes in TCGA (Fig. 5C and D). 

2.6. SOC index indicates tumour infiltration 

Given that the SOC index of the identified circRNA’s competing 
endogenous gene pairs potentially discriminated between SOC and 
normal controls, we questioned whether the score correlated with the 
tumour progression. We performed a tumour-infiltrating immune cell 
analysis using TIMER2.0 [34], and decomposed the bulk mRNA 
expression into cell-type proportions for the self-profiled cohort and the 
other four cohorts (GSE18520, GSE40595, GSE 6008, and TCGA). We 
evaluated the correlation between the SOC index and the population of 
different cell types including CD8+ T cells, CD4+ T cells, B cells, mac-
rophages, and neutrophils on five cohorts (Fig. 5E). The SOC index was 
consistently positively associated with CD4+ T cells and negatively 
associated with CD8+ T cells. For instance in GSE18520, the SOC index 
was positively correlated with CD4+ T cells (Fig. 5E and Additional File 
1: Fig. S8; SCC = 0.355, P < 4.299E-03, Spearman’s correlation) and 
negatively correlated with CD8+ T cells (Fig. 5E and Additional File 1: 
Fig. S8; SCC = − 0.389, P < 1.646E-03), resulting in a significant 
negative correlation with the ratio of CD8+/CD4+ T cells (SCC =
− 0.371, P < 2.751E-03). The same trend was also observed in the other 
cohorts (Fig. 5F–I and Additional File 1: Fig. S8). The ratio of 
CD8+/CD4+ T cells in ovarian cancer can be used as a prognostic factor 

and patients with higher CD8+/CD4+ ratios tend to have improved 
survival [35]. The high correlation with the CD8+/CD4+ ratio indicates 
the potential prognostic value of the SOC index. 

2.7. CircRNA’s competing endogenous gene pairs 

The circRNA’s competing endogenous gene pair referred to the 
correlation between a circRNA and two genes, where the circRNA and 
two mRNAs are competing endogenous RNA respectively in disease, 
while the two genes reversed in their expression between the case and 
control samples. The 18 circRNA’s competing endogenous gene pairs 
identified by deiPAGE included 14 circRNAs and 22 genes (Table 3 and 
Fig. 6A). Some gene pairs were regulated by multiple circRNAs while 
some circRNAs tartgeted more than one gene pairs. The 14 circRNAs 
were differentially expressed with ten up-regulated (circCFL1, circ-
COL1A2, circDDAH1, circDTL, circHDGF, circHUNK, circKRT7, circ-
SEL1L3, circSORT1, and circULK4) and four down-regulated 
(circMOB1B, circSFMBT2, circSLC22A3, and circSNCAIP) (Fig. 6B). 

The 22 genes were enriched in Reactome [36] pathways that are 
highly related to cancer progression, such as signal transduction, sig-
nalling by NGF, and transcriptional regulation by TP53 (Fig. 6C). Other 
pathways consisted of prostanoid ligand receptors, TP53 regulates 
transcription of caspase activators and caspases, Chk1/Chk2(Cds1) 
mediated inactivation of Cyclin B:Cdk1 complex, p75NTR recruits 

Fig. 5. The SOC index for diagnosis and prognosis, and its association with tumour progression. A) ROC curve of the SOC index in blood samples. B) Precision-recall 
curve of the SOC index in blood samples. C) Kaplan-Meier survival curve of PRKCI:SFRP4 pair (P < 0.03, log-rank test). D) Kaplan-Meier survival curve of TOP2A: 
MFAP4 pair (P < 0.01, log-rank test). E-I) Correlations between the SOC index and tumour infiltration in five cohorts (E, F, G, H, and I). The SOC index is negatively 
correlated with CD8+ and positively correlated with CD4+ in GSE18520. The SOC index is also inversely correlated with CD8+/CD4+ (E). In the other four cohorts, 
the SOC index and CD8+/CD4+ is consistently negatively correlated (F, G, H, and I). 
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signalling complexes, p75NTR recruits signalling complexes, eicosanoid 
ligand-binding receptors, and RHO GTPases activate CIT. We also per-
formed functional enrichment in Gene Oncology (GO) [37] and 
discovered that the genes participated in the cellular growth and 

development such as regulation of cell division, platelet-derived growth 
factor receptor signalling pathway, cellular extravasation and glomer-
ulus development (Fig. 6D). Particularly, Bardet-Biedl Syndrome 4 
(BBS4) and Protein Regulator Of Cytokinesis 1 (PRC1), as competing 

Fig. 6. Functional analysis of the cceGPs. A) The 18 cceGPs or gene pair-circRNA motifs in SOC. B) Heatmap illustrating the expression abundance of circRNAs. C) 
Enriched functions of the 18 cceGPs in Reactome. D) Enriched functions of the 18 cceGPs in GO. Yellow node denotes functional category while grey node represents 
gene. E, F) Expression abundance of PRC1 and BBS4 in normal controls and SOCs. G, H) Correlations between circHUNK and PRC1 (BBS4) in SOCs. I) PRC1- 
circHUNK-BBS4 as an example of cceGPs relationship in SOC progress. 
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endogenous RNAs of circHUNK, both participated in the regulation of 
cell division. Other than that, most of the genes in the 18 circRNA’s 
competing endogenous gene pairs have been reported to play key roles 
in carcinogenesis in previous experimental studies (Table 3). 

Taking BBS4–circHUNK–PRC1 as an example, we dissected the 
competing endogenous mechanism of the regulatory motif. The 
expression abundance of PRC1 was lower than BBS4 in normal controls, 
while in SOC samples it is higher than BBS4 within most of the samples, 
although both of them are involved in the regulation of cell division in 
SOC. The boxplot showed the reverse expression pattern of PRC1 and 
BBS4 in the training set (Fig. 6E and F). The expression level of the 18 
cceGPs in the training and validation sets were also provided (Additional 
File 1: Figure S5, S6 and S7). In the SOC samples, circHUNK was 
significantly positively correlated with BBS4 and PRC1 in expression 
(Fig. 6G and H). Simultaneously, circHUNK sponged the same micro-
RNA miR-1224–5p as BBS4 and it shared miR-106a-5p, miR-374a-5p, 
and miR-1224–5p with PRC1 (Fig. 6I). It has been found that the up- 
regulation of PRC1 activates the Wnt/β-catenin signalling pathway 
and leads to an increase in cell viability, invasion, migration and EMT of 
ovarian cancer cells [38]. The overexpression of PRC1 also indicates a 
poor prognosis [39]. Moreover, BBS4 has been observed down-regulated 
in breast cancer and indicates a shorter survival time [40]. Collectively, 
these findings suggest that circHUNK play potential roles in the down-
stream disturbance of cell division in SOV via competing endogenous 
RNA mechanisms (Fig. 6I). Our results provide new insight into how the 
ncRNA-gene pair motif works coordinately in the progression of SOC. 

3. Materials and methods 

3.1. Patients and samples 

16 patient samples were included in this study (Table 1). Eight pa-
tients with ovarian cancer and eight patients with cervical cancer 
(normal ovarian tissue specimens) were recruited sterilely at the Fourth 
Hospital of Hebei Medical University between 2015 and 2017. This 
study was approved by the institutional review board of Hebei Medical 
University. Both cancerous and normal ovarian tissues were quickly 
excised and snap-frozen in a liquid nitrogen tank at − 80 ◦C until further 
use. 

3.2. RNA extraction 

Tissues were homogenised in the TRIZOL reagent (Invitrogen, USA) 
using a Qiagen Tissuelyser. Total RNA was extracted in accordance with 
the manufacturer’s protocol and then quantified using a NanoDrop ND- 
1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 
USA). The RNA integrity of each sample was assessed by denaturing 
agarose gel electrophoresis. 

3.3. Microarray experiments 

To identify deregulated RNAs associated with SOC patient outcomes, 
we conducted a microarray study and profiled mRNAs, lncRNAs, and 
circRNAs, respectively. We performed Arraystar Human LncRNA 
Microarray V2.0 and Arraystar Human circRNA Array V2.0 analyses on 
all 16 samples. The expressions of lncRNAs and mRNA were quantified 
using the first platform, while the expressions of circRNAs were 
measured using the second. Total RNA from each sample was measured 
using NanoDrop ND-1000. Sample preparation and microarray hybrid-
isation were performed based on the standard protocols of Arraystar 
(Agilent Technology, USA). Processing RNA was different between the 
two platforms. For the lncRNA platform, rRNA was removed from total 
RNA using the mRNA-ONLY™ Eukaryotic mRNA Isolation Kit (Epi-
centre Biotechnologies, USA). For the circRNA platform, total RNAs 
were digested with Rnase R (Epicentre, Inc.) to remove linear RNAs and 
enrich circular RNAs. Then, the two platforms followed the same steps 

below. 
Each sample was amplified and transcribed into fluorescent cRNA 

utilising a random priming method (Arraystar Super RNA Labeling Kit; 
Arraystar). The labelled cRNAs were purified using the RNeasy Mini Kit 
(Qiagen, Germany). The concentration and specific activity of the 
labelled cRNAs (pmol Cy3/μg cRNA) were measured using NanoDrop 
ND-1000. Here, 1 μg of each labelled cRNA was fragmented by adding 5- 
μl 10 × blocking agent and 1-μl 25 × fragmentation buffer, heating the 
mixture to 60 ◦C for 30 min, and then adding 25-μl 2 × hybridisation 
buffer to dilute the labelled cRNA. Next, 50-μl hybridisation solution 
was dispensed into a gasket slide and assembled on the circRNA 
expression microarray slide. The slides were incubated for 17 h at 65 ◦C 
in an Agilent Hybridisation Oven. The hybridised arrays were washed, 
fixed, and scanned using the Agilent Scanner G2505C. We used the 
Agilent Feature Extraction software (version 11.0.1.1) to analyse the 
acquired array images. 

3.4. Datasets 

Other than the self-profiled cohort, we downloaded the gene 
expression of SOC samples from TCGA and GEO (GSE18520, GSE6008, 
GSE40595 and GSE11545; Table 2). We performed differential and 
functional analysis and constructed a competing endogenous RNA reg-
ulatory network based on the self-profiled cohort. We then combined the 
self-profiled cohort, GSE18520, and the TCGA cohort retrieved from 
UCSC Xena including 672 samples as a training set for SOC signature 
identification (Fig. 1B). GSE6008 and GSE40595 were applied as two 
independent validation sets. To verify the signature for non-invasive 
diagnosis, we adopted a blood cohort GSE11545 as another external 
validation set. 

Gene expressions from the five cohorts were quantified using three 
platforms, i.e., the Affymetrix HG-U133A Array, the Affymetrix HG- 
U133 Plus 2.0 Array, and the Agilent-Arraystar. Besides, GSE11545 
measured gene expression of SOC in blood using ABI Human Genome 
Survey Microarray V2. 

3.5. Differential and functional analysis 

The expression profiles of SOC patients and normal controls in the 
self-profiled cohort were analysed to identify differentially expressed 
mRNAs, lncRNAs, and circRNAs, respectively. Quantile normalization 
was used to normalize the profiles to render the data comparable across 
samples. The significance levels were estimated using the Student’s t- 
test and, then, adjusted using the Benjamini and Hochberg (BH) multiple 
testing correction method. The effect size was also taken into account of 
using the two-fold change [41,42]. In total, we obtained 1,881 down-
regulated mRNAs and 1,995 upregulated mRNAs, 1,849 downregulated 
lncRNAs and 718 upregulated lncRNAs, as well as 122 downregulated 
circRNAs and 69 upregulated circRNAs. 

3.6. Competing endogenous RNA network construction 

The competing endogenous RNAs (ceRNAs) sponged the same micro 
RNAs (miRNAs) and the their expression are positively correlated. We 
used the Pearson’s correlation test to calculate the expression correla-
tion among mRNAs, lncRNAs, and circRNAs in SOC. Then we screened 
those that shared the same interactive miRNAs through RNAInter [30]. 
Only RNAs positively correlated (Pearson correlation coefficient (PCC) 
> 0.5) and interactive with the same miRNAs were considered as ceR-
NAs for the construction of the competing endogenous regulatory 
network [13,43]. The final network was illustrated using Cytoscape 
[44]. 

3.7. Denoised individualized pair analysis of gene expression 

The abundance of genes may vary across different detection 
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platforms or preprocessing methods, but the relative ranking is stable in 
a pair of genes. Herein, we developed denoised individualized pair 
analysis of gene expression (deiPAGE). deiPAGE not only considered the 
relative ranking but also included the effective size between two genes. 
Moreover, deiPAGE applied the least absolute shrinkage and selection 
operator (LASSO) for feature selection. 

3.7.1. Establishment of ceGPs 
The gene expression profiles from different training cohorts were 

concatenated directly as a training set. Then, we performed pairwise 
subtraction for all genes to form gene pairs (gi − gj) in a single sample 
(Fig. 3A). However, the gene expression value may vary due to technical 
noise and it was denoted as g = g′

+ ε, where g′ was the true value of the 
gene expression and ε ∈ ( − ∞,+∞) represented the error of measure-
ment. When subtraction was performed, it became (g′

i + εi) − (g′

j + εj)

= g′

i − g′

j + εi − εj. The difference within a pair may not only result from 
the ground truth of the gene expression g′

i − g′

j , but was also affected by 
the technical variation εi − εj when counting RNAs from reads. Suppose 
g′

i > g′

j , the relative expression will be opposite, i.e., gi < gj, if − (εi − εj)>

g′

i − g′

j . 
However, as ε is the noise of measurement, it is usually a small value 

compared to g′ . Therefore, g′

i − g′

j + εi − εj is in a small range because εi−

εj and g′

i − g′

j is small, as − (εi − εj)> g′

i − g′

j . In such cases, to remove these 
opposite relative expressions caused by noise, we introduced effective 
size Δ, where only the difference g′

i − g′

j + εi − εj exceeding Δ was 
regarded as effective. As a result, we applied the function f(gi, gj) =
⎧
⎨

⎩

1, gi − gj > Δ
− 1, gi − gj < − Δ
0, otherwise 

to each gene pair (Fig. 3B). 

Following the intrasample analysis, we performed a population 
analysis to obtain the significance level of the gene pairs. For each gene 
pair, a contingency table was calculated without considering the sam-
ples within the difference threshold, given that those samples are largely 
affected by noise (Fig. 3C). We then conducted the Fisher’s exact test, 
and 48,388 significantly different pairs (False discovery rate corrected P 
< 0.01) were preserved as non-coding RNA’s competing endogenous 
gene pairs (nceGPs) (Fig. 3D). 

3.7.2. SOC index generation 
The least absolute shrinkage and selection operator (LASSO) [45–47] 

is a regression model with regularization in machine learning, which has 
been widely used in medical applications [48–50]. It can not only 
classify different classes, but also prune features to avoid overfitting and 
improve the generalizability. The linear regression was optimized using 

the following loss function with an L1 penalty: L (W; α) = 1
n
∑n

i=1
(Yi −

Xi *W)+ α
∑3

j=1

⃒
⃒wj

⃒
⃒, where n is the number of samples, Y is the label for 

each sample, X is the vector composed by all the nceGPs and the con-
stant term, W is the vector of weights for nceGPs, and α is the coefficient 
for the L1 penalty. 

After 48,388 differential gene pairs were obtained from the previous 
step, resampling was applied to the training dataset due to the unbal-
anced size of the SOC samples and normal controls, which is a commonly 
used trick in machine learning to improve model accuracy. LASSO 
regression model was trained on the resampled training set and 18 cir-
cular RNA’s competing endogenous gene pairs (cceGPs) were selected 
for the final SOC index (Fig. 3E). The code of deiPAGE algorithm is 
available at https://github.com/Kimxbzheng/deiPAGE. 

3.8. Principle component analysis 

Principal component analysis (PCA) is a machine learning method to 

summarize high-dimensional data into a few main components for data 
analysis and visualization. In this study, we performed PCA using 
sklearn in python to convert the 18 cceGPs into three principal com-
ponents for visualization of its classification performance (Fig. 4A). 

3.9. Correlation analysis with tumour infiltration 

To explore the association with immune cell infiltration, Spearman’s 
rank correlation coefficient was adopted to estimate the correlation 
between the SOC index and immune cells in cancer (|R| > 0.3 and P <
0.01). For each sample, we calculated the levels of immune cell infil-
tration using the Tumour Immune Estimation Resource (TIMER) [51]. 

3.10. Gene set enrichment analysis and functional enrichment analysis 

We downloaded all pathways of Collection 2 (C2) and their gene sets 
from MSigDB (v7.4) and applied Gene Set Enrichment Analysis (GSEA) 
[52] with the R package clusterProfiler [53]. The differentially 
expressed mRNAs were subjected to GSEA [25] for functional enrich-
ment analysis. Hypergeometric test was applied to evaluate the statis-
tical significance of functional enrichment for overrepresented gene sets 
using the R package clusterProfiler [53]. The 18 cceGPs in SOC index 
were enriched in Gene Oncology (GO) [37] and Reactome [36]. 

3.11. Statistical analyses 

R Project (R x64, version 3.5.2) and Python (version 3.6) were used 
for statistical computation in this study. Student’s t-test and the Benja-
mini and Hochberg (BH) multiple testing correction method were used 
to calculate the differential expression RNAs in the self-profiled cohort. 
Pearson’s correlation test were applied to calculate the expression cor-
relation among RNAs. Fisher’s exact test and false discovery rate (FDR) 
correction were employed to compute the significance of gene pair 
reversal. The LASSO regression was used to screen gene pairs and 
construct classification model for SOC. PCA was used to visualize the 18 
gene pairs. Kaplan-Meier method and log-rank test were used for clinical 
outcome comparison. Spearman’s rank correlation coefficient was 
adopted to estimate the correlation between the SOC index and immune 
cells. Hypergeometric test was applied to evaluate the statistical sig-
nificance of functional enrichment for overrepresented gene sets. Sta-
tistical significance was set at P < 0.01. 

4. Discussion 

In this study, we hypothesized the triangular relation of mRNA- 
ncRNA-mRNA that two mRNAs and the ncRNA were competing 
endogenous RNAs and the two mRNAs were reversed in expression be-
tween SOCs and controls. Such mRNA-ncRNA-mRNA motifs were 
defined as ncRNA’s competing endogenous gene pairs (nceGPs). We 
constructed a competing endogenous RNA (ceRNA) regulatory network 
on the basis of the immune-related and differentially expressed RNAs 
from the self-profiled cohort. We developed deiPAGE algorithm to 
screen nceGPs and constructed an SOC index for SOC detection, in which 
18 nceGPs were included and defined as circRNA’s ceGPs (cceGPs). 
Validation in two independent cohorts revealed that the SOC index was 
strongly reproducible and accurate (average AUC close to 0.99). 

A preliminary study showed that the six cohorts shared few differ-
entially expressed mRNAs (Additional File 1: Figs. S2 and S3). For the 
top 100 DEGs, specifically, only two genes were commonly identified 
across the six cohorts, indicating that the absolute gene abundance is 
incapable to consistently identify biomarkers across different platforms. 
To address this problem, we developed deiPAGE to identify the stable 
signals from various platforms taking advantage of the relative gene 
abundance. The deiPAGE we proposed in this study is a generalized 
algorithm for data integration and biomarker identification. Compared 
to iPAGE, it not only considered the relative ranking but also included 
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the effective size between two genes. The effective size Δ can reduce the 
false-positive rate that results from neglecting the variance of two genes 
in the relative expression. 

The 18 cceGPs consist of 22 genes regulated by 14 circRNAs 
(Table 3). We investigated the 14 circRNAs and found that circKRT7 
promotes ovarian cancer cell progression by the circKRT7-miR-29a-3p- 
COL1A1 axis [54] and circSLC22A3 suppresses ovarian cancer pro-
gression by the CircSLC22A3-miR-518a-5p/Fas axis [55]. CircSFMBT2 
inhibits the proliferation and metastasis of glioma cells through 
miR-182–5p/Mtss1 Pathway [56,57]. Furthermore, we seek for the 
experimental studies of the 22 genes and found that 13 genes involve in 
the regulation in ovarian cancer and three genes participate in the 
regulation of other cancers. TOP2A played a central role in the network 
as it was involved in four cceGPs (Fig. 6A). TOP2A (DNA Topoisomerase 
II Alpha) is a cancer-related gene that encodes DNA topoisomerase 
enzyme, which controls the structures of DNA during transcription. 
TOP2A promotes tumourigenesis of high-grade SOC by regulating the 
TGF-β/Smad pathway [58] and serves as the target for several anti-
cancer agents. The TOP2A expression is also a marker for the response to 
pegylated lyposomal doxorubicin (PLD) in epithelial ovarian cancer 
therapy [59,60]. In this study, TOP2A composed reserved pairs with 
LAM4, SNCA, MYO1E, CRADD, and MFAP4 in SOC, LAM4, SNCA, and 
MFAP4 among which are associated with ovarian cancer [61–63]. 
Particularly, the cceGP TOP2A:MFAP4 indicates the clinical outcomes of 
patients (Fig. 5D). All the genes and circRNAs in cceGPs TOP2A--
circKRT7-SNCA and TOP2A-circKRT7- MFAP4 have been experimental 
validated to be associated to the regulation of ovarian cancer. Moreover, 
as TOP2A, SNCA, and LAM4 were related to the regulation of ovarian 
cancer, we speculated that their competing endogenous ncRNAs circ-
COL1A3 and circSEL1L3 participated in the regulatory mechanism in 
ovarian cancer. 

Function analysis indicated that BBS4 and PRC1 in the cceGP BBS4- 
circHUNK-PRC1 were both enriched in the regulation of cell division 
(Fig. 6D). PRC1 encodes a protein that involves in mitosis and cytoki-
nesis and the overexpression of PRC1 can infer a poor prognosis in 
ovarian cancer. Wang et al. found that lncHCP5/miR-525–5p/PRC1 
crosstalk might promote malignant behaviors of ovarian cancer cells and 
the silencing of lncRNA HCP5 impeded growth and metastasis of tumour 
in mice [38]. BBS4 was differentially expressed and downregulated in 
breast cancer and it was associated with poor prognosis [40]. Collec-
tively, these findings inferred that the circHUNK in this cceGP might be 
associated with the regulation of gynecologic cancer and might be a 
potential target for anticancer drugs. 

Taking BBS4–circHUNK–PRC1 as an example to dissect the 
competing endogenous mechanism of the regulatory motif (Fig. 6I). 
After the reversed expression of PRC1 and BBS4, the mRNA of PRC1 turn 
into a high level and BBS4 into a low level in SOC. In that case, the 
mRNAs of PRC1 and BBS4 became competing endogenous with circH-
UNK, as circHUNK sponged common targeted miRNAs with PRC1 and 
BBS4, and they are positively correlated in SOC. The competing 
endogenous regulation of the circRNA might be induced by its 
competing endogenous gene expression reversal. 

The proposed SOC index reflects tumour infiltration and is inversely 
correlated with the ratio of CD8+/CD4+ T-cells, which is lower in the 
SOC patients and higher among the normal controls. A higher SOC index 
score implies lower CD8+ fraction and higher CD4+ fraction (Fig. 5E–I). 
It suggests that although CD4+ T-cells were active in SOC to help recruit 
and activate CD8+ T-cells [64], the tumour cells somehow found a way 
to shut down or deactivate CD8+ cytotoxic T-cells, which can eliminate 
tumour cells. As the ratio of CD8+/CD4+ T cells in ovarian cancer is 
used as a prognostic factor [35], the SOC index may be a potential 
prognostic indicator in cancer patients. 

The deiPAGE we proposed in this study is a generalized algorithm for 
data integration and biomarker identification. Technically, data inte-
gration is necessary for a large-scale study to obtain accurate biomarkers 
[65,66]. The primary challenge lies on integrating various cohorts, due 

to the technical variation between platforms and the batch effect from 
different experiments [67]. To address this issue, the relative expression 
of gene pairs in each sample rather than the absolute expression value of 
a single gene was taken into account. Although this might lose some 
quantitative information from the expression data, datasets from 
different resources were integrated for model training, thereby sub-
stantially increasing the sample size and improving the statistical power 
of detecting reversal gene pairs. More importantly, the reversal gene 
pairs can be easily applied to independent individuals, since they do not 
require any extra preprocessing of population samples. Notably, dei-
PAGE not only considered the relative ranking but also included the 
effective size between two genes. Neglecting the size effect difference of 
two genes for relative expression ordering results in a number of false 
positives among significant results, given that a large expression dif-
ference of two genes contributes equally to a small one. To address this, 
we used a parameter, difference threshold Δ, to reduce the rate of 
false-positive discoveries. 

Normal ovarian samples are crucial for expression profiling studies 
relying on comparisons with malignant ovarian tissues. However, tissues 
from normal donors are rare for ovarian cancer because of the invasive 
procedure. In total, only 33 normal ovarian samples for gene expression 
were publicly available among TCGA and GEO before this study. We 
profiled the expression of eight normal ovarian samples from cervical 
cancer patients not metastasised to the ovaries, offering important 
support and complements to ovarian research. In addition to the mRNA 
and lncRNA expressions, we measured genome-wide circRNAs using 
microarray, thereby providing an opportunity to investigate the regu-
latory role of non-coding RNAs in ovarian cancer. This research may also 
facilitate studies related to the mechanism and therapeutics involving 
circRNAs in ovarian cancer. 
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SOC serous ovarian carcinomas 
ceRNA competing endogenous RNA 
deiPAGE denoised individualized pair analysis of gene expression 
ceGPs competing endogenous gene pairs 
nceGPs non-coding RNA’s competing endogenous gene pairs 
cceGPs cricRNA’s ceGPs 
CA125 Cancer antige 125 
HE4 human epididymis protein 4 
FDA Food and Drug Administration 
PTAR pro-transition associated R 
SNAI2 nail family zinc finger 2 
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circRNA circular RNA 
ncRNA long non-coding RNA 
GSEA Gene Set Enrichment Analysis 
PCC Pearson correlation coefficient 
DEP differentially expressed gene pairs 
LASSO least absolute shrinkage and selection operator 
TIMER Tumour Immune Estimation Resource 
AFP bnormal alpha fetoprotein 
DEG differentially expressed genes 
KEGG Kyoto Encyclopedia of Genes and Genomes 
miRNA microRNA 
TCGA The Cancer Genome Atlas 
GEO the Gene Expression Omnibus 
DEP differentially expressed gene pair 
AUROC the area under the receiver operating characteristic 
IDH isocitrate dehydrogenase 
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