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Coral reefs form important marine ecosystems and simultaneously are at risk of deterioration due to
rapidly changing environments as a consequence of human actions. Understanding their dynamics
is thus important in order to be able to protect them from being destroyed.
In this thesis we construct a lattice model for two life-history strategies of corals, brooders and spaw-
ners. These two strategies differ mainly in their modes of sexual reproduction, but also differences
in growth and death rates as well as competitive ability are considered. We use pair approximation
to help analyse the model while keeping its spatial structure.
Numerical analysis is used to find the equilibria of the system as well as their stabilities, first for a
single strategy and then for the two-strategy system.
We find that the two strategies are able to coexist if the spawners have a higher growth rate and
higher death rate and are competitively superior to brooders. This requires some reproduction over
distance and a trade-off between growth and death rates. Thus we find that brooders are focusing
a bigger part of their energy on long-distance reproduction, while spawners are dominating over
short distances and having a higher turnover.
We also find that both mutual invasibility and coexistence in the broader sense are only possible
for low rates of sexual reproduction for both strategies. For higher rates of sexual reproduction we
find that whichever strategy invades the lattice first will stay and the other cannot invade.
Lastly we look at the effect of a change in environmental conditions, namely the acidification
and temperature increase of oceans, on the two strategies and find that it affects the two strategies
differently. The spawners are quickly driven to extinction by the change in environmental conditions,
while brooders initially benefit from the changing conditions and only start to suffer themselves
after the spawners have gone extinct.
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Chapter 1

Introduction

It is well known that coral reefs are at big risk of deterioration due to rapidly changing
environments. The main factors affecting coral reefs as a consequence of human actions
are changes in ocean temperatures and acidity, as well as habitat destruction due to
fishing, pollution, sedimentation. Changes in ocean temperatures and acidity contribute
to coral bleaching, which is the process when corals lose their symbiotic zooxanthellae
and thus eventually die. Coral reefs form important marine ecosystems, which is why
understanding their dynamics is important in order to be able to protect them from being
destroyed.

Life-history strategies are characteristics that are consistent inside one species and
affect their fitness. Traditionally they are split into two or three strategies, however in their
paper Darling et al. [1] recently found four strategies for corals. Previous mathematical
models for corals in reefs do not take these differences into account, but rather consider
all corals as just one type. The goal of this thesis is to make a realistic model for the
two most important strategies, brooders and spawners. With the help of such a model we
can understand the dynamics of coral reefs better, and can make some conclusions about
coexistence of and competition between the different strategies. Finally, we will take a
look at what happens in the model under changing environmental conditions.

As a basis for the model, we will use a model for lattice population dynamics for
plants developed by Harada and Iwasa [2]. Their model includes propagation and long-
distance seed dispersal. The model consists of an infinite lattice with one type of individual
that goes through three different kinds of transitions: death, vegetative propagation and
recruitment by seeds. For their analysis they use pair approximation. Corals have similar
dynamics to plants in that they are immobile with local growth as well as global dispersal
of offspring. Thus taking a model like the one by Harada and Iwasa [2] as a starting point
allows us to take spatial factors into consideration when it comes to both competition and
reproduction, using pair approximation methods to simplify the model while keeping the
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spatiality.
For analysis of the model, numerical analysis will be necessary, since the model for two

strategies consists of multiple differential equations each with a number of independent
parameters. For this purpose, the software Mathematica [3] will be used and the results
will also be plotted to ensure proper understanding.
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Chapter 2

Background

In this chapter we cover some of the most relevant parts of coral biology and ecology, as
well as the most important mathematical methods used in the thesis. The most important
part of coral biology for the scope of this thesis are their different modes of reproduction,
which will form the basis of the different life-history strategies modelled here.

2.1 Coral Reproduction
Corals can reproduce both asexually and sexually. Most corals reproduce asexually by
releasing a piece of the coral or a polyp either intentionally or as the consequence of stress.
It can then settle on a new surface and form a new, genetically identical colony.[4] They
also spread by propagation into their immediate surroundings.

Sexual reproduction of corals is split into broadcast spawning (from now on only
spawning) and brooding. Most coral species reproduce at least by spawning, whereas
brooding is restricted to a limited number of species [1]. Spawners release their eggs
and sperm into the water in mass spawning events that usually happen once a year.
Fertilisation then happens in the water and the embryos develop into larvae in a few
days. On the other hand, brooders reproduce during months or even around the year and
fertilisation happens either on the surface of the coral or inside it. Thus the brooders
release larvae that are immediately ready to settle.[5]

2.2 Life-History Strategies of Corals
Life-history strategies are collections of characteristics that are consistent inside one
species. They can be used to understand trade-offs between these different character-
istics.
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The simplest theory is the so called r/K selection theory that was coined by Robert
MacArthur and Edward O. Wilson [6]. This is a theory that consists of only two different
life-history strategies: the fast (r) strategy and the slow (K) strategy. This two-strategy
framework is nowadays often seen as too simple, and instead a three-strategy model is
used. A famous three-strategy framework is Grime’s model for plants that consists of
competitive, stress-tolerant and ruderal life-history strategies [7].

Darling et. al [1] used hierarchical clustering on different coral species to find four
different life-history strategies: competitive, weedy, stress-tolerant and generalist. Here
the first three strategies coincide with those of Grime’s model and generalist is a new
strategy that combines characteristics of the other three. In the categorisation found
in the paper, competitive species are fast growing, large, branching and plating species
that reproduce by spawning. The weedy species have smaller colony sizes and reproduce
by brooding (as well as by spawning).The stress-tolerant species grow slowly, reproduce
by spawning and have high fecundity. Out of the three strategies, competitive species
are the most sensitive to environmental changes while the other two can manage them
relatively well. The generalist strategy exhibited characteristics of the other three, and its
existence as a separate strategy as opposed to just a sub-strategy of one of the other three
is uncertain. Darling et al. also used random forest analysis to find out which traits were
the most important in distinguishing the life-history strategies from each other. They
found the three most important characteristics to be colony growth form, growth rate
and reproductive mode.

2.3 Lattice Models and Pair Approximation in Popu-
lation Dynamics

A lot of population dynamics models use mean-field approximations that assume the
whole population is well-mixed and ignore spatial structure. However, in many cases this
kind of an approximation is far from accurate. In the case of corals, which are immobile
for a large part of their life cycle, many interactions can only occur between immediate
neighbours.

Lattice models take space into account in the form of discrete sites that each fit a single
individual. This allows for a more realistic approach to the modelling of reproduction and
competition, which often require direct contact between individuals.

The simplest lattice model is the so called contact process, which consists of a single
type of individual on a lattice undergoing two different kinds of processes: death at a
constant rate and birth attempts at a constant rate but depending on whether the target
site is empty.

To simplify the calculations of lattice models a pair approximation is often used. Mat-
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suda et al. [8] developed the pair approximation method for lattice population models.
The pair approximation is the approximation that the probability of finding a site occu-
pied by an individual of type X next to an individual of type Y is independent of the
other neighbours of the individual of type X. This means that only interactions between
individuals right next to each other are considered for the local dynamics, any interme-
diate interactions (like triplets) are approximated to pairs. The justification for the pair
approximation is that any further neighbours will have a smaller effect than the nearest
neighbour. Mathematically speaking, the pair approximation is a form of moment closure
in space.
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Chapter 3

Building the Model

Following the different life-history strategies for corals, we build a model for two different
ones, brooders (denoted by B) and spawners (denoted by S). These correspond to the
weedy and competitive strategies of the four-strategy model of Darling et al [1], respec-
tively. This model is loosely based on the lattice model for plants by Harada and Iwasa
[2]. The model will consist of equations for the global densities pB and pS as well as
equations for pair densities ρXY for X and Y corresponding to either brooders, spawners
or empty sites. Here a global density pX refers to the probability of finding an individual
of type X at a randomly chosen site, whereas the pair density ρXY refers to the probability
of finding an individual of type X and an individual of type Y at a randomly chosen pair
of neighbouring sites. We also need the conditional probability qX/Y , which refers to the
probability of finding an individual of type X on a site given that its neighbour is of type
Y as well as the conditional probability qX/Y Z , which refers to the probability of finding
an individual of type X on a site given that its neighbour is of type Y and the neighbour
of that individual is of type Z.

3.1 Individual-Level Processes
We start by writing down the individual-level processes for the two strategies. The pro-
cesses for both are the same, only with different rates. Thus we will write down the
processes for only one of the two, the brooder strategy. The processes for the spawners
are equivalent, changing each B for an S in the first three processes. The two different
processes in competition are the same for the two different strategies. In the symbolic
equations for the processes, 0 will denote an empty site.
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death: B
dB−→ 0(3.1)

growth/propagation: (B, 0)
bB
z−→ (B,B)(3.2)

reproduction: 0
mB−−→ B(3.3)

competition: (B, S)
cS
z−→ (S, S)(3.4)

(B, S)
cB
z−−→ (B,B)(3.5)

For the parameter values, we make the following assumptions based on Darling et al. [1]
and as described in (2.2):

dS > dB

bS > bB

cS > cB

We define the parameter for competition such that cX = PXbX where PX is the
probability for X to win a conflict between two adjacent individuals of different strategies.
This is equivalent to setting cS = PbS and cB = (1 − P )bB where P is the probability
that the spawner wins this conflict.

3.2 Reproduction
The parameter mX will include all different kinds of reproduction over distance, asexual
reproduction (budding, breaking of pieces from polyps) as well as both spawning and
brooding reproduction. Both strategies are assumed to reproduce asexually with rate
β, as well as by spawning, but spawners have a higher rate of spawning than brooders
(γS > γB). Brooding on the other hand only takes place for the brooders. Brooding is
modelled in two parts, one which is similar to spawning in that it happens over distance
and refers to far-travelling sperm cells that reach the egg cells on or inside the coral (with
rate α) and one that happens due to the sperm cells of nearby individuals (with rate
ηqB/B). The growth parameter bX can also be considered a form of reproduction since
we assume that a single coral covering two sites will act in the same way as two separate
corals of the same type on neighbouring sites. The parameter bX is however not included
here in mX . We also ignore the fact that spawning is a yearly event and model it as if it
were a continuous one. This is purely a simplification choice.
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Thus mX will be as follows for brooders and spawners:

mB =
(
β + γBpB + αpB + ηqB/B

)
pB = (β + γBpB + αpB) pB + ηρBB(3.6)

mS = (β + γSpS) pS(3.7)

3.3 Global and Local Equations
Now that we have the processes for the individuals of the two strategies, we can write
down the equations for the global and pair densities. Let us start with the global densities:

dpB
dt

= −dBpB + bBq0/BpB +mBp0 + cBqS/BpB − cSqS/BpB

= −dBpB + bBq0/BpB +mB(1− pB − pS) + (cB − cS)qS/BpB
dpS
dt

= −dSpS + bSq0/SpS +mSp0 + cSqB/SpS − cBqB/SpS

= −dSpS + bSq0/SpS +mS(1− pB − pS) + (cS − cB)qB/SpS

For the pair densities we have 9 different ones: ρBB, ρ0B, ρB0, ρSB, ρBS, ρS0, ρ0S, ρSS, ρ00.
Now since these 9 densities must add up to 1, it is enough to find an expression for 8 of
them in order to have a comprehensive description of the system. We will leave out ρ00
since it does not involve any corals and is thus the least interesting one of the pair densities.
After this, we note that for any X, Y we have ρXY = ρY X , since the probability of finding
a pair XY is the same as finding a pair Y X (the order does not matter). Thus it is in
fact enough to find the expressions for 5 different pair densities: ρBB, ρ0B, ρSB, ρ0S, ρSS.

We start with the doublet density ρBB:

dρBB
dt

= −2dBρBB − 2
cS
z
(z − 1)qS/BBρBB +

cB
z
(z − 1)qB/SB(ρSB + ρBS)

+
cB
z
(ρSB + ρBS) +

bB
z
(ρ0B + ρB0) +

bB
z
(z − 1)qB/0B(ρB0 + ρ0B) +mB(ρB0 + ρ0B)

= ρBB

(
−2dB − 2

cS
z
(z − 1)qS/BB

)
+ 2ρSB

(cB
z
(z − 1)qB/SB +

cB
z

)
+ 2ρ0B

(
bB
z

+
bB
z
(z − 1)qB/0B +mB

)
The other doublet density ρSS looks similar:
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dρSS
dt

= ρSS

(
−2dS − 2

cB
z
(z − 1)qB/SS

)
+ 2ρSB

(cS
z
(z − 1)qS/BS +

cS
z

)
+ 2ρ0S

(
bS
z

+
bS
z
(z − 1)qS/0S +mS

)
Now for the cross density ρ0B:

dρ0B
dt

=

(
dρB0

dt
=

)
− dBρ0B −

bB
z
ρ0B −

bB
z
(z − 1)qB/0Bρ0B −

bS
z
(z − 1)qS/0Bρ0B

−mBρ0B −mSρ0B −
cS
z
(z − 1)qS/B0ρ0B + dBρBB + dSρSB

+
bB
z
(z − 1)qB/00ρ00 +mBρ00 +

cB
z
(z − 1)qB/S0ρ0S

And now since ρ00 = 1− ρBB − 2ρ0B − 2ρSB − 2ρ0S − ρSS we get:

dρ0B
dt

= ρ0B

(
−dB −

bB
z
− bB

z
(z − 1)qB/0B −

bS
z
(z − 1)qS/0B −mB −mS

−cS
z
(z − 1)qS/B0 − 2

bB
z
(z − 1)qB/00 − 2mB

)
+ ρBB

(
dB −

bB
z
(z − 1)qB/00 −mB

)
+ ρSB

(
dS − 2

bB
z
(z − 1)qB/00 − 2mB

)
+ ρ0S

(
cB
z
(z − 1)qB/S0 − 2

bB
z
(z − 1)qB/00 − 2mB

)
+ (1− ρSS)

(
bB
z
(z − 1)qB/00 +mB

)
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And analogously for ρ0S we get:

dρ0S
dt

=

(
dρS0
dt

=

)
ρ0S

(
−dS −

bS
z
− bS

z
(z − 1)qS/0S −

bB
z
(z − 1)qB/0S −mS

−mB −
cB
z
(z − 1)qB/S0 − 2

bS
z
(z − 1)qS/00 − 2mS

)
+ ρSS

(
dS −

bS
z
(z − 1)qS/00 −mS

)
+ ρSB

(
dB − 2

bS
z
(z − 1)qS/00 − 2mS

)
+ ρ0B

(
cS
z
(z − 1)qS/B0 − 2

bS
z
(z − 1)qS/00 − 2mS

)
+ (1− ρBB)

(
bS
z
(z − 1)qS/00 +mS

)
Finally for the last cross density, ρSB we get:

dρSB
dt

=

(
dρBS
dt

=

)
− dBρSB − dSρSB −

cS
z
ρSB −

cB
z
ρSB −

cS
z
(z − 1)qS/BSρSB

− cB
z
(z − 1)qB/SBρSB +

bB
z
(z − 1)qB/0Sρ0S +

bS
z
(z − 1)qS/0Bρ0B

+mBρ0S +mSρ0B +
cB
z
(z − 1)qB/SSρSS +

cS
z
(z − 1)qS/BBρBB

= ρSB

(
−dB − dS −

cS
z
− cB

z
− cS

z
(z − 1)qS/BS −

cB
z
(z − 1)qB/SB

)
+ ρ0S

(
bB
z
(z − 1)qB/0S +mB

)
+ ρ0B

(
bS
z
(z − 1)qS/0B +mS

)
+
cB
z
(z − 1)qB/SSρSS +

cS
z
(z − 1)qS/BBρBB

3.4 Pair Approximation
Now that we have the expressions for the pair densities, we can do a pair approximation.
This means that we approximate any triplet probability qX/Y Z (for any X, Y, Z) with
qX/Y .[8] Doing this can be justified by a decrease in the effect on individuals that are not
direct neighbours.

With the pair approximation, we get the following expressions for the pair densities:
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dρBB
dt

= ρBB

(
−2dB − 2

cS
z
(z − 1)qS/B

)
+ 2ρSB

(cB
z
(z − 1)qB/S +

cB
z

)
+ 2ρ0B

(
bB
z

+
bB
z
(z − 1)qB/0 +mB

)
dρSS
dt

= ρSS

(
−2dS − 2

cB
z
(z − 1)qB/S

)
+ 2ρSB

(cS
z
(z − 1)qS/B +

cS
z

)
+ 2ρ0S

(
bS
z

+
bS
z
(z − 1)qS/0 +mS

)
dρ0B
dt

=
dρB0

dt
= ρ0B

(
−dB −

bB
z
− bB

z
(z − 1)qB/0 −

bS
z
(z − 1)qS/0

−3mB −mS −
cS
z
(z − 1)qS/B − 2

bB
z
(z − 1)qB/0

)
+ ρBB

(
dB −

bB
z
(z − 1)qB/0 −mB

)
+ ρSB

(
dS − 2

bB
z
(z − 1)qB/0 − 2mB

)
+ ρ0S

(
cB
z
(z − 1)qB/S − 2

bB
z
(z − 1)qB/0 − 2mB

)
+ (1− ρSS)

(
bB
z
(z − 1)qB/0 +mB

)
dρ0S
dt

=
dρS0
dt

= ρ0S

(
−dS −

bS
z
− bS

z
(z − 1)qS/0 −

bB
z
(z − 1)qB/0

−3mS −mB −
cB
z
(z − 1)qB/S − 2

bS
z
(z − 1)qS/0

)
+ ρSS

(
dS −

bS
z
(z − 1)qS/0 −mS

)
+ ρSB

(
dB − 2

bS
z
(z − 1)qS/0 − 2mS

)
+ ρ0B

(
cS
z
(z − 1)qS/B − 2

bS
z
(z − 1)qS/0 − 2mS

)
+ (1− ρBB)

(
bS
z
(z − 1)qS/0 +mS

)
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dρSB
dt

=
dρBS
dt

= ρSB

(
−dB − dS −

cS
z
− cB

z
− cS

z
(z − 1)qS/B −

cB
z
(z − 1)qB/S

)
+ ρ0S

(
bB
z
(z − 1)qB/0 +mB

)
+ ρ0B

(
bS
z
(z − 1)qS/0 +mS

)
+
cB
z
(z − 1)qB/SρSS +

cS
z
(z − 1)qS/BρBB

Now that we have the expressions for the global and pair densities, we only need to express
all the conditional probabilities qX/Y in terms of densities to have a closed system. This
goes according to the formula qX/Y = ρXY

pY
(from the formula for conditional probability,

where qX/Y is the conditional probability of X given Y , ρXY is the probability of the
intersection of X and Y and pY is the probability of Y ).

3.5 System of Differential equations
Here we collect the system of differential equations built in chapters (3.3) and (3.4) with
the conditional probabilities expressed in terms of densities and with slight other rear-
rangements in order to make the equations easier to understand. We also substitute
the expressions for each mX built in chapter (3.2). We have altogether seven different
equations, two for global densities and 5 for pair densities.

dpB
dt

= −dBpB + bBρ0B + ((β + γBpB + αpB) pB + ηρBB) (1− pB − pS) + (cB − cS)ρSB

(3.8)

dpS
dt

= −dSpS + bSρ0S + (β + γSpS) pS(1− pB − pS) + (cS − cB)ρSB

(3.9)

dρBB
dt

= −2ρBB
(
dB +

cS
z
(z − 1)

ρSB
pB

)
+ 2ρSB

(
cB
z
(z − 1)

ρSB
pS

+
cB
z

)(3.10)

+ 2ρ0B

(
bB
z

+
bB
z
(z − 1)

ρ0B
1− pS − pB

+ (β + γBpB + αpB) pB + ηρBB

)
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dρSS
dt

= −2ρSS
(
dS +

cB
z
(z − 1)

ρSB
pS

)
+ 2ρSB

(
cS
z
(z − 1)

ρSB
pB

+
cS
z

)(3.11)

+ 2ρ0S

(
bS
z

+
bS
z
(z − 1)

ρ0S
1− pS − pB

+ (β + γSpS) pS

)

dρ0B
dt

=
dρB0

dt
= −ρ0B

(
dB +

bB
z

+ 3
bB
z
(z − 1)

ρ0B
1− pS − pB

+
bS
z
(z − 1)

ρ0S
1− pS − pB

(3.12)

+3 ((β + γBpB + αpB) pB + ηρBB) + (β + γSpS) pS +
cS
z
(z − 1)

ρSB
pB

)
+ ρBB

(
dB −

bB
z
(z − 1)

ρ0B
1− pS − pB

− ((β + γBpB + αpB) pB + ηρBB)

)
+ ρSB

(
dS − 2

bB
z
(z − 1)

ρ0B
1− pS − pB

− 2 ((β + γBpB + αpB) pB + ηρBB)

)
+ ρ0S

(
cB
z
(z − 1)

ρSB
pS
− 2

bB
z
(z − 1)

ρ0B
1− pS − pB

− 2 ((β + γBpB + αpB) pB + ηρBB)

)
+ (1− ρSS)

(
bB
z
(z − 1)

ρ0B
1− pS − pB

+ (β + γBpB + αpB) pB + ηρBB

)

dρ0S
dt

=
dρS0
dt

= −ρ0S
(
dS +

bS
z

+ 3
bS
z
(z − 1)

ρ0S
1− pS − pB

+
bB
z
(z − 1)

ρ0B
1− pS − pB

(3.13)

+3 (β + γSpS) pS + (β + γBpB + αpB) pB + ηρBB +
cB
z
(z − 1)

ρSB
pS

)
+ ρSS

(
dS −

bS
z
(z − 1)

ρ0S
1− pS − pB

− (β + γSpS) pS

)
+ ρSB

(
dB − 2

bS
z
(z − 1)

ρ0S
1− pS − pB

− 2 (β + γSpS) pS

)
+ ρ0B

(
cS
z
(z − 1)

ρSB
pB
− 2

bS
z
(z − 1)

ρ0S
1− pS − pB

− 2 (β + γSpS) pS

)
+ (1− ρBB)

(
bS
z
(z − 1)

ρ0S
1− pS − pB

+ (β + γSpS) pS

)
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dρSB
dt

=
dρBS
dt

= −ρSB
(
dB + dS +

cS
z

+
cB
z

+
cS
z
(z − 1)

ρSB
pB

+
cB
z
(z − 1)

ρSB
pS

)(3.14)

+ ρ0S

(
bB
z
(z − 1)

ρ0B
1− pS − pB

+ (β + γBpB + αpB) pB + ηρBB

)
+ ρ0B

(
bS
z
(z − 1)

ρ0S
1− pS − pB

+ (β + γSpS) pS

)
+
cB
z
(z − 1)

ρSB
pS

ρSS +
cS
z
(z − 1)

ρSB
pB

ρBB

3.6 One Strategy Model
We will start by analysing the model for just one strategy. Here is the system of differential
equations for just one strategy, brooders, as simplified from the system in (3.5). We are
doing this analysis for brooders since the system for spawners can easily be constructed
from this one by setting α = 0 and η = 0.

dpB
dt

= −dBpB + bBρ0B + ((β + γBpB + αpB) pB + ηρBB) (1− pB)

(3.15)

dρBB
dt

= −2ρBBdB + 2ρ0B

(
bB
z

+
bB
z
(z − 1)

ρ0B
1− pB

+ (β + γBpB + αpB) pB + ηρBB

)(3.16)

dρ0B
dt

=
dρB0

dt
= −ρ0B

(
dB +

bB
z

+ 3
bB
z
(z − 1)

ρ0B
1− pB

+ 3 ((β + γBpB + αpB) pB + ηρBB)

)(3.17)

+ ρBB

(
dB −

bB
z
(z − 1)

ρ0B
1− pB

− (β + γBpB + αpB) pB − ηρBB
)

+

(
bB
z
(z − 1)

ρ0B
1− pB

+ (β + γBpB + αpB) pB + ηρBB

)
In fact we can now rewrite (3.15) and (3.16) again in terms of only pB and ρBB. This

is possible since we have that pB = ρBB + ρ0B.
Thus we get the model:
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dpB
dt

= −dBpB + bB (pB − ρBB) + ((β + γBpB + αpB) pB + ηρBB) (1− pB)

dρBB
dt

= −2ρBBdB + 2 (pB − ρBB)
(
bB
z

+
bB
z
(z − 1)

pB − ρBB
1− pB

+ (β + γBpB + αpB) pB + ηρBB

)
We choose to work with z = 4 from now on since we have a 2D lattice. This now gives

the model:

dpB
dt

= −dBpB + bB (pB − ρBB) + ((β + γBpB + αpB) pB + ηρBB) (1− pB)

(3.18)

dρBB
dt

= −2ρBBdB + 2 (pB − ρBB)
(
bB
4

+
3bB
4

pB − ρBB
1− pB

+ (β + γBpB + αpB) pB + ηρBB

)

17



Chapter 4

Model Analysis

4.1 Equilibrium of One Strategy Model
Solving the model (3.18) for the equilibrium dpB

dt
= 0 and dρBB

dt
= 0 we get the equation

for ρBB:

ρBB =
−bBpB − βBpB + dBpB − αp2B + βBp

2
B − γBp2B + αBp

3
B + γBp

3
B

−bB + η − ηpB
(4.1)

Which then gives the following equation for pB (after dividing by pB in order to get
rid of the trivial solution pB = 0):

(
α2bB + 2αbBγB + bBγ

2
B

)
p5B

(4.2)

+
(
−2α2bB + 2αbBβ + 3αbBη − 4αbBγB + 2bBβγB + 3bBηγB − 2bBγ

2
B

)
p4B

+
(
α2bB + αb2B − 4αbBβ + bBβ

2 + 2αbBdB − 7αbBη + 3bBβη − 4αdBη + 2bBη
2 − 4dBη

2

+2αbBγB + b2BγB − 4bBβγB + 2bBdBγB − 7bBηγB − 4dBηγB + bBγ
2
B

)
p3B

+
(
−2αb2B + 2αbBβ + b2Bβ − 2bBβ

2 − 6αbBdB + 2bBβdB + 5αbBη + b2Bη − 7bBβη + 8αdBη

−5bBdBη − 4βdBη − 5bBη
2 + 8dBη

2 − 2b2BγB + 2bBβγB − 6bBdBγB + 5bBηγB + 8dBηγB
)
p2B

+
(
αb2B − 2b2Bβ + bBβ

2 + 4αbBdB − 3b2BdB − 6bBβdB + bBd
2
B − αbBη − 2b2Bη + 5bBβη − 4αdBη

+8bBdBη + 8βdBη − 4d2Bη + 4bBη
2 − 4dBη

2 + b2BγB + 4bBdBγB − bBηγB − 4dBηγB
)
pB

+ b2Bβ + 3b2BdB + 4bBβdB − 4bBd
2
B + b2Bη − bBβη − 3bBdBη − 4βdBη + 4d2Bη − bBη2 = 0

Equations (4.1) and (4.2) can now be adapted to get the equivalent equations for
spawners by changing each bB for bS, dB for dS, γB for γS and pB for pS and setting
α, η = 0. Thus for spawners the equations would be:
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ρSS =
−bSpS − βSpS + dSpS + βSp

2
S − γSp2S + γSp

3
S

−bS
(4.3)

γ2Sp
5
S + (2βγS − 2γ2S)p

4
S + (−4βγS + 2γSdS + γ2S + β2 + bSγS)p

3
S(4.4)

+ (−6γSdS − 2β2 + 2βdS + 2βγS − 2bγS + βbS)p
2
S

+ (β2 − 6βdS + d2S + 4γSdS − 2βbS + bSγS − 3bSdS)pS

+ (3bSdS − 4d2S + βbS + 4βdS) = 0

4.2 One Strategy Model Without Sexual Reproduction
We start by looking at equation (4.4) when γS = 0, in other words when there is no sexual
reproduction present. It is worth noting that this equation is the same for brooders if
there is no sexual reproduction (i.e. when γB = α = η = 0). This gives the cubic (the
subscripts have been dropped for clarity):

β2p3 + (−2β2 + 2βd+ βb)p2 + (β2 − 6βd+ d2 − 2βb− 3bd)p

+ (3bd− 4d2 + βb+ 4βd) = 0

Now we divide by d2 and set b∗ = b
d
and β∗ = β

d
in order to decrease the number of

free parameters to get:

β∗2p3 + (−2β∗2 + 2β∗ + β∗b∗)p2 + (β∗2 − 6β∗ + 1− 2β∗b∗ − 3b∗)p(4.5)
+ (3b∗ − 4 + β∗b∗ + 4β∗) = 0

Which only depends on 2 parameters, b∗ and β∗. Similarly for ρ we get (from (4.3)):

ρ =
−b∗p− β∗p+ p+ β∗p2

−b∗
(4.6)

Now we can find the equilibrium values in terms of these 2 parameters, b∗ and β∗.

4.2.1 Stability of Extinct Equilibrium

We start by looking at the stability of the extinct equilibrium, (p, ρ) = (0, 0). In this case
we have the Jacobian:
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J(0, 0) =

[
−1 + b∗ + β∗ −b∗

b∗

2
−2− b∗

2

]
Which has Det J = 2− 3b∗

2
− 2β∗ − β∗b∗

2
and Tr J = −3 + b∗

2
+ β∗.

Now, we need to find a condition for b∗ and β∗ such that the extinct equilibrium is
unstable (and thus we have a positive, stable equilibrium). More specifically, the extinct
equilibrium needs to be a saddle. This is due to the fact that for small values of b∗ and
β∗ the extinct equilibrium is a stable node, and with an increase in these parameters,
the positive equilibrium needs to come into the positive region through a transcritical
bifurcation, leaving the extinct equilibrium a saddle. Additionally it can be said that the
extinct equilibrium could not be a focus since it would imply negative values of p, which
is impossible.

Thus we get that for the extinct equilibrium to be a saddle and for us to have a stable
positive equilibrium, we need Det J < 0, i.e.:

2− 3b∗

2
− 2β∗ − β∗b∗

2
< 0

Which gives:

4 < 3b∗ + 4β∗ + β∗b∗

This means that in order to find a positive, stable equilibrium, we need to find b∗ and
β∗ such that they fulfil the condition above. In the extreme case b∗ = 0, we thus need
β∗ > 1 and if β∗ = 0 we need b∗ > 4

3
.

4.2.2 Finding Positive Equilibria

To find the positive equilibria of (4.5) in terms of b∗ and β∗ we use Mathematica [3]. This
gives the equilibrium values for p ∈ [0, 1] as seen in the contourplot (4.1).

It can be seen that there is a curve below which we get no positive equilibrium solutions
for p ∈ (0, 1]. In this region we do get one positive, unstable equilibrium, however it
is greater than 1 and thus biologically meaningless. This curve is β∗ = 4−3b∗

4+b∗
, which

corresponds to the condition for instability of the extinct equilibrium found in (4.2.1) and
thus to the transcritical bifurcation line. Below this line the extinct equilibrium is stable.

We can also calculate the equilibrium values for ρ based on the equilibrium values for
p using equation (4.6). These can be seen in figure (4.2).
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Figure 4.1: Contourplot of the equilibrium value of p for different b∗ and β∗

Figure 4.2: Contourplot of the equilibrium value of ρ for different b∗ and β∗
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4.2.3 Stability Analysis

Next we check the stability of the positive equilibria calculated in section (4.2.2). In this
case (with no sexual reproduction) the Jacobian is:

J(p, ρ) =

[
−1 + b∗ + β∗ − 2β∗p −b∗

b∗

2
+ 3b∗

2
p−ρ
1−p

(
1 + 1−ρ

1−p

)
+ 4β∗p− 2β∗ρ −2− b∗

2
− 3b∗ p−ρ

1−p − 2β∗p

]

By inserting each pair of values p, ρ calculated for specific b∗ and β∗ (as well as the b∗
and β∗ themselves) we can calculate the determinant and trace for each equilibrium value
found in (4.2.2).

By doing so we see that for all the pairs of p, ρ ∈ (0, 1], Det J > 0 and Tr J < 0 and
thus the positive equilibria are stable. This can be seen in figures (4.3) and (4.4).

Figure 4.3: Contourplot of the values of the determinant of the Jacobian for different b∗
and β∗
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Figure 4.4: Contourplot of the values of the trace of the Jacobian for different b∗ and β∗

4.3 One Strategy Model Under Introduction of Sexual
Reproduction

Next we will take a look at the one strategy model with sexual reproduction. We start with
equation (4.4) similarly to the analysis in section (4.2), but now instead of setting γS = 0,
we set β = 0. By doing this we should be able to find how much sexual reproduction is
needed to add a positive, stable equilibrium to the region where we have a stable extinct
equilibrium.

The equation we get from equation (4.4) is thus (leaving out the subscripts once again):

γ2p5 − 2γ2p4 + (2γd+ γ2 + bγ)p3 + (−6γd− 2bγ)p2

+ (d2 + 4γd+ bγ − 3bd)p+ (3bd− 4d2) = 0

And by dividing by d2 and setting b∗ = b
d
and γ∗ = γ

d
, we get:

γ∗2p5 − 2γ∗2p4 + (2γ∗ + γ∗2 + b∗γ∗)p3 + (−6γ∗ − 2b∗γ∗)p2(4.7)
+ (1 + 4γ∗ + b∗γ∗ − 3b∗)p+ (3b∗ − 4) = 0

Similarly for ρ from equation (4.3) we get:
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ρ =
−b∗p+ p− γ∗p2 + γ∗p3

−b∗

Now for the extinct equilibrium (p, ρ) = (0, 0) we have the Jacobian:

J(0, 0) =

[
−1 + b∗ −b∗

b∗

2
−2− b∗

2

]
With Det J = 2 − 3b∗

2
and Tr J = −3 + b∗

2
. The stability of the extinct equilibrium now

depends only on b∗, so we get that the extinct equilibrium is stable if b∗ < 4
3
and unstable

if b∗ > 4
3
, corresponding to where the determinant changes sign and thus the transcritical

bifurcation, similar to what we found in (4.2.1). If b∗ > 4
3
we thus get a positive, stable

equilibrium.
When b∗ = 4

3
, the presence of a positive equilibrium depends on the value of γ∗. The

equation in this case becomes:

γ∗2p5 − 2γ∗2p4 + (γ∗2 +
10

3
γ∗)p3 − 26

3
γ∗p2 + (

16

3
γ∗ − 3)p = 0

Now we can look at the derivative near p = 0 to see in which direction the graph
f(p) = γ∗2p5− 2γ∗2p4+(γ∗2+ 10

3
γ∗)p3− 26

3
γ∗p2+(16

3
γ∗− 3)p goes. We see that the graph

f(p) has value f(1) = γ∗2 − 2γ∗2 + γ∗2 + 10
3
γ∗ − 26

3
γ∗ + 16

3
γ∗ − 3 = −3 for all values of

γ∗. Now, if the derivative df(p)
dp

at p = 0 is negative and df(p)
dp
≤ 0 for all p ∈ [0, 1], the

graph will necessarily have negative values for all p ∈ [0, 1], whereas if it is positive, the
graph will cross the x-axis between 0 and 1 and the equation thus must have a positive
equilibrium. The derivative is:

df(p)

dp
=

(
5γ∗2p4 − 8γ∗2p3 + (3γ∗2 + 10γ∗)p2 − 52

3
γ∗p+ (

16

3
γ∗ − 3)

)
Which has value 16

3
γ∗ − 3 at p = 0.

Figure (4.5) shows the values of the derivative df(p)
dp

for γ∗ ∈ [0, 9
16
] and p ∈ [0, 1],

showing that the derivative takes negative values for all of these values of γ∗ and p. Thus
for γ ≤ 9

16
we do not get a positive equilibrium.

However, for 16
3
γ∗ − 3 > 0, i.e. γ∗ > 9

16
, we get a positive value for the derivative at

p = 0 and thus we must have a positive equilibrium value for p ∈ (0, 1]. Thus we have
that the lower limit for γ∗ for a positive equilibrium when b∗ = 4

3
is γ∗ > 9

16
.

The interesting case to study is now the part where the extinct equilibrium is stable,
so when b∗ < 4

3
, because the introduction of sexual reproduction can introduce a second
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Figure 4.5: Value of derivative df(p)
dp

for γ∗ ∈ [0, 9
16
] and p ∈ [0, 1].

stable, positive equilibrium in the range [0, 1] through a fold bifurcation. For each b∗ value
we have a γ∗ value above which two new, positive equilibria are introduced. The b∗ and
γ∗ value pairs at which these new equilibria are created form the fold bifurcation line. We
know that at this bifurcation line, both the value of equation (4.7) and its derivative must
be 0, so we can use these conditions to find the γ∗ value at the bifurcation line for each
specific value of b∗. We do this by first solving at b∗ = 0 and then using continuation of
equilibria (using FindRoot function in Mathematica [3] with a small step size and using
the previous result as the initial estimate for the next one) to continue the line. Figure
(4.6) shows the fold bifurcation line and the transcritical bifurcation at b∗ = 4

3
. These

bifurcation lines divide the positive parameter space into 3 regions.
Now the Jacobian with sexual reproduction included (and β = 0, η = 0) is:

J(p, ρ) =

[
−1 + b∗ + 2γ∗p− 3γ∗p2 −b∗

b∗

2
+ 2γ∗p2 + 3b∗(p−ρ)

1−p + 4γ∗p(p− ρ) + 3b∗

2
(p−ρ)2
(1−p)2 −2−

b∗

2
− 2γ∗p2 − 3b∗(p−ρ)

1−p

]

Thus we can characterise the regions in figure (4.6) according to number of equilibria
and their stability. We only consider equilibria in p ∈ [0, 1]. In the region below the fold
bifurcation line we have no equilibria in (0, 1] and the extinct equilibrium is stable. Above
it we have 2 positive equilibria (0, 1] with the larger of these being stable and the lower
one unstable (a saddle), and the extinct equilibrium being stable. To the right of the
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Figure 4.6: Fold and transcritical bifurcation lines. The fold bifurcation line is only plotted
until the transcritical bifurcation line because past it, the fold bifurcation happens outside
p ∈ [0, 1].

transcritical bifurcation line the extinct equilibrium is unstable and there is one positive,
stable equilibrium in (0, 1]. As was stated earlier, at b∗ = 4

3
we have a positive equilibrium

in the (0, 1] range if and only if γ∗ > 9
16
, corresponding to the point where the fold and

transcritical bifurcation lines meet.

4.3.1 Model For Different η Values

Now, taking a look at the model for brooders instead of spawners, we have the fifth order
equation (4.2). Here we can look at (γB+α) together as an equivalent to γS for spawners.
We can rewrite (4.2) as (removing all subscripts):

b(γ + α)2p5 +
(
2bβ(γ + α)− 2b(γ + α)2 + 3bη(γ + α)

)
p4

+
(
b2(γ + α) + b(γ + α)2 + 2bd(γ + α)− 4bβ(γ + α) + bβ2 − 7bη(γ + α)− 4dη(γ + α)

+3bβη + 2bη2 − 4dη2
)
p3 +

(
−2b2(γ + α) + 2bβ(γ + α)− 6bd(γ + α) + 5bη(γ + α)

+8dη(γ + α) + b2β − 2bβ2 + 2bdβ + b2η − 7bβη − 5bdη − 4dβη − 5bη2 + 8dη2
)
p2

+
(
b2(γ + α)− 2b2β + bβ2 + 4bd(γ + α)− 3b2d− 6bβd+ bd2 − bη(γ + α)− 2b2η

+5bβη − 4dη(γ + α) + 8bdη + 8βdη − 4d2η + 4bη2 − 4dη2
)
p

+ b2β + 3b2d+ 4bβd− 4bd2 + b2η − bβη − 3bdη − 4βdη + 4d2η − bη2 = 0

Which, if we set η = 0 and α = 0 gives us back the model for spawners, as found in
equation (4.4).
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Now we can repeat the analysis done in (4.3), but for some different values of η. Let
us start by setting β = 0 and dividing by d3 and setting b∗ = b

d
, γ∗ = γ

d
, α∗ = α

d
, η∗ = η

d
.

We get:

b∗(γ∗ + α∗)2p5 +
(
−2b∗(γ∗ + α∗)2 + 3b∗η∗(γ∗ + α∗)

)
p4 +

(
b∗2(γ∗ + α∗) + b∗(γ∗ + α∗)2

+2b∗(γ∗ + α∗)− 7b∗η∗(γ∗ + α∗)− 4η∗(γ∗ + α∗) + 2b∗η∗2 − 4η∗2
)
p3

+
(
−2b∗2(γ∗ + α∗)− 6b∗(γ∗ + α∗) + 5b∗η∗(γ∗ + α∗) + 8η∗(γ∗ + α∗) + b∗2η∗

−5b∗η∗ − 5b∗η∗2 + 8η∗2
)
p2 +

(
b∗2(γ∗ + α∗) + 4b∗(γ∗ + α∗)− 3b∗2 + b∗ − b∗η∗(γ∗ + α∗)

−2b∗2η∗ − 4η∗(γ∗ + α∗) + 8b∗η∗ − 4η∗ + 4b∗η∗2 − 4η∗2
)
p

+ 3b∗2 − 4b∗ + b∗2η∗ − 3b∗η∗ + 4η∗ − b∗η∗2 = 0

In this case we have for the extinct equilibrium:

J(0, 0) =

[
−1 + b∗ −b∗ + η∗

b∗

2
−2− b∗

2

]
And so we get Det J = 2− 3b∗

2
− b∗η∗

2
, which means that for the extinct equilibrium to

be unstable, we need 2− 3b∗

2
− b∗η∗

2
< 0, i.e. b∗ > 4

3+η∗
.

Figures (4.7), (4.8), (4.9) and (4.10) show the bifurcation lines for four different values
of η∗: 0.1, 0.2, 0.5 and 1.0, respectively. These lines divide the positive parameter space
into three regions similarly to the case with η∗ = 0, as was explained in section (4.3).
Comparing the case with η∗ = 0 and these 4 cases of different values of η∗, it becomes
clear that an increase in η∗ moves the transcritical bifurcation line to the left, in other
words for higher η∗, a lower b∗ is needed to destabilise the extinct equilibrium. We also
notice that an increase in η∗ lowers the fold bifurcation line, so that for higher η∗, a lower
γ∗ + α∗ is needed to create a stable, positive equilibrium in the region where the extinct
equilibrium is stable.
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Figure 4.7: Fold and transcritical bifurcation lines for η∗ = 0.1. The fold bifurcation line
is only plotted until the transcritical bifurcation line because past it, the fold bifurcation
happens outside p ∈ [0, 1].

Figure 4.8: Fold and transcritical bifurcation lines for η∗ = 0.2. The fold bifurcation line
is only plotted until the transcritical bifurcation line because past it, the fold bifurcation
happens outside p ∈ [0, 1].
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Figure 4.9: Fold and transcritical bifurcation lines for η∗ = 0.5. The fold bifurcation line
is only plotted until the transcritical bifurcation line because past it, the fold bifurcation
happens outside p ∈ [0, 1].

Figure 4.10: Fold and transcritical bifurcation lines for η∗ = 1.0. The fold bifurcation line
is only plotted until the transcritical bifurcation line because past it, the fold bifurcation
happens outside p ∈ [0, 1].

4.3.2 Stability analysis

We calculated the determinant and trace of the Jacobian at each of the 3 equilibria in the
{b∗, (γ∗ + α∗)} parameter space for the different values of η∗ to check their stability. The
Jacobian is:
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J(p, ρ) =

[
−1 + b∗ + (γ∗ + α∗)(2− 3p)p− η∗ρ −b∗ + η∗(1− p)

b∗

2
+ (γ∗ + α∗)(6p− 4ρ)p+

3b∗(p−ρ)
1−p + 3b∗

2
(p−ρ)2
(1−p)2 + η∗ρ −2− b∗

2
− 2(γ∗ + α∗)p2 − 3b∗(p−ρ)

1−p + 2η∗(p− 4ρ)

]

It became clear that only the middle equilibrium is both biologically admissible and
stable, for all the values of η∗ (0, 0.1, 0.2, 0.5 and 1.0). This is consistent with what we
know about the bifurcation lines. At values to the left of the transcritical bifurcation line
the extinct equilibrium is stable, and thus above the fold bifurcation line we get one saddle
and one stable equilibrium, which must be the higher of the two, alongside the already
existing unstable equilibrium (which is not biologically admissible). At the transcritical
bifurcation the saddle goes through the extinct equilibrium and exchanges stability with
it, leaving the extinct equilibrium unstable but not affecting the other positive equilibria.

Figures (4.11) and (4.12) show the determinant and trace of the middle equilibrium
for η = 0.1 as an example. From these it can be seen that the determinant is always
positive wherever this equilibrium exists and the trace is always negative, giving that the
equilibrium is always stable. Figures (4.13) and (4.14) also show the p and ρ values of the
middle equilibrium for η∗ = 0.1 for comparison.

Figure 4.11: Contourplot of the value of the determinant of the Jacobian for the middle
equilibrium for η∗ = 0.1. In the blue region this equilibrium does not exist. The vertical
black lines are plotting artefacts and do not carry any meaning.
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Figure 4.12: Contourplot of the value of the trace of the Jacobian for the middle equilib-
rium for η∗ = 0.1. In the yellow region this equilibrium does not exist. The vertical black
lines are plotting artefacts and do not carry any meaning.

Figure 4.13: Contourplot of the p value for the middle equilibrium for η∗ = 0.1. In the
blue region this equilibrium does not exist. The vertical black lines are plotting artefacts
and do not carry any meaning.
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Figure 4.14: Contourplot of the ρ value for the middle equilibrium for η∗ = 0.1. In the
blue region this equilibrium does not exist. The vertical black lines are plotting artefacts
and do not carry any meaning.

4.4 Invasion Analysis
Now that we have characterised the one-strategy model, we will do an invasion analysis
to find out conditions for coexistence of the two strategies.

Let us start with spawners as the resident population, at equilibrium (as found in
section (3.6)). We then want to find under which conditions brooders can invade this
population, starting from a small population with pB close to 0. We have the differential
equation for pB:

dpB
dt

=
(
−dB + bBq0/B +

(
β + γBpB + αpB + ηqB/B

)
(1− p̂S − pB) + (cB − cS)qS/B

)
pB

We can see that when pB is close to 0, it grows very slowly. However, we want to find
such conditions that it grows, even if slowly. This is equivalent to:

lim
pB→0

(
−dB + bBq0/B +

(
β + γBpB + αpB + ηqB/B

)
(1− p̂S − pB) + (cB − cS)qS/B

)
= −dB + bBq0/B +

(
β + ηqB/B

)
(1− p̂S) + (cB − cS)qS/B > 0

32



So now we need to find the differential equations for the conditional probabilities
qB/B, q0/B and qS/B and find their quasi-equilibria when pB = 0. However since they are
conditional probabilities: q0/B + qB/B + qS/B = 1. Thus we can express q0/B in terms of
the other two to get:

−dB + bB
(
1− qS/B − qB/B

)
+
(
β + ηqB/B

)
(1− p̂S) + (cB − cS)qS/B > 0(4.8)

To find the conditional probabilities, it is worth remembering that qX/Y = ρXY
pY

and

that by the chain rule dqX/Y
dt

= d
dt

(
ρXY
pY

)
= 1

pY

dρXY
dt
− qX/Y

pY

dpY
dt

for any X, Y . Thus we get:

dqB/B
dt

= −2qB/B
(
dB +

3cS
4
qS/B

)
+ 2qS/B

(
3cB
4
qS/B

pB
p̂S

+
cB
4

)
+ 2q0/B

(
bB
4

+
3bB
4
q0/B

pB
1− p̂S − pB

+ (β + γBpB + αpB) pB + ηqB/BpB

)
+ dBqB/B − bBq0/BqB/B −

(
β + γBpB + αpB + ηqB/B

)
(1− p̂S − pB)qB/B

− (cB − cS)qS/BqB/B

Giving:

lim
pB→0

dqB/B
dt

= qB/B

(
−dB −

3cS
2
qS/B

)
+ qS/B

cB
2

+
(
1− qS/B − qB/B

)(bB
2
− bBqB/B

)
−
(
β + ηqB/B

)
(1− p̂S)qB/B

− (cB − cS)qS/BqB/B

Now we also need to find the differential equation for qS/B:

dqS/B
dt

= −qS/B
(
dB + dS +

cS
4

+
cB
4

+
3cS
4
qS/B +

3cB
4
qS/B

pB
p̂S

)
+ ρ̂0S

(
3bB
4

q0/B
1− p̂S − pB

+ β + γBpB + αpB + ηqB/B

)
+ q0/B

(
3bS
4

ρ̂0S
1− p̂S − pB

+ (β + γS p̂S) p̂S

)
+

3cB
4

qS/B
p̂S

ρ̂SS +
3cS
4
qS/BqB/B + dBqS/B − bBq0/BqS/B

−
(
β + γBpB + αpB + ηqB/B

)
(1− p̂S − pB)qS/B − (cB − cS)q2S/B
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Which gives:

lim
pB→0

dqS/B
dt

= −qS/B
(
dS +

cS
4

+
cB
4

+
3cS
4
qS/B

)
+ ρ̂0S

(
3bB
4

1− qS/B − qB/B
1− p̂S

+ β + ηqB/B

)
+
(
1− qS/B − qB/B

)(3bS
4

ρ̂0S
1− p̂S

+ (β + γS p̂S) p̂S

)
+

3cB
4

qS/B
p̂S

ρ̂SS +
3cS
4
qS/BqB/B − bBqS/B

(
1− qS/B − qB/B

)
−
(
β + ηqB/B

)
(1− p̂S)qS/B − (cB − cS)q2S/B

So now we can find the quasi-equilibria of qB/B and qS/B by setting limpB→0
dqB/B
dt

=

0 and limpB→0
dqS/B
dt

= 0. This is easily done due to the fact that the expression for
limpB→0

dqS/B
dt

is linear in qB/B. The general expressions for the conditional probabilities
however are long and will not be presented here. By substituting these expressions for the
conditional probabilities qB/B and qS/B into the equation for the growth of brooders from
pB near 0 found before, we can now calculate whether brooders can invade the spawners
for specific values of parameters (invasion is possible if the growth expression is positive,
i.e. if inequality (4.8) holds).

Similarly, we can look at invasion of spawners when brooders are the resident popula-
tion. Following similar reasoning as before, we need that:

lim
pS→0

(
−dS + bSq0/S + (β + γSpS) (1− p̂B − pS) + (cS − cB)qB/S

)
(4.9)

= −dS + bS(1− qB/S − qS/S) + β(1− p̂B) + (cS − cB)qB/S > 0(4.10)

So again, we need to find the quasi-equilibria of qS/S and qB/S. We get:

lim
pS→0

dqS/S
dt

= qS/S

(
−dS −

3cB
2
qB/S

)
+ qB/S

cS
2

+ (1− qB/S − qS/S)
(
bS
2
− bSqS/S

)
− β(1− p̂B)qS/S − (cS − cB)qB/SqS/S = 0
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lim
pS→0

dqB/S
dt

= −qB/S
(
dB +

cS
4

+
cB
4

+
3cB
4
qB/S

)
+ (1− qB/S − qS/S)

(
3bB
4

ρ̂0B
1− p̂B

+ (β + γB p̂B + αp̂B) p̂B + ηρ̂BB

)
+ ρ̂0B

(
3bS
4

1− qB/S − qS/S
1− p̂B

+ β

)
+

3cB
4
qB/SqS/S +

3cS
4

qB/S
p̂B

ρ̂BB

− bS(1− qB/S − qS/S)qB/S − β(1− p̂B)qB/S − (cS − cB)q2B/S = 0

So now by inserting the conditional probabilities into the equation for the growth of
spawners from pS near 0, we can calculate whether spawners can invade for specific values
of parameters (invasion is possible when inequality (4.9) holds).

By finding the parameter values for which brooders can invade spawners and vice
versa, we can now find the region in the parameter space where mutual invasibility is
possible.

4.4.1 Mutual Invasibility Without Sexual Reproduction

We start by looking at mutual invasibility when no sexual reproduction is present, i.e.
when γS, γB, α and η are all 0. In this case, the differential equations for brooders and
spawners are the same, so for coexistence to be possible we will need a trade-off in the
parameters. Looking at the assumptions made in (3.1) about the parameter values as
well as based on the life-history strategies found in Darling et al [1], it seems logical to
start from a trade-off between death rate and growth and competition. Thus we define
dX = abX where a is a constant between 0 and 1. We also remember that cS = PbS and
cB = (1− P )bB where P is the probability that the spawner wins this conflict. Since we
want the spawners to be better competitors, we only look for P > 0.5.

Now we can look at different combinations of a and P values and screen for combina-
tions that give mutual invasibility in the region that fulfils the conditions:

dS > dB

bS > bB

cS > cB

Which, since all of these rates for one strategy are now proportional to each other, is
the same as looking at just the region where bS > bB. It is worth remembering that we
only look for P > 0.5, which guarantees the third condition if bS > bB.
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We looked at a number of combinations of a and P values for β = 0.0, 0.1, 0.2 and 0.5
and were able to find mutual invasibility. For β = 0.0, no mutual invasibility could be
found. Table (4.1) shows the combinations of a and P that give mutual invasibility when
β = 0.1. For β = 0.2 the table looked the same, for β = 0.5 no mutual invasibility was
found for a = 0.8.

From this it becomes clear that at least some reproduction over distance (in this case
in the form of budding and breaking of pieces, β) is needed for mutual invasibility. This
is due to the fact that without this form reproduction, the normal birth/growth rate b
cannot make up for the death rate d for higher values of a, whereas for lower values of a,
invasion is not possible due to the resident taking over most of the lattice. We also see
that in general, a relatively high value of a, a ≥ 0.8, is needed for mutual invasibility in
the region we are looking at, bS > bB.

P
β = 0.1 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

a

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 X X X X X X X X X X
0.9 X X X X X X X X X X
1.0 X X X X X X X X X X

Table 4.1: Combinations of parameters a and P that give mutual invasibility such that
bS > bB (represented by X in the table), for β = 0.1.

Figure (4.15) shows the area of mutual invasibility for an example set of parameters,
β = 0.1, a = 0.8 and P = 0.8. These were chosen out of the ones that give mutual
invasibility due to the fact that they are somewhat intermediate values and because they
give a clear region of mutual invasibility in the (bS, bB)-plane.
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Figure 4.15: Region of mutual invasibility (yellow) for different bS and bB values when
β = 0.1, a = 0.8 and P = 0.8, and no sexual reproduction is present.
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4.4.2 Mutual Invasibility and Coexistence Under the Addition of
Sexual Reproduction

Next we take a point in the region of mutual invasibility in the parameter space and add
sexual reproduction, to see how this affects coexistence.

We start with the same parameter values as in figure (4.15) and choose the values
bS = 0.80 and bB = 0.35 due to their location inside the region of mutual invasibility.

First we take a look at the mutual invasibility for different γS and γB + α values. We
do not consider different values of η for this analysis, but set η = 0. Figure (4.16) shows
that mutual invasibility is only possible for small rates of sexual reproduction. This is
due to the fact that sexual reproduction only becomes significant at higher population
densities, a phenomenon known as the Allee effect. More specifically, this is because
sexual reproduction depends on the square of the population density (since two parents
are needed), and if the population density is already near 0, its square becomes negligible.
In practice this means that sexual reproduction only helps the resident strategy and not
the invader, which is why at high rates of sexual reproduction for the resident the resident
is able to reproduce very effectively and it does not make a difference how high sexual
reproduction for the invader is, invasion will not be possible.

Next we see if coexistence can be extended to higher rates of sexual reproduction
where mutual invasibility is not possible. This could be possible due to the Allee effect,
since sexual reproduction does not help the invader, but can keep a strategy from going
to extinction when it is already present in the population.

We do this by setting first γB + α to a few specific values and finding all positive
equilibria for different values of γS and then the other way around. Lastly we look at a
case where γB + α and γS change proportionally to each other.

Firstly, by setting γB + α = 0 and finding all equilibrium values for different values
of γS, we find that in this case no positive equilibria exist outside the region of mutual
invasibility, i.e. for γS > 0.0327. Figure (4.17) shows the equilibrium values of pB, showing
clearly that at γS = 0.0327 the equilibrium undergoes a transcritical bifurcation and the
boundary equilibrium with pB = 0 becomes stabilised.

Doing the same with γS = 0 and finding the equilibria for different values of γB + α
shows the same thing, with no positive equilibria existing outside the region of mutual
invasibility and the boundary equilibrium, in this case pS = 0, becoming stabilised at
γB + α = 0.0393 through a transcritical bifurcation.

Next, we set γB + α to some different values below 0.0393, i.e. in the range that
allows for mutual invasibility. We find that for γB +α in the range [0.0273, 0.0393[ we get
coexistence outside the region of mutual invasibility. Figure (4.18) shows the equilibrium
values of pB for different γS values in one such case, for γB = 0.0360. Here we can see
that we still get a transcritical bifurcation at γS = 0.0327, only in this case it is due
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Figure 4.16: Region of mutual invasibility (yellow) for different γS and γB+α values when
β = 0.1, a = 0.8 and P = 0.8, and bS = 0.80 and bB = 0.35

.

Figure 4.17: Positive equilibrium values of pB for different values of γS when γB + α = 0
and β = 0.1, a = 0.8, P = 0.8, bS = 0.80 and bB = 0.35

.
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to an equilibrium that comes into the positive region through the boundary equilibrium
at pB = 0, stabilising the boundary equilbrium and creating a saddle. Thus there is a
range of γS values outside the region of mutual invasibility where we have one unstable
positive equilibrium and one stable positive one, until these two come together in a fold
bifurcation.

Figure 4.18: Positive equilibrium values of pB for different values of γS when γB + α =
0.0360 and β = 0.1, a = 0.8, P = 0.8, bS = 0.80 and bB = 0.35

.

We also looked at some set values of γS between 0 and 0.0327 with varying values of
γB + α, but were not able to find any extensions of the region of coexistence outside the
region of mutual invasibility.

Lastly, we set γS = γB + α and find all the positive equilibria for different values of
these, as can be seen in figure (4.19) for pB. This corresponds to looking at the diagonal
line in the {γS, γB}-parameter space. This diagonal line passes through the area in the
parameter space that has simultaneously an unstable and a stable positive equilibrium,
as was found before, and this can also be seen in figure (4.20) which shows a closeup
of this range in γS = γB + α. It can be seen that an equilibrium enters the positive
region through a transcritical bifurcation, stabilising the boundary equilibrium pB = 0
and creating a saddle. The positive stable equilibrium then exits the positive region
through the other boundary equilibrium pS = 0, stabilising this boundary equilibrium
and only leaving the saddle. Thus in the region where both γS and γB+α are large, both
boundary equilibria are stable and there is a priority effect where the strategy that is
first present on the lattice will reach a stable positive equilibrium and the other strategy
cannot invade.
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Figure 4.19: Positive equilibrium values of pB for different values of γS = γB + α when
β = 0.1, a = 0.8, P = 0.8, bS = 0.80 and bB = 0.35

.

Figure 4.20: Closeup of region with two positive equilibrium values of pB for different
values of γS = γB + α when β = 0.1, a = 0.8, P = 0.8, bS = 0.80 and bB = 0.35

.
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4.5 Modelling of Environmental Impacts on Corals
Darling et al. [1] hypothesised that human and environmental impacts such as fishing,
pollution, sedimentation, ocean acidification and temperature increase would have a dis-
proportionately large effect on the competitive species of corals (in our case the spawners)
and possibly lead to their replacement by corals exhibiting other strategies (such as brood-
ers).

We choose to take a look at ocean acidification and temperature increase, which affect
the entire coral population equally. The most straight-forward way to model this is by an
increased death rate.

So, we start again from the same point in the region of coexistence as in the previous
chapters, where β = 0.1, bS = 0.80, bB = 0.35 and P = 0.8, a = 0.8, and no sexual
reproduction is present. Now we keep the rest of the parameters the same, but increase
a to increase the death rate (remember that dX = abX and we are keeping the growth
rate bX constant) and do a continuation of equilibria. Figure (4.21) shows what happens
to the global densities of brooders and spawners when the death rate increase. We see
that spawners quickly go extinct, with an increase in a from 0.800 to only 0.814, whereas
brooders increase in density until this point and then start to decline with any further
increases to a.

Figure 4.21: Global densities pB and pS for an increase in death rate. The other parameters
are β = 0.1, P = 0.8, bS = 0.80, bB = 0.35, γS = 0, γB + α = 0 and η = 0.

Since dX = abX , an increase in a affects the death rate of the spawners more strongly
than the brooders, due to the difference in their growth rates. The brooders in fact first
benefit from the changing conditions due to the spawners going to extinction, and only
then with further increases in the death rate start to suffer themselves. This is consistent
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with the hypothesis made by Darling et al. [1] about the effects of environmental changes
on the different strategies.
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Chapter 5

Discussion

In this thesis we developed a pair approximation lattice model for two different life history
strategies of corals on a coral reef. The main focus was on the two different reproductive
strategies, brooding and spawning, since these make up the most important component
in differentiating strategies from each other.

We started by analysing the model for one strategy only. We found that asexual
reproduction rates b and β over the the death rate d (i.e. the viability) when no sexual
reproduction is present must fulfill condition 4 < 3 b

d
+4β

d
+ β

d
b
d
in order for a stable positive

equilibrium to be present (section (4.2.1)). Then we looked at how sexual reproduction
can extend this stable positive equilibrium into the region where before there was no
stable positive equilibrium (section (4.3)). We found that there is always a rate of sexual
reproduction that can create a positive stable equilibrium, even for the extreme case where
no asexual reproduction is present. However, due to the Allee effect, sexual reproduction
only becomes substantial at higher population densities, which means that even if we have
a stable positive equilibrium, there is no invasion. This means that a large perturbation
due to for example an environmental catastrophe could lead to extinction.

From the invasion analysis in section (4.4) it became clear that the two strategies can
coexist under certain conditions which fit the biological assumptions based on Darling et
al. [1]. These assumptions were that spawners have a higher growth rate, a higher death
rate and are better competitors than brooders. From our invasion analysis, we found
that some reproduction over distance is needed for coexistence, as is a strong trade-off
between growth and death rates. A skew in the competition is also necessary. With these
conditions, we find a stable equilibrium where brooders have a significantly lower growth
and thus death rate than spawners, which have the competitive advantage. Brooders are
thus focusing a bigger part of their energy on long-distance reproduction, while spawners
are dominating over short distances and having a higher turnover.

In section (4.4.2) we looked at the effect of sexual reproduction on invasibility and
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coexistence. We found that mutual invasibility is possible only for low rates of sexual
reproduction for both strategies. This is explained by the fact that effectively only the
resident population is performing sexual reproduction and thus a high rate of sexual re-
production for the resident will give it an advantage, whereas increasing the rate of sexual
reproduction for the invader has practically no effect. We also looked at whether coexis-
tence could be extended to where no mutual invasibility was possible. We found there was
a small region where coexistence was possible outside the region of mutual invasibility,
however it was only a very small extension. For higher rates of sexual reproduction no
stable positive equilibrium was found, only the boundary equilibria are stable and thus
whichever strategy gets established first will stay and the other cannot invade.

Due to the differences in their strategies mentioned above, we also found that a change
in the environmental conditions, namely the acidification and temperature increase of
oceans, affects the two strategies differently (section (4.5)). Since spawners have a higher
growth rate and a higher death rate, the increase in death rate caused by the changing
conditions affects them negatively and quickly leads to extinction, with brooders being
much more resistant to the changing conditions. We found that the brooders in fact first
benefit from the changing conditions due to the spawners going extinct, and only with
further changes start to suffer themselves. This result is similar to the result found by
Nee and May in their paper on habitat destruction [9]. They looked at the Levins-Culver
model and found that habitat destruction leads to a decrease in patches occupied by the
superior competitor but an increase in patches occupied by the inferior one, even if the
total number of patches is decreasing. The patches occupied by the inferior competitor
only start to decrease once the superior competitor has gone extinct. This is similar to the
original increase in the density of brooders that we observe in this model. In his model
for habitat destruction in a coral reef ecosystem, Stone [10] also found a similar result
looking at a system of multiple coral species arranged in a competitive hierarchy.

5.1 Limitations and Future Improvements
There are many ways in which this model could be extended and improved. The most
obvious one would be extending the model to include the other two life history strategies
as per Darling et al. [1], the stress-tolerant and generalist strategies. However, as the
model is already complex with many equations and parameters, even adding one more
strategy would make the model computationally heavy and perhaps impossible to analyse.

In the two strategy framework, one improvement that could be made would be to
model spawning as a yearly event. In the current model it is modelled as a continuous
one, but this is not biologically realistic. This could be improved by modelling all the
other processes continuously, as in the current model, but making spawning a discrete
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event where the release of egg and sperm cells and the settling down of the newly formed
corals all happens instantaneously. Modelling the temporal aspects of the two different
reproductive strategies would allow us to truly understand their differences and reactions
to changes to the environment.

The differences in the sexual reproduction between brooders and spawners could also
be analysed in more detail. This model included the parameter η to model brooding
between neighbours, but this parameter was set to 0 for most of the analysis performed in
order to simplify it. The next step would be to look at mutual invasibility and coexistence
as well as the effect of environmental changes for some different values of η.

We modelled the effect of environmental changes in the shape of changing ocean tem-
peratures and acidity, but habitat destruction also affects corals. Fishing, pollution and
sedimentation affect the corals by destroying the reef, sometimes even permanently. This
could be modelled by reducing the number of available sites in the model, like was done
by Stone [10] in his model. This sort of habitat destruction would affect large patches of
the reef at once, which would effectively mean decreasing the survival rates of globally
dispersed offspring, since the offspring landing on destroyed sites could not survive. Lo-
cally it would only affect the corals on the edges of the destroyed patches, which could be
ignored if the areas destroyed are only few, large areas as assumed, since the number of
sites on the edges would then be negligible on the infinite lattice.

In the future, the parameters in the model could be fixed based on real data about
birth, growth and death rates from coral species. The whole model could also be compared
to real density data from reefs where coral species corresponding to the different life history
strategies are known to coexist. Thus we could confirm the model’s accuracy not only
qualitatively as has been done now, but also quantitatively. The model as it is serves as
a good starting point for such future work.
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