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ARTICLE

Ecological networks of dissolved organic matter
and microorganisms under global change
Ang Hu1,2, Mira Choi3, Andrew J. Tanentzap 4, Jinfu Liu1,5, Kyoung-Soon Jang 3, Jay T. Lennon 6,

Yongqin Liu7,8, Janne Soininen9, Xiancai Lu10, Yunlin Zhang1, Ji Shen11 & Jianjun Wang 1,12✉

Microbes regulate the composition and turnover of organic matter. Here we developed a

framework called Energy-Diversity-Trait integrative Analysis to quantify how dissolved

organic matter and microbes interact along global change drivers of temperature and nutrient

enrichment. Negative and positive interactions suggest decomposition and production pro-

cesses of organic matter, respectively. We applied this framework to manipulative field

experiments on mountainsides in subarctic and subtropical climates. In both climates,

negative interactions of bipartite networks were more specialized than positive interactions,

showing fewer interactions between chemical molecules and bacterial taxa. Nutrient

enrichment promoted specialization of positive interactions, but decreased specialization of

negative interactions, indicating that organic matter was more vulnerable to decomposition

by a greater range of bacteria, particularly at warmer temperatures in the subtropical climate.

These two global change drivers influenced specialization of negative interactions most

strongly via molecular traits, while molecular traits and bacterial diversity similarly affected

specialization of positive interactions.
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D issolved organic matter (DOM) is one of the largest pools
of carbon in aquatic ecosystems1 and its fate is intimately
linked with the metabolism of complex microbial

communities2. Microbial consortia moderate the diversity of
molecules in DOM by degrading larger molecules into smaller
molecules and by synthesizing more refractory compounds from
labile substrates3,4. Together, these metabolic processes lead to
the emergence of molecular traits (Box 1), such as molecular
weight, chemical structure, stoichiometry, oxidation state, and
bioavailability5–7, all of which have consequences for the fate and
persistence of DOM8,9. Because it serves as an energy and carbon
source for metabolism, DOM also influences the diversity,
structure, and function of microbial communities10–12. The
resulting associations between DOM and microbes can now be
characterised in both aquatic13–15 and terrestrial16 ecosystems
owing to recent advances in ultrahigh-resolution mass spectro-
metry and high-throughput sequencing. Ultrahigh-resolution
mass spectrometry specifically identifies individual molecular
formulae within DOM pools. This approach provides more
information on the diversity and traits of DOM than available
bulk measurements, like those based on absorbance and fluor-
escence spectroscopy, which are generally lacking in resolution.
Despite these technological developments, challenges remain
about how DOM-microbe associations can be quantified in nat-
ure, and are interactively and independently affected by global
environmental change through human-induced perturbations
leading to elevated temperatures and nutrient enrichment.

The effects of global change on DOM-microbe associations can
be viewed through three proximal drivers (Fig. 1). First, energy
supply, such as primary productivity, represents the major input of
DOM that fuels microbial metabolism17,18. Elevated temperature
and nutrient inputs often stimulate primary productivity in ways
that influence the composition and availability of organic
matter19,20. For instance, microbial decomposition of DOM can be
limited by substrate and nutrient availability that provide sufficient
energy and material for synthesis of requisite extracellular and
transport enzymes21,22. Second, DOM-microbe associations are
affected by diversity. For example, an increase in the diversity of
DOM can promote microbial diversity, and vice versa14. Such
patterns may arise because resource diversity promotes microbial
specialization during biochemical transformations by creating

more unique resource niches for consumers to partition23,24.
Likewise, higher microbial diversity can provide more metabolic
pathways (but not always elevated activity) to decompose and
produce molecules, which can influence the vulnerability of DOM
to degradation3. Third, DOM-microbe associations depend on the
molecular traits of DOM, such as its bioavailability, measured by
chemical proxies such as H/C ratios of individual molecules25, as
well as life-history traits of microbes (e.g., r-selected copiotrophs
versus K-selected oligotrophs26 or resource generalists versus
resource specialists24).

To examine how DOM-microbe associations vary under global
change because of the three aforementioned proximal drivers, we
developed a framework called Energy-Diversity-Trait integrative
Analysis (EDTiA) (Fig. 1). The first step of EDTiA involves the
construction of bipartite networks27 to quantify the degree of
specialization between organic molecules and microbial taxa
(Box 1). In the DOM-microbe networks, individual DOM
molecules are only connected to microbial taxa that use that
specific molecule, while the direct interactions within molecules
or taxa are not explicitly considered. The second step of EDTiA
involves the investigation of ecological networks using an inter-
action specialization metric, H2′, which is derived from Shannon
index28 (Box 1). By taking resource-consumer relationships
among a collection of samples into account, an elevated H2′
means that there is a high degree of specialization between DOM
and microbes28, where in the extreme example, one bacterial
taxon consumes or produces a single DOM molecule. By contrast,
lower H2′ values reflect a more generalized bipartite network
where different DOM molecules can be used by a large number of
bacterial taxa. The third step of EDTiA provides a statistical-
based means for assessing the relative importance of global
change on the specialization of DOM-microbe associations via
the three proximal drivers (Fig. 2).

In this study, we developed and used the EDTiA framework to
evaluate how DOM-microbe associations were independently and
jointly influenced by temperature and nutrient enrichment
(Figs. 1, 2) in a manipulative field experiment on two moun-
tainsides, a subtropical one in China and a subarctic one in
Norway29. This approach involved creating microcosms with
consistent initial DOM composition but different locally colo-
nised microbial communities and newly produced endogenous

Box 1 | Glossary of terms for merging organic geochemistry and ecology

Molecular composition: The chemical composition of dissolved organic matter (DOM) that is a complex mixture of reduced carbon compounds bound to
heteroatoms such as oxygen, nitrogen, phosphorus, and sulphur. The composition is characterised by the identity and intensity of molecular formulae in
a sample.
Molecular trait: The structural features of an individual DOM molecule deduced from molecular formula that can be assigned precisely from ultrahigh
resolution mass spectrometry. These molecular-level traits include molecular weight, stoichiometry, chemical structure, oxidation state and
bioavailability (e.g., lability and recalcitrance), and can be upscaled to an entire sample (i.e., compositional-level) with weighted means.
DOM compound classes: The groupings of DOM molecules that are categorised based on molecular traits such as H/C and O/C ratios: lipids, proteins,
amino sugars, carbohydrates, unsaturated hydrocarbons, lignin, tannin, and condensed aromatics.
DOM-microbe associations: The relationships between DOM and microbes at multiple levels, including the compositional-level and species/molecular-
level. Compositional-level associations involve correlations of alpha or beta diversity between DOM and microbes. Species/molecular-level associations
refer to interactions between individual DOM molecules and microbial taxa, which can be upscaled to an interaction network by network properties,
such as the measures of specialization.
DOM-microbe bipartite network: The interaction network between DOM and microbes, where individual organic molecules are only connected to
microbial taxa that may consume or produce that specific molecule, while the direct interactions within molecules or taxa are not explicitly
considered27. The network is a species/molecular-level means to quantify DOM-microbe associations and consists of either positive or negative
interaction networks that are inferred by the positive and negative coefficients of correlation analyses such as SparCC35.
DOM-microbe specialization: A network property describing how much DOM molecules and microbial taxa interact with each other in a bipartite
ecological network, that is the levels of “vulnerability” of DOM molecules and “generality” of microbial taxa. Specialization could be quantified by the
standardised Shannon index H2′28 that considers the interaction frequency and strength between the two network parties. Elevated H2′ values indicate a
high degree of specialization, while lower values suggest increased generalization, that is, higher vulnerability of DOM and/or higher generality of
microbes (Fig. 1a).
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DOM. Such field experiments along natural climate gradients can
disentangle temperature effects on DOM-microbe associations
from nutrient enrichment, unlike in natural ecosystems where
these drivers are typically confounded. The framework explicitly
quantifies the relative importance of the direct effects of tempera-
ture and nutrient enrichment and the indirect effects via the
proximal drivers of energy, diversity, and traits. Briefly, we selected
five different elevations on each mountainside, and at each eleva-
tion, we established 30 microcosms composed of natural lake
sediments and artificial lake water with ten different nutrient levels.
The nutrient levels were selected based on conditions of Taihu
Lake, a large eutrophic shallow lake in China with an area of
2338 km2. The sediments originated from Taihu Lake and were
added to each microcosm after sterilisation to ensure identical
initial DOM supply and composition. Microcosms were incubated
in the field for one month allowing airborne bacteria to colonise,
and sediment bacteria were examined using high-throughput
sequencing of 16S rRNA genes29. In addition, we applied ultrahigh-
resolution electrospray ionization Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR MS) to examine sediment
DOM features, such as the diversity of molecular formulas (here-
after chemodiversity) and molecular traits (Table S1).

With this experiment, we address three main questions: (1) at a
compositional-level, how does DOM molecular composition and
its association with microbial biodiversity vary along temperature
and nutrient gradients?, (2) at a molecular-level, how does the
degree of specialization between DOM and microbes estimated

from interaction networks vary along temperature and nutrient
gradients? and (3) how is DOM-microbe specialization inter-
actively and independently influenced by temperature and
nutrient enrichment via the three proximal drivers of energy,
diversity, and traits? We then discuss how the effects of these
drivers could be used to predict the spatiotemporal changes in
specialization elsewhere under different temperature and nutrient
scenarios. We focus on Taihu Lake as case study given its
socioeconomic and cultural importance with over 60 million
people living in the Taihu Basin, and because it is where our
experimental sediments and nutrient reference conditions origi-
nated from. Together, our study advances biogeochemical mod-
elling and improves predictions about both carbon turnover and
resource-based feedbacks on microbial diversity.

Results and discussion
DOM features and their microbial associations at a
compositional-level. The diversity and molecular traits of DOM
were strongly controlled by nutrient enrichment, and to a lesser
by temperature (that is, elevation), on both subtropical and
subarctic mountainsides (Figs. S1, S2). Nutrient enrichment
generally increased alpha diversity (i.e., molecular richness) of
DOM across all elevations when all molecular formulae were
considered (Figs. 3a, S3). We identified abrupt changes in
molecular composition along the nutrient gradient that mostly
occurred between 1.80 and 4.05 mg N L−1 for all molecules at

a b

Fig. 1 A framework for studying the effects of global change on DOM-microbe associations. a DOM-microbe associations are affected by the three
proximal drivers, namely energy supply and both the diversity and traits of DOM and microbes. The relationships among the three drivers and their
influences on the associations are shown with single-sided arrows. The DOM-microbe associations, indicated by double-sided arrows, are measured by
bipartite interactions between DOM molecules (circles C1–Ci) and microbial taxa (circles M1–Mj). The size of circles indicates the abundance of DOM
molecules or microbial species, and the width of arrows is the magnitude of associations. Commonly used indices summarise the specialization of
individual molecule i and microbial species j, which describes the levels of “vulnerability” of DOM molecules and “generality” of microbial species.
b Conceptual framework for understanding DOM-microbe associations under distal drivers such as global change via the three proximal drivers. For better
3D visualization, the sizes of triangles decrease towards the top-right, and the colour changes towards different corners of the triangles represent
variations in the relative importance of different proximal drivers under a global change scenario. The background depicts the primary motivation of this
study in examining distal drivers of climate change and eutrophication in Taihu Lake, China. The left and right waters indicate clean and cyanobacteria-
dominated lake states, respectively, and are separated by a road having the shapes of western lakeshore and northern Zhushan and Meiliang Bays of Taihu
Lake. We established field microcosms on mountainsides by adding sediments collected from the lake centre, and designed nutrient levels and N/P ratio
based on nutrient conditions of this lake29.
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each elevation using both gradient forest analysis30 (Fig. 3a) and
piecewise regression31 (Fig. S4). The effects of nutrient enrich-
ment on molecular traits, however, varied between the two
ecoregions (Figs. 3a, S3, S5). For instance, the weighted mean of
the H/C ratio in each microcosm decreased with nutrient addi-
tion to <1.5, especially at high elevations in China, indicating less
bioavailable DOM (Figs. 3a, S3c). The ratio remained consistently
higher (≥1.5) across all nutrient levels in Norway (Figs. 3a, S3c).
Given that the initial DOM composition in our study was iden-
tical everywhere, this finding suggests that the contrasting
responses reflect differences in the temperature sensitivity of
decomposition and/or nutrient-limited production of DOM by
colonising microbes. This inability to resolve the mechanisms
underlying these patterns further highlights the need for the
EDTiA framework. EDTiA can help disentangle underlying dri-
vers by explicitly quantifying the direct and indirect effects of
temperature and nutrient enrichment on the associations between

DOM and microbes via intermediate environmental variables
such as energy, diversity and traits (Fig. 1).

DOM composition was strongly associated with bacterial
communities in both regions, and was mediated by temperature
and nutrient enrichment. For instance, although environment
(temperature and nutrients) and energy supply had dominant
effects on DOM composition, their shared effects with biodi-
versity (2.7–13.1% of explained variation) indicated that these
variables also indirectly influenced the associations between
DOM and bacteria (Fig. S6). These DOM-bacteria associations
were also supported by the fact that DOM composition was
significantly predicted from bacterial community with Procrustes
analysis32,33 (M2= 0.701, P ≤ 0.001; Fig. 3b), while their associa-
tions varied with temperature and nutrient enrichment. For
example, compositional differences, indicated by the residuals of
Procrustes analysis, significantly (P ≤ 0.05) decreased for all
compound classes or elemental combinations at colder
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temperatures in China (Fig. S7). In Norway, the differences were
always lower, on average, and did not vary with temperature (Fig.
S7). Nutrient enrichment influenced the correlations between the
number (“alpha diversity”) of DOM molecules and bacterial
operational taxonomic units (OTUs) in each microcosm, or
between the similarity in composition (“beta diversity”) of DOM
and bacterial communities for all pairwise combinations of
microcosms within a region (Fig. 3c). These results were
consistent for individual compound classes or elemental combi-
nations (Fig. 3c). Interestingly, the coordinated compositional
changes in DOM and bacteria, measured by the Mantel
correlation34 between their beta diversities among pairwise
microcosms, increased more strongly with nutrient enrichment
in Norway than in China, especially at low nutrient levels beneath
1.80 mg N L−1 (Figs. 3c, S8).

Ecological networks between DOM and bacteria at a
molecular-level. To quantify the associations between DOM and
bacteria further from a molecular-level perspective, we first cor-
related the relative abundance of each DOM molecule and bac-
terial taxa. According to resource-consumer relationships, the
negative network interactions inferred by negative correlations
likely indicate the degradation of larger molecules into smaller
structures, while the positive interactions may relate to the pro-
duction of new molecules via degradation or biosynthetic pro-
cesses. We found that the distribution of negative and positive
Spearman correlations between DOM molecules and bacterial
OTUs depended strongly on molecular traits. For example,
molecules that were more labile, such as those with H/C ≥ 1.5,
were more likely to have negative correlation coefficients (ρ) with
individual OTUs (P ≤ 0.05). In contrast, molecules that were
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F-statistics. For better visualization, we did not include the data points in Fig. 3a but showed detailed scatter plots and statistics in Fig. S3. To visualise the
DOM compositional changes, we plotted the distribution of breakpoints of each molecule regarding its abundance occurring along the nutrient gradient
with gradient forest analysis30. b The congruence between DOM and bacterial compositions across different elevations in China and Norway was
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DOM-bacteria associations. The associations were quantified by the Pearson correlation coefficient r between alpha diversity of DOM and bacteria (upper
panel), and by the Mantel correlation r between the beta diversity of DOM and bacteria (lower panel). We then visualised correlation r values with loess
regression models along the nutrient gradient, and these correlations at each nutrient level are shown in Fig. S8. The colours of the lines indicate the DOM
composition for all formulae and categories of compound classes or elemental combinations.
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more recalcitrant (H/C < 1.5) generally showed more positive
correlations (P ≤ 0.05), especially in Norway (Fig. S9). These
findings were even more clearly supported by the differences
between the mean of the positive and negative ρ values for each
molecule (Figs. 4a, S10). Correlations with individual OTUs were
predominantly negative for molecules within a H/C of 1.5–2.0

and O/C of 0.4–1.0, suggesting they are largely the reactants of
degradation processes, while ρ differences peaked with mainly
positive values at a H/C of 1.0–1.5 and O/C of 0–0.5 indicative of
in situ production (Fig. 4a).

Subsequently, we quantified DOM-bacteria interactions along
temperature and nutrient gradients using the EDTiA framework.
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bipartite networks in China (upper panel) or Norway (lower panel). Between all pairs of DOM molecules, we calculated pairwise Gower distances of their
molecular traits (that is, distance of traits), or the SparCC ρ of molecules with bacterial OTUs (that is, distance of SparCC ρ). Statistical significance
between these two distance matrices was determined with a two-sided Mantel test with 999 permutations and indicated by solid (P≤ 0.05) or dotted
(P > 0.05) lines. We considered all formulae (c) and also subsets of formulae within the category of compound classes or elemental combinations (d). For
all formulae (c), we calculated SparCC correlation coefficients based on both bacterial OTUs (grey lines) and genera (black lines).
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We built bipartite networks of negative and positive interactions
between DOM and bacteria at the genus level using Sparse
Correlations for Compositional data (SparCC)35. SparCC can
infer interaction strength by statistical correlations with a high
degree of accuracy for sparse matrices, i.e. where there are many
0’s35. In total, there were 6916 and 8409 interactions for negative
and positive networks (|SparCC ρ | ≥ 0.3), respectively, in China,
and 1313 and 2888 negative and positive interactions, respec-
tively, in Norway (Fig. 4b). The weighted mean of the percentage
of SparCC ρ values that were strongly negative (P ≤ 0.05)
increased towards high nutrient levels almost exclusively in
China (Fig. S11). The weighted mean of negative SparCC ρ also
increased with nutrient enrichment in China (Fig. S11) and these
results together suggest that nutrient enrichment increased both
the number and strength of negative interactions.

We found that the negative and positive interactions strongly
depended on molecular traits, which was further supported by
three observations of bipartite networks. First, the negative and
positive interactions were associated with different molecule
groups, as categorised by a hierarchical cluster analysis of 16
molecular traits (Figs. 4b, S12). This cluster analysis identified
two groups of molecules (clusters 4 and 5) that were largely
recalcitrant with a H/C of <1.5, while two separate groups
(clusters 1 and 3) mostly included labile molecules with a H/C of
≥1.5 (Fig. S12). In China, negative interactions were dominant
between the molecules in clusters 4 or 5 and the bacteria in phyla
Proteobacteria, Bacteroidetes, or Firmicutes, while the positive
interactions were mostly linked to the molecule clusters 1 and 3
(Fig. 4b). In Norway, the molecule cluster 4 was mainly negatively
linked to Firmicutes and positively linked to α- and β-
Proteobacteria (Fig. 4b). Second, molecules generally covaried
more similarly with bacteria as they were more similar in their
traits. This was indicated by the positive linear slopes between the
pairwise differences in both the traits of DOM molecules and
their interaction strength measured by SparCC ρ values (Mantel
test, P ≤ 0.001 in each region; Fig. 4c). For example, had DOM
molecules more similar H/C or O/C values, they correlated more
similarly with bacterial taxa. Third, molecular traits were more
strongly correlated with the strength of DOM-bacteria interac-
tions in the negative than positive interaction networks for all
molecules (Fig. 4c), which was also true for most of the networks
when considering compound classes or elemental combinations
(Fig. 4d). These correlations, consistent at both the genus and
OTU levels (Fig. 4c), indicate that molecular traits may be better
at predicting the decomposition than production of DOM.

Finally, we calculated the degree of specialization between
DOM and bacteria in the entire negative and positive interaction
networks using the H2′ index28. We also calculated specialization
d′ indices for individual DOM molecules and bacterial genera28.
Elevated H2′ or d′ values indicate a high degree of specialization,
while lower values suggest increased generalization. That is,
highly specialized DOM or bacteria, in the extreme example,
mean that a single DOM molecule is used by one bacterial taxon,
whereas highly generalized DOM or bacteria mean that different
DOM molecules can be used by a large number of bacterial taxa
(Fig. 1a). We found that as the negative networks between DOM
and bacteria became more specialized (i.e., higher H2′ values),
they corresponded with more specialized DOM molecules (i.e.,
higher weighted mean d′; Fig. S13). More specialized decomposi-
tion processes can therefore reduce the vulnerability of DOM to
degradation as they will require highly specialized consumers. For
positive networks, H2′ values showed consistent patterns along
nutrient enrichment gradients with those of d′ for both DOM and
bacteria (Fig. S13). This result indicates that increased specializa-
tion in production processes was related to the decreased
vulnerability of DOM and the decreased generality of microbes,

and thus the potentially decreased DOM production. These
results collectively suggest that in addition to the specialization
perspective of bacteria or DOM, H2′ can summarise resource-
consumer relationships at an ecosystem-level. In both regions,
H2′ was higher, on average, in negative than positive interaction
networks (t-test, t= 2.11, P= 0.04 in China and t= 23.57,
P ≤ 0.001 in Norway; Figs. 5a, S14), indicating greater specializa-
tion in the decomposition than production processes of microbes.
The mean specialization H2′ of negative (t-test, t=−10.19,
P ≤ 0.001) and positive (t-test, t=−6.56, P ≤ 0.001) networks
were also significantly higher in Norway than in China (Fig. 5a),
suggesting more specialized decomposition (i.e., negative net-
works) and thus potentially lower vulnerability of DOM
decomposition to bacteria in subarctic regions.

Nutrient enrichment showed divergent effects on the H2′ of
negative or positive interaction networks between the two study
regions. Specifically, nutrient enrichment substantially decreased
the H2′ of negative networks for all molecules in China (Fig. 5a),
which was particularly true when considering only recalcitrant
components, such as lignin and CHNO (Fig. S15). Compared to
Norway, nutrient enrichment increased the H2′ of positive
interactions relatively more at lower elevations in China (Fig. 5a).
Nutrient enrichment in the subtropical region could thus
contribute to the greater recalcitrance of DOM by increased
decomposition (i.e., less specialized negative networks) and
reduced production of molecules (i.e., more specialized positive
networks).

Drivers of DOM-bacteria interaction networks. We explored
the effects of distal and proximal drivers on negative and positive
DOM-bacteria networks using the EDTiA framework (Fig. 1).
The distal drivers were temperature and nutrient enrichment as
proxies of climate change and human impacts, respectively. The
three proximal drivers were energy supply, such as primary
productivity and sediment total organic carbon, the diversity of
bacteria and DOM, that is the richness and composition of
bacteria and DOM, and DOM molecular traits (Table S1).

We found that, in addition to bacterial diversity and
chemodiversity, molecular traits also influenced the network
specialization H2′. In the negative networks, H2′ was most
strongly correlated with DOM molecular composition (r= 0.77,
P ≤ 0.001), followed by molecular richness (r=−0.76, P ≤ 0.001)
and molecular N/P ratio (r= 0.76, P ≤ 0.001, Fig. S16). In
contrast, in the positive networks, H2′ was less correlated with
molecular traits (Fig. S16). Furthermore, we examined the relative
importance of diversity and molecular traits for predicting H2′.
H2′ was mainly affected by chemodiversity, such as molecular
richness or DOM composition, followed by molecular traits, such
as N/P or N/C ratios, in the negative networks, whereas
chemodiversity, biodiversity, environmental variables and energy
supply were all similarly important in the positive networks
(Fig. 5b).

We finally tested the hypothesised effects of two global change
drivers, temperature change and nutrient enrichment, on the
specialization of DOM-bacteria interaction networks. We com-
pared these effects to other drivers such as contemporary
nutrients, energy supply, biodiversity, chemodiversity and
molecular traits using structural equation models (SEM)36

(Fig. 6a). SEM tests hypothesized cause-and-effect relationships,
which are translated into regression equations and fitted to data.
Through this process, SEM separates the direct and indirect
effects of different drivers of H2′. The SEM results indicated that
there were different constraints on the specialization between
negative and positive interactions. For the negative interactions,
both global change drivers strongly influenced H2′ through
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indirect effects on energy supply and molecular traits, especially
in China (Figs. 6b, c, S17). In contrast to Norway, both climate
change and human impacts had larger total mean effects of −0.23
and −0.49, respectively, on the H2′ of negative interactions in
China (Fig. 6a). However, molecular traits had the dominant
direct effects on H2′ in both China and Norway, with similar
mean standardised effect size of 0.57 (P ≤ 0.001; Figs. 6b, S17).
For the positive interactions, there were large total mean effects of
climate change (0.51 and −0.40 for China and Norway,
respectively) and human impacts (0.44 and 0.62, respectively),
both of which indirectly influenced H2′ similarly through
biodiversity, chemodiversity and molecular traits (Figs. 6b, c,
S17).

Prediction of DOM-bacteria interactions. As inland waters
worldwide are affected by climate change37 and undergo changes
in trophic status38, our approaches could be used to make pre-
dictions about how microbes degrade and produce DOM. For

instance, total nitrogen in Taihu Lake has been reduced by a
mean (±SD) of 1.24 (±1.41) mg L−1 via lake management efforts
since a hyper-eutrophication event occurred in May 2007 (Fig.
S18). Based on the estimated direct and indirect effects of distal
drivers in the SEM fitted to the Chinese data (Fig. 6a), this oli-
gotrophication, combined with a mean decrease in water tem-
perature of 0.20 (±0.87) °C between 2007 and 2018, was predicted
to shift DOM-bacteria interaction networks towards more spe-
cialized DOM decomposition and more generalized DOM pro-
duction (Fig. 7). This result indicates that lake management has
potentially increased carbon stocks in the lake. Specifically, H2′
changed by +0.65 (±0.58) and −0.65 (±0.46) for negative and
positive interactions, respectively, over this period (Fig. 7a). The
greatest changes happened in the most eutrophic part of the lake,
including the northwestern lakeshore and the northern Zhushan
and Meiliang Bays (Figs. 7b, S19). Although our predictions lack
detailed spatiotemporal environmental variation, as used to
parameterize the SEM models, they do illustrate the potential to
upscale our findings in real-world settings. Ground-truthing our

Negative Positive

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

−60

−40

−20

0

−60

−40

−20

0

H
2'

Nutrient enrichment (log
10

)

b

a

20
170
350
550
750

2286
2580
2915
3505
3822

Elevation

NorwayChina

O/C

Temp ADD.NO3

NO2

PO4

TP.sedi

PO4.sedi

bac.rich

bac.nmds1

chemo.rich
mol.nmds1

mol.nmds2AIMod

DBEO

GFE

kdefectCH2

NOSC

H/C

N/C

P/C

N/P
S/C

pH

15%

30%

15%

30%

O/C

Temp ADD.NO3

NO2

PO4

TP.sedi

PO4.sedi

bac.rich

bac.nmds1

chemo.rich
mol.nmds1

mol.nmds2AIMod

DBEO

GFE

kdefectCH2

NOSC

H/C

N/C

P/C

N/P
S/C

pH
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results with in situ measurements across environmental gradients
and across spatiotemporal scales could further validate our pre-
dictions. Our predictions also highlight how lake management
and policy can affect the balance between decomposition and
production of organic matter and lake carbon cycling, more
generally. Future studies with more lakes or other aquatic systems
are needed for a comprehensive understanding of how global
change will shift DOM-bacteria interaction networks in inland
waters worldwide.

Implications. The factors that control microbial processing of
DOM composition, and consequently its degradation, are com-
plex and challenging to discern39, yet are critical for predicting
carbon cycling under global change scenarios. We found that
associations between DOM and microbial decomposers were
influenced by fundamental drivers of ecosystem functioning, such
as energy supply19,20, both DOM and microbial compositions9,14

and molecular traits8. The EDTiA framework we developed
provides a unified approach from a molecular-level perspective to
identify when each of these proximal drivers is more important,
and to separate contrasting biological processes associated with
DOM degradation and production that may have obscured pre-
vious analyses of bulk DOM pools. In addition to energy supply
and the diversity of DOM and bacteria, our study reveals that
molecular traits are informative for describing DOM-bacteria
interaction networks across contrasting climatic zones, especially
the negative interactions indicative of degradation processes.
Although molecular traits are well known to be linked with DOM

persistence or vulnerability to degradation8,40, their influence on
the underlying biological mechanisms has remained poorly
understood. Our results advance this work by demonstrating
when the specialization of DOM-microbe networks changes with
molecular traits, and by providing predictions of how speciali-
zation might vary under global change scenarios.

We found that temperature and nutrient enrichment can
change DOM-bacteria interactions by shifting the three proximal
drivers, namely energy, diversity, and traits. For the positive
bipartite networks, nutrient enrichment generally increased the
DOM-bacteria specialization, and more so than temperature, by
changing biodiversity, chemodiversity, and molecular traits.
Positive interactions related to the production of new molecules
depend on the specific interacting partners, which is partly
supported by the positive relationships between H2′ and the d′ of
DOM or bacteria (Fig. S13). In the negative networks, however,
both temperature and nutrient enrichment reduced specializa-
tion, primarily via changing molecular traits and energy supply.
The greater importance of molecular traits indicates that
decomposition processes associated with negative networks
may depend more on whether molecules contain structures that
resist degradation8, especially in the presence of temperature
and nutrient limitation41. At lower temperatures and nutrient
levels, the required activation energy to degrade these molecules
may become more limiting41. We also found that the importance
of these distal drivers of climate change and human impacts
varied between biomes. For instance, both elevated temperature
and nutrient enrichment reduced the specialization of negative
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Fig. 7 Decadal change in predicted specialization of DOM-bacteria networks in Taihu Lake. a Changes in H2′ of negative (upper panel) and positive
(lower panel) bipartite networks from 2007 to 2018. b The spatial distribution of changes in H2′ of negative (upper panel) and positive (lower panel)
networks in 2018 across the Taihu Lake. Estimated changes in H2′ were calculated (n= 32 sampling sites across the whole of Taihu Lake; Fig. S19a) by
comparing with the baseline of 2007, and represent the combined effects of climate change and eutrophication. The colored dots in a indicate H2′ changes
for individual sites which are consistent with the figure legend of (b), and black dots are the mean values for each year. The box in a represents the
interquartile (50% of data), the horizontal line in the box represents the median, the “notch” represents the 95% confidence interval of the median and the
“whiskers” represent the maximum and minimum values.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31251-1

10 NATURE COMMUNICATIONS |         (2022) 13:3600 | https://doi.org/10.1038/s41467-022-31251-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


DOM-bacteria interactions in subtropical China, but these two
drivers were less important in subarctic Norway. As their indirect
effects via microbial composition varied between biomes, these
responses may partly reflect differences in the functional traits
and activity of biological communities. Such mechanisms via the
three proximal drivers may also help evaluate how the biological
approaches such as biochemical oxygen demand could be applied
in assessing dissolved organic carbon dynamics in natural
waters42. Future studies with metagenomics and metatranscrip-
tomics could offer a powerful complement to test how microbial
traits vary with DOM traits.

In summary, we found that DOM-microbe associations were
primarily influenced by temperature change and nutrient
enrichment via energy, diversity and traits, the integration of
which is a requisite for predicting how organic carbon responds
to multiple global change drivers. Looking forward, there is a
need to translate the DOM-microbe associations of our EDTiA
framework into process-based ecosystem models, from which
predictions of the future carbon cycle stand to be improved by
incorporating more information on microbial community func-
tion, such as their specialization on different DOM sources43,44.
More generally, our work shows how the molecular traits of
DOM control the responses of DOM-microbe networks and their
associated biogeochemical cycles in a changing world.

Methods
Experimental design. The comparative field microcosm experiments were con-
ducted on Laojun Mountain in China (26.6959 N; 99.7759 E) in
September–October 2013, and on Balggesvarri Mountain in Norway (69.3809 N;
20.3483 E) in July 2013, designed to be broadly representative of subtropical and
subarctic climatic zones, respectively, as first reported in Wang et al.29. In the
Laojun Mountain region, mean annual temperatures ranged from 4.2 to 12.9 °C,
with July mean temperatures of 17–25 °C. In the Balggesvarri Mountain region,
mean annual temperatures ranged from −2.9 to 0.7 °C, with July mean tempera-
tures of 8–16 °C. The experiments were characterised by an aquatic ecosystem with
consistent initial DOM composition but different locally colonised microbial
communities and newly produced endogenous DOM. While allowing us to
minimise the complexity of natural ecosystems, the experiment provided a means
for investigating DOM-microbe associations at large spatial scales by controlling
the initial DOM supply. Briefly, we selected locations with five different elevations
on each mountainside. The elevations were 3822, 3505, 2915, 2580 and 2286 m
a.s.l. on Laojun Mountain in China, and 750, 550, 350, 170 and 20 m a.s.l. on
Balggesvarri Mountain in Norway. At each elevation, we established 30 aquatic
microcosms (1.5 L bottle) composed of 15 g of sterilised lake sediment and 1.2 L of
sterilised artificial lake water at one of ten nutrient levels of 0, 0.45, 1.80, 4.05, 7.65,
11.25, 15.75, 21.60, 28.80 and 36.00 mg N L−1 of KNO3 in the overlying water. To
compensate for nitrate additions shifting stoichiometric ratios, KH2PO4 was added
to the bottles so that the N/P ratio of the initial overlying water was 14.93, which
was similar to the annual average ratio in Taihu Lake during 2007 (that is, 14.49).
Thus, we use “nutrient enrichment” to indicate a series of targeted nutrient levels of
both nitrate and phosphate, the former of which was used to represent nutrient
enrichment in the statistical analyses. Each nutrient level was replicated three
times. The lake sediments were obtained from the centre of Taihu Lake, China, and
were aseptically canned per bottle after autoclaving at 121 °C for 30 min. Nutrient
levels for the experiments were selected based on conditions of the eutrophic Taihu
Lake, and the highest nitrate concentration was based on the maximum total
nitrogen in 2007 (20.79 mg L−1; Fig. S19). We chose the nutrient level of this year
because a massive cyanobacteria bloom in Taihu Lake happened in May 2007 and
initiated an odorous drinking water crisis in the nearby city of Wuxi.

The microcosms were left in the field for one month allowing airborne bacteria
to freely colonise the sediments and water. To keep the microbial dispersal events
as natural as possible, we did not cover the experimental microcosms in case of
rainfall. To avoid or minimize potential influence of extreme nature events, we (i)
left the top 20% of each microcosm empty to prevent water from overflowing
during heavy rains, and (ii) checked the experimental sites twice during each
experimental period, and added sterilized water to obtain a final volume of
approximately 1.2 L. The bottom of our microcosm was buried into the local soils
by 10% of the bottle height, partly to reduce UV exposure to sediments. More
considerations of the experimental design were detailed in the Supplementary
Methods. To avoid the effects of daily temperature variation, we measured the
water temperature and pH within 2 h before noon at all elevations in the day before
the final sample collection. At the end of the experimental period, we aseptically
sampled the water and sediments of the 300 bottles (that is, 2 mountains × 5
elevations × 10 nutrient levels × 3 replicates) for the following analyses of
physiochemical variables, bacterial community and DOM composition.

Physiochemical variables and bacterial community. We measured environ-
mental variables, namely, the total nitrogen (TN), total phosphorus (TP), dissolved
nutrients (that is, NOx

−, NO2
−, NH4

+ and PO4
3−), total organic carbon (TOC),

dissolved organic carbon (DOC) and chlorophyll a (Chl a) in the sediments, and
the NO3

−, NO2
−, NH4

+, PO4
3− and pH in the overlying water (Table S2, Fig. S20),

according to Wang et al.29.
The sediment bacteria were examined using high-throughput sequencing of 16S

rRNA genes. The sequences were processed in QIIME (v1.9)45 and OTUs were
defined at 97% sequence similarity. The bacterial sequences were rarefied to 20,000
per sample. Further details on physicochemical and bacterial community analyses
are available in Wang et al.29.

ESI FT-ICR MS analysis of DOM samples. Highly accurate mass measurements
of DOM within the sediment samples were conducted using a 15 Tesla solariX XR
system, a ultrahigh-resolution Fourier transform ion cyclotron resonance mass
spectrometer (FT-ICR MS, Bruker Daltonics, Billerica, MA) coupled with an
electrospray ionization (ESI) interface, as demonstrated previously46 with some
modifications. It should be noted that FT-ICR MS does not identify molecules, but
only molecular formulae in terms of elemental composition and there can be many
molecular structures sharing the same elemental compositions. DOM was solid-
phase extracted (SPE) with Agilent VacElut resins before FT-ICR MS
measurement47 with minor modifications. Briefly, an aliquot of 0.7 g freeze-dried
sediment was sonicated with 30 ml ultrapure water for 2 h, and centrifuged at
5000 × g for 20 min. The extracted water was filtered through the 0.45 μm Millipore
filter and further acidified to pH 2 using 1M HCl. Cartridges were drained, rinsed
with ultrapure water and methanol (ULC-MS grade), and conditioned with pH 2
ultrapure water. Calculated volumes of extracts were slowly passed through car-
tridges based on DOC concentration. Cartridges were rinsed with pH 2 ultrapure
water and dried with N2 gas. Samples were finally eluted with methanol into
precombusted amber glass vials, dried with N2 gas and stored at −20 °C until DOM
analysis. The extracts were continuously injected into the standard ESI source with
a flow rate of 2 μl min−1 and an ESI capillary voltage of 3.5 kV in negative ion
mode. One hundred single scans with a transient size of 4 mega word (MW) data
points, an ion accumulation time of 0.3 s, and within the mass range of m/z
150–1200, were co-added to a spectrum with absorption mode for phase correc-
tion, thereby resulting in a resolving power of 750,000 (FWHM at m/z 400). All
FT-ICR mass spectra were internally calibrated using organic matter homologous
series separated by 14 Da (-CH2 groups). The mass measurement accuracy was
typically within 1 ppm for singly charged ions across a broad m/z range
(150–1200m/z).

Data Analysis software (BrukerDaltonik v4.2) was used to convert raw spectra
to a list of m/z values using FT-MS peak picker with a signal-to-noise ratio (S/N)
threshold set to 7 and absolute intensity threshold to the default value of 100.
Putative chemical formulae were assigned using the software Formularity (v1.0)48

following the Compound Identification Algorithm49. In total, 19,538 molecular
formulas were putatively assigned for all samples (n= 300) based on the following
criteria: S/N > 7, and mass measurement error <1 ppm, considering the presence of
C, H, O, N, S and P and excluding other elements or an isotopic signature. All
formula assignments were further screened to meet the criteria as follows50: (1)
formulae containing an odd number of nitrogen atoms had an even nominal m/z
and those containing an even number of nitrogen atoms had an odd nominal m/z;
(2) the number of hydrogen atoms was at least 1/3 of carbon and could not exceed
2C+N+ 2; (3) the number of nitrogen or oxygen atoms could not exceed the
number of carbon atoms; (4) the ratio of O/C was set to 0–1, H/C ≥ 0.3, N/C ≤ 1,
double bond equivalents (DBE) ≥ 0.

The assigned molecules were categorised into eight compound classes or 12
elemental combinations. The compound classes based on van Krevelen diagrams51

were lipids (O/C= 0–0.3, H/C= 1.5–2.0), proteins (O/C= 0.3–0.55, H/
C= 1.5–2.2), amino sugars (O/C= 0.55–0.67, H/C= 1.5–2.2), carbohydrates
(Carb; O/C= 0.67–1.2, H/C= 1.5–2), unsaturated hydrocarbons (UnsatHC; O/
C= 0-0.1, H/C= 0.7–1.5), lignin (O/C= 0.1–0.67, H/C= 0.7–1.5), tannin (O/
C= 0.67–1.2, H/C= 0.5–1.5) and condensed aromatics (ConHC; O/C= 0–0.67,
H/C= 0.2–0.7). The elemental combinations were CH, CHN, CHNO, CHNOP,
CHNOS, CHNOSP, CHNS, CHO, CHOP, CHOS, CHOSP and CHS.

Estimating DOM features. We considered DOM features from three aspects:
alpha diversity, beta diversity and molecular traits. These features were considered
for all molecules (19,538 different formulae), but also for subsets of molecules
within each category of compound classes or elemental combinations. The dataset
based on all molecular formulae was named “All molecules”, while the datasets of
subsets of formulae were named by “category name+ compounds”. The relative
abundance of molecules was calculated by normalizing signal intensities of assigned
peaks to the sum of all intensities within each sample. Peak (i.e., molecule) intensity
may not always necessarily provide reliable information on absolute concentra-
tions. Therefore, we did not analyse absolute intensities but instead standardised
the intensity relative to all other molecules in a sample. The measure of relative
abundance has been shown to be very informative in revealing ecological patterns
in previous studies, such as along soil depth9 and in lakes8, and so should help
determine how temperature and nutrient enrichment influence DOM-microbe
associations. Notably, there are also methodological reports supporting the
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quantitative aspect of high-resolution mass spectrometry method. For instance, the
intensity of compounds varies linearly with their initial concentration, and this
linear relationship was quite similar among compounds, especially when coupled
with charged aerosol detection52. More importantly, our experimental design used
a common pool of homogenized sediments across experimental units such that the
overall matrix of organic molecules may be assumed to be relatively similar across
samples. This provides a greater confidence that a change in peak intensity for a
given molecule reflects a relative change in its concentration across microcosms
(i.e., samples) and the two main environmental gradients.

We considered two aspects of chemodiversity: chemical alpha diversity and
chemical beta diversity. Chemical alpha diversity was calculated using a richness
index that counts the total number of peaks in each sample. Chemical beta diversity
was calculated with the Bray-Curtis dissimilarity metric, and further represented by
the first two axes of a non-metric multidimensional scaling (NMDS) ordination of
this dissimilarity. We also considered overall molecular composition, which was
visualised across the elevations and nutrient enrichment treatments with detrended
correspondence analysis (DCA)53. The analyses of chemical diversity were
performed using the R package vegan V2.4.654.

We also calculated 16 molecular traits that could affect microbial associations
and were related to molecular weight, stoichiometry, chemical structure, and
oxidation state (Table S1). These traits were mass, the number of carbon (C) atoms,
the modified aromaticity index (AIMod)55, DBE55, DBE minus oxygen (DBEO)55,
DBE minus AI (DBEAI)55, standard Gibb’s Free Energy of carbon oxidation
(GFE)56, Kendrick Defect (kdefectCH2)57, nominal oxidation state of carbon
(NOSC), O/C ratio, H/C ratio, N/C ratio, P/C ratio, S/C ratio, and carbon use
efficiency (Ymet)58. All calculations were performed using the R package
ftmsRanalysis V1.0.059 and the scripts at https://github.com/danczakre/
ICRTutorial. DBE represents the number of unsaturated bonds and rings in a
molecule55. Higher values of DBE, AI and NOSC all indicate a higher recalcitrance
of DOM. A large Kendrick Defect can indicate a higher degree of oxidation. Lower
values of Ymet indicate a higher thermodynamic efficiency of metabolic reactions
involved in biomass production58. Weighted means of formula-based molecular
traits (for example the Masswm for Mass) were calculated as the sum of the product
of the trait value for each individual molecule (Massi) and relative intensity Ii
divided by the sum of all intensities with the R package FD V1.0.1260 using the
equation:

Masswm ¼ ∑Massi ´ Ii
∑ðIiÞ

ð1Þ

In addition, ten clusters of molecules were grouped based on the 16 molecular traits
by hierarchical cluster analysis using Ward’s minimum variance method with the R
package stats V3.6.1.

Characterising bacterial communities. The relative abundance of OTUs was
calculated by the normalization of read counts of OTUs to the sum of all reads
within each sample. Likewise, we considered two aspects of biodiversity: bacterial
alpha diversity and beta diversity. Bacterial alpha diversity was calculated using
species richness that counts the total number of OTUs in each sample. Bacterial
beta diversity was calculated with the Bray-Curtis dissimilarity metric, and further
represented by the first two axes of NMDS of this dissimilarity.

Estimating associations between DOM and bacteria. At the DOM composi-
tional level, we examined DOM-bacteria associations from the following aspects:
Pearson’s correlation between alpha diversity of DOM and bacteria, and a Mantel
correlation between the beta diversity of DOM and bacteria (Box 1). We also tested
the congruence between DOM and bacterial composition using Procrustes analysis
of NMDS coordinates estimated for each community across elevations and nutrient
enrichment levels with the Bray-Curtis dissimilarity metric32,33. Procrustes analysis
is a technique for comparing the relative positions of points (i.e., samples or sites)
in two multivariate datasets (in an ordination space). It attempts to stretch and
rotate the points in one matrix, such as points obtained from a NMDS, to be as
close as possible to points in another matrix, thus preserving the relative distances
between points within each matrix32,33. This procedure yields a measure of fit, M2,
which is the sum of squared distances between corresponding data points after the
transformation. Analogous to a Mantel test, Procrustes analysis is particularly used
to determine how much variance in one matrix (i.e., bacteria) is attributable to the
variance in the other (i.e., DOM) or to assess the statistical significance in the
correlation between the two multivariate datasets. In addition, Procrustes analysis
has the advantages of the application of the Procrustean association metric (i.e.,
residuals). Pointwise residuals indicate the difference between two different com-
munity ordinations for each sample, and are used to examine how the DOM-
bacteria associations could be influenced by environmental gradients such as ele-
vations and nutrients. The statistical significance of the Procrustes analysis (i.e.,
M2) can then be assessed by randomly permutating the data 1000 times61. This
analysis was performed using the R package vegan V2.4.6.

We further quantified DOM-bacteria associations at a molecular level using two
different co-occurrence analyses (Box 1). First, Spearman’s rank correlation
coefficient ρ was calculated between the relative abundance of each molecule m/z
ion and bacterial OTU (or genus). For each molecule, we then calculated the
Spearman ρ difference by subtracting the mean absolute ρ value of the negative

correlations across all bacterial OTUs from the mean of the positive correlations.
Larger positive and negative values indicate that molecules were more strongly
positively and negatively correlated with bacterial communities, respectively. The
relationships among the Spearman ρ difference, H/C and O/C were summarised
using kriging interpolation with the R package automap V1.0.1462. Second, SparCC
(Sparse Correlations for Compositional data) was applied to build DOM-bacteria
bipartite networks. SparCC is a correlation method that can infer the
interrelationships between DOM and bacteria for compositional data with higher
accuracy35 than general correlation approaches, such as Spearman’s correlation,
because it explicitly assumes that the underlying networks have many missing
associations. We used bacterial genera rather than OTUs for bipartite network
analysis because there were over 20,000 and 10,000 bacterial OTUs for Norway and
China, respectively, and there are computational limits on handling such large
bipartite networks for the analyses described in the next paragraph. However, using
bacterial genera was reasonable as individual DOM-bacteria interactions were
similar for both bacterial OTUs and genera (R2 > 0.80, P ≤ 0.001; Fig. S9). Similar
conclusions were also obtained with either OTUs or genera when relating the
pairwise distances of molecular traits with SparCC correlation coefficient ρ values
among DOM molecules in Fig. 4c. To reduce type I errors in the correlation
calculations created by low-occurrence genera or molecules, the majority rule was
applied; that is, we retained genera or molecules that were observed in more than
half of the total samples (≥75 samples) in China or Norway. The filtered table,
including 1340 and 1246 DOM molecules, and 75 and 49 bacterial genera in China
and Norway, respectively, was then used for pairwise correlation calculation of
DOM and bacteria using SparCC with default parameters35.

Finally, bipartite network analysis at a molecular level was performed to
quantify the specialization of DOM-bacteria networks (Box 1). The specialization
considers interaction abundance and is standardised to account for heterogeneity
in the interaction strength and species richness, which describes the levels of
“vulnerability” of DOM molecules and “generality” of bacterial taxa27. The
threshold correlation for inclusion in bipartite networks was |ρ|= 0.30 to exclude
weak interactions and we retained the adjacent matrix with only the interactions
between DOM and bacteria. We then constructed two types of interaction
networks (i.e., negative and positive networks) based on negative and positive
correlation coefficients (SparCC ρ ≤−0.30 and ρ ≥ 0.30, respectively). According to
resource-consumer relationships, negative networks likely indicate the degradation
of larger molecules into smaller structures, while positive networks may suggest the
production of new molecules via degradation or biosynthetic processes. The
SparCC ρ values were multiplied by 10,000 and rounded to integers, and the
absolute values were taken for negative networks to enable the calculations of
specialization indices. A separate negative and positive sub-network was obtained
for each microcosm by selecting the DOM molecules and bacterial taxa in each
sample based on its bacterial and DOM compositions. For the network level
analysis, we calculated H2′, a measure of specialization27, for each network:

H2 ¼ � ∑
i

i=1
∑
j

j=1
(pijlnpij) ð2Þ

H20 ¼
H2max�H2

H2max�H2min
ð3Þ

where pij=aij/m, represents the proportion of interactions in a i × j matrix. aij is the
number of interactions between DOM molecule i and bacterial genus j, which is
also referred as “link weight”. m is the total number of interactions between all
DOM molecules and bacterial genera. H2′ is the standardised H2 against the
minimum (H2min) and maximum (H2max) possible for the same distribution of
interaction totals. For the molecular level analysis, we calculated the specialization
index Kullback–Leibler distance (d′) for DOM molecules (di′) and bacterial genera
(dj′), which describes the levels of “vulnerability” of DOM molecules and
“generality” of bacterial genera, respectively:

di ¼ ∑
j

j¼1

aij
Ai

ln
aijm

AiAj

 !
ð4Þ

di0 ¼
di � dmin

dmax � dmin
ð5Þ

where Ai = ∑
j

j=1
aij and Aj = ∑

i

i=1
aij , are the total number of interactions of DOM

molecule i and bacterial genus j, respectively. di′ is the standardised di against the
minimum (dmin) and maximum (dmax) possible for the same distribution of
interaction totals. The equations of dj′ are analogous to di′, replacing j by i.
Weighted means of d′ for DOM were calculated for each network as the sum of the
product of d′ for each individual molecule i (di′) and relative intensity Ii divided by
the sum of all intensities d′ = Ʃ(di′ × Ii)/Ʃ(Ii). Weighted means of d′ for bacteria
were calculated as the sum of the d′ of each individual bacterial genus j (dj′) and
relative abundance of bacterial genus Ij divided by the sum of all abundance. All
calculations were performed using the R package FD V1.0.12. The observed H2′
and d′ values ranged from 0 (complete generalization) to 1 (complete
specialization)28 (Fig. S21). Specifically, elevated H2′ or d′ values indicate a high
degree of specialization, while lower values suggest increased generalization, that is,
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higher vulnerability of DOM and/or higher generality of microbes. To directly
compare the network indices across the elevations or nutrient enrichment levels,
we used a null modelling approach. We standardised the three observed
specialization indices (Sobserved; that is, H2′, d′ of DOM, and d′ of bacteria) by
calculating their z-scores63 using the equation:

zS ¼ ðSobserved � SnullÞ=ðσSnull Þ ð6Þ

where Snull and σSnull were, respectively, the mean and standard deviation of the null
distribution of S (Snull). One hundred randomised null networks were generated for
each bipartite network to derive Snull using the swap.web algorithm, which keeps
species richness and the number of interactions per species constant along with
network connectance. This null model analysis indicates that interactions between
DOM and bacteria were non-random as the observed network specialization
indices were generally significantly lower than expected by chance (P < 0.05). The
obtained network was visualised using circlize V0.4.1064 and analysed using the R
package bipartite V2.1527.

Statistical analyses. We analysed how DOM features and DOM-bacteria asso-
ciations varied with temperature and nutrient enrichment at both compositional-
and molecular-levels, which were outlined in Fig. 2. We used the following abiotic
and biotic drivers explaining variations in DOM features (i.e., alpha diversity, beta
diversity, and molecular traits): water temperature, nutrient enrichment (i.e., the
experimental addition of nitrate and phosphate), contemporary nutrients (i.e., TN,
TP, NOx

−, NO2
−, NH4

+ and PO4
3− in the sediments, and NO3

−, NO2
−, NH4

+

and PO4
3− in the overlying water), energy supply (i.e., sediment TOC, DOC, water

pH and sediment Chl a), and biodiversity (i.e., the species richness and the first two
axes of the NMDS of bacterial community composition) (Table S2). In addition, for
the response variables of DOM-bacteria associations, we used the following
explanatory variables related to distal and proximal drivers (Table S1). Distal
environmental drivers included climate change (i.e., water temperature), human
impacts (i.e., nutrient enrichment), and contemporary nutrients (i.e., TN, TP,
NOx

−, NO2
−, NH4

+ and PO4
3−, and water NO3

−, NO2
−, NH4

+ and PO4
3−).

Proximal drivers included energy supply (i.e., sediment TOC, DOC, water pH and
sediment Chl a), biodiversity (i.e., the species richness and the first two axes of the
NMDS of bacterial community composition), DOM chemodiversity (i.e., the
species richness and the first two axes of the NMDS of molecular composition),
and DOM molecular traits (i.e., mass, C, AIMod, DBE, DBEO, DBEAI, GFE, kde-
fectCH2, NOSC, O/C, H/C, N/C, P/C, S/C and Ymet). It should be noted that water
pH could be considered to be relevant to primary productivity due to its strong
positive correlation with sediment Chl a, but their relationships varied across
elevations and nutrient levels29.

For DOM features, the relationships between nutrient enrichment and DOM
richness or molecular traits were visualised with linear models for all formulae and
subsets of formulae within each category of compound classes or elemental
combinations across different elevations. We further tested the breakpoints or
abrupt changes in DOM composition (i.e., the first axis of DCA) along the gradient
of nutrient enrichment using a piecewise linear regression with the R package
segmented V1.3.031. The number of breakpoints was selected with the following
criteria: the Bayesian Information Criteria (BIC) statistics for model selection and a
maximum number of three breakpoints. We did not specify the initial nutrient
values for breakpoint so that any values ranging from 0 to 36 mg N L−1 would be
considered. These breakpoint estimations were further supported by gradient forest
analysis30, which was used to assess the DOM compositional changes and
important breakpoints across multiple molecules along the gradient of nutrient
enrichment. Gradient forest analysis aggregates random forest models estimated
for each molecule along the nutrient gradient30, allowing us to identify non-linear
changes in overall composition. This analysis produces the standardised density of
splits (that is, breakpoints), that is the kernel density of splits divided by the
observation density, which shows the distribution of breakpoints of each molecule
regarding its abundance occurring along the nutrient gradient30. In addition, we
estimated the standardised density of splits for subsets of molecules within each
category of compound classes or elemental combinations across different
elevations. This analysis was performed using the R packages gradientForest
V0.1.1730 and extendedForest V1.6.165.

For DOM-bacteria associations, the relationships between nutrient enrichment
and associations at both community and network levels were tested with linear
models for all formulae and subsets of formulae within each category of compound
classes or elemental combinations across different elevations.

To further evaluate the key drivers of DOM features and DOM-bacteria
associations, we used variation partitioning analysis (VPA)66, random forest
analysis67 and structural equation modelling (SEM)36. In particular, the first
analysis disentangled the important roles of bacteria from other explanatory
variables, while the other non-linear and linear analyses tested the roles of
molecular traits and diversity, and their interplay with environments and energy
supply.

First, VPA was used to quantify the relative contributions of driver categories
towards DOM features. We partitioned explanatory variables into the following
driver categories: environments (that is, climate change, human impacts and
contemporary nutrients), energy supply and biodiversity (Table S2). We selected
explanatory variables for regression analyses by forward selection with Akaike

information criterion (AIC)68. We also quantified the relative contributions of
driver categories for subsets of molecules within each category of compound classes
or elemental combinations. VPA was performed with R package vegan V2.4.669.

Second, random forest analysis was conducted to identify the relative
importance of environment variables, energy supply, bacterial diversity and DOM
molecular drivers on specialization H2′. The importance of each predictor variable
was determined by evaluating the decrease in prediction accuracy (that is, increase
in the mean square error between observations and out-of-bag predictions) when
the data for that predictor were randomly permuted. The accuracy importance
measure was computed for each tree and averaged over the forest (2000 trees).
More details on this method were described in previous literature70. This analysis
was conducted using the R package randomForestSRC V2.8.071,72.

Third, SEM was used to explore how specialization H2′ is interactively
influenced by global changes (that is, temperature and nutrient enrichment),
diversity and molecular traits. The approach begins by hypothesising the
underlying structure of causal links as shown in Fig. 6a. Then, the model is
translated into regression equations, and these equations are evaluated against the
data to test the hypothesised links. Through this process, SEM provides an
understanding of direct and indirect links of climate change and human impacts on
H2′. Before modelling, all variables in the SEMs were z-score transformed to allow
comparisons among multiple predictors and models. Similar to previous studies73,
we used composite variables to account for the collective effects of climate change,
human impacts, contemporary nutrients, energy supply, biodiversity,
chemodiversity and molecular traits, and the candidate observed indicators are
given in Table S1. The indicators for each composite were selected based on the
multiple regressions for H2′ (Table S3). Based on all the hypothesised links among
composite variables (that is, full model; Fig. 6a), we examined all alternative models
using AIC and overall model fit statistics74. We chose the final model to report as
that with the lowest AIC value from models with a non-significant χ2 test
(P > 0.05), which tests whether the model structure differs from the observed data,
high comparative fit index (CFI > 0.95) and low standardised root mean squared
residual (SRMR < 0.05) (Table S4). We implemented the SEMs using R package
lavaan V.0.5.2375.

Predictions of DOM-bacteria network specialization in Taihu Lake. Using the
parameter estimates obtained from SEM fitted to the bipartite networks in sub-
tropical China, we estimated spatiotemporal variation of DOM-bacteria network
specialization in Taihu Lake based on the direct and indirect effects of climate
change and eutrophication via the proximal drivers. We first formulated five linear
equations to predict the values of contemporary nutrients (Pnut), energy supply
(Penergy), biodiversity (Pbiodiv), chemodiversity (Pchemodiv) and molecular traits
(Ptrait) based on climate and eutrophication drivers:

Pnut ¼ λnut;temp ´XT þ λnut;N ´XN ð7Þ

Penergy ¼ λenergy;temp ´XT þ λenergy;N ´XN þ λenergy;nut ´Pnut ð8Þ

Pbiodiv ¼ λbiodiv;temp ´XT þ λbiodiv;N ´XN þ λbiodiv;nut ´Pnut þ λbiodiv;energy ´Penergy

ð9Þ

Pchemodiv ¼ λchemodiv;temp ´XT þ λchemodiv;N ´XN þ λchemodiv;nut ´Pnut

þ λchemodiv;energy ´ Penergy

ð10Þ

Ptrait ¼ λtrait;temp ´XT þ λtrait;N ´XN þ λtrait;nut ´ Pnut þ λtrait;energy ´ Penergy

þ λtrait;biodiv ´Pbiodiv þ λtrait;chemodiv ´Pchemodiv

ð11Þ

where XT and XN were water temperature and total nitrogen, respectively, for the
32 sites across the whole Taihu Lake (Fig. S19a). The abbreviations of path coef-
ficients (λ) are detailed in Table S5.

Similarly, we calculated the specialization of DOM-bacteria networks (YH2)
using a linear equation:

YH2 ¼ λH2;temp ´XT þ λH2;N ´XN þ λH2;nut ´Pnut þ λH2;energy ´ Penergy

þ λH2;biodiv ´Pbiodiv þ λH2;chemodiv ´Pchemodiv þ λH2;trait ´Ptrait

ð12Þ

We used the predicted values for contemporary nutrients, energy supply,
biodiversity, chemodiversity and molecular traits in the overall prediction model to
account for the indirect effects of water temperature and total nitrogen on
specialization. The models were calculated with a yearly time step based on the
annual means of water temperature and total nitrogen for each site during
2007–2018. The temporal changes in specialization were calculated using 2007 as a
baseline to which all predictions were compared.

The above predictions aimed to apply our EDTiA framework to estimate
changes in DOM-bacteria network specialization under temperature change and
eutrophication in Taihu Lake, and potential uncertainties in the estimated
specialization should however be noted as follows. First, local environmental
variation (e.g., N/P ratio changes) and different microbial species pools between
our field microcosms and natural lake sediments would likely influence the
accuracy of predictions. Second, spatial and temporal heterogeneity of sediments
would influence local environments and the composition of both DOM and
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microbes and thus the projection of estimates across Taihu Lake. Third, the
transferability and extrapolation of SEM models to Taihu Lake would be one of the
difficulties in prediction practices. We thus selected the SEM models in China
rather than Norway for more similar climatic conditions to the target lake. The
annual mean water temperatures in Taihu Lake were covered by the temperature
variations across the elevations between 2286 and 3822 m a.s.l. in Laojun
Mountain, and the annual mean total nitrogen fell into the gradient of nutrient
concentrations between 0 and 36 mg N L−1. Finally, lake management such as
mechanical removal of algae would affect energy supply and consequently
prediction accuracy.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The microbial sequences and meta data generated in this study have been deposited in
the MG-RAST database under accession code 17710. The monthly monitoring
environmental data of Taihu Lake is available under restricted access according to data
management policy and the access could be obtained from Taihu Laboratory for Lake
Ecosystem Research (http://thl.cern.ac.cn/) or the corresponding author upon reasonable
request. The other data are available under restricted access due to the authors’
continuing projects of field experiments on global mountainsides, and the access can be
obtained from the corresponding author upon reasonable request.

Code availability
The R codes for specialization metrics are available at https://doi.org/10.5281/zenodo.
6592491, and at http://github.com/jianjunwang/iDOM.
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