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In less than a decade, population genomics of microbes has progressed from
the effort of sequencing dozens of strains to thousands, or even tens of thou-
sands of strains in a single study. There are now hundreds of thousands of
genomes available even for a single bacterial species, and the number of gen-
omes is expected to continue to increase at an accelerated pace given the
advances in sequencing technology and widespread genomic surveillance
initiatives. This explosion of data calls for innovative methods to enable
rapid exploration of the structure of a population based on different data
modalities, such as multiple sequence alignments, assemblies and estimates
of gene content across different genomes. Here, we present Mandrake, an
efficient implementation of a dimensional reduction method tailored for
the needs of large-scale population genomics. Mandrake is capable of visua-
lizing population structure from millions of whole genomes, and we
illustrate its usefulness with several datasets representing major pathogens.
Our method is freely available both as an analysis pipeline (https://github.
com/johnlees/mandrake) and as a browser-based interactive application
(https://gtonkinhill.github.io/mandrake-web/).

This article is part of a discussion meeting issue ‘Genomic population
structures of microbial pathogens’.
1. Introduction
Advances in DNA sequencing technology have recently made whole-genome
sequencing both affordable and scalable enough for routine use in pathogen
surveillance by research organizations and public health agencies around the
world [1,2]. A striking example of this is genomic surveillance of the SARS-
CoV-2 virus for which over one million genome sequences became available
in just 15 months after its initial discovery [3]. To shed light on population geno-
mic data at this scale calls for new tools that can be used for rapid exploration of
the structure among the samples, with particular emphasis on detecting clusters
of similar sequences [4,5]. In this paper, we explore and extend a class of
methods that aims to reduce the dimensionality of such data to only two dimen-
sions, in a manner that supports ready visualization and identification of
clusters.
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Finding clusters of genetically similar samples has a
number of uses, for example: identifying plausible
transmission pairs and determining patterns of global dissemi-
nation, and as a proxy for traits such as virulence, host range
and antimicrobial resistance [6,7]. Ideally clusters will have
direct biological relevance, either through one of these uses or
by representing a meaningful evolutionary unit (often referred
to as a strain or a lineage, though neither of these terms have a
consistently used formal definition) [8].

While we do not aim to comprehensively address the clus-
tering problem here, we do consider some of these methods as
useful comparisons, so review these briefly. Most methods for
clustering genomes fall into one of four categories: likelihood-
based, phylogeny-based, ‘gene-by-gene’-based and distance-
based. Likelihood-based methods determine clusters by fit-
ting a multinomial model to allele frequencies based on a
sequence alignment [9]. Phylogeny-based methods usually
assign selected clades in a phylogenetic tree as clusters [5].
Gene-by-gene approaches assign an integer identifier to
each unique DNA sequence of a gene that has been observed
and an overall identifier for each unique set of gene identifiers
a genome possesses [10]. These identifiers can be used as clus-
ters directly, but often more useful clusters can be achieved by
linking samples that share some proportion of their gene
labels [11,12]. Distance-basedmodels use pairwise genetic dis-
tances between all samples as input [13] and sometimes also
apply similar approaches of linking similar samples [14].

One challenge with applying any of these methods is
that many species do not have good quality schemes to
label input genomes, or suffer from poor-quality or missing
metadata. This makes unsupervised methods of particular
interest when exploring data [15]. A further challenge
arises from the size of the data we wish to process. On
top of the fact that we wish to process a large number of
individual genomes, genomic datasets typically have a
very large number of features; for example when using
SNPs or k-mers to represent sequence variation, each
sample may typically have 106–108 such markers. These
markers are frequently used to calculate genetic distances
between samples, the number of which grows as the
number of samples squared, such that one million samples
will have of the order of 1011 distances between them.
Such high dimensionality of population genomic data is
beyond the capability of most analysis methods available
today, rendering it difficult to gain insight into the data
structure in a fast and robust manner.

One approach to understanding structure in this size of
data is to embed the samples into a space that can easily be
visualized, which can be both generalizable and fast. An
embedding seeks to find a lower-dimensional representation
of data where the distances in the lower-dimensional space y
(output) are an accurate representation of distances in the
higher-dimensional space × (input). Intuitively, genetically
similar samples should be close together in the embedding
space, and genetically distant samples should be further
apart in the embedding space. Embedding spaces may be
linear combinations of the input dimensions as in principal
component analysis and multi-dimensional scaling, but
here we focus on nonlinear methods, which can infer poten-
tially complex manifolds relating input to output spaces in an
unsupervised data-driven manner. This means, unlike in
linear methods, the transform in one part of the input space
may be quite different from another part of the space.
Probably the most well-known method used to find
lower dimensional embeddings of data is t-distributed
stochastic neighbour embedding (t-SNE) [16,17]. t-SNE and
related methods have been used extensively to represent
and visualize data from numerous fields of research, and
they have recently been considered for analysing population
structure in both human and pathogen populations, as
well as data from single-cell genomics [18–21]. As these are
unsupervised methods, they do not use sample labels to
find the embedding. Due to the choice of the output prob-
ability distribution, distances between local samples are
preserved, whereas global distances are less well preserved.
Consequently, t-SNE is often used to identify clusters in
high-dimensional data that may correspond to units of
population structure such as species, strains or lineages.
Alternatively they may map onto sample labels, such as
their geographical origin or cell type.

However, t-SNE is not optimizing the embedding to find
clusters. So, when clusters do emerge, they are an indirect
consequence of preserving local structure in the data. The
recently developed method of stochastic cluster embedding
(SCE) [22] generalizes t-SNE to include an additional scaling
parameter, which was selected on the basis of a user survey
where participants were asked to rate how clustered data
appeared to be. The authors showed that this scale factor
can be chosen to exactly replicate t-SNE, or alternatively
can be tuned to effectively increase the ‘repulsion’ between
points, targeting distinct clusters forming in the output
embedding, which are easier to visualize and interpret.

In this paper, we extend the SCE method to use a variety
of genomic data modalities as input, improve its performance
on large datasets and add a range of output visualizations.
Our method allows users to rapidly gain insights into struc-
ture present in very large genome datasets, which we
show corresponds well with model-based genetic clustering
algorithms. We implemented our method as a piece of
open-source software called mandrake (https://github.
com/johnlees/mandrake) and as a static web application
(https://gtonkinhill.github.io/mandrake-web).
2. Methods
(a) Calculating between-sample distances from genome

data
As input, Mandrake takes one of three types of data: a multiple
sequence alignment, a set of k-mer sketches (can be created from
assembled or sequence read data) or a binary presence–absence
matrix (which is typically used to represent genes, but can be
used to represent other genetic elements). These are all treated
in fundamentally the same way, as feature matrices, with N
samples (genomes) along rows and M features (SNPs, k-mers
or genes) along columns. Although typically genomic datasets
have been ’wide’, with many more features than samples, the
scale of data means this is no longer the case and we are now
able to analyse the case with more samples than genomic
features.

To calculate input distances X from the feature matrix A, we
can compute X =M − AAT, which counts the number of shared
features between every pair of samples (the similarity), AAT,
and converts this to a distance by subtracting from the maximum
shared features M. This is a symmetric matrix with zeros on the
diagonal. We note that more sophisticated genetic distance calcu-
lations are possible by accounting for base frequencies and
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https://github.com/johnlees/mandrake
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varying transition rates between classes, but we do not consider
such distances here.

A difficulty is that both the number of calculations needed to
find X and the amount of memory to store X grow as N2. Here we
use methods that are fast enough to scale to N2 for at least one
million samples, but such a matrix would still require at least
2Tb of memory (or disc space). To avoid this major resource
issue, we cut the size of X down using one of two methods.
The first is to set a distance threshold above which entries from
X are discarded. The second, which we use for all analyses
here, is to retain just the k nearest neighbours for each sample
(excluding self distances, and including any ties). This means X
grows linearly in size with Nk in a predictable way, making
memory allocations efficient. As the perplexity sets the expected
number of neighbours, choosing a k above the desired perplexity
will typically give good results. In practice, we store X as a sparse
matrix in coordinate (triplet) format, with three ordered lists of
row-index i, column-index j and xij for each retained distance.
We save these to disc so they can be re-used by other programs,
or by Mandrake to re-run the embedding without recomputing
distances.

When A is a multiple sequence alignment, we code each row
using the four DNA bases, each in its own dynamic bitset with
the same length as the alignment, storing 1 if the base is present
in that sample at that position, and 0 otherwise. Elements
xij ¼M� Saima jm are then computed by ANDing each of the
four bitsets and counting the total number of bits that are on
(popcount). The use of bitsets ensures efficient packing into
64-bit words, which makes the Boolean AND operation and sub-
sequent popcount very fast to complete across all M sites. If A is
a gene presence/absence matrix, the procedure is similar, but
only a single bitset is needed for each gene.

For sequence assemblies or sequence reads that are
unaligned, we count the number of shared k-mers between
samples. Reads can be ’cleaned’ by first removing low-frequency
k-mers, which typically are a consequence of sequencing error.
Rather than using all k-mers, of which there are a prohibitively
large number [23], we use a ‘sketching’ approach pioneered by
the popular Mash software, which instead uses a hash function
(a hash function here transforms a k-mer sequence to a 64-bit
integer) to uniformly subsample a fixed-size subset of the total
k-mers [24]. The proportion of shared k-mers (the Jaccard dis-
tance) can be computed by the size of the intersection of the
retained hashes. We use two further modifications to this pro-
cess. First, we use the method of BinDash [25] to bin hashes
and calculate distances between them (which turns out to be
very similar to the dynamic bitset approach, but using bits of
the calculated hash instead of DNA bases). Second, we option-
ally enable the approach of PopPUNK, which calculates the
Jaccard distance at multiple k-mer lengths and regresses their
depletion at longer lengths to calculate core and accessory dis-
tances within a species [14]. In practice, we use PopPUNK’s
sketching and distance library pp-sketchlib (https://github.
com/johnlees/pp-sketchlib), which optimizes sketching and dis-
tance calculation from assembly or read data and has an API that
can be directly called from python.

The computation of each row of A and reduction to the
k-nearest neighbours is embarrassingly parallel across up to N
processes. We use OpenMP to achieve CPU parallelism. pp-sket-
chlib can also make use of CUDA compatible graphics
processing units (GPUs) for further parallelism.
(b) Stochastic cluster embedding
We start with a brief overview of t-SNE, which SCE then seeks to
generalize. Rather than minimizing a scalar distance between the
input and output data, t-SNE minimizes the Kullback–Leibler
divergence between two probability distributions defined by
the input and output data. In this section, we refer to samples
(genomes) as rows of X, which can be indexed by an integer
between 1 and N: i, j, k or l. The input distribution is a conditional
probability distribution 0≤ pj|i≤ 1 between every pair of samples
(genomes) i and j, which is defined for a given pair i ≠ j by

p jji ¼
expð�jjxi � xjjj2=2s2

i ÞP
k=i exp (�jjxi � xkjj2=2s2

i )
,

To calculate this probability, it is necessary to set a value for
the kernel variance si for each sample i. Intuitively, pj|i then
equals the probability that xi would pick xj as its neighbour
when sampling from a normal probability distribution centred
at xi with variance si. Typically the kernel variance is not set
directly for each sample, but instead an overall perplexity K is
set by the user, which is defined for a discrete probability distri-
bution p by raising two to the power of its entropy (in bits).
Generally, a perplexity of K in a distribution p over N neighbours
means p provides the same surprise as if we were to choose
among K equiprobable neighbours, which can also be interpreted
as the expected number of neighbours for each sample. Lower
values of perplexity favour more local structure, whereas
higher values assign greater weight to the global structure.
Given a desired perplexity level K for each sample, kernel var-
iances for each sample si can be estimated using an
optimization method that uses interval bisection to produce the
desired perplexity for each sample [26]. Together, these steps
convert distances in X to conditional probabilities P, which are
sometimes referred to the entropic affinities, and overall this
step is referred to as entropic affinity preprocessing. In Man-
drake, we used the Cython implementation in scikit-learn,
adding CPU parallelism over samples with OpenMP [27].

In the output space, t-SNE defines the probabilities qij using
a Student t-distribution with one degree of freedom (a Cauchy
distribution):

qij ¼
ð1þ jjyi � yjjj2Þ

�1

P
k
P

l=k ð1þ jjyk � yljj2Þ�1
:

The use of a heavy-tailed distribution rather than a normal
distribution allows points to be further apart without affecting
the divergence too much and is also faster to compute.

A popular measure of discrepancy between two probability
distributions P(x) andQ(x) is given by the Kullback–Leibler diver-
gence, which in this setting is defined as a sum over values P(i, j )
and Q(i, j ) from all pairs of samples, as indexed by i, j:

KLðPjjQÞ ¼
X
i=j

pij log
pij
qij

:

The t-SNE algorithm minimizes this divergence iteratively,
thus giving an embedding y with a probability distribution for
between-sample distances that is as similar as possible to the
probability distribution for between-sample distances in the
higher-dimensional data x.

We now give a brief overview of the mechanism behind SCE,
but note that full details are covered in the original publication
[22]. We also based our implementation on the reference
implementation available at https://github.com/rozyangno/
sce, and note the main changes here. The main difference
between the SCE algorithm and the t-SNE algorithm described
above stems from the addition of a scaling factor s, which
appears in the denominator with qij. This allows the objective
function to be minimized, D (the modified Kullback–Leibler
divergence):

DðPjjsqÞ ¼
X
i=j

pij log
pij
sqij
� pij þ sqij

� �
:

https://github.com/johnlees/pp-sketchlib
https://github.com/johnlees/pp-sketchlib
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to be written in terms of an attraction Jattraction, repulsion Jrepulsion
and constant C with respect to q|s:

DðPjjsqÞ ¼ Jattraction þ Jrepulsion þ C

Jattraction ¼
X
i=j

pij log qij

Jrepulsion ¼ s
X
i=j

qij

C ¼� log s� 1þ
X
i=j

pij log pij

9>>>>>>>>>>>=
>>>>>>>>>>>;

In the previous SCE study, it was noted that when s is the
normalizing factor for q this optimization is exactly equivalent
to t-SNE. However, when s is increased this adds extra repulsion,
typically forming tighter and visually clearer clusters, which is
similar to the ’early exaggeration’ step in many t-SNE implemen-
tations. SCE picks a larger value for s (see paper for formulae) to
form clearer clusters. The authors confirmed that their chosen
value was a good choice through a user study, where participants
used a slider for s to select a value that best explained the clusters
in four datasets from a variety of sources, and found that the
mean value across users was closer to the SCE choice than the
t-SNE choice.

The SCE method optimizes D using stochastic gradient des-
cent (SGD), a popular method to fit neural networks [28]. Here,
the output embedding Y is updated given the current s, then s is
recomputed using the update Y. This is repeated for a specified
number of iterations, chosen such that D reaches a stable
minima. To stochastically update Y at each iteration, a pair of
samples i, j are chosen at random in proportion to their con-
ditional probabilities pj|i, and the gradient 5 of their attraction
term calculated (such that C can be ignored). Then, a second
pair of samples k, l are chosen at random in proportion to the
sample weights (which by default is equal for every sample)
and the gradient of their repulsion term calculated. In SGD, a
learning rate h is used to update Y by making a small step
down the direction of the gradient yt þ1  yt � ht5 at iteration
t. The learning rate decreases across the total T iterations T as
ht ¼ h0 � (1� t=T). Larger steps are taken in early iterations,
and smaller steps are taken in later iterations closer to conver-
gence. Y is initialized by drawing y0 � U(0,10�4) along each
dimension for each sample, repeating draws which lie outside
of a circle with radius 10−4 centred at the origin.

While an additional drawback of t-SNE was that the iterative
optimization is challenging to directly scale to larger datasets,
SGD is simpler to parallelize. At each step updating Y, w workers
can independently pick two pairs of points i and j; k and l to
update. Ideally for CPU parallelizm, w will be chosen equal to
the number of physical cores, and for GPU parallelism w will
be chosen to be large (105 or more) to maximize device occu-
pancy. A potential issue arises if two workers try to update the
same sample at the same time (bearing in mind the additional
complication that these workers may not be in sync). This
becomes more likely when the number of active workers is not
much less than the number of samples. We address this in the
CPU implementation by using atomic operations to preserve
memory integrity, and when overwritten by another worker,
retry with another pair. CUDA global memory is not directly
affected by memory integrity issues from race conditions, but
we still use an atomic operation to update Y rather than a
simple overwrite. In each case, as long as memory integrity is
preserved, the stochastic nature of the algorithm will correct
for missteps in subsequent iterations, as long as they do not dom-
inate. Additionally, while atomic operations are faster than locks,
they become slower when multiple threads are attempting to
operate on the same memory address, leading to a reduction in
efficiency. We therefore output the proportion of workers
found to be ’clashing’ at each iteration, so users are aware they
may wish to lower w when analysing smaller N.

We also note that we use the method of Walker [29] for draw-
ing discrete random variables to precompute tables to draw
edges from Pj|i in constant time, reimplementing the GSL library
implementation in C++ [30]. We also use the fast parallel random
number generator from the dust package [31], which is based on
the xoshiro128+ generator [32], and can be used to produce
uncorrelated pseudorandom 32-bit integers in parallel on both
CPUs and GPUs. This also removed all link time dependencies
from the compiled code, which made compilation into
WebAssembly straightforward (see below).

(c) Visualizing embeddings
We automatically output the final embedding Y in four formats:

— A simple text file with N rows and two columns, for reuse by
other programs or plotting software. A separate file listing
sample names, and optionally clusters, is also created.

— An interactive HTML plot using the WebGL mode of plotly
[33]. This can be viewed in a web browser, and scales up to
millions of points. Embedding positions and labels appear
on hover. For smaller datasets sample names also appear
on hover, but this can be turned off (as resulting files can
be extremely large on disc).

— A static image using matplotlib [34].
— A dot network file, which can be loaded for interactive view-

ing along with sample labels in Microreact [35].

To add colour to samples in the plot, the user can either provide
labels, or labels can be generated by performing a spatial cluster-
ing on the embedding. For the latter, we use HDBSCAN, as this
usually works well on well-separated clusters of unspecified
shape. We centre and normalize the embedding to [−1, 1] in
each direction, use a minimum cluster size of two and minimum
distance between clusters of 0.02 [36]. HDBSCAN may label
some points as ‘noise’, which are useful for potential singleton
clusters, though care should be taken not to group noise points
into a cluster.

Colours for classes are chosen by randomly sampling from
RGB space. We tried selecting from HSL or HSLuv space,
which are perceptually uniform colour spaces to the human
eye, but found empirically that contrast between labels was
poorer than from RGB colours.

We found that for many of the genomic datasets we ran
Mandrake on, well-separated clusters were a common feature
(for example separating species). In the embedding output, this
leads to many points overlapping, and although clusters can
clearly be identified, their size is obscured. To help remedy
this, we included an additional (static) hexagon density plot
which shows a heatmap of the number of samples in each
region of the plot.

We also include code to create a video of the embedding pro-
cess as the SGD algorithm runs, which is particularly useful for
monitoring convergence. We take the current embedding and
objective function at 400 points across the total number of iter-
ations, create a static plot and use these as frames in the output
animation (at 20 fps, so videos are 20 s in duration). In the
CUDA code, the copy operation for the current embedding is
launched asynchronously to the main SGD kernel run, so it has
a negligible impact on run time. We optionally add sound by
mixing decaying triangular wave oscillators at a frequency pro-
portional to the maximum movement along each dimension
between each frame. This sound is in stereo, with each channel
corresponding to an SCE dimension.

Initially, our code sampled frames uniformly from the SGD
iterations; however, this led to animations where at the start
points moved too fast, and at the end too slow. This is due to
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the decreasing learning rate h. We decided instead to sample uni-
formly from the total amount of learning completed, so when
more learning (and larger changes to the embedding) was
being done more frames would be taken, and when less learning
(and smaller changes to the embedding) was being done fewer
frames would be taken. As we use a linearly decreasing learning
rate, learning grows quadratically, so we sample proportional to
its inverse (the square root).

(d) Software implementations
Mandrake is written in a combination of C++, CUDA, python
and Javascript. One of the major changes from the reference
implementation of SCE is that we provide python bindings to
the SCE method using pybind11 [37]. The C++/CUDA part of
Mandrake which runs the entropic affinity preprocessing and
modified SCE algorithm can be imported into any python
program and called with ’triplet’ sparse matrix data.

(i) Command line interface ( python)
The full Mandrake executable is available as a python executable
which includes genetic distance calculation, and plotting of the
output. We include numerous progress meters for each stage of
computation, as on large datasets estimating time or eliminating
computationally impossible steps is a necessity. The package can
be installed using conda, and we provide online documentation
and examples at https://mandrake.readthedocs.io/en/latest/.

(ii) Optimization of GPU code (CUDA)
We optimized the CUDA code through multiple rounds of pro-
filing, the results of which can be accessed with the datasets on
Zenodo. Briefly, this resulted in the following changes:

— Use of a callback function to output the objective function at
each iteration, so convergence can be monitored.

— Use of CUDA graphs to run each iteration, which eliminates
overheads from calls to the CUDA API at every step.

— Reversing the strides of the embedding Y from row-major to
column-major, which can sometimes coalesce memory
accesses. Changing the strides back (to be compatible with
numpy) is done in a new device kernel.

— Use of parallel reductions from the cub library to calculate
the objective at the end of each step.

— Use of the wrapper classes from the dust package to manage
device memory [31].

— Elimination of thread divergences within warps.
— Inclusion of 32-bit and 64-bit versions of the code (64-bit

operations are slower and use more registers, and some
devices can only emulate 64-bit floating point operations,
which can decrease performance greatly).

— Storing each worker’s random number generator state in reg-
isters, rather than writing to/from global memory whenever
it is changed.

— Added compiler optimizations and loop unrolling.

(iii) Static web app (WebAssembly and Javascript)
We optimized a version of Mandrake for the web (https://gton
kinhill.github.io/mandrake-web). This is particularly important
to improve accessibility for users who have less experience run-
ning and installing bioinformatics programs on the command
line. We made use of the Emscripten compiler to convert a
slightly modified version of the C++ code used in the python
package to WebAssembly, which executes within the browser
on the user’s machine. This provides significant performance
benefits over a pure Javascript-based implementation and
allows the web application to achieve similar speeds as the com-
mand line version on small- to medium-sized datasets. As the
support for multi-threading in WebAssembly is still experimen-
tal, the web application currently only supports runs on a
single CPU, so the command line version is still recommended
for very large datasets.

The static web application was created using the Hugo site
generator and custom Javascript to interact with the compiled
WebAssembly functions. A significant benefit of this approach
is that once the website is loaded, there is no reliance on an inter-
net connection and the entire analysis is run on the user’s local
machine. This ensures that the user’s data is secure, as it is
never uploaded, and which can be particularly useful in
locations with poor internet connections where the uploading
of any large dataset would be infeasible. It is also possible to
run Mandrake-web entirely offline.
3. Results
(a) Overview of Mandrake’s design
Figure 1 gives a graphical overview of the steps we use in
Mandrake to create a low-dimensional embedding from
genomic data. Pairwise genetic distances X between all
samples are calculated from the genome data. Each element
of X, of which there are N2, requires the comparison of M
genomic features. This is typically the largest calculation in
Mandrake, and we have highly optimized it and allow it to
take advantage of many CPU cores where available. This
makes calculation of distance matrices from up to millions
of samples feasible. Each sample is reduced to the k-nearest
neighbour distances on-the-fly to save space in memory.
Note that although figure 1 removes identical distances for
visual clarity, in our code we retain them. We then use entro-
pic affinity, as described in the methods, to convert these
distances into a conditional probability distribution, as
described in the introduction. Figure 1 shows an example
for sample x3, which has nearest neighbours x1 at one SNP
away and x2 at two SNPs away. These are converted into
probabilities using the height of Gaussian as shown, with a
variance found to match the chosen perplexity through
interval bisection.

SCE is then run; we make the user specify the number of
iterations to run for and do not stop until this is reached.
Some example frames across the SGD iterations are shown.
At the start, points in the lower-dimensional space are ran-
domly distributed, but are moved around more as the
learning rate is higher. Later on, points are in clusters, and
move smaller amounts along their gradient each step due
to the lower learning rate. Some example attractive Jattraction
and repulsive Jrepulsion gradient steps are shown on the first
two panels. Points are selected for attraction more frequently
if they have a higher conditional probability. This has the
effect that within a cluster (close in the higher dimension;
higher conditional probabilities), points are pushed together.
Repulsion is between any pair of points, which at later stages
of the algorithm repulses clusters from one another, with the
attractive force keeping the cluster together.

Applying SGD to D tries to make the input distribution
(the conditional probabilities pj|i) as similar to possible to
the output distribution (set by a Cauchy distribution qij).
This is shown at the bottom of figure 1—an example with
two points with the same input and output probability on
the y-axis is a small distance apart on the x-axis. Therefore,
close distances in the higher-dimensional space of X will
also be close in the lower-dimensional space Y. The heavy

https://mandrake.readthedocs.io/en/latest/
https://mandrake.readthedocs.io/en/latest/
https://gtonkinhill.github.io/mandrake-web
https://gtonkinhill.github.io/mandrake-web
https://gtonkinhill.github.io/mandrake-web
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Figure 1. Overview of the Mandrake software. First, a genomic dataset, which may be a multiple sequence alignment, gene presence/absence or sequence sketches
is used to calculate all pairwise distances between samples. Each entry in the distance matrix X is then the number of different features between each pair of
samples. Each row of X is sorted, and the lowest k values (excluding self-matches of zero) are retained in triplet format. Entropic affinity converts these sparse
distances to conditional probabilities, which can be thought of as the probability of selecting sample xj as a neighbour, if probabilities are normally distributed. The
user sets a perplexity parameter, which is used to set the variance of the distribution for each sample. SCE is run over a user-set number of iterations of SGD.
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tails of the output Cauchy (black, solid distribution) apply
less penalization if smaller input probabilities are further
apart than the tails of a Gaussian distribution (green,
dashed distribution).

Our resulting implementation runs in a few hours, on up to
around one million samples (table 1). Some variation in run-
times not directly proportional to the number of iterations is
observed, this is typically due to setting a number of workers
to aim for amaximum10% clash rate on each dataset, such that
efficiency increased in the larger datasets. Our web app is
responsive up to the range of 10 000 samples, which completes
in around a minute, depending on the input data type.
Before interpreting our results on different datasets, we
recap some key features of nonlinear embeddings [39]:

— Cluster sizes in the embedding space do not relate to the
number of points in the cluster, or its genetic diversity. In
SCE particularly, many points will be heavily overplotted,
and the density plot should be used for determining the
number of samples in one region.

— Distances between clusters do not correspond to their gen-
etic distances. Two well-separated clusters, close together,
are not necessarily more genetically similar than two
well-separated clusters at opposite ends of the plot.



Table 1. Resource usage for Mandrake on datasets used. The first row shows use of the static web app on a single core. All other reported times used 60 CPU
cores, and where applicable an Nvidia 3090 RTX GPU was with double precision (fp64) or single precision (fp32). Note, GPU distance calculations are supported
for sketches, but the table reports the CPU time only. The HIV pol gene alignment used was a random 5000 subset from the Los Alamos public database [38].

dataset
no.
samples

distance
calculation

maximum
memory

iterations
used

SCE time
(CPU)

SCE time
(GPU)

HIV-1 pol gene

alignment

5000 35 s (web) NA 1 × 106 11 s (web) n.a.

S. pneumoniae

accessory genome

20 047 3 min 6.5 Gb (host)/

0.35 Gb (GPU)

3 × 108 7.8 min 5 s (fp64)

SRA bacterial

assemblies

661 406 3 h 7 Gb (host)/

3 Gb (GPU)

5 × 1011 186 h 1.3 h (fp64)

SARS-CoV-2

alignment

941 981 101 h 26 Gb (host)/

13 Gb (GPU)

1 × 1012 372 h 2.8 h (fp64)/

2.3 h (fp32)
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— Perplexity can greatly affect results, and runs at a few
different perplexities should typically be attempted. At
lower perplexities, structure can sometimes be found
where there is none. Complex topological relationships
are generally not expected in genetic data, but where
these may exist (in the presence of extensive horizontal
gene transfer) multiple perplexity runs may be able to
find these.

(b) Mandrake embeddings accurately reflect simulated
population structure

To verify that Mandrake was able to produce an embedding
that accurately described the underlying population struc-
ture of a dataset, we simulated five distinct scenarios
using a coalescent model with recombination, as
implemented in the R programs Coala and scrm [40,41].
We then generated two-dimensional embeddings of the
resulting SNP matrices using Mandrake, PCA, t-SNE and
UMAP (figure 2). The first simulation (figure 2a) included
a very high recombination rate, which acted to remove
any underlying structure in the dataset: all four embedding
algorithms correctly produced visualizations with no
obvious structure or clusters. Mandrake and PCA produced
the most accurate embeddings on the following two simu-
lations. The first consisted of five distinct clades and the
second a single population sampled uniformly over time
which produced genetic distances along a gradient or
cline (figure 2b,c). To demonstrate the utility of nonlinear
embeddings, we also compared each method on a further
dataset involving five clades, but with each clade having
one of two significantly different growth rates (figure 2d ).
In this case, PCA was able to separate the two clades
with larger growth rates, but did not distinguish the three
distinct clades with smaller growth rates which appear
clumped together in the left-hand side of the plot. Conver-
sely, both Mandrake and t-SNE were able to distinguish all
five clades. Although the Mandrake embedding slightly
over partitioned one clade in this case, it generally outper-
formed the other three methods when considering all
four scenarios. In particular, we found that the UMAP
embedding rarely reflected the underlying simulated
population structure.
(c) Embedding the accessory genome of 20 k
Streptococcus pneumoniae

To demonstrate the ability of the SCE embedding to identify
meaningful clusters within a large dataset, we first con-
sidered a collection of 20 047 S. pneumoniae genomes that
consisted of a subset of high-quality genomes from the
Global Pneumococcal Sequencing project and two other
pneumococcal genome surveillance studies [4,42–44]. S. pneu-
moniae is a highly recombinant bacterial species with an
extensive accessory genome that has been shown to be
highly structured [45,46]. This makes it a good example for
investigating the ability of Mandrake to identify clusters
from a gene presence/absence matrix.

We first inferred a pangenome gene presence/absence
matrix using Panaroo v.1.2 [47]. This resulted in a binary
matrix consisting of 27 322 features (genes) and 20 047
genomes, which were used as input to Mandrake.

Figure 3 and electronic supplementary material, video S1
indicate the resulting embedding, with points coloured accord-
ing to which of the Global Pneumococcal Sequencing Clusters
(GPSCs) each genome belonged to [4,42]. These clusters are
defined by PopPUNK and use both core and accessory dis-
tances, and although these distances are strongly correlated
in encapsulated S. pneumoniae, they are not necessarily a
direct comparison or ground truth for a purely accessory clus-
tering of this dataset. However, they are commonly used for
epidemiological and evolutionary analysis, so are an instruc-
tive comparison nevertheless. Those clusters with fewer than
50 genomes are coloured in grey, with the Mandrake embed-
ding placing them together in a single large group. This is
similar to the behaviour of other clustering algorithms such
as BAPS where outlying genomes are often grouped together
into a single cluster representing the broader genomic back-
ground [38,48]. To compare the observed clustering in the 2D
embedding with the underlying GPSCs, we calculated both
the rand index and the adjusted mutual information (AMI)
after first clustering the embedded points using HDBSCAN
[36]. Both the Rand index and the AMI are measures of simi-
larity between two clustering assignments and provide an
indication of the accuracy with which one clustering predicts
the other. In general, theAMI providesmore accurate estimates
when the underlying cluster sizes differ significantly. The
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Mandrake embedding was found to have an Rand index of
0.987 and an AMI of 0.085, which was similar but still higher
than that found using common alternative embeddings includ-
ing UMAP, t-SNE and PCA (electronic supplementary
material, table S1). This suggests that Mandrake is able to pro-
duce a biologically meaningful embedding quickly using the
presence and absence of accessory genes as input.

(d) Embedding 650 k bacterial genome assemblies
from public databases

We then used SCE to search for structure across the space of
highly diverse bacterial genomes. A recent analysis produced
curated and assembled bacterial samples from the SRA data-
base, producing 661406 high-quality bacterial genomes [49].
We downloaded these assemblies from http://ftp.ebi.ac.
uk/pub/databases/ENA2018-bacteria-661k/ and sketched
their 14-mers. We then used these sketches to calculate Jac-
card distances between 14-mers, which we used to produce
a sparse matrix with the 100 nearest neighbours. Using this,
we ran Mandrake for 5 × 1011 iterations using 65 536 workers
on a GPU, which took 2 h. The objective stabilized around
halfway through the run, and the resulting embedding can
be seen in figure 4 and an animation of the SCE iterations
in electronic supplementary material, video S2.

We found that the most common species formed clear
clusters in the embedding space, with the exception of
Closteroides difficile in the centre of the space, which overlaps
with many other gut pathogens. We hypothesized that this
may be due to gut samples where the assembled sequence
contained multiple species, but just the most abundant
species were reported. We analysed the overall species diver-
sity and proportion of C. difficile sequence reported for the
samples in this dataset and plotted this section of the embed-
ding (electronic supplementary material, figure S1). This
shows that the central cluster is composed mostly of mixed
samples, which would be expected to be difficult to cluster,
and that most of the C. difficile, when viewed at higher resol-
ution, are separated from these other samples. Looking at
panels B and C, one can see that a number of the C. difficile
samples are mixed with other species, which is probably
why they have been placed in this large cluster in the plot,
pulling other similar clusters with them.

Most species were split into multiple clusters, possibly
representing strains within species, or subspecies. We investi-
gated a few notable examples further. Salmonella enterica
consists of multiple subspecies and multiple strains that can
be clustered with the HierCC scheme using HC2850 and
HC900, respectively [12,50]. We coloured the embedding by
these classifications (electronic supplementary material,
figure S2), using samples assigned to these schemes in Enter-
obase [7]. 98.5% are HC2850 2 (subspecies I), which are split
over multiple clusters; the remaining HC types are in separate
clusters on the plot. HC900 is more similar to the clusters

http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/
http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/
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found in the plot, with some loss of information in smaller
clusters (similar to the GPSC analysis above) and some
larger clusters further split up. The clusters therefore corre-
spond to a resolution somewhat finer than HC900. Very
similar findings are found running on the Salmonella genomes
alone, showing that Mandrake finds clusters corresponding
to biological entities within species, both when run across
and between species.

Some other interesting examples include Listeria monocyto-
genes, which has genetically distinct major lineages [51] and
appears as separate clusters spread around the embedding
that map onto these, but with further clusters within each
lineage (electronic supplementary material, figure S3). Myco-
bacterium tuberculosis is split into 5–10 clusters, which broadly
correspond to its major lineages defined by TBProfiler [52],
though with some differences (electronic supplementary
material, figure S4). The nonlinear nature of the embedding
is therefore able to simultaneously capture structure across
a range of genetic scales: strains, subspecies and species.

We also note a useful example for interpreting the plot
here: although M. tuberculosis has a larger radius in the
embedding than Streptococcus agalactiae, the former harbours
much less genetic diversity overall. This is an example of the
first point in our caveats on reading embeddings: cluster sizes
in the embedding space do not relate to the number of points
in the cluster, or its genetic diversity. However, the M. tuber-
culosis clusters are close together in the space, so between
cluster distances sometimes retain meaning.
(e) Embedding 1M SARS-CoV-2 genome alignments
from public databases

Wenext consideredMandrake’s ability to embedhighly similar
genomes into clusters by running the algorithm in its multiple
sequence alignmentmodeon acleaned subset of 941 981SARS-
CoV-2 genomes downloaded from the European Nucleotide
Archive (ENA; https://www.covid19dataportal.org). Of the
original 977 048 genomes downloaded, we filtered out 35 067
that had a length less than 90% of the Wuhan.1 reference
genome or were made up of more than 5% ambiguous nucleo-
tide calls. Each genomewas assigned to a SARS-CoV-2 lineage
using pangolin [5,53]. After generating a multiple sequence
alignment of the genomes using MAFFT v.7.487 [54], we ran
Mandrake in its ‘alignment’ mode, which calculates the pair-
wise Hamming distance between genomes ignoring
ambiguous base calls. Mandrakewas run for 1 × 1012 iterations
on a GPU with 94 976 workers, which took 3.7 h.

The resulting embedding is shown in figure 5 and elec-
tronic supplementary material, video S3, with the major
SARS-CoV-2 lineages comprising more than 10 000 genomes
assigned different colours. Interestingly, the major variants of
concern including the Delta and Alpha lineages are clearly
visible in the embedding, indicating that Mandrake is able
to identify biologically meaningful structure within very
large set of highly similar genomes. The delta variable of con-
cern (VOC) includes two major Pangolin lineages that have
been placed together in the Mandrake embedding. We note
the presence of a number of outlying points that have been
assigned to lineages. This may either reflect additional
sub-structure within the lineages or potential sequencing
artefacts, or be a limitation of the method.
4. Discussion
The population genomics of pathogens is currently experien-
cing an unprecedented pace of genome sequencing on a
global scale, which poses a challenge to many standard
workflows for data analysis. As many downstream epide-
miological or evolutionary analyses work within identified
clusters, the first tasks in population genomics workflows

https://www.covid19dataportal.org
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are to understand the population structure and the extent of
clustering of the input genomes, both of which are difficult to
do with increasing data size. While some new highly scalable
methods have been developed for this task, they are fre-
quently species-specific [55]. Doing this in a manner that
can be visualized is particularly helpful, especially given
the high dimensions and complex relationships inherent in
genomic datasets.

In this article, we have presented the Mandrake software,
which was designed to meet these particular needs and offers
programmatic plotting options and interactive exploration of
the data. Our current software architecture scales well to even
the largest available contemporary pathogen genomics
datasets. However, in future, it would clearly benefit from
reducing the quadratic computational complexity of the
input genome distance calculations, which could for example
be achieved with subsampling of the data by picking repre-
sentative samples among highly similar genomes. This has
been achieved in other packages by assuming that genetic
distances generally obey the triangle inequality [14,56].

We have shown that Mandrake is able to find genetic
structure across a range of diversities: via simulations of dis-
tinct population structures within SARS-CoV-2 genomes,
which vary fairly continuously with a low density of SNPs,
through the gene content variation within the global S. pneu-
moniae population, to the current corpus of sequenced



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210237

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 S

ep
te

m
be

r 
20

22
 

bacteria. In all of these examples, no labelling of the input
was needed and clusters that correspond to useful biological
units were automatically found. In some species in the
bacterial collections, Mandrake was even able to simul-
taneously find clusters within a species, while still
clustering different species correctly. Multiple orders of mag-
nitude of genetic diversity can therefore be exposed in the
same plot due to the local nature of the nearest-neighbour
approach. However, clusters formed by these plots are gener-
ally not expected to be competitive with species-specific
schemes, which have usually been curated and optimized
to find useful clusters, and that also have more favourable
properties in terms of assigning new samples to existing
clusters and maintaining consistent nomenclature [12,14].

Another interesting opportunity for further research and
development stems from the challenge of optimizing output
plots using models of human perception. Here, we used
user-guided training in SCE to determine a parameter s,
which governs the display of clusters in the output
embedding. Recent results in perception modelling for visual-
ization have demonstrated notable improvements over default
software options for scatterplots, where optimized designs can
much better adapt to an increase in data density [57]. There are
multiple display parameters that could be adjusted in order to
give a human expert an enhanced view into the data structure,
such as the marker size, their opacity and colours. Optimiz-
ation of such parameters using models of human cognition
has the potential to resolve the visualization challenges arising
from extremely high dimensionality of the data, not only for
cluster embedding as considered here, but also for other com-
plex objects such as phylogenetic trees. Several successful
examples of using approximate Bayesian computation in cog-
nitive model inference [58,59] suggest that this approach could
be fruitful for making improved displays of high-dimensional
population genomic data. Further improvements could also
still be made to the actual implementation of our output, by
including common techniques such as automatically grouping
data when zooming, and selecting data from a table—though
these are a challenge at this scale of data.
Nevertheless, we have been able to make Mandrake
useful across a range of scales and to a range of users, scaling
from within-browser analysis, through multicore CPU use on
the command line, up to high-power graphics cards. The
functions provided may also serve as a basis for the analysis
of pairwise relationships between genomic data in other
tools, such as phylogenetics [60], selection analysis [61] and
mathematical modelling [62].

Data accessibility. Code: https://github.com/johnlees/mandrake and
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