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ABSTRACT

Context. Active regions on the photosphere of a star have been the major obstacle for detecting Earth-like exoplanets using the radial
velocity (RV) method. A commonly employed solution for addressing stellar activity is to assume a linear relationship between the
RV observations and the activity indicators along the entire time series, and then remove the estimated contribution of activity from
the variation in RV data (overall correction method). However, since active regions evolve on the photosphere over time, correlations
between the RV observations and the activity indicators will correspondingly be anisotropic.
Aims. We present an approach that recognizes the RV locations where the correlations between the RV and the activity indicators
significantly change in order to better account for variations in RV caused by stellar activity.
Methods. The proposed approach uses a general family of statistical breakpoint methods, often referred to as change point detection
(CPD) algorithms; several implementations of which are available in R and python. A thorough comparison is made between the
breakpoint-based approach and the overall correction method. To ensure wide representativity, we use measurements from real stars
that have different levels of stellar activity and whose spectra have different signal-to-noise ratios.
Results. When the corrections for stellar activity are applied separately to each temporal segment identified by the breakpoint method,
the corresponding residuals in the RV time series are typically much smaller than those obtained by the overall correction method.
Consequently, the generalized Lomb–Scargle periodogram contains a smaller number of peaks caused by active regions. The CPD
algorithm is particularly effective when focusing on active stars with long time series, such as α Cen B. In that case, we demonstrate
that the breakpoint method improves the detection limit of exoplanets by 74% on average with respect to the overall correction method.
Conclusions. CPD algorithms provide a useful statistical framework for estimating the presence of change points in a time series.
Since the process underlying the RV measurements generates anisotropic data by its intrinsic properties, it is natural to use CPD to
obtain cleaner signals from RV data. We anticipate that the improved exoplanet detection limit may lead to a widespread adoption of
such an approach. Our test on the HD 192310 planetary system is encouraging, as we confirm the presence of the two hosted exoplanets
and we determine orbital parameters consistent with the literature, also providing much more precise estimates for HD 192310 c.

Key words. techniques: radial velocities – methods: data analysis – stars: activity – planetary systems

1. Introduction

The radial velocity (RV) method (e.g., Mayor & Queloz 1995;
Lovis & Fischer 2010; Hatzes 2016) is one of the most suc-
cessful techniques for detecting extrasolar planets (e.g., Fischer
et al. 2016). Nevertheless, perturbations in the RV data caused
by different types of stellar signals such as stellar oscillations,
granulations, and the presence of active photospheric regions
continuously plague the exoplanet community (e.g., Saar &
Donahue 1997; Queloz et al. 2001; Lindegren & Dravins 2003;
Desort et al. 2007; Meunier et al. 2010, 2017; Dumusque et al.
2011a; Dumusque 2016, 2018). In particular, stellar activity in
the form of spots and faculae represents the main limitation in

? Based on observations collected at the La Silla Paranal Observatory,
ESO (Chile), with the HARPS spectrograph at the 3.6-m telescope.
?? Branco Weiss Fellow–Society in Science (http://www.
society-in-science.org)

the full characterization of Earth-like exoplanets in RV surveys
(e.g., Saar & Donahue 1997; Meunier et al. 2010; Dumusque
et al. 2014; Dumusque 2018). New generation spectrographs such
as the EXtreme PREcision Spectrometer (EXPRES, Jurgenson
et al. 2016) and the Echelle SPectrograph for Rocky Exoplanet
and Stable Spectroscopic Observations (ESPRESSO, Pepe et al.
2014) have recently been constructed to solve the issue of instru-
mental signal, and therefore to provide data only affected by
stellar and planetary signals. However, disentangling the pertur-
bations due to stellar activity from the RV variations caused by
small size exoplanets remains the most crucial challenge (e.g.,
Davis et al. 2017; Dumusque 2018; Reiners et al. 2018; Simola
et al. 2019), as the RV variations induced by active regions are
an order of magnitude larger than those expected from Earth-like
exoplanets (e.g., Dumusque 2018).

Efforts have been made to model the signals caused by differ-
ent sources of stellar variability within the RV time series (e.g.,
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Tuomi et al. 2013; Rajpaul et al. 2015; Davis et al. 2017; Simola
et al. 2019). Several solutions have been successfully proposed
in order to deal with stellar oscillations and granulation phe-
nomena, such as: calculating stellar evolution sequences (e.g.,
Christensen-Dalsgaard et al. 1995); fitting a two-level structure
tracking (TST) algorithm based on a two-level representation of
granulation (Del Moro 2004); using daytime spectra of the Sun
in order to measure the solar oscillations (e.g., Kjeldsen et al.
2008; Lefebvre et al. 2008); and characterizing the statistical
properties of magnetic activity cycles focusing on HARPS obser-
vations (e.g., Pepe et al. 2011; Dumusque et al. 2011b). However,
properly modeling the other sources of stellar activity remains
extremely challenging (e.g., Nava et al. 2019). In the present
work, we deal with the cross correlation function (CCF) that
is derived from the stellar spectrum (e.g., Hatzes 1996; Hatzes
& Cochran 2000; Fiorenzano et al. 2005). As it is well known,
the CCF barycenter estimates the RV of the star. The asymme-
try and the full width at half maximum (FWHM) of the CCF
give a strong indication for stellar activity, meaning that vari-
ations in RV are caused by active regions rather than by an
exoplanet (e.g., Hatzes 1996; Queloz et al. 2001; Boisse et al.
2011; Figueira et al. 2013; Simola et al. 2019). Several solutions
have been successfully proposed for mitigating stellar activity
perturbations when working with RV measurements, including:
decorrelating RV data against activity indicators such as log R′HK
(e.g., Wilson 1968; Noyes et al. 1984) or Hα (e.g., Robertson
et al. 2014); modeling stellar activity by fitting Gaussian pro-
cesses (GPs, Rasmussen & Williams 2005; Haywood et al. 2014;
Rajpaul et al. 2015); or moving averages (e.g., Tuomi et al. 2013)
to the RV data. A common statistic employed for identifying
changes in the shape of the CCF is the bisector span (e.g., Hatzes
1996; Queloz et al. 2001).

As already pointed out, disentangling the signal caused by
stellar active regions and the signal due to an Earth-like planet
is extremely challenging, but some differences in the character-
istics of the two signals may be of help. Active regions produced
by spots and faculae evolve on the star’s photosphere and can
generate RV variations that spread from a few days to several
weeks, depending on the rotation period of the star and the inten-
sity of the magnetic cycle (e.g., Noyes et al. 1984; Dumusque
et al. 2014; Davis et al. 2017; Dumusque 2018; Nava et al. 2019).
While exoplanets produce a Doppler-shift on the CCF without
modifying its shape or its width, active regions produce varia-
tions in both the asymmetry and the FWHM of the CCF, whose
effect is a variation in the barycenter of the CCF, and there-
fore in the estimated median of the RV CCF (see e.g., Hatzes
1996; Queloz et al. 2001; Boisse et al. 2011; Figueira et al. 2013;
Dumusque et al. 2017; Simola et al. 2019; Thompson et al. 2020),
hereafter indicated as RV . We refer the reader to Table 1 for the
main RV-related symbols we adopt throughout paper. Moreover,
while an exoplanet produces a persistent Keplerian signal, the
signal produced by active regions is not persistent as it waxes,
wanes, and changes as a function of time (e.g., Fischer et al.
2016; Davis et al. 2017; Dumusque 2018; Thompson et al. 2020).

By using the stellar activity parameters estimated from the
study of the CCF, a linear model is often proposed in order to
decorrelate the RV data against the RV variations due to stellar
activity (e.g., Dumusque et al. 2017; Feng et al. 2017a; Simola
et al. 2019). Rather than using a normal fit to the CCF and then
calculating the bisector span, Simola et al. (2019) used a skew
normal (SN) fit to the CCF. The SN distribution allows a param-
eter to be specified, hereafter γ, which describes the asymmetry
of the CCF (e.g., Simola et al. 2019; Adcock & Azzalini 2020).

Table 1. Legend of the RV-related symbols adopted in this paper.

Symbol Definition

RV Radial velocity
RV Median of the RV CCF based on an SN fit
RV∗activity β0 + β1A + β2γ + β3FWHMSN + ε

∆RV∗bp RV −∑D+1
k=1 RV∗activity, k

∆RV∗oc RV − RV∗activity

∆RV p
bp (RV + RVK) −∑D+1

k=1 RV∗activity, k

∆RV p
oc (RV + RVK) − RV∗activity

Notes. See the text for further details.

Simola et al. (2019) suggest using the median RV as the barycen-
ter of the SN fit to the CCF.

Given the benefits of fitting an SN to the CCF as emphasized
by Simola et al. (2019), the model we employed in the analyses
of this work is defined as follows:

RV∗activity = β0 + β1A + β2γ + β3FWHMSN + ε, (1)

where β0 is the coefficient corresponding to the intercept, A
is the contrast parameter of the CCF (Fig. 2 in Dumusque
et al. 2014), γ is the aforementioned CCF asymmetry parame-
ter, FWHMSN is the FWHM of the CCF fitted with the SN, and
ε is the random error having a multivariate normal distribution
with vector of means equal to 0 and variance-covariance matrix
equal to σ2I (with I being the identity matrix).

The temporal evolution of active regions is reflected by the
change of the activity indicators obtained from the CCF (i.e., the
already defined A, γ, and FWHMSN) and depends on the rota-
tion period of the star and on its magnetic cycle (e.g., DeWarf
et al. 2010; Dumusque et al. 2011b; Borgniet et al. 2015). It seems
therefore reasonable to assume that stellar activity is not station-
ary, but rather “piecewise stationary”. By the term “piecewise
stationary”, we mean that the stellar activity does not change sig-
nificantly within certain properly selected temporal segments. If
we were able to detect the bounds of those segments, we could
properly split the RV time series and correct for stellar activity
by applying Eq. (1) to each segment. This represents the core of
the change point detection (CPD) methods to be compared with
the overall correction (oc) method, where the correction model
based on Eq. (1) is applied over the entire RV time series.

In this paper, we propose the breakpoint (bp) method using
a CPD technique to correct for variations within an RV time
series that are induced by active stellar regions. The bp method
is compared to the oc method using four different stars, some
of which have known exoplanets. We demonstrate that the bp
method is better able to correct the RV time series variations,
suggesting that the class of CPD methods may be helpful for
detecting low-RV planetary signals such as the ones induced by
Earth-like exoplanets.

The paper is organized as follows. In Sect. 2, we introduce
the CPD methods, which constitute the statistical framework we
used to perform our analyses. In Sect. 3, we compare the perfor-
mances of the CPD method in use and the oc method, both using
real observational data and developing a proper simulation study
to quantify the threshold of detection of exoplanets. The discus-
sion of the results and our conclusions are outlined in Sects. 4
and 5, respectively.
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2. Change point detection methods

CPD methods are widely used when the goal is to find changes
and variations in a time series (e.g., Truong et al. 2020). The
presence of change points in a time series is a strong indica-
tion that the data generating process has changed (e.g., van den
Burg & Williams 2020). The first CPD method (the so-called
“intercept-only” method) was originally introduced by Page
(1954) in order to identify changes in the mean of an indus-
trial quality control variable. CPD methods have since become
a reliable and widely used solution in bioinformatics (e.g.,
Guédon 2013; Hocking et al. 2013; Truong et al. 2018), climatol-
ogy (e.g., Reeves et al. 2007; Verbesselt et al. 2010; Maidstone
2016), financial analyses (e.g., Lavielle et al. 2006; Frick et al.
2014), medicine (e.g., Liu et al. 2018), network data traffic anal-
ysis (e.g., Lévy-Leduc 2009; Lung-Yut-Fong et al. 2011), signal
processing analysis (e.g., Lavielle & Teyssiere 2007; Jandhyala
et al. 2013; Haynes et al. 2017), and speech processing (e.g.,
Angelosante & Giannakis 2012).

Following Truong et al. (2020), a CPD method may be clas-
sified as either online or offline. The online methods are used
when seeking real-time changes in the data generating process
(e.g., Adams & MacKay 2007; Sahki et al. 2018). Instead, the
so-called offline (referred to also as “a posteriori”) methods are
based on the CPD algorithms designed to estimate change points
in the generative process of a time series when the collecting
data process is over (e.g., Truong et al. 2020; van den Burg &
Williams 2020). If only a single-parameter change is monitored,
then we talk about univariate processes and univariate CPD
methods being employed; otherwise we deal with multivariate
methods (e.g., Aminikhanghahi & Cook 2017).

2.1. The CPD statistical framework

In order to introduce the CPD methods, we start by defining the
object of interest as an univariate time series y = y1,...,T = {yi}Ti=1
made of T data points. The y time series is assumed to be “piece-
wise stationary” (e.g., Chen & Gupta 2011; Truong et al. 2020;
van den Burg & Williams 2020), which means that the tempo-
ral behavior of y changes at D different and (generally) unknown
locations. The goal of the CPD methods is to estimate the set
of indices l corresponding to the D locations, l = {l1, . . . , lD},
which delimit different stationary regions; by convention l0 ≡ 1
and lD+1 ≡ T .

From a statistical standpoint, CPD methods fall into the
model selection problem, because the overall goal of estimating
the vector l of change point locations is equivalent to retrieving
the best segmentation of the time series among all the possibili-
ties (e.g., Chen & Gupta 2011; Truong et al. 2020; van den Burg
& Williams 2020).

In order to retrieve the best possible segmentation, CPD
methods rely on the maximization of the penalized log-
likelihood function LP(D; y), which is defined as:

LP(D; y) = L(D; y) − λP(T )

=

D+1∑
k=1

log L(y[lk−1:lk−1]) − λP(T ),
(2)

where k is the index used to identify the D + 1 segments of
y bounded by l0, . . . , lD+1, log L(y[lk−1:lk−1]) is the log-likelihood
function evaluated at the kth segment, λ is a positive pre-selected
constant, and P(T ) is a penalty function that may be added to
balance out the goodness-of-fit term given by the log-likelihood

function L(D; y) ≡ ∑D+1
k=1 log L(y[lk−1:lk−1]) (e.g., Zeileis et al.

2002; Bai & Perron 2003; Truong et al. 2020). After evaluat-
ing the D̂ value for which L(D; y) is maximum (i.e., L(D̂; y) =

L̂(y) = maxDL(D; y)), λP(T ) (which is, in general, a func-
tion of L̂(y), see e.g., Eq. (5)) is subtracted from L(D̂; y) to
obtain LP(D̂; y). The best partition l̂ = {l̂k} for that given D̂ is
the one corresponding to the maximum value of the penalized
log-likelihood function, that is L̂P = maxlLP(D̂, y{l}). In other
words, the different LP(D̂; y{l}) values are used to address the
model selection problem (i.e., the choice of the best segmenta-
tion), and L̂P identifies the optimal partition of the y time series
made of D̂ + 1 segments. If the total number of change points is
assigned a priori and only their locations along y is unknown, no
penalty is added in Eq. (2).

2.2. The breakpoint method

Given the multiple sources of stellar activity, the most adequate
methods to treat the changes in RV time series are the offline
multivariate CPD methods, which allow a linear relationship to
be expressed between the response variable y and a set of covari-
ates (which may be arranged in a matrix, X), as the one defined in
Eq. (1). Using those methods, the set of locations l = l1, . . . , lD is
estimated not only by evaluating the changes in the mean and in
the variance of y, but also by considering the relation between y
and X (e.g., Hackl & Westlund 1989; Bai 1997a,b; Bai & Perron
1998, 2003; Zeileis et al. 2002, 2003). In the analyses presented
in the following Sections, we use the CPD method proposed by
Bai & Perron (2003), known as the breakpoint (bp) method.

In order to introduce the bp method, we start by providing the
definition of the multivariate linear regression model made of p
covariates for the vector of the observations y, which generalizes
the model proposed in Eq. (1). In matrix form, this is:

y = Xβ + ε = β01 + β1X1 + · · · + βpXp + ε, (3)

where X is the matrix of covariates, β is the vector of parame-
ters to be determined according to the CPD method in use1, and
ε is the already defined random error distributed according to a
multivariate normal distribution having vector of means equal
to 0 and variance-covariance matrix equal to σ2I. Assuming the
whole time series y as stationary implies that all the coefficients
β = (β0, . . . , βp) are constant over the entire temporal range of
observations. Conversely, assuming piecewise stationarity, y can
be divided in D + 1 segments over each of which the coeffi-
cients are constant, so that there is one set of coefficients per
segment, for a total of D + 1 vectors βk (k = 1, . . . ,D + 1). With
the piecewise stationarity assumption, following Bai & Perron
(2003); Zeileis et al. (2003), we may update Eq. (3) as:

y[lk−1:lk−1] = X[lk−1:lk−1],·βk + εk. (4)

The index k = 1, . . . ,D + 1 indicates the temporal segment
over which the vector of the βk coefficients is constant.

Bai & Perron (2003) retrieve the simultaneous estimation of
multiple breakpoints l1, . . . , lD by calculating the residual sum
of squares (RSS) of Eq. (4). As ε is distributed according to a
multivariate normal distribution, we recall that the least squares
solution proposed by Bai & Perron (2003) is equivalent to the

1 Since y is a vector of dimension T × 1, the matrix of covariates
has dimensions T × (p + 1), where p is the number of covariates. The
columns of X are X1, . . . , Xp plus an initial extra column X0 padded with
a vector of ones that is indicated as 1. Consequently, the length of the
parameters’ vector β is p + 1.
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maximum likelihood solution retrieved by maximizing Eq. (2),
as long as the same penalty is used in both procedures. In par-
ticular, following the implementation of Bai & Perron (2003),
λ = 1 and the penalty function P(T ) is given by the Bayesian
information criterion (BIC, Schwarz 1978), leading to

P(T ) = (p + 1)(D + 1) ln(T ) − 2 ln L̂(y), (5)

where the multiplicative term (p + 1)(D + 1) is equal to the over-
all number of parameters used by the bp method. According to
Eq. (1), p + 1 = 4 parameters (i.e., β0, . . . , β3) are used inside
each segment.

Since D > 1 is unknown, the optimization problem might
be computationally challenging. In order to tackle the compu-
tational burden of estimating D̂, Bai & Perron (2003) used the
dynamic programming algorithm originally proposed by Fisher
(1958) and extended by Bellman & Roth (1969) and Guthery
(1974). The core idea of the dynamic programming approach is
to first compute a set of triangular RSS matrices for each D =
1, . . . ,Dmax value (where Dmax is an integer number tuned by the
researcher, indicating the maximum number of breaks allowed
in that analysis2). In other words, within a given set of trian-
gular RSS matrices, the number of segments D is fixed, while
the starting and ending locations of each segment change. Then,
the bp method returns that partition, which minimizes the RSS
of Eq. (4) (and hence maximizes LP(D; y) of Eq. (2)) among
all the previously created matrices. The main challenge of the
dynamic programming approach is given by the computational
effort needed to compute the sets of triangular RSS matrices.
Further details about the dynamic programming algorithm and
the bp method can be found in Bai & Perron (2003); Zeileis et al.
(2002, 2003). In particular, this work uses the version proposed
by Zeileis et al. (2003).

3. Data analysis

3.1. Preliminary considerations

To test the performances in modeling and removing stellar activ-
ity from RV time series, we carried out several analyses of RV
time series to compare the bp method presented in Sect. 2.2
with the oc method that corrects for stellar activity over the
entire temporal range considered as a whole segment. We con-
sidered real RV observations of four different stars, namely
α Cen B, HD 215152, HD 10700, and HD 192310, which were
selected because of their high signal-to-noise ratio (S/N) and
long-baseline coverage with an intensive observational cadence.

In particular, Rajpaul et al. (2015) analyzed the 459 HARPS
RV data points of α Cen B obtained by Dumusque et al. (2012)
(a subsample of the RV observations used in this work). After
properly modeling the RV time series, they concluded that all the
significant variations in the time series are compatible with stel-
lar activity. Therefore, as α Cen B does not likely host any planet,
by applying both the bp and oc methods to its RV time series, we
may test the performances of the two methods in removing stellar
sources of noise and retrieving a "cleaned" time series. Only if a
further signal is present will it then be worth wondering whether
it is exoplanetary in origin.

2 We set Dmax = 8 throughout the analyses of this paper, which turned
out to be high enough to avoid putting a strong a priori constrain on the
number of breakpoints. In fact, the bp method usually converges only
up to D̄ < Dmax, and therefore the set of RSS matrices is computed only
for those models.

Table 2. Average signal to noise ratio (S/N) of the available spectra,
number of RV data points (# CCFs), and stellar rotational periods (Prot)
for each of the four targets of interest.

α Cen B HD 215152 HD 10700 HD 192310

S/N @ 550 nm 339 141 273 207
CCFs (#) 16451 273 9243 1348
Prot (d) 39 (a) 42 (b) 34 (c) 48 (d)

References. Prot sources: (a)DeWarf et al. (2010); (b)Delisle et al. (2018);
(c)Baliunas et al. (1996); (d)Pepe et al. (2011).

We considered RV data points derived only from spectra with
S/N ≥ 10 at 550 nm. The average S/N values at 550 nm, the
number of CCF data points, and the rotation period Prot of the
four stars analyzed in this work are listed in Table 2.

All the results were obtained using the statistical software R
(R Core Team 2019). In particular, the vector listing the loca-
tions of change points within the bp method was estimated by
using the R package strucchange3. Since the presence of out-
liers in the data could have led to an exaggerated number of
change point locations (e.g., Fearnhead & Rigaill 2019), before
applying the bp method and the oc method to the data, we pre-
liminarily rejected all those measurements falling off the range
between the 5th and 95th percentile for each considered variable
(e.g., Ghosh & Vogt 2012; Pollet & van der Meij 2017).

3.2. Analyses of a real star: α Cen B

The RV data of α Cen B consist of T = 17627 CCFs taken from
the end of February 2008 to the end of May 2013 by the HARPS
spectrograph. Firstly we used the SN fit to the CCF in order
to estimate the parameters RV , A, γ, and FWHMSN. Secondly,
following Dumusque et al. (2012), all the measurements were
preliminarily corrected from the contamination that was induced
by the close-in α Cen A. Finally, the outliers were clipped as
specified above, which resulted in a final set of T = 16451
measurements.

After cleaning the data, the response variable becomes
y = RV , while the matrix of the covariates is X =
(1, A, γ,FWHMSN). Since X also contains the intercept term
X0 ≡ 1, we emphasize again that the parameter vector β is made
of p + 1 = 4 elements, where p is the number of covariates.

We applied both the oc and bp methods to the y = RV time
series, further assuming as input the linear regression model
of Eq. (1) that specifies the relationship between the response
variable y and the matrix of covariates X. The bp method
found D̂ = 4 change points (i.e., D̂ + 1 = 5 piecewise stationary
segments), whose locations are summarized in Table 3, where
the error bars at the1σ level highlight the precision of the bp
method. The variability of the activity indicators inside each
segment is extremely small, while the variability between each
segment is larger, suggesting indeed that the activity of the star
changes where a new segment starts. To highlight the locality,
the spread, and the skewness of the data synthesized in Table 3,
we produced the boxplots (DuToit et al. 2012) shown in Fig. 1.
For each segment, Fig. 1 displays the boxplots of the response
variable RV and of the 3 covariates A, γ, and FWHMSN. The

3 https://cran.r-project.org/web/packages/
strucchange/. The same method is also available in PYTHON
through the ruptures package (Truong et al. 2018).
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Table 3. Locations of the change points (CPL) estimated by the bp method for α Cen B.

CPL JD Date Time span CCFs RV A γ FWHMSN
(d) (#) ( m s−1) (×10−1) ( m s−1)

l0 2454524.90655 28 Feb. 2008 500.69 3146 −4.1+2.1
−1.9 3.1059+0.0012

−0.0011 0.0009+0.0007
−0.0005 6.2182+0.0046

−0.0037l1 2455025.59597 13 Jul. 2009 333.86 2779 2.1+2.7
−1.3 3.1049+0.0028

−0.0016 0.0035+0.0037
−0.0020 6.2332+0.0174

−0.0077l2 2455359.45222 11 Jun. 2010 396.21 3923 1.5+2.5
−0.6 3.1046+0.0015

−0.0019 0.0026+0.0015
−0.0007 6.2396+0.0045

−0.0064l3 2455755.65986 13 Jul. 2011 363.80 2673 1.4+4.0
−0.5 3.1034+0.0018

−0.0022 0.0058+0.0016
−0.0010 6.2582+0.0076

−0.0053l4 2456119.45503 10 Jul. 2012 332.34 3930 −2.6+1.7
−3.2 3.0998+0.0019

−0.0022 0.0049+0.0015
−0.0011 6.2624+0.0063

−0.0071l5 2456441.79243 29 May 2013

Notes. For each location, the JD and its corresponding date in the Gregorian Calendar format is displayed. For each segment, the number of data
points (# CCFs), the response variable RV , and the estimates of the detrending parameters are shown by reporting their median value and error bars
at the 1σ level.
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Fig. 1. Boxplots of the response variable RV and of the activity indicators A, γ, and FWHMSN for each segment of the optimal partition found
by the bp method when applied to the α Cen B RV time series. We recall that a boxplot is a graphical tool that visualizes a distribution; the
median is shown by the thick horizontal line, while the box extension defines the interquartile range (IQR), being bounded by the first (Q1)
and third (Q3) quartiles. The upper and lower limits of the vertical dashed lines (the whiskers) are defined as min {max (X),Q3 + 1.5 · IQR} and
max {min (X),Q1 − 1.5 · IQR}, respectively, where X indicates the sample to be represented. Outliers beyond the whiskers (if any) are represented
as empty dots.
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Table 4. Correlation ρ between RV and the activity indicators of α Cen B for each of the piecewise-stationary segments detected by the bp method.

1 2 3 4 5

ρ(RV; A) −0.13 0.42 −0.53 −0.20 −0.85
(−0.17,−0.10) (0.39, 0.45) (−0.55,−0.51) (−0.24,−0.17) (−0.86,−0.84)

ρ(RV; γ) 0.40 0.61 −0.01 0.25 0.48
(0.37, 0.43) (0.58, 0.63) (−0.037, 0.026) (0.21, 0.28) (0.46, 0.50)

ρ(RV; FWHMSN) 0.64 0.77 0.29 0.60 0.43
(0.62, 0.66) (0.76, 0.79) (0.26, 0.32) (0.57, 0.62) (0.41, 0.46)

Notes. A 95% confidence interval for each correlation coefficient ρ is specified within parentheses.

Table 5. Variability of the RV , RV∗activity, and ∆RV∗ time series of α Cen B quantified through the rms.

rms bp segment 1 bp segment 2 bp segment 3 bp segment 4 bp segment 5 bp overall oc overall

RV ( m s−1) 2.15 2.94 2.48 3.53 3.13 3.79 3.79
RV∗activity ( m s−1) 1.52 2.35 1.71 2.71 2.78 3.37 1.51
∆RV∗ ( m s−1) 1.52 1.77 1.80 2.27 1.43 1.75 3.48

BIC 65 332 87 771

Notes. We recall that the RV statistic depends on the SN fit, and hence the rms values are the same for both the bp and oc methods, which are
applied afterward. The last row shows the BIC coefficients corresponding to the bp and oc models.

difference between contiguous boxplots describing the covariate
distributions in contiguous segments visually marks the change
in the correlation between RV and the activity indicators. From
a quantitative point of view, the Mann-Whitney test (McKnight
& Najab 2010) – which assumes that the two samples to be com-
pared are not statistically different as null hypothesis – confirms
the differences of the covariates distributions between contigu-
ous segments. In fact, for all the covariates, it gives p-values
∼10−8 for each pair of contiguous segments. Moreover, we
note that A globally decreases, while γ and FWHMSN increase
by moving from one segment to the next, which suggests a
significant temporal change in the stellar activity level. Overall,
Table 3 and Fig. 1 show the characteristics and the quality of the
optimal segmentation determined by the bp method for α Cen B.

Another instrument used to evaluate the quality of the solu-
tion recommended by the bp method is the correlation–pairs
plot. Figure 2 displays the correlation plots between RV and the
activity indicators when the oc method is applied to the data
(top left panel) that is to be compared to the results obtained
on each of the five segments found by the bp method (other pan-
els). The oc method is not able to catch all the variations over the
entire time series. In fact, the correlation parameters sensibly dif-
fer from one segment to the other, suggesting that the piecewise
stationary assumption of RV as a function of A, γ, and FWHMSN
is reasonable, as it is also highlighted in Table 4.

We can further stress the benefits of using the bp method by
comparing ∆RV∗bp and ∆RV∗oc, which are defined as the residuals
obtained using the bp and oc methods, respectively, when the
estimated activity level of the star RV∗activity is subtracted from

the RV time series:

∆RV∗bp = RV −
D+1∑
k=1

RV∗activity, k, (6)

∆RV∗oc = RV − RV∗activity. (7)

The rms of ∆RV∗oc vs. ∆RV∗bp are 3.48 m s−1 and 1.75 m s−1

respectively, so we reach similar conclusions in preferring the
piecewise linear regression strategy, which lowers the rms by
50%. In addition, by comparing the rms of the modeled stellar
activity with the rms of the RV signal, it turns out that the bp
method explains 89% of the variability of the RV signal in terms
of stellar activity, while the oc method is able to model only
40% of the RV signal (see Fig. 3). Since we expect the RV time
series to be entirely produced by stellar activity, adopting Eq. (1)
in each of the D + 1 segments for the bp method significantly
improves the detrending performances.

The detailed rms values of the relevant quantities for both
methods are listed in Table 5. In particular, the ∆ BIC between
the oc and the bp methods is +22439, thus favoring the bp
method according to the BIC minimization criterion. We recall
that HARPS is built to obtain RV precision of the order of
1 m s−1.

A fourth approach used to compare the performances of
the two methods is the evaluation of the generalized Lomb–
Scargle (GLS) periodograms (e.g., Lomb 1976; Scargle 1982;
Zechmeister & Kürster 2009) on both the ∆RV∗oc and ∆RV∗bp
residuals. The GLS periodograms for both methods are pre-
sented in Fig. 4. Thanks to the bp method, the majority of the
peaks caused by stellar activity are successfully removed from
the GLS periodogram (dash-dotted blue line in Fig. 4).

Conversely, the oc method is not able to properly tackle
the peaks caused by active regions (dashed red line in Fig. 4),
especially for periods longer than 100 days.

We used the Cramér-von-Mises (CvM) distance minimiza-
tion criterion (Cramér 1928), which defines the measure we
refer to as the critical value (cv), to further compare the GLS
periodograms obtained from the two different methods. Going
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Fig. 2. α Cen B: correlation plots between RV and the activity indicators (A, γ, and FWHMSN); the contrast parameter A is shown after having
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Fig. 3. Modeling of the stellar activity of α Cen B, as performed by the bp and oc methods. Top panel: signal due to stellar activity as estimated by
the bp method (blue crosses) and by the oc method (red triangles) superimposed to the RV time series (black circles) of α Cen B. Bottom panel:
∆RV∗ as computed by the bp method (blue crosses) and by the oc method (red triangles). The black circles on the background show the original
RV time series, enabling a visual comparison of the improvement achieved by the bp method in the data correction. The change point locations
(Table 3) are displayed in both plots as vertical orange dashed lines.
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Fig. 4. GLS periodograms of α Cen B derived from the original RV time series (solid black line), ∆RV∗oc (dashed red line), and ∆RV∗bp (dash-
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periodogram obtained from ∆RV∗oc. The cv values for ∆RV∗oc and ∆RV∗bp are displayed as solid red and blue lines, respectively.
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into further detail, after the GLS is obtained, the main goal
is to check whether any periods are significant. A period is
considered significant if its GLS periodogram peak statistically
differs from the distribution that would result from the absence
of periodic fluctuations (null hypothesis). To determine the sig-
nificance level of the peak, this distribution needs to be known
or estimated. A Beta distribution B(α, β) whose parameters are
α = m−1

2 and β = n−m
2 , where n is the number of data points and

m is the number of GLS parameters, is usually assumed (see
e.g., Schwarzenberg-Czerny 1998; Seber & Lee 2003; Gupta &
Nadarajah 2004). However, adopting those α and β values is not
flexible enough, as some period values identified as significant
may turn out to be false positives (see e.g., Thieler 2014; Thieler
et al. 2016). In order to avoid the selection of those false positive
periods, Thieler (2014) and Thieler et al. (2016) propose relax-
ing the assumption on the Beta distribution, by not defining its
parameters “a priori”, which makes the distribution more flexi-
ble. Once the assumptions on the Beta distribution are relaxed,
Thieler (2014) and Thieler et al. (2016) suggest estimating the
parameters of the B(α, β) by minimizing the following CvM
distance:

CvM(θ) =

∫ +∞

0
(Fn(u) − Fθ(u))2 dFθ(u)

=
1
n

n∑
i=1

(
Fθ(u(i)) − i − 0.5

n

)2

+
1

12n2 ,

(8)

where θ is the parameter space (θ = (α, β) in our case), u =
u(1), . . . , u(n) is the vector of the ordered set of the observations
(data points), Fn(u) is the empirical distribution function (i.e.,
the empirical cumulative distribution function built from the
data), and Fθ(u) is the theoretical distribution function (the Beta
distribution in our case). Once an estimate for θ is found (i.e.,
θ̂ = (α̂, β̂)), the cv is calculated as the q√0.95 – quantile of the
CvM-fitted Beta distribution B(α̂, β̂), where q indicates the num-
ber of period grid-points used to build the GLS periodogram.
According to this criterion, the GLS peaks above the computed
cv value are significant and deserve further investigation. In this
work, we used the cv rather than the well known false alarm
probability (FAP) because the cv is more robust (e.g., Thieler
2014; Thieler et al. 2016).

The cv computation for ∆RV∗oc and ∆RV∗bp yields cvoc = 0.43
and cvbp = 0.022. Peaks in the GLS below the cv are to be con-
sidered as caused by stellar activity, while more detailed analyses
might be needed for peaks above the cv to discover their nature.
All in all, the high cvoc value suggests quite a noisy GLS, which
prevents an effective detection of exoplanetary signals. Instead,
the much lower cvbp indicates a cleaner GLS, meaning that it is
worth investigating even low-powered peaks, which in principle
might reveal the presence of small exoplanets. We specifically
checked the behavior of the GLS periodogram, by inspecting
the period interval that includes the rotation period of α Cen
B. Looking at Fig. 5, we note that the oc method is still unable
to remove the peak at P∼ 39 days, which is close to Prot of α
Cen B (e.g., DeWarf et al. 2010). In fact, the 39-day peaks in
the original and in the oc-corrected GLS periodograms both
have normalized powers PRV ≈ Poc ≈ 0.17. Instead, in the bp
method, the normalized power of this peak is sensibly reduced
to Pbp ≈ 0.027. Both Poc and Pbp cannot bring us to immediately
postulate the existence of a candidate exoplanet with an orbital
period of 39 days. In fact Poc < cvoc = 0.43, while Pbp is quite
close to cvbp = 0.022, although greater. Regardless, as our main
goal is cleaning the original RV time series from stellar activity,
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Fig. 5. GLS periodograms of α Cen B derived from the original RV
time series (solid black line), ∆RV∗oc (dashed red line), and ∆RV∗bp (dash-
dotted blue line), focusing on a subset of the epochs including the
rotation period of the star equal to 39 days (highlighted by the verti-
cal gray line). The 39-day peaks have normalized powers PRV = 0.173
and Poc = 0.167 in the original and in the oc-corrected GLS, respec-
tively. The normalized power of this peak is reduced at Pbp = 0.027 for
the bp-corrected GLS. The cv value for ∆RV∗bp is displayed as the hori-
zontal blue line and is equal to 0.022; we recall that the cv for ∆RV∗oc is
0.43.

Table 6. Periods P and corresponding normalized powers P found in
the ∆RV∗bp GLS periodogram of α Cen B, whose peaks are above the
critical value of 0.022.

P (d) P
10 0.026
33 0.048
36 0.049
40 0.035
44 0.025
58 0.033
70 0.033
88 0.030
113 0.027
161 0.035
169 0.033

it is better to deal with the bp method because it recognizes and
reduces the GLS-P(Prot) (although the corrected peak is higher
than cvbp, which will encourage further investigatations to better
understand its nature), rather than dealing with the oc method
where the unchanged GLS-P(Prot) (which is below cvoc) may
lead to a false negative case. As such, since Pbp > cvbp, we refer
the reader to Table 6 and to our discussion in Sect. 4, where we
investigate the significance of all the ∆RV∗bp-peaks whose nor-
malized powers are greater than the cv threshold. We anticipate
that no Keplerian-like signals have been detected.

Finally, to test the strength of the bp method, we also applied
it to the RV data set analyzed by Dumusque et al. (2012) and
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Table 7. rms statistic of α Cen B RV time series for different partitions (D is the number of breakpoints); we recall that rms (RV) = 3.79 m s−1.

α Cen B, bp method D̂ = 4 D = 1 D = 2 D = 3 D = 5

rms RV∗activity ( m s−1) 3.37 2.43 3.36 3.36 3.37
rms ∆RV∗bp ( m s−1) 1.75 2.97 1.90 1.78 1.80
Wilcoxon test p-value 0.015 0.27 0.83 0.68

∆BIC = BICD − BICD̂=4 +10 360 +1829 +447 +853

Notes. The second to last row lists the p-values of the Wilcoxon tests, which were used to compare the rms of ∆RV∗bp for D̂ = 4 (the optimal
solution) with the rms of ∆RV∗bp for the other choices of D. Finally, the last row reports the BIC differences of the various D-models with respect
to the optimal D̂-model.

then by Rajpaul et al. (2015). As already noted, that data set
made of 459 CCFs is a subset of the RV time series considered in
this work. The GP framework presented in Rajpaul et al. (2015)
contains significantly fewer free parameters than the model by
Dumusque et al. (2012) (14 vs. 23). Using our bp method, we
found 3 piecewise stationary segments. This makes our model
comparable to the GP model of Rajpaul et al. (2015) in terms
of free parameters (12 in our case), with the advantage that the
linear correction we propose in Eq. (1) is simpler than any GP
framework. According to our analyses, whose consequent GLS
periodograms are displayed in Fig. 6, there is not any statistical
evidence showing the presence of an exoplanet having an orbital
period of ∼3.2 days, disproving the discovery by Dumusque et al.
(2012) and confirming the conclusions presented in Rajpaul et al.
(2015). In fact, our GLS normalized powers are well below the
respective cvbp and cvoc thresholds for a wide neighborhood of
3 days (see Fig. 6). Therefore, we conclude that the GLS sig-
nal at ∼3.2 days visible in Fig. 4 of Dumusque et al. (2012)
and announced as an exoplanet is instead likely caused by an
overfitting issue.

3.3. Comparison between the optimal and the suboptimal
solutions of the bp method

The bp method does not only return the best D̂ and the cor-
responding change point locations in the time series; the bp
method also returns the best partition for each D = 1, . . . ,Dmax.
We can interpret those solutions as the best segmentations for
each fixed D. When working with α Cen B, we found D̂ = 4
as the best number of breakpoints, by applying the RSS crite-
rion to Eq. (4), combined with the BIC-based penalty function
of Eq. (5). Indeed the D̂ = 4-model has the lowest BIC among
all the other models, as emphasized by the ∆BIC values reported
in Table 7.

We decided to further compare the results obtained from the
best partition (i.e., the optimal solution D̂ = 4) with the other
suboptimal solutions derived from the other D values. From a
statistical standpoint, we found that the solutions for D = 2,
D = 3 or D = 5 did not differ noticeably from the optimal
one in terms of rms computed on ∆RV∗bp; the results are pre-
sented in Table 7. In particular, we used the Wilcoxon test (e.g.,
Zimmerman & Zumbo 1993) to compare the rms of ∆RV∗bp for
D̂ = 4 with the rms of ∆RV∗bp for the other available cases (null
hypothesis: the compared samples are not statistically different).
The p-values inferred from the Wilcoxon tests were 0.27, 0.83,
and 0.68, obtained by comparing the D̂ = 4 optimal solution with
the suboptimal solutions derived from D = 2, 3, and 5, respec-
tively. The results of the Wilcoxon tests suggest that the solutions

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Period [days]

N
or

m
al

iz
ed

 P
ow

er

1 2 3 4 5 6 7 8 9 10

RV
∆RV*bp

∆RV*oc
cvbp= 0.10
cvoc= 0.21
Candidate Exoplanet

Fig. 6. GLS periodograms of α Cen B derived from the subset of
459 RVs, also analyzed by Dumusque et al. (2012); Rajpaul et al. (2015).
In detail, the periodograms have been computed from the original RV
time series (solid black line), ∆RV∗oc (dashed red line), and ∆RV∗bp (dash-
dotted blue line). The plot focuses on the neighborhood of 3.2357 days
(highlighted as a vertical gray line), which corresponds to the orbital
period of the exoplanet announced by Dumusque et al. (2012) and then
disproved by Rajpaul et al. (2015). We note that all the GLS peaks are
below the cv thresholds for both of the methods.

for D = 2, 3, 4, and 5 are not statistically different for the com-
monly employed significance levels: αfixed = (0.01, 0.05, 0.1).
However, the solution for D̂ = 4 leads not only to the small-
est rms of the ∆RV∗bp time series, but also to the smallest cv
among all the considered solutions, as shown in Fig. 7. We
further investigated the robustness of the estimated cv by per-
forming a bootstrap simulation study (e.g., Efron & Tibshirani
1993). The results confirmed that the cv found when using D̂ = 4
is significantly smaller than the cv retrieved by using subopti-
mal solutions; in fact the standard deviation of each cv is of the
order of 10−3. Since all the GLS peaks below the cv threshold
are ignored, dealing with low cv values means not cancelling
out low GLS peaks, which might represent putative low-mass
planets. As a consequence, from an astronomical standpoint, the
optimal solution retrieved by the bp method is always preferable,
especially when seeking super–Earths or Earth–like exoplanets.
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Fig. 7. Generalized Lomb–Scargle (GLS) periodograms of α Cen B derived from the ∆RV∗bp when using D̂ = 4 (solid black line; this solution is the
same reported in Fig. 4 as the dash-dotted blue line). The GLS periodograms derived from the ∆RV∗bp when using D = 2, 3, and 5 are displayed as a
dotted blue line, a dash-dotted orange line and a dashed red line, respectively. The x-axis uses the base-10 logarithmic transformation of the period
in order to improve the readability of the plot. The cv values for ∆RV∗bp are displayed as black, blue, orange and red lines for the cases D = 4, 2, 3,
and 5, respectively. Although the rms of ∆RV∗bp for the considered cases are not statistically different, the bp-optimal solution (D̂ = 4) leads to the
smallest cv.

3.4. Exoplanets detection limit

3.4.1. Simulation study based on α Cen B data

After the results were obtained by analysing real RV data of
α Cen B, we decided to perform a simulation study to test
how well the bp method works in detecting exoplanets. As
already stressed, the RV time series of α Cen B is essentially
made of stellar activity signals since no exoplanets have been
detected (e.g., Rajpaul et al. 2015). Therefore, we added artificial
Keplerian signals (RVK) that would be generated by exoplanets
in circular orbits to the original RV time series, we applied both
the bp and oc methods to clean the data set for stellar activ-
ity (obtaining ∆RV p

bp and ∆RV p
oc, respectively), and we checked

to which extent the two methods are able to find the simulated
planets, distinguishing the planetary signals from stellar activ-
ity. Any Keplerian signal added to the RV time series translates
in a shifting of the CCFs that changes according to the period,
the amplitude, and the phase that is imposed. In particular, we
used the following grid of values: periods from 1 to 500 days,
by steps of 1 day for periods shorter than 50 days, and then
by steps of 10 days for longer orbital periods, semiamplitudes
from 0.1 to 15 m s−1 by steps of 0.1 m s−1and 51 evenly sam-
pled phases between 0 and 2π, for a total of 726 750 simulated
planets.

Similar simulation studies have already been proposed by
Howard et al. (2010); Mayor et al. (2011) and Simola et al. (2019).
In this work, the detection of an exoplanet was tested by inspect-
ing the GLS produced from the ∆RV p

bp and ∆RV p
oc data. This was

implemented by first flagging as a positive finding those GLS
features that are above the cv previously calculated for ∆RV∗oc
(cvoc = 0.43) and for ∆RV∗bp (cvbp = 0.022)4. Then, we checked

4 Despite the addition of the Keplerian signal, we noted that the ∆RV p

cvs are basically the same as the cvs computed from ∆RV∗bp and ∆RV∗oc,

that the normalized power at Pp (i.e., Pp = P(Pp)) was statisti-
cally comparable to the theoretical normalized power P̂p. This
would appear from the time series only made of the Keplerian
signal of the synthetic planet that had been perturbed with a
normal distribution having a mean equal to 0 and a standard devi-
ation computed by subtracting in quadrature the rms induced by
RVK from the rms of the ∆RV p time series. Because the theo-
retical normalized powers produced by any given exoplanet P̂p
follow a normal distribution having constant standard deviation
equal to σP̂ = 0.028 (which can be interpreted as the inner vari-
ability of the GLS periodogram), Pp is compared to P̂p with the
commonly used Wald test (e.g., Gourieroux et al. 1982). In par-
ticular, for a given exoplanet, the test checks whether Pp belongs
to the 99% confidence interval inferred from N(P̂p, σP̂). This
test enables us to establish whether the expected and observed
RV semiamplitudes are consistent, so to declare the synthetic
exoplanet as detected.

This procedure is repeated for each of the 726 750 simulated
planets. In order to quantify the K detection threshold, we search
for the minimum RV amplitude at which, for a given orbital
period, at least 90% of the planets having different phases are
detected. The results of the simulation study, presented in Fig. 8,
confirm the intuition that properly dividing the RV data into seg-
ments (where each segment is piecewise stationary) significantly
improves the chances of detecting exoplanets that have smaller
amplitudes with respect to the oc method. In fact, by applying
the correction for stellar activity based on the bp method, the
detection threshold is on average lower by 74% with respect
to the detection threshold estimated using the oc method. The
median threshold for the bp method is 2 m s−1, while the median
threshold for the oc method is 7.55 m s−1.

and therefore decided to use the already computed cvoc = 0.43 and
cvbp = 0.022 throughout the following analysis.
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Fig. 8. Upper panels: GLS periodograms derived from synthetic Keplerian RV signals of K = 15, 10, 5, 2.5, 1, and 0.5 m s−1, which were perturbed
by injecting white noise whose amplitude follows a normal distribution with standard deviation of 1.75 m s−1 (top) and 3.48 m s−1 (middle). The
unevenly sampled temporal baseline (i.e., the temporal baseline of α Cen B) is responsible for the power decrease at 365 days, as pointed out in
Sect. 3.4.2. Bottom panel: detection thresholds of synthetic exoplanets injected into the α Cen B RV time series. It is the minimum semiamplitude K
at which a synthetic exoplanet of a given period is recovered from the two different GLS periodograms. The minimum K values are inferred from the
∆RV p

bp time series (bp method, dashed blue line) and from the ∆RV p
oc time series (oc method, solid red line). Blue crosses (bp method) or red crosses

(oc method) highlight the null detection of any exoplanet having K ≤ 15 m s−1. For both methods, a null detection occurs at ∼365 days, where the
GLS normalized power drops. Overall, by correcting for stellar activity on each of the five temporal segments found by the bp method, the detection
threshold of an exoplanet lowers by 74% on average. The two boxplots represented in the top right inset show the distributions of the minimum
K for the two methods. The two distributions are statistically different as quantified by the Wilcoxon test through its p-value = 2.22 × 10−16. The
detection threshold of an exoplanet lowers by 78% on average, when focusing on planets up to an orbital period of 250 days.

A statistical test to compare the two vectors of minimum RV
amplitudes was also carried out. Assuming as null hypothesis
that the two groups are not statistically different, the Wilcoxon
test estimated a p-value equal to 2.22 × 10−16, which means that
the null hypothesis is strongly rejected and that the two groups
are statistically different. The detection threshold of an exoplanet

lowers by 78% on average when focusing on planets up to an
orbital period of 250 days. Figure 8 displays the orbital periods
for which the oc method and the bp method were not able to
detect any planet having K lower than our grid upper limit. In
order to explain this situation, we further explored the behavior
of the GLS, highlighting our findings in Sect. 3.4.2.
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Fig. 9. Relation between the peak normalized power P of the GLS periodogram obtained from a synthetic Keplerian RV signal and the period
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Regardless of the considered K (i.e., the color), P decreases at ∼365 days (close to the revolution period of the Earth), as expected in ground-based
observations.

3.4.2. Behavior of the GLS periodogram

We investigated the behavior of the GLS periodogram in order
to understand the inability to detect exoplanets. In particular, we
were interested in understanding if the unavailability of detec-
tions at a given Porb were caused by the criteria we employed for
our simulation study or rather by an issue related to the GLS peri-
odogram. We generated several Keplerian signals sampled upon
the epochs of observations of α Cen B using the following grid
of values5: periods Porb from 1 to 500 days, by steps of 1 day,
semiamplitudes K from 0.1 to 15 m s−1 by steps of 0.1 m s−1 and
a phase value, randomly sampled from the [0, 2π] interval. Each
vector of RV was perturbed by using a normal distribution hav-
ing a mean equal to 0 and a standard deviation of 1 m s−1, which
is the error expected by HARPS. At this stage, as vector of RV,
just the Keplerian signal and the error term are used.

When plotting P as a function of Porb for any given value
of K, rather than finding constant behavior, there is a problem-
atic behavior when considering short orbital periods. Moreover,
we see a systematic decrease of P at some specific Porb values,
which is caused by the data sampling due to α Cen B visi-
bility. In particular, a clear decrease occurs at Porb ∼365 days,
as expected in ground-based observations. These conclusions
are confirmed in our simulation study that aims to establish
the detection threshold of the bp and oc methods, as both the
methods have some issues in detecting planets that have a short
orbital period, and both methods are unable to detect planets with
Porb ∼365 days (Fig. 9).

3.5. Comparison of the oc and the bp methods applied to
HD 215152, HD 10700, and HD 192310

As done for the RV time series of α Cen B, we repeated the com-
parison between the oc and the bp methods for three other main

5 This grid produces fewer synthetic exoplanets than before. This made
the present simulation quicker, without penalizing the strength of our
conclusions.

sequence stars: HD 215152 (K3V, Delisle et al. 2018), HD 10700
(G8V, Feng et al. 2017b), and HD 192310 (K2V, Pepe et al.
2011). Unlike α Cen B, which does not host any known planet,
HD 215152 and HD 10700 host four planets (Delisle et al. 2018;
Feng et al. 2017b, each), while HD 192310 hosts two planets
(Pepe et al. 2011). Therefore, to obtain ∆RV∗-like indicators that
are consistent with those derived for α Cen B, we should also
remove the exoplanetary signals from these RV time series, after
applying the correction for stellar activity. Since the discovered
exoplanets orbiting HD 215152 and HD 10700 are at the level of
instrumental precision, removing those planetary signals would
have led to biased results. For this reason, in the following anal-
yses we decided to remove the planetary signals only for the
HD 192310 case.

We used the adaptive Markov chain Monte-Carlo (A-
MCMC) algorithm (Haario et al. 2005) to estimate the orbital
parameters of the two known exoplanets orbiting HD 192310. In
detail, following a step-by-step procedure, first we corrected the
original RV time series by using both the oc and the bp methods.
As a result, a clear peak due to the exoplanet with Porb ≈ 75 days
appeared in the two GLS periodograms (although only in case of
the bp methodPbp(75 d) > cvbp; top panel of Fig. 10). Therefore,
we estimated the orbital parameters of this exoplanet by using
the A-MCMC algorithm, and removed its signal (RVP:75) from
the ∆RV∗ time series. After producing new GLS periodograms
from the ∆RV∗ − RVP:75 time series, for both methods we saw
another peak above the respective cv values, which was com-
patible with Porb ≈ 526 days of the second exoplanet (second
panel of Fig. 10). Then we used the A-MCMC algorithm again
to estimate the orbital parameters of the exoplanet with Porb ≈
526 days, we removed its signal (RVP:526) from the previously
used RV time series, and we produced new GLS periodograms
based on the ∆RV∗−RVP:75−RVP:526 time series. The inspection
of these GLS periodograms did not show any other significant
peak (third panel of Fig. 10) and we concluded that only the bp
method finds both the two known exoplanets following the cv-
threshold criterion. Finally, we launched a global A-MCMC run
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Fig. 10. Similar to Fig. 4, but for HD 192310. The vertical dashed orange lines at ∼75 days and ∼526 days highlight the orbital periods of the two
Neptune-mass planets found by Pepe et al. (2011). Top panel: as a result of the stellar activity correction, the bp-peak at ∼75 days is above the
respective cv value, revealing the planetary signal. Second panel: once the P∼ 75 days planetary signal (RVP:75) is removed from the original time
series, another peak corresponding to the P∼ 526 days planetary signal pops up (this time both the bp- and oc-peaks are above the respective cv
values). Third panel: after removing also the second planetary signal (RVP:526), the GLS periodogram does not show any other significant peak.
Bottom panel: from the activity-corrected RV time series, we subtracted the Keplerian signals of the two planets (RVP:74&P:532) inferred from the
global fit of the joint A-MCMC analysis. It turned out that Pb ∼ 75 days and Pc ∼ 532 days. The main orbital parameters are summarized in Table 8.
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Table 8. Planetary parameters as derived in this work and by Pepe et al. (2011) of both HD 192310 b and HD 192310 c.

Parameters HD 192310 b HD 192310 c

This work Pepe et al. (2011) ∆σ This work Pepe et al. (2011) ∆σ

K ( m s−1) 2.74+0.14
−0.16 (5.5%) 3.00 ± 0.12 (4.0%) 1.4 3.08 ± 0.18 (5.8%) 2.27 ± 0.28 (12%) 2.4

P (d) 74.06+0.10
−0.09 (0.13%) 74.72 ± 0.10 (0.13%) 4.8 531.6+3.9

−3.2 (0.7%) 525.8 ± 9.2 (1.7%) 0.6
Mp sin i (M⊕) 15.0 ± 0.8 (5.3%) 16.9 ± 0.9 (5.3%) 1.6 31.5+1.6

−1.6 (5.1%) 24 ± 5 (21%) 1.4
a (AU) 0.320 ± 0.003 (0.9%) 0.320 ± 0.005 (1.6%) 0.0 1.19+0.0057

−0.0047 (0.4%) 1.180 ± 0.025 (2.1%) 0.4
e 0.23 ± 0.05 (22%) 0.13 ± 0.04 (31%) 1.6 0.35+0.04

−0.05 (13%) 0.32 ± 0.11 (34%) 0.3
ω (deg) 145+13

−17 (10%) 173 ± 20 (12%) 1.1 64+9
−10 (15%) 110 ± 21 (19%) 2.0

Notes. The relative uncertainties are specified within brackets, while the ∆σ column refers to the statistical tension between the generic pair
(x1 ± σ1; x2 ± σ2), that is ∆σ =

|x1−x2 |√
σ2

1+σ2
2

.

accounting for both planets at the same time to obtain unbiased
exoplanetary parameters, which were used to build our final GLS
periodograms, where both the planetary signals were subtracted
from ∆RV∗ (bottom panel of Fig. 10).

Our outcomes for the HD 192310 planetary system are listed
in Table 8 and compared with the results obtained by Pepe et al.
(2011). The precision we got for the planet b parameters is com-
parable with that obtained by Pepe et al. (2011) and all those
parameters are consistent within ∼1.5σ, except for the orbital
period Pb. Our Pb = 74.06+0.10

−0.09 days is 4.8σ away from the Pepe
et al. (2011) estimate. However, it is in excellent agreement with
the recent revision by Rosenthal et al. (2021), who found a period
of 74.062 ± 0.085 days. Regarding planet c, instead, we sensi-
bly improve the precision on the determined parameters (from a
factor of two up to a factor of four) with respect to the results
provided by Pepe et al. (2011). All the respective estimates are
within 2σ, except for Kc, for which we infer a higher value after
applying our bp method for cleaning the RV time series. Even
if a detailed analysis of the orbital parameters is beyond the
scope of this paper, we note that our estimates for HD 192310
c are the most precise available in the literature so far6. Coming
to the effectiveness of modeling the stellar activity, when com-
pared to the rms of the ∆RV∗oc time series, the rms of ∆RV∗bp

is lower by 0.21 m s−1 (HD 215152), 0.06 m s−1 (HD 10700), and
0.1 m s−1 (HD 192310, after the planets removal). This means
that using Eq. (6) rather than Eq. (7) for correcting RV , we bet-
ter explain the RV-variability by gaining 9.5%, 4.3%, and 6.6%
for HD 215152, HD 10700, and HD 192310, respectively. The bp
method has to be preferred also following the BIC minimization
criterion for model selection; in fact, ∆BIC = BICoc − BICbp =
+79, +503, and +174 for HD 215152, HD 10700, and HD 192310,
respectively.

The number of available data points per time series is signifi-
cantly smaller if compared to the α Cen B time series, especially
for HD 215152 and HD 192310. It seems therefore reasonable
that the bp method finds a lower number of piecewise-stationary
segments as optimal solutions for those stars (D̂ = 1 and 2 for
HD 215152 and HD 192310, respectively). Instead, concerning
HD 10700, a larger number of observations spread on a longer
baseline is available, which yields to D̂ = 5 optimal breakpoints.

6 According to the Nasa Exoplanet Archive (https://
exoplanetarchive.ipac.caltech.edu/overview/HD192310),
where only the set of parameters by Pepe et al. (2011) is provided.

As a final note, since HD 10700 is a quiet star, the bp vs.
oc improvement in modeling the stellar activity is lower (i.e.,
we registered a lower gain when comparing the ∆RV∗bp vs.
∆RV∗bp rms, as expected). However, the bp method still models
the stellar activity better than the oc method and the ∆BIC con-
firms a strong preference for the bp method. Overall, the obtained
results confirm our assumption that the CPD algorithm is partic-
ularly effective when focusing on active stars. Relevant tables
and plots synthesizing our results can be found in Appendix A.

4. Discussion

We tested the bp method by using real measurements taken from
four stars, carrying out comparisons with the oc method that con-
siders a single correction for stellar activity on the entire time
series. Before performing the comparisons, the data were prop-
erly cleaned by removing the outliers from the set of RV values.
The results suggest that properly dividing the RV time series into
segments (where each segment is piecewise stationary) is a help-
ful operation when trying to account for higher variations in RV
caused by stellar activity. For all the considered stars, the rms on
∆RV∗bp are smaller than the rms on the corresponding ∆RV∗oc.

The stronger the activity signals within the time series, the
more effective the bp method is at modeling the RV variations.
In addition, the longer the time series, the more likely sensible
variations in stellar activity have occurred, and so the bp method
is particularly suitable to detrend RV data. This is especially the
case of αCen B, which is characterized by strong solar-like activ-
ity signals (e.g., Thompson et al. 2017; Dumusque 2018) . By
dividing the RV measurements of α Cen B into five piecewise
stationary segments, we reach an rms of ∆RV∗bp of 1.75 m s−1 (to
be compared with an rms of ∆RV∗oc of 3.48 m s−1 resulting from
the application of the oc method). Also, the activity indicators’
variability within each segment is smaller than the variability
between each segment, as displayed in Fig. 1 and summarized
by Table 3, which provides strong evidence that the segmen-
tation proposed by the bp method captures those time series
locations where the stellar activity changes significantly. As a
consequence, the bp method is able to interpret a larger fraction
of RV variability in terms of stellar activity: 89% vs. 40% for the
oc method.

The α Cen B GLS periodogram obtained with the bp method
shows a much smaller number of peaks caused by active regions
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with respect to the GLS periodogram obtained by performing
the oc method. When producing the GLS periodogram from the
∆RV∗oc time series, we found that there were no peaks above cvoc.
Conversely, when considering the ∆RV∗bp time series, 11 peaks in
the GLS were above the critical value of cvbp (see Table 6). We
further investigated the nature of those peaks to check whether
they could be produced by exoplanets. For a given exoplanet can-
didate, starting from ∆RV∗bp and assuming a Keplerian model, we
used the A-MCMC algorithm to retrieve the posterior distribu-
tion of the parameters of interest. Then, we used the marginal
posterior means for each parameter in order to estimate the RV-
variations caused by the candidate planet. Finally, we compared
the rms of ∆RV∗bp with the new rms obtained by subtracting to
∆RV∗bp the RV Keplerian signal that would be caused by the can-
didate planet. We did not find any strong signal suggesting the
possible presence of an exoplanet, confirming the conclusions
provided in Rajpaul et al. (2015).

When repeating the comparative analyses for HD 215152,
HD 10700, and HD 192310, the bp method produces ∆RV∗bp time
series having rms lower by 0.21 m s−1 for HD 215152, 0.06 m s−1

for HD 10700, and 0.1 m s−1 for HD 192310 when compared to
the rms of ∆RV∗oc. In other words, the bp method increases the
fraction of RV variability that can be explained in terms of stel-
lar activity by 9.5%, 4.3%, and 6.6% for HD 215152, HD 10700,
and HD 192310, respectively. The improvement given by the bp
method is less evident in these three cases, as these stars are
less active than α Cen B and their time series span a shorter
temporal range. Since these time series already appear to be
piecewise stationary as a whole, the bp and oc methods are com-
parable. However, thanks to its better cleaning performance, only
the bp method was able to detect both the exoplanets hosted by
HD 192310, following our cv-threshold criterion. In particular,
we essentially confirm the orbital parameters estimates already
available in the literature, but we sensibly improve the precision
in the case of HD 192310 c. Given the key role of the planetary
mass when studying the composition of exoplanets, we empha-
size that our Mp sin i estimates are affected by an error of ∼5%
for both planet b and planet c. We reached the same precision
level of Pepe et al. (2011) for planet b, while we improved the
precision of Mp sin i of HD 192310 c by a factor of approximately
four.

To further evaluate the ability of the bp and oc methods to
detect exoplanets, we designed a simulation study starting from
α Cen B data. We added several synthetic Keplerian signals to
the time series and checked the exoplanet detection effective-
ness of both the bp and oc methods when dealing with RV data
points contaminated by solar-like activity signals. We found that
the bp method lowers the detection threshold (i.e., the minimum
K of the Keplerian signal at which a planet is detected from
the inspection of the GLS periodogram) with respect to the oc
method by 74% when considering planets up to an orbital period
of 500 days.

5. Conclusion

Stellar activity, in the form of active regions evolving on a star’s
photosphere, has so far been the major obstacle for the detection
and the characterization of Earth-like exoplanets when using the
RV method. Spots and faculae cause variations in the shape and
in the width of the CCF, changing the correlations between RV
and the indicators of stellar activity, such as A, γ, and FWHMSN.
Since an exoplanet would not change the shape of the CCF,

but just its barycenter, a common strategy to account for stel-
lar activity is to employ a linear correction of the RV time series
involving the activity parameters. In fact, it is well known that
variations in the correlations between RV and these activity indi-
cators suggest the presence of active regions evolving on the
stellar photosphere over time. A simple way to model the changes
in RV caused by stellar activity is provided by Eq. (1). Since
RV surveys often spread over years of measurements, it seems
reasonable to assume that the stellar activity level changes mul-
tiple times during the observational period. Rather than using an
overall correction for stellar activity on the entire time series, we
still rely on Eq. (1), but we propose performing multiple correc-
tions by suitably dividing the overall time series into segments.
The number of segments depends on how often the correlations
between RV and the activity indicators significantly change.

In order to estimate the time series locations where the
dependence of stellar activity upon activity indicators sig-
nificantly changes, we draw attention to the family of CPD
algorithms.

In particular, in this paper we used the CPD-based bp method
(e.g., Bai & Perron 2003) to properly model the variations of
RV caused by stellar activity. We compared the effectiveness
of the bp method with the commonly employed oc method, by
using real observations taken on four different stars. The results
show that identifying the locations in the RV data where the
correlations between RV and the indicators of stellar activity
significantly change, produces much cleaner RV time series as
we model the stellar activity signals on each of the piecewise
stationary segments. The GLS periodograms are then less con-
taminated by the presence of spurious periodical peaks caused
by stellar activity. As demonstrated by our simulation study on
α Cen B, the bp method was able to detect exoplanets that pro-
duce RV amplitudes 74% smaller than those detected by the oc
method.

Finally, we note that the bp method is most effective when
working with active stars whose RV time series are made of
several hundreds of data points. In fact, the longer the time
series, the more likely sensible variations in stellar activity have
occurred, suggesting that the bp technique is a suitable statistical
tool for removing activity-induced variations from the RV data.
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Appendix A: HD 215152, HD 10700, and HD 192310

In this Appendix we show the relevant Tables and Figures sum-
marizing the results we obtained for the other stars of our sample:
HD 215152, HD 10700, and HD 192310. Similarly to α Cen B,
we show the change point locations detected in each RV time
series and the covariate correlations within each stationary seg-
ment. In addition, we show the effectiveness of both the bp and
oc methods in cleaning the RV time series and the consequent
GLS periodograms.
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Table A.1. Similar to Table 3, but for HD 215152.

CPL JD Date Time span CCFs RV A γ FWHMSN
[d] [#] [ m s−1] [·10−1] [ m s−1]

l0 2454699.82311 21 Aug 2008 797.74 151 −0.7+0.6
−1.8 3.0969+0.0021

−0.0027 0.0094+0.0022
−0.0021 6.0746+0.0126

−0.0093l1 2455497.56753 28 Oct 2009 1398.15 122 0.95+1.92
−0.05 3.0946+0.0025

−0.0025 0.0071+0.0029
−0.0020 6.0670+0.0067

−0.0051l2 2456895.71456 26 Aug 2014

Table A.2. Similar to Table 4, but for HD 215152.

1 2
ρ(RV; A) −0.09 −0.01

(−0.24, 0.073) (−0.19, 0.17)
ρ(RV; γ) 0.30 0.29

(0.15, 0.44) (0.12, 0.44)
ρ(RV; FWHMSN) 0.19 0.10

(0.028, 0.34) (−0.083, 0.27)

Table A.3. Similar to Table 5, but for HD 215152.

rms bp segment 1 bp segment 2 bp overall oc overall
RV [ m s−1] 2.03 2.19 2.25 2.25
RV∗activity [ m s−1] 0.63 0.67 1.56 1.25
∆RV∗ [ m s−1] 1.93 2.08 1.80 1.99
BIC 1150 1229

Table A.4. Similar to Table 3, but for HD 10700.

CPL JD Date Time span CCFs RV A γ FWHMSN
[d] [#] [ m s−1] [·10−1] [ m s−1]

l0 2453280.55000 2 Oct 2004 1059.20 1905 −1.7+1.6
−1.5 3.0168+0.0052

−0.0052 −0.0578+0.0011
−0.0011 6.3026+0.0044

−0.0062l1 2454339.75428 27 Aug 2007 438.95 1423 −0.2+0.7
−1.4 3.0129+0.0011

−0.0011 −0.0587+0.0012
−0.0009 6.3071+0.0028

−0.0032l2 2454778.69248 8 Nov 2008 361.84 1578 −0.2+1.1
−1.3 3.014+0.0010

−0.0008 −0.0585+0.0010
−0.0007 6.3107+0.0037

−0.0036l3 2455140.52938 5 Nov 2009 694.11 1386 0.3+1.6
−1.1 3.0139+0.0017

−0.0012 −0.0584+0.0011
−0.0008 6.3135+0.0064

−0.0056l4 2455834.64038 30 Sep 2011 396.16 1395 0.5+1.5
−0.4 3.016+0.0010

−0.0011 −0.0586+0.0009
−0.0007 6.3203+0.0048

−0.0033l5 2456230.80473 30 Oct 2012 778.84 1556 1.5+1.2
−1.5 3.0162+0.0009

−0.0010 −0.0587+0.0009
−0.0007 6.3278+0.0036

−0.0043l6 2457009.64892 18 Dec 2014

Table A.5. Similar to Table 4, but for HD 10700.

1 2 3 4 5 6
ρ(RV; A) −0.29 0.18 −0.21 0.32 0.18 −0.12

(−0.33,−0.25) (0.13, 0.23) (−0.26,−0.17) (0.27, 0.37) (0.12, 0.23) (−0.17,−0.068)
ρ(RV; γ) 0.11 0.20 0.20 0.07 0.10 0.03

(0.069, 0.16) (0.15, 0.25) (0.15, 0.24) (0.018, 0.12) (0.045, 0.15) (−0.020, 0.079)
ρ(RV; FWHMSN) −0.08 0.20 0.23 0.48 0.32 0.48

(−0.12,−0.032) (0.15, 0.25) (0.18, 0.27) (0.44, 0.52) (0.27, 0.37) (0.44, 0.52)

Table A.6. Similar to Table 5, but for HD 10700.

rms bp segment 1 bp segment 2 bp segment 3 bp segment 4 bp segment 5 bp segment 6 bp overall oc overall
RV [ m s−1] 1.54 1.36 1.41 1.64 1.47 1.49 1.76 1.76
RV∗activity [ m s−1] 0.52 0.40 0.59 0.85 0.54 0.83 1.14 1.07
∆RV∗ [ m s−1] 1.45 1.30 1.28 1.40 1.36 1.24 1.34 1.40
BIC 31958 32461
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Table A.7. Similar to Table 3, but for HD 192310.

CPL JD Date Time span CCFs RV A γ FWHMSN
[d] [#] [ m s−1] [·10−1] [ m s−1]

l0 2455019.69743 7 Jul 2009 477.82 748 −1.3+0.1
−3.1 2.9536+0.0010

−0.0009 0.0130+0.0013
−0.0013 6.1023+0.0043

−0.0050l1 2455497.51422 28 Oct 2010 621.32 300 1.5+2.6
−1.1 2.9537+0.0011

−0.0010 0.0135+0.0033
−0.0014 6.110+0.018

−0.007l2 2456118.83597 10 Jul 2012 755.86 300 3.5+2.6
−3.4 2.9539+0.0014

−0.0014 0.0159+0.0018
−0.0017 6.127+0.026

−0.007l3 2456874.69449 5 Aug 2014

Table A.8. Similar to Table 4, but for HD 192310.

1 2 3
ρ(RV; A) −0.07 −0.43 −0.11

(−0.15,−0.0033) (−0.52,−0.34) (−0.22, 0.0065)
ρ(RV; γ) 0.08 0.65 0.22

(0.0054, 0.15) (0.58, 0.71) (0.11, 0.33)
ρ(RV; FWHMSN) −0.09 0.54 0.24

(−0.16,−0.017) (0.46, 0.62) (0.13, 0.34)

Table A.9. Similar to Table 5, but for HD 192310.

rms bp segment 1 bp segment 2 bp segment 3 bp overall oc overall
RV [ m s−1] 1.47 2.94 2.13 2.28 2.28
RV∗activity [ m s−1] 0.61 2.55 2.13 1.79 1.71
∆RV∗ [ m s−1] 1.34 1.46 1.52 1.40 1.50
BIC 4784 4958
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Fig. A.1. Similar to Fig. 2, but for HD 215152.

A127, page 21 of 29



A&A 664, A127 (2022)

5000 5500 6000 6500

−
5

0
5

10

Julian Day − 2 450 000

R
V

 [m
/s

]

rms RV = 2.25 m/s
rms RV*activity

bp  = 1.56 m/s
rms RV*activity

oc  = 1.25 m/s

5000 5500 6000 6500

−
5

0
5

10

Julian Day − 2 450 000

∆R
V

* 
[m

/s
]

rms RV = 2.25 m/s
rms ∆RV*bp = 1.80 m/s
rms ∆RV*oc = 1.99 m/s

Fig. A.2. Similar to Fig. 3, but for HD 215152.
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Fig. A.3. Similar to Fig. 4, but for HD 215152. The orbital periods of the already discovered exoplanets (Delisle et al. 2018) are displayed as
orange dashed lines. The planetary signals have not been removed from the time series, because they are at the level of the instrumental precision.
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Fig. A.4. Similar to Fig. 2, but for HD 10700.
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Fig. A.5. Similar to Fig. 3, but for HD 10700.
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Fig. A.6. Similar to Fig. 4, but for HD 10700. The orbital periods of the already discovered exoplanets (Feng et al. 2017b) are displayed as orange
dashed lines. The planetary signals have not been removed from the time series, because they are at the level of the instrumental precision.
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Fig. A.7. Similar to Fig. 2, but for HD 192310.
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Fig. A.8. Similar to Fig. 3, but for HD 192310. We recall that the two planetary signals were removed from our analyses after the bp method and
the oc method were used, in order to better focus on the residuals of the two methods.
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Table A.10. Normalized power P and cv values inferred from the
bp-corrected GLS (Pbp, cvbp) and oc-corrected GLS (Poc, cvoc) for
HD 192310. They are evaluated at the stellar rotation period (Prot) and
at the at the orbital periods (Porb) of the hosted exoplanets found by
Pepe et al. (2011). The first two rows show P inferred from the ∆RV∗
signals, while in the last row P are computed after removing the Kep-
lerian signal of Porb,1 = 75 days from the ∆RV∗ signals. Both the two
planets would be visible in the GLS after applying the bp method and
the iterative removal of planetary signals, as Pbp are always above the
respective cvbp values.

P [d] Pbp cvbp Poc cvoc
Stellar Prot 48 0.064 0.48 0.064 0.54
Planet 1 Porb 75 0.52 0.48 0.49 0.54
Planet 2 Porb 526 0.28 0.087 0.40 0.091
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