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ARTICLE

Inframe insertion and splice site variants in MFGE8
associate with protection against coronary
atherosclerosis
Sanni E. Ruotsalainen 1, Ida Surakka2, Nina Mars1, Juha Karjalainen3, Mitja Kurki3, Masahiro Kanai 3,4,5,

Kristi Krebs 6, Sarah Graham2, Pashupati P. Mishra7,8,9, Binisha H. Mishra7,8,9, Juha Sinisalo10, Priit Palta 1,6,

Terho Lehtimäki7,8,9, Olli Raitakari11,12,13, Estonian Biobank Research Team*, Lili Milani6, The Biobank Japan

Project*, Yukinori Okada 5,14, FinnGen*, Aarno Palotie 1,3, Elisabeth Widen1, Mark J. Daly1,3,4 &

Samuli Ripatti 1,3,15✉

Cardiovascular diseases are the leading cause of premature death and disability worldwide,

with both genetic and environmental determinants. While genome-wide association studies

have identified multiple genetic loci associated with cardiovascular diseases, exact genes

driving these associations remain mostly uncovered. Due to Finland’s population history,

many deleterious and high-impact variants are enriched in the Finnish population giving a

possibility to find genetic associations for protein-truncating variants that likely tie the

association to a gene and that would not be detected elsewhere. In a large Finnish biobank

study FinnGen, we identified an association between an inframe insertion rs534125149 in

MFGE8 (encoding lactadherin) and protection against coronary atherosclerosis. This variant

is highly enriched in Finland, and the protective association was replicated in meta-analysis of

BioBank Japan and Estonian biobank. Additionally, we identified a protective association

between splice acceptor variant rs201988637 in MFGE8 and coronary atherosclerosis,

independent of the rs534125149, with no significant risk-increasing associations. This variant

was also associated with lower pulse pressure, pointing towards a function of MFGE8 in

arterial aging also in humans in addition to previous evidence in mice. In conclusion, our

results suggest that inhibiting the production of lactadherin could lower the risk for coronary

heart disease substantially.
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Cardiovascular disease (CVD) is the leading cause of pre-
mature death and disability worldwide, with both genetic
and environmental determinants1,2. The most common

cardiovascular disease is coronary heart disease (CHD), including
coronary atherosclerosis and myocardial infarction, among others.
While genome-wide association studies (GWAS) have identified
multiple genetic loci associated with cardiovascular diseases, exact
genes driving these associations remain mostly uncovered3.

Owing to Finland’s population history, many deleterious and
high-impact variants are enriched in the Finnish population giving
a possibility to find genetic associations that would not be detected
elsewhere4. Many studies have reported high-impact loss-of-
function (LoF) variants associated with risk factors for CVD, such
as blood lipid levels, thus impacting on the CVD risk remarkably.
For example, high-impact LoF variants in genes LPA4, PCSK95,
APOC36, and ANGPTL47 have been shown to be associated with
Lipoprotein(a), LDL-cholesterol (LDL-C), or triglyceride levels, and
lowering the CVD risk.

Besides blood lipids, other risk factors for CVD include
hypertension, smoking and the metabolic syndrome cluster
components. The mechanism that links these risk factors to
atherogenesis, however, remains incompletely elucidated. Many,
if not all, of these risk factors, however, also participate in the
activation of inflammatory pathways, and inflammation in turn
can alter the function of artery wall cells in a manner that drives
atherosclerosis8.

Using data from a sizeable Finnish biobank study FinnGen
(n= 260,405), we identified an association with an inframe
insertion rs534125149 inMFGE8 and protection against coronary
atherosclerosis and other representations of major coronary heart
disease (CHD), such as myocardial infarction (MI). This variant
is highly enriched in Finland, 70-fold compared to Non-Finnish
Europeans (NFE) in the gnomAD genome reference database9

with AF of 3% in Finland. This association was also replicated in
BioBank Japan (BBJ) and Estonian Biobank (EstBB). We also
identified a splice acceptor variant rs201988637 in the same gene,
which is also associated with protection against coronary ather-
osclerosis and other representations of major CHD, indicating
that rs534125149 has very similar effect on CHD as a splice
acceptor variant in MFGE8. Associations of both of these two
variants in MFGE8 were specific to CHD, and they did not sig-
nificantly (p < 1.75 × 10−5) increase risk for any other disease,
highlighting MFGE8 as a potential drug target candidate.

Results
GWAS results for coronary atherosclerosis. We identified a total
of 2 302 variants associated (GWS, p < 5 × 10−8) with coronary
atherosclerosis (detailed description of the definition of the
endpoint is in Supplementary Note 1). These variants were
located in 38 distinct genetic loci (a minimum of 0.5 Mb distance
from each other; Fig. 1 and Supplementary Table 1). Out of the 38
GWS loci, four (within or near genes MFGE8, TMEM200A,
PRG3, and FHL1) have not been previously reported to associate
with any CVD-related endpoints or risk factor for CVD in GWAS
Catalog10 [https://www.ebi.ac.uk/gwas/]. Lead variants in these
loci and their characteristics are listed in Table 1 and locus zoom
plots for each of the loci are in Supplementary Fig. 1.

Among these four previously unreported loci for coronary
atherosclerosis, the locus nearMFGE8 had the strongest association
(p-value= 2.63 × 10−16 for top variant rs534125149). The lead
variant is an inframe insertion located in the sixth exon in the
MFGE8 gene (Supplementary Fig. 2) and it is highly enriched in the
Finnish population compared to NFSEEs (Non-Finnish, Estonian
or Swedish Europeans). Interestingly, MFGE8 is mainly expressed
in coronary and tibial arteries according to data from GTEx v8

(Supplementary Fig. 3), and furthermore the expression ofMFGE8
is highest in aorta. In addition, previously identified common
variants in MFGE8 locus that have been associated with decreased
expression of MFGE8 in tibial artery and aorta have also been
associated with decreased risk of CHD11.

In addition to MFGE8, we identified three additional previously
unreported loci to be associated with coronary atherosclerosis,
TMEM200A, PRG3 and FHL1 being the nearest genes of the lead
variants. TMEM200A and PRG3 loci had one non-coding low-
frequency variant reaching the genome-wide significance threshold,
and FHL1 had 11. All variants in the credible sets of all these
associations were either intergenic or intronic variants and had no
reported significant GWAS associations with any trait in the GWAS
Catalog or significant eQTL associations in GTEx. The one variant
(rs118042209) in the credible set of TMEM200A locus was associated
with multiple disease endpoints representing major coronary heart
disease (CHD) in FinnGen, including coronary atherosclerosis,
ischemic heart disease and angina pectoris, whereas the lead variant
in the PRG3 locus was associated with cardiomyopathy. All variants
in the credible set of FHL1 were associated with multiple disease
endpoints representing major CHD in FinnGen, including angina
pectoris and ischemic heart disease. TMEM200A have been reported
to be associated with ten traits (including height and trauma
exposure) and PRG3 with two traits (eosinophil count and
eosinophil percentage of white cells) in the GWAS Catalog. FHL1
gene had no reported associations in GWAS Catalog.

Replication. Association between rs534125149 in MFGE8 locus
with CHD was replicated in Biobank Japan12,13 (BBJ) and the
Estonian Biobank (EstBB)14 (35,644 cases and 328 461 controls
total: OR= 0.752 [0.67–0.84], p= 4.37 × 10−7). Association results
for rs534125149 with CHD and MI across different cohorts are in
Fig. 2. Post hoc power calculations for each cohort were performed
(probability that the test will reject the null hypothesis H0 at GWS
threshold) and the results as the function of effect size are in
Supplementary Fig. 4. From these calculations we can see that in
FinnGen the power to detect the variant as GWS is remarkably
greater than in EstBB or BBJ, even with similar effect sizes and
sample sizes. Therefore, this boost in power in FinnGen seems to be
mainly due to a different allele frequencies, since this variant is
highly enriched to Finland.

In addition to MFGE8, meta-analysis across FinnGen, UKBB,
EstBB, and BBJ was performed for the lead variants in the three
other previously unreported loci for CHD (TMEM200A, PRG3,
and FHL1), where available. Lead variant in PRG3 locus is highly
enriched to Finland and absent in all other cohorts, and thus
replication efforts for that variant were not possible. The two other
loci that were meta-analyzed (TMEM200A and FHL1) did not
replicate (p-value in the combined meta-analysis of the replication
cohorts (meta-analysis without FinnGen) is smaller than 0.05/
4= 0.0125 and all effect size estimates are in same direction).
Association results for rs534125149 with CHD and MI across
different cohorts for TMEM200A and FHL1 variants are in Fig. 3.
Post hoc power calculations for each cohort were performed and
the results as the function of effect size are in Supplementary Fig. 5.
From those results we can see that the lack of replication in UKBB,
EstBB and BBJ does not appear to be due to lack of power.
Therefore, we identified and replicated one novel locus for CHD
(MFGE8).

Phenome-wide association results for rs534125149. We observed
a highly protective association for the Finnish enriched inframe
insertion rs534125149 in the MFGE8 gene and multiple disease
endpoints, all representing major CHD, including coronary
atherosclerosis (OR= 0.75 [0.71–0.81], p= 2.63 × 10−16) and

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03552-0

2 COMMUNICATIONS BIOLOGY |           (2022) 5:802 | https://doi.org/10.1038/s42003-022-03552-0 | www.nature.com/commsbio

https://www.ebi.ac.uk/gwas/
www.nature.com/commsbio


myocardial infarction (MI) (OR= 0.74 [0.68–0.81], p= 1.95 ×
10−11). In total, this variant was associated (PWS) with 14 disease
endpoints, all representing major CHD (Fig. 4). Majority of them
are highly overlapping, and thus similar associations to all of
them is expected. Thus, we pruned the 14 PWS disease endpoints
down to six disease endpoints (coronary atherosclerosis, coronary
revascularization, ischemic heart diseases, major coronary heart
disease event, myocardial infarction, and statin medication) that
have fundamental characteristics for further analyses. For the
inframe insertion rs534125149 in MFGE8, we did not detect other
phenome-wide significant associations among the 2 861 endpoints
in our data.

Splice acceptor variant rs201988637 in MFGE8. In addition to
inframe insertion rs53412514, we identified a splice acceptor
variant (rs201988637) in MFGE8 to be associated with coronary
atherosclerosis (OR= 0.72 [0.63–0.83], p= 7.94 × 10−06) and
multiple disease endpoints representing major CHD. The splice
acceptor variant had very similar PheWAS profile as the inframe
insertion (Supplementary Fig. 6) and furthermore the two var-
iants had very similar protective effect sizes for the endpoints
(Fig. 5 and Supplementary Table 2). Similar to rs534125149, this
variant is also highly enriched in Finland (37-fold compared to
NFE), allele frequency in Finland being 0.6%. Moreover, both the
splice acceptor and the inframe insertion variants were enriched
to Eastern Finland (Supplementary Fig. 7).

These two variants (rs534125149 and rs201988637) are in low
linkage disequilibrium (LD, r2= 0.00015) and did not have any
effect on the other variant’s associations with coronary athero-
sclerosis or MI (Table 2 and Supplementary Fig. 8). This indicates
that they both are independently associated with these endpoints.

Survival analysis. In addition to protection against coronary
atherosclerosis and myocardial infarction, both the infame inser-
tion rs534125149 and splice acceptor variant rs201988637 showed
also significant association in survival analysis when analyzing
survival time from birth to first diagnose of coronary athero-
sclerosis (HR= 0.78 [0.74–0.93]), p= 1.67 × 10−17 and HR= 0.77
[0.69–0.88], p= 5.08 × 10−05, respectively) and myocardial
infarction (HR= 0.86 [0.80–0.93], p= 2.63 × 10−10 and HR= 0.72
[0.61–0.85], p= 8.16 × 10−05). In addition, when combining the

heterozygous and homozygous carriers of both rs534125149 and
rs201988637 together, carriers get the first diagnose significantly
later than non-carriers (HR= 0.81 [0.77–0.85], p= 6.4 × 10−16 for
coronary atherosclerosis and HR= 0.78 [0.72–0.85], p= 1.16 ×
10−11 for MI) (Fig. 6).

In addition, as a sensitivity analysis we performed the similar
Cox model for first event of MI by adding different risk factors for
CHD as covariates in the model to see if any of these risk factors
(BMI, Type 2 Diabetes, smoking, statin use or sex) have impact
on the observed association. Risk factors were added to the model
both individually and together. As a result, we saw only a small
change in the effect size when adjusting for these risk factors
(Supplementary Table 3). The change was more noticeable on
p-values where the missing data in the added covariates lead to
decreased statistical power.

Associations with risk factors for CVD. We then tested for
possible associations between the MFGE8 variants and risk fac-
tors for CVD. The splice acceptor variant rs201988637 was
associated with pulse pressure in analyses across four cohorts
with pulse pressure measurement and variant rs201988637
available, with the risk lowering allele associated with lower pulse
pressure (p= 1.7 × 10−04, β=−0.13 [−0.2 to −0.06]) (Fig. 7).
Association with pulse pressure was also tested for inframe
insertion rs534125149 and previously reported common variant
in the locus, rs8042271 across all where the variants were
available. We saw consistent effect sizes across the cohorts, and
significant (p < 0.05) meta-analysis p-values for both variants
(Supplementary Fig. 9).

In addition, in recent studies for blood pressure measurements
(systolic and diastolic blood pressure and pulse pressure),
genome-wide significant association have been reported in the
region15,16. To assess whether these reflects the same signal, we
performed colocalization analysis in the region ±200 kB around
rs53412514 using Coloc package in R17 with coronary athero-
sclerosis results from FinnGen and pulse pressure GWAS results
from Evangelou et al.16 The probability for shared signal (PP4)
was 97.1%, further validating MFGE8 locus is associated with
pulse pressure (Supplementary Fig. 10).

In addition to pulse pressure associations in the region,
rs534125149 was significantly associated with height, but further

Fig. 1 GWAS results for coronary atherosclerosis in FinnGen. Total number of independent genome-wide significant associations (GWS; p < 5 × 10-8) is
38, the lead variant in each marked with diamonds. Four previously unreported associations for CVD-related phenotypes are highlighted with ±750Mb
around the lead variant in the region as red and the lead variant marked with red diamond.
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analysis pointed this signal to be reflecting the association of a
known association of ACAN with height, located near MFGE8
(Supplementary Fig. 11). No associations with other risk factors
were observed.

In the Corogene cohort (n= 4896), rs534125149 was sig-
nificantly (p < 0.05) associated with lower risk for acute coronary
syndrome and stable coronary heart disease (RR= 0.87 and
0.83, respectively) compared to healthy controls, but not with
myocardial infarction without coronary artery occlusion (Sup-
plementary Fig. 12). These results are in line with our findings
regarding the specificity of the association of variants in MFGE8
on atherosclerotic cardiovascular disorders. The p-value for
the difference of the AFs of rs534125149 among patients with
acute coronary syndrome or stable coronary heart disease
and among MINOCA was, however, not significant (p= 0.78),
which may due to lack of power. In addition, the cohort is very
heterogeneous.

Previously reported common variants near MFGE8. Previously,
common intergenic variant (rs8042271) near MFGE8 has been
reported to associate with coronary heart disease (CHD) risk3,18.
We replicate this association (OR= 0.90, p= 3.69 × 10−10 for
coronary atherosclerosis) in FinnGen. LD between the common
variant rs8042271 and the inframe insertion rs534125149 is 0.154.
The LD characteristics for all three variants in MFGE8
(rs534125149, rs201988637 and rs8042271) in FinnGen are in
Supplementary Table 4. Common variant rs8042271 was in the
95% credible set for MI with the causal probability of 0.003 but
was not included in the 95% credible sets for coronary athero-
sclerosis (Supplementary Tables 5 and 6). The conditional ana-
lyses of all three MFGE8 variants showed that the association of
the previously reported common variant rs8042271 can be
explained by the inframe insertion variant rs534125149, but not
vice versa, and that the association of the splice acceptor variant
rs201988637 is independent of both rs534125149 and rs8042271.
(Supplementary Table 7). This was the case also with previously
reported common variant rs734780, showing very similar LD
with rs534125149 (0.112) as rs8042271 (0.154).

Fine-mapping of the MFGE8 locus. In our fine-mapping ana-
lyses, MI had most probably one credible set (set of causal
variants) of 32 variants with the highest posterior probability
(posterior probability= 0.62), and coronary atherosclerosis
had two credible sets of 6 and 45 variants, respectively, with
the highest posterior probability (posterior probability= 0.74).
For both MI and coronary atherosclerosis, rs534125149 had
the highest probability of being causal (probability of being
causal= 0.250 and 0.318, respectively) and was included in
the first credible set (Supplementary Tables 5 and 6; and Sup-
plementary Fig. 13). Splice acceptor variant rs201988637 was
not included in the credible sets for either MI or coronary
atherosclerosis, whereas previously reported common variant
rs8042271 was included in the credible set for MI with the
probability of being causal= 0.003 (Supplementary Table 6).

Protein modeling. We predicted the impact of the insertion
variant rs534125149 on the protein structure of MFGE8 using
AlphaFold19. The predicted conformational changes were loca-
lized to a loop region within the C2 domain, ~20 Å away from the
key amino acids involved in membrane binding (Supplementary
Fig. 14)20,21. This loop contains Asn238, which is known to be
glycosylated22. It is possible that the insertion of an additional
asparagine may lead to impaired glycosylation, which is impor-
tant for protein folding, among other cellular processes23.
The role of this region in the function of MFGE8 hasn’t beenT
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previously described and it is therefore unclear how this variant
would otherwise lead to an impact on MFGE8 function. Thus,
further experimental work is necessary to understand the
mechanism by which this variant leads to protection against
coronary atherosclerosis.

Discussion
Here, we show that a Finnish enriched inframe insertion inMFGE8
is associated with substantially lower risk of diseases representing
major CHD, including myocardial infarction and coronary ather-
osclerosis. This variant was associated with CHD specifically,
and no significant association was observed to other diseases in
a phenome-wide search, even if this can be due to lower statistical
power in rare disease endpoints. Splice acceptor variant
rs201988637 in MFGE8 was also associated with lower pulse
pressure, but not with blood lipids, blood pressure or other known
coronary heart disease risk factors.

Our findings allow us to draw several conclusions. First,
MFGE8 is a potential intervention target with specific effects on
coronary heart disease. Specific protective association with the
variants in MFGE8 and CHD shows potential for efficacy of a
treatment targeting MFGE8 protein or downstream products.
Second, the lack of risk elevation in other diseases provide evi-
dence on the potential safety of the intervention. Previously, the
protective effect of loss-of-function variants have been reported
for example for PCSK95 and APOC36, and in phase I, II and III
trials, inhibition of PCSK9 have led to significantly decreased
LDL-C levels, and in short-term trials, PCSK9 inhibitors have
been well-tolerated and have had a low incidence of adverse
effects24 Based on the phenome-wide association profile for the
splice acceptor variant rs201988637, we hypothesize that inhi-
biting MFGE8 could lower the CHD risk, if the variant can be
proved to be loss-of-function in MFGE8.

An association of a splice acceptor variant rs201988637 in
MFGE8 with lower pulse pressure, a potential biomarker for
arterial stiffness25, are very much in line with previous studies on
MFGE8 and the inflammatory aging process of the arteries, high-
lighting the possible role of MFGE8 in arterial aging and stiffness.
The MFGE8 gene encodes Milk-fat globule-EGF 8 (MFGE8), or
lactadherin, which is an integrin-binding glycoprotein implicated
in vascular smooth muscle cell (VSMC) proliferation and invasion,
and the secretion of pro-inflammatory molecules26,27. Lactadherin
is known to play important roles in several other biological pro-
cesses, including apoptotic cell clearance and adaptive immunity28,
which are known to contribute to the pathogenesis of ischemic
stroke. Initially lactadherin was identified as a bridging molecule
between apoptotic cells and phagocytic macrophages29–31, but
growing evidence has indicated that it is a secreted inflammatory
mediator that orchestrates diverse cellular interactions involved in
the pathogenesis of various diseases, including vascular metabolic
disorders and some tumors32–36 and cancers, such as breast34,37,
bladder38, esophageal39 and colorectal cancer40. Recently, not only
has MFG-E8 expression emerged as a molecular hallmark of
adverse cardiovascular remodeling with age41–44, but MFG-E8
signaling has also been found to mediate the vascular outcomes of
cellular and matrix responses to the hostile stresses associated with
hypertension, diabetes, and atherosclerosis45–49.

Arterial inflammation and remodeling are linked to the
pathogenesis of age-associated arterial diseases, such as athero-
sclerosis. Recently, lactadherin has been identified as a novel local
biomarker for aging arterial walls by high-throughput proteomic
screening, and it has been shown to also be an element of the
arterial inflammatory signaling network50. The transcription,
translation, and signaling levels of MFG-E8 are increased in aged,
atherosclerotic, hypertensive, and diabetic arterial walls in vivo, as
well as activated VSMCs and a subset of macrophages in vitro.
During aging, both MFG-E8 transcription and translation

Fig. 2 Results for rs534125149 against coronary heart disease and myocardial infarction across cohorts where available and meta-analysis results.
Logistic regression has been applied, adjusted for age and sex. Meta-analysis was performed using inverse-variance weighted fixed-effects meta-analysis
method. Black dots represents odds ratios, and lines 95% confidence interval from the the single cohorts and red diamonds represent the results from
meta-analysis ends of the diamonds representing the ends of the 95% confidence interval. Source data for the figure is in Supplementary Data 1.
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increase within the arterial walls and hearts of various species,
including rats, humans, and monkeys44,51–53, and MFG-E8 is
markedly up-regulated in rat aortic walls with aging44. High levels
of MFG-E8 have also been detected within endothelial cells, SMC,
and macrophages of atherosclerotic aortae in both mice and
humans49,54. Furthermore, in the advanced atherosclerotic pla-
ques found in murine models, decreased macrophage MFG-E8
levels are associated with an inhibition of apoptotic cell engulf-
ment, leading to the accumulation of cellular debris during the
pathogenesis of atherosclerosis. Lactadherin has, however, in
contrast shown tissue protection in various models of organ
injury, including suppression of inflammation and apoptosis in
intestinal ischemia in mice55, as well as inducing recovery from
ischemia by facilitating angiogenesis56.

In addition, expression of MFGE8 is highly enriched to tissues
relevant to the reported association, such as aorta. Genes nearby

MFGE8, including ABHD2 and HAPLN3, are, however similarly
toMFGE8 enriched to arteries18. Therefore, they could play a role
in atherosclerosis via coordinated gene network. In addition,
recent studies have pointed toward the fact that lncRNA, called
CARMAL, may regulate the expression of MFGE857.

Our study does, however, have a few limitations. First, our pri-
mary association results come from Finnish population with con-
siderable elevation in allele frequency in MFGE8 variants among
Finns. Therefore, the replication of the association in other popu-
lations has reduced statistical power. However, there were enough
carriers combined in Japanese, Estonian and UK samples to
replicate robustly both the protective association with coronary
heart disease and for pulse pressure. Secondly, although our data
shows association with pulse pressure, which has previously been
linked to arterial stiffness, the direct effect of the genetic variants
on arterial stiffness and arterial aging needs further evidence.

Fig. 3 Results for rs118042209 in TMEM200A and rs5974585 in FHL1 against coronary heart disease and myocardial infarction across different
cohorts across cohorts where available. Logistic regression has been applied, adjusted for age and sex. Meta-analysis was performed using inverse-
variance weighted fixed-effects meta-analysis method. Black dots represent odds ratios, and lines 95% confidence interval from the single cohorts and red
diamonds represent the results from meta-analysis ends of the diamonds representing the ends of the 95% confidence interval. Source data for the figure
is in Supplementary Data 1.
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Fig. 4 Phenome-wide association study (PheWAS) results for rs534125149. Total number of tested endpoints is 2861 (A complete list of endpoints
analyzed and their definitions is available at https://www.finngen.fi/en/researchers/clinical-endpoints). The dashed line represents the phenome-wide
significance threshold, multiple testing corrected by the number of endpoints= 0.05/2861= 1.75 × 10−5. All endpoints reaching that threshold are labeled
in the figure.

Fig. 5 Effect size comparison. Comparison of the effects (OR) of rs534125149 and rs201988637 for 14 endpoints with p-value < 1.75 × 10-5 (PWS) for
rs534125149 in FinnGen R6. 95% confidence intervals represented as gray lines.
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Lastly, with our dataset, we have not been able to demonstrate that
the two variants (rs534125149 and rs201988637) in MFGE8 are
loss-of-function variants, and thus further experimental work is
required to validate our findings.

In conclusion, our results suggests that inhibiting production of
lactadherin could reduce the risk for coronary atherosclerosis
substantially and thus present MFGE8 as a potential therapeutical
target for atherosclerotic cardiovascular disease. Our study also
highlights the potential of FinnGen, as a large-scale biobank study
in isolated population to identify high-impact variants either very
rare or absent in other populations.

Methods
Study cohort and data. We studied total of 2 861 disease endpoints in Finnish
biobank study FinnGen (n= 260 405) (Table 3). FinnGen (https://www.finngen.fi/en)
is a large biobank study that aims to genotype 500,000 Finns and combine this data
with longitudinal registry data, including national hospital discharge, death, and
medication reimbursement registries, using unique national personal identification
numbers. FinnGen includes prospective epidemiological and disease-based cohorts as
well as hospital biobank samples.

Definition of disease endpoints. All the 2861 disease-endpoint analyzed in
FinnGen have been defined based on registry linkage to national hospital discharge,
death, and medication reimbursement registries. Diagnoses are based on Interna-
tional Classification of Diseases (ICD) codes and have been harmonized over ICD
codes 8, 9, and 10. More detailed lists of the ICD codes used for the disease-endpoints
myocardial infarction and coronary atherosclerosis, which are discussed more in this
study, are in Supplementary Note 1. A complete list of endpoints analyzed, and their
definitions is available at https://www.finngen.fi/en/researchers/clinical-endpoints.

Genotyping and imputation. FinnGen samples were genotyped with multiple
Illumina and Affymetrix arrays (Thermo Fisher Scientific, Santa Clara, CA, USA).
Genotype calls were made with GenCall and zCall algorithms for Illumina and
AxiomGT1 algorithm for Affymetrix chip genotyping data batchwise. Genotyping
data produced with previous chip platforms were lifted over to build version 38
(GRCh38/hg38) following the protocol described here: dx.doi.org/10.17504/pro-
tocols.io.nqtddwn. Samples with sex discrepancies, high-genotype missingness
(>5%), excess heterozygosity (±4SD) and non-Finnish ancestry were removed.
Variants with high missingness (>2%), deviation from Hardy–Weinberg equili-
brium (p < 1 × 10−6) and low minor allele count (MAC < 3) were removed.

Pre-phasing of genotyped data was performed with Eagle 2.3.5 (https://data.
broadinstitute.org/alkesgroup/Eagle/) with the default parameters, except the
number of conditioning haplotypes was set to 20,000. Imputation of the
genotypes was carried out by using the population-specific Sequencing Initiative
Suomi (SISu) v3 imputation reference panel with Beagle 4.1 (version 08Jun17.d8b,T
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Fig. 6 Cumulative incidence plots for first event of myocardial infarction
in FinnGenR6. Red line represents carriers (homo- or heterozygous) for
either rs534125149 or rs201988637 (n= 17,838), and blue line represent
non-carriers (n= 242,567). Hazard ratio and p-value are from cox-
proportional hazards model. Dashed lines represent 95% confidence
intervals.
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https://faculty.washington.edu/browning/beagle/b4_1.html) as described in the
following protocol: dx.doi.org/10.17504/protocols.io.nmndc5e. SISu v3 imputation
reference panel was developed using the high-coverage (25–30x) whole-genome
sequencing data generated at the Broad Institute of MIT and Harvard and at the
McDonnell Genome Institute at Washington University, USA; and jointly processed
at the Broad Institute. Variant callset was produced with Genomic Analysis Toolkit
(GATK) HaplotypeCaller algorithm by following GATK best practices for variant
calling. Genotype-, sample- and variant-wise quality control was applied in an
iterative manner by using the Hail framework v0.2. The resulting high-quality WGS
data for 3775 individuals were phased with Eagle 2.3.5 as described above. As a post-
imputation quality control, variants with INFO score <0.7 were excluded.

Association testing and replication. A total of 260,405 samples from FinnGen
Data Freeze 6 with 2861 disease endpoints were analyzed using Scalable and
Accurate Implementation of Generalized mixed model (SAIGE), which uses sad-
dlepoint approximation (SPA) to calibrate unbalanced case-control ratios58.
Models were adjusted for age, sex, genotyping batch and first ten principal com-
ponents. All variants reaching genome-wide significance p-value threshold of
5 × 10−8 are considered as genome-wide significant (GWS), and all disease-
endpoints reaching multiple testing corrected (for the number of endpoints
tested= 2861) p-value threshold of 0.05/2861= 1.75 × 10−5 were considered as
phenome-wide significant (PWS).

Independent GWS loci for atherosclerosis were determined as adding ±0.5 Mb
around each variant that reached the genome-wide significance threshold,
overlapping regions were merged. The publicly available summary statistics from

CARDIoGRAMplusC4D, a large meta-analysis of CHD involving 60,801 cases and
123,504 controls3 was used for assessing whether the locus has been previously
reported to associate with CHD. In addition, NHGRI-EBI GWAS Catalog10 was
used for assessing whether the locus has been previously reported to associate with
any CVD-related endpoint or traditional risk factor for CVD, such as blood lipids,
BMI and blood pressure. All loci that had not been reported to associate with CVD
were fine-mapped using FINEMAP59 to determine the credible sets in each signal,
and meta-analyzed across the cohorts (UKBB, EstBB and BBJ) where available to
test their novelty.

In Corogene60 (n= 5300), a sub-cohort of FinnGen where participants have been
collected as patients with coronary heart disease (CHD) and other related heart
diseases, we tested the association of rs534125149 with sub-types of coronary heart
disease: acute coronary syndrome, stable coronary heart disease (CHD) and
MINOCA61 (myocardial infarction no coronary artery occlusion), by which we refer
to patients that have had symptoms, ECG-changes and cardiac enzyme or troponine
release suggesting acute coronary syndrome, but did not have coronary stenosis. The
acute coronary syndrome was further divided into unstable Angina pectoris, non-ST
segment elevation myocardial infarction (NSTEMI) and ST segment elevation
myocardial infarction (STEMI). Associations were tested by calculating risk ratios
(RR) for carriers vs. non-carriers of rs534125149 using non-CHD group always as
controls and excluding the other tested groups from the analysis. p-values were
calculated using χ2-test, and p-values < 0.05 were considered significant.

Survival analysis. Survival analysis for coronary atherosclerosis and myocardial
infarction was performed using GATE62, which accounts for both population

Fig. 7 Results for pulse pressure association across all cohorts with splice acceptor variant rs201988637 available (FINRISK, GeneRISK, YFS, EstBB,
and UKBB). Size of the boxes represent the sample size of the cohorts, and the lines the 95% confidence interval. Associations were tested using linear
regression, adjusting for age and sex Pulse pressure phenotypes were inverse-rank normalized prior analysis. Source data for the figure is in Supplementary
Data 1.

Table 3 Basic characteristics of the study cohort.

All Females Males

N (%) 260,405 147,061 (56.47%) 113,344 (43.53%)
Age (mean (sd)) 53.15 (17.55) 51.84 (17.71) 54.85 (17.19)
BMI (mean (sd))a 27.29 (5.36) 27.21 (5.83) 27.38 (4.76)
Statin use (N (%)) 86,466 (33.2%) 40,422 (27.48%) 46,044 (40.62%)
Hypertension (N (%)) 68,005 (26.11%) 33,420 (22.72%) 34,585 (30.51%)
Smoking (N (%))b 1733 (1.07%) 901 (0.96%) 832 (1.22%)
Coronary atherosclerosis 28,598 (11.38%) 9252 (6.87%) 19,346 (17.86%)
Myocardial infarction 14,305 (6.04%) 3958 (2.87%) 10,347 (10.42%)

aBMI is available only from 178,966 individuals.
bSmoking information is available only from 98,654 individuals.
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structure and sample relatedness and controls type I error rates even for pheno-
types with extremely heavy censoring. GATE transforms the likelihood of a mul-
tivariate Gaussian frailty model to a modified Poisson generalized linear mixed
model (GLMM63,64), and to obtain well-calibrated p-values for heavily censored
phenotypes, GATE uses the SPA to estimate the null distribution of the score
statistic. For coronary atherosclerosis and myocardial infarction, survival time from
birth to first diagnose was analyzed for both rs534125149 and rs201988637. Models
were adjusted for age, sex, genotyping batch and first ten principal components,
similarly to original GWAS analyses. In addition, cox-proportional hazards model
was used for survival analysis for coronary atherosclerosis and myocardial
infarction using a binary variable (carrier or non-carrier) for either inframe
insertion rs534125149 or splice acceptor variant rs201988637.

Biomarker analyses. We tested the association of the two MFGE8 variants
(rs534125149 and rs201988637) with quantitative measurements of cardiometa-
bolic relevance or known risk factors for CVD in two sub-cohorts of FinnGen, the
population-based national FINRISK study65 (n= 26,717) and GeneRISK66

(n= 7239). The associations were tested across 66 quantitative measurements of
cardiometabolic relevance in FINRISK, and for 158 sub-lipid species in GeneRISK.
In Young Finns Study (YFS)67 cohort (n= 1934), we tested the association of the
two variants with three measurements of arterial relevance (carotid artery dis-
tensibility, pulse wave velocity, and pulse pressure).

In addition to Finnish cohorts described above, we tested the association of the
two variants in Estonian Biobank data (EstBB)14,68, BioBank Japan (BBJ)12,13, and
UK Biobank (UKBB)69. In EstBB (n= 51,388–137,722) we tested the associations
of both variants with body mass index (BMI), systolic and diastolic blood pressure
(SBP and DBP) and pulse pressure (PP), in BBJ in we tested the association of
rs534125149 with 17 known quantitative risk factors for CVD and lastly, in the
UKBB we tested the association of rs201988637 with 79 measurements of
cardiometabolic relevance. In all of these biomarker analyses, a linear regression
model adjusted for age and sex was used and for all quantitative risk factors rank-
based inverse normal transformation was applied prior to analysis. Bonferroni
corrected p-value threshold for the number of phenotypes tested was used to assess
the significance of resulting associations in each cohort.

For biomarkers that showed significant association in any of the cohorts, we
performed a meta-analysis across all cohorts the measurement was available. Meta-
analysis was performed using inverse-variance weighted fixed-effects meta-analysis
method70,71. Bonferroni corrected p-value for number of traits tested (n= 2) was
used to assess the significance of resulting associations in meta-analysis.

Height association. To assess whether the association of rs534125149 with height
was due to the MFGE8 gene, we first performed conditional analysis of height
conditioning the association for rs534125149, the lead variant in FinnGen height
GWAS (rs11630187) and for previously known height-associated variant in the
locus, rs1694234172, separately. Conditioning the height association on
rs534125149 did not have much effect on the association of the lead variant for
height (rs11630187) in the region (p-value before conditioning= 5.07 × 10−34 and
after conditioning= 1.19 × 10−26), whereas when conditioning on the lead variant
for height (rs11630187) in the region, the smallest p-value in the region was
1.39 × 10−15 (for variant rs28564751). In addition, conditioning on either known
height-associated variant rs16942341 or lead variant for height in FinnGen
(rs11630187) did not affect on rs534125149’s association with height (p-value
before conditioning= 8.04 × 10−13 and after conditioning= 3.14 × 10−12 and
2.75 × 10−05, respectively)

In addition, to assess whether the association of rs534125149 with
atherosclerotic cardiovascular disease and height reflect the same signal, we
performed colocalization analysis in the region ±200kB around rs53412514 using
Coloc package in R. The probability for shared signal (PP4) was 9.22 × 10−13,
whereas probability for two independent (PP3) signals was 1, indicating two
independent signals for height and coronary atherosclerosis in the locus.

Identifying causal variants. We used FINEMAP59 on the GWAS summary sta-
tistics to identify causal variants underlying the associations for MI (strict defini-
tion, i.e., only primary diagnoses accepted) and coronary atherosclerosis.
FINEMAP analyses were restricted to a ±1.5 Mb region around the rs534125149.
We assessed variants in the top 95% credible sets, i.e., the sets of variants
encompassing at least 95% of the probability of being causal (causal probability)
within each causal signal in the genomic region. Credible sets were filtered if
minimum linkage disequilibrium (LD, r2) between the variants in the credible set
was <0.1, i.e., not clearly representing one signal.

Protein modeling. The predicted structure of lactadherin was obtained from
AlphaFold19 (https://alphafold.ebi.ac.uk/entry/Q08431). Model confidence for the
domain containing the variant of interest was scored mostly as very high and was
structurally similar to the crystal structure of bovine lactadherin21 (PDB ID:2PQS).
The structure of the insertion variant rs534125149 was predicted using the
AlphaFold Colab notebook (https://colab.research.google.com/github/deepmind/
alphafold/blob/main/notebooks/AlphaFold.ipynb). Protein structures were visua-
lized using PyMOL73.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Full GWAS results are publicly available through FinnGen PheWEB browser
(r6.finngen.fi) and also at Open Targets website. The Finnish biobank data can be
accessed through the Fingenious® services (web link: https://site.fingenious.fi/en/, email:
contact@finbb.fi) managed by FINBB. The UK Biobank resource is available to bona fide
researchers for health-related research in the public interest at https://www.ukbiobank.ac.
uk/researchers/. The BBJ summary statistics are available at the National Bioscience
Database Center (NBDC) Human Database (accession code: hum0197) and at the
GWAS catalog (https://www.ebi.ac.uk/gwas/home). They are also browseable at our
PheWeb website (https://pheweb.jp/). The variant rs534125149 was originally excluded
from the publicly available GWAS summary statistics. Its associations were reported in
Supplementary Fig. 4. The BBJ genotype data is accessible on request at the Japanese
Genotype–phenotype Archive (http://trace.ddbj.nig.ac.jp/jga/index_e.html) with
accession code JGAD00000000123 and JGAS00000000114. Genotype and phenotype
data from the Estonian Biobank are available (https://genomics.ut.ee/en/biobank.ee/data-
access) upon request. The dataset supporting the conclusions of this article were obtained
from the Cardiovascular Risk in Young Finns Study, which comprises health-related
participant data. The use of data is restricted under the regulations on professional
secrecy (Act on the Openness of Government Activities, 612/1999) and on sensitive
personal data (Personal Data Act, 523/1999, implementing the EU data protection
directive 95/46/EC). Owing to these restrictions, the data cannot be stored in public
repositories or otherwise made publicly available. Data access may be permitted on a
case-by-case basis upon request only. Data sharing outside the group is done in
collaboration with YFS group and requires a data-sharing agreement. Investigators can
submit an expression of interest to the chairman of the publication committee Professor
Mika Kähönen (Tampere University, Finland) or Professor Terho Lehtimäki (Tampere
University, Finland).

Code availability
The full genotyping and imputation protocol for FinnGen is described at dx.doi.org/
10.17504/protocols.io.nmndc5e. The code used for the analyses in this paper are available
from the corresponding author upon reasonable request.
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