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1. Introduction 

1.1 Early life gut microbiome and infant health 

The human microbiota is a complex community of microorganisms (prokaryotes, eukaryotes and 

viruses), living in the human body space. One of the most studied and well-characterized 

microbiotas is the gut microbiota, that have been shown to be central in human digestion and health. 

The acquisition of the gut microbiota occurs immediately at birth with the seeding of the infant 

from the mother’s microbiota playing a major role. Recent studies have shown that the infant gut 

microbiota is obtained at birth from maternal faecal sources (Korpela et al., 2020; Wilson et al., 

2021). Regardless of the exact maternal source, the early life microbiome is characterized by a low 

bacterial diversity and a microbiome dominated by bacterial genera such as Bifidobacterium, 

Bacteroides, Escherichia and Veillonella, also Clostridium and Prevotella (Bokulich et al., 2016; 

Korpela & de Vos, 2018). This initial microbial community will drastically change over the first 

years of life, becoming more and more diverse, until reaching a climax around 3 years old with 

some developments continuing still at school age (Derrien et al., 2019). 

 

Extensive research has been devoted to describing the dynamics of the early life gut microbiome, 

and several studies have shown that the early life microbiota plays a central role in the infant’s 

early and lifelong health. Indeed, the infant gut microbiota colonization has been suggested to be 

essential for the neonatal immunity establishment (Romano-Keeler et al., 2014; Stiemsma & 

Michels, 2018), to the infant’s well-being (de Weerth et al., 2013; Pärtty et al., 2012), and has been 

also suggested to impact the brain development (Ihekweazu & Versalovic, 2018). Additionally, 

the infant microbiota development has been shown to have long-term health impacts, and 

disruptions in the early microbiota acquisitions has been linked to obesity risks (Stanislawski et 

al., n.d.), and to the development of allergic diseases and asthma (Abrahamsson et al., 2014). 

 

During the gut colonization and during the early childhood, the infant gut microbiota is highly 

dynamic and can be affected by several host and environmental factors. Firstly, the birth mode is 

one of the clearest factors that has profound impacts on the infant gut microbiota development. 

Indeed, infants born by caesarean section (CS) have a microbial colonization drastically disrupted 
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in all body sites (Bokulich et al., 2016; Dominguez-Bello et al., 2010; Shao et al., 2019; Yassour 

et al., 2016). In the gut, CS born infants have a typical delayed acquisition of bacteria from the 

genus Bacteroides, still visible at 1 year of age (Stewart et al., 2018). Secondly, antibiotic 

exposures at birth or in early-life have also been shown to have drastic impacts on the gut 

microbiota development. Indeed, early antibiotic exposure can lead to a temporary decreased gut 

microbial diversity, and an enrichment in antibiotic resistance genes (Busi et al., 2021). Finally, 

infant diet, in particular breastfeeding, has been shown to have a large effect on microbiota 

development (Stewart et al., 2018). The use of formula feeding instead of breastfeeding leads to a 

higher gut microbial diversity and more instability in the microbial community dynamics (Forbes 

et al., 2018). 

 

In total, a large number of exposures and host variables have been suggested to influence the gut 

microbiota development. However, the contribution and importance of these multiple factors as 

the microbiota matures is still poorly understood and requires large infant cohorts to be fully 

characterized. 

 

1.2 Metagenomic sequencing approaches for the study of the gut microbiome 

Early microbiota studies relied on a culture-based approach to study the faecal microbiota. 

However, these approaches allow the investigation of only a small subset of microbes, and do not 

allow to investigate the relative abundances of each microbe in their environment. The relatively 

recent advent of next-generation sequencing methods has allowed to leverage the genetic material 

directly extracted from the environmental sample to enable a rapid, untargeted and less biased taxa 

detection and by doing so allowed discovery of novel microbial species from a large array of 

ecosystems. The use of 16S rRNA gene sequencing methods, have been extensively used to 

support investigation of the taxonomic composition of the faecal microbiota (Almonacid et al., 

2017; Cortes et al., 2019), and more recently, whole genome shotgun sequencing (WGS) has been 

applied to investigate the taxonomic but also the functional diversity of the human gut microbiota 

(Qin et al., 2010; Ranjan et al., 2016). 
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However, identifying the microbial genus or species present in complex environmental sample is 

still challenging and prone to biases. Importantly, modern metagenomic datasets are typically 

composed of several millions of short DNA sequences (ranging from 50 to 200 nucleotides). In 

this context, the main computational challenge is to be able to accurately classify such a large 

number of sequences in a reasonable computational time. Algorithms such as BLAST (basic local 

alignment and search tool), allowing sensitive sequence alignments, are too computationally 

intensive for these tasks (Altschul et al., 1990). Additionally, this challenge is made even more 

complex by the exponential growth of the number of sequenced genomes in recent years, requiring 

tools able to search a large database of reference sequences, but also to allow for a regular update 

of their databases. 

 

A large number of tools have recently been developed which are focused on classifying large 

amounts of sequencing reads to known taxa with increasing speed.  These tools are typically not 

as sensitive as BLAST but are designed to be much faster. We can divide these tools in two main 

groups: DNA-to-DNA classification and marker-based classification. On the one hand, DNA-to-

DNA classifiers such as Kraken2 (Wood et al., 2019), Centrifuge (Kim et al., 2016) or Kaiju 

(Menzel et al., 2016) will compare each sequencing reads with a comprehensive DNA genome 

database. On the other hand, marker-based methods such as Metaphlan2 (Truong et al., 2015) and 

Metaphlan3 (Beghini et al., 2021), typically compare sequencing reads to a reference database 

containing marker gene sequences (specific gene families that allows to discriminate between 

species). The use of such a small subset of genes makes these methods particularly rapid; however, 

the marker sequences used can introduce a bias in the results when they are not evenly distributed 

among the microbial sequences of interest (D’Amore et al., 2016), and will not be able to classify 

sequencing reads that do not carry a marker gene. To ensure the accurate analysis and interpretation 

of metagenomic data, it is important to compare results obtained by these different classifiers, in 

order to determine the best approach for a given study. 
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1.3 The HELMi cohort 

In order to have a better understanding of the interaction between early life gut microbiota, early 

exposures and infant health, the Health and Early Life Microbiota (HELMi) cohort was established 

to follow up healthy Finnish infants from birth to 2 years old, collecting both regular faecal samples 

and an extensive longitudinal metadata related to infant exposures, health and development 

(Korpela et al., 2019). The diverse data provided by the HELMi cohort allows for a precise and 

cutting-edge characterization of the impact of host and environmental variables on the early gut 

microbiota. Importantly, particular efforts have been made to control technical variables during 

the entire study in regards to faecal sample collection, storage and processing, thus providing an 

opportunity to assess the impact of these technical variables on the observed results. 
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2. Aims of the Thesis 
This thesis project will leverage the WGS metagenome dataset generated from HELMi infant 

faecal samples. The goal of this thesis is to identify potential associations between environmental 

and host factors with the infant gut microbiota variations at different ages. To achieve this global 

goal, this thesis was divided into three aims: 

• Aim 1: Assessing the impacts of the taxonomic annotation methods on the infant 

microbiota profile. 

• Aim 2: Exploring the potential impact of technical variables such as sample collection, 

storage and sequencing technology. This will allow for the identification of confounders for the 

rest of the analysis. 

• Aim 3: Leveraging the extensive metadata collected from the HELMi families, the 

potential source of variation due to peri- and post-natal variables will be investigated. 
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3. Materials and Methods 

3.1 The HELMi cohort 

This section describes work conducted prior to the beginning of the current master’s project. 

The Health and Early-Life Microbiota (HELMi) is a cohort study of 1,055 healthy term Finnish 

infants born in the Uusimaa region in 2016-2018 (Korpela et al., 2019). In total, more than 10,000 

faecal samples from both infants from birth to 2 years of age and parents were collected. 

Additionally, families enrolled in the HELMi project answered regular online questionnaires, 

allowing for an in-depth description of the lifestyle, living environment, infant and maternal health, 

and infant nutrition. The study protocols have been approved by the ethical committee of The 

Hospital District of Helsinki and Uusimaa (263/13/03/03 2015 and HUS/2126/2020) and are 

performed in accordance with the principles of the Helsinki Declaration. The guardians have 

provided an informed and written consent. Participation is completely voluntary and the 

participants could withdraw from the study at any point. 

 

The generated samples and questionnaire data are considered personal data. In this setting, any 

data processing (data collection, storage, protection, retention, and destruction) takes place 

according to the General Data Protection Directive and Finnish laws to ensure lawful, fair, and 

transparent data processing. All data is processed in pseudonymized format, as longitudinal 

samples and datasets cannot be fully anonymized.  

 

3.2 HELMi questionnaire information 

3.2.1 HELMi questionnaire collection 

This section describes work conducted prior to the beginning of the current master’s 
project. 
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Figure 1. Overview schema of the questionnaires and stool samples involved in this project. The parental 

samples were collected before the birth (only once). The infant stool samples used in this project were 

collect at 3 weeks, 12 weeks, 6 months, and 12 months of age. The parental survey (shown in green) tracks 

the basic background and health status of the parents, and the details of the childbirth, especially the 

mothers’ medicine usage during gestation. The retrospective survey (shown in purple) and repeating 

questionnaire (shown in red) records the overall health status and nutrition of the infant at different 

frequencies. The image is modified from Korpela et al., 2019.  
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In addition to stool sample collection, the families participating in the HELMi cohort were asked 

to answer a series of repeating questionnaires through an online platform (Figure 1). This allowed 

the collection of a large amount of data on the infant and their parents. Only the questionnaires 

relevant for this project are described below: 

• Background questionnaire 

A series of basic information concerning the pregnancy conditions (e.g., gestational diabetes, 

probiotic or vitamin intake) and concerning the childbirth (e.g., date of birth, mode of birth, place 

of birth, gestational age) were collected immediately after birth. Additionally, this questionnaire 

contains information concerning the maternal and paternal factors (e.g., age, education, BMI, 

allergy, or genetic diseases) and living environment (e.g., number of siblings, number of pets). 

• Breastfeeding questionnaire as part of a repeating questionnaire  

Breastfeeding and nutritional practices were monitored at weekly to monthly frequency in order 

to follow the evolution of the infant nutrition during early childhood. Questionnaires contained 

questions concerning the breastfeeding exclusivity and duration, exposure to infant formula, as 

well as introduction to solid food. 

• Medication diary 

Exposures to medication were recorded by the parents in a continuous diary-type of questionnaire. 

The parents described the medication name, date of start and end. Manual curation of this diary 

was conducted to classify the medication types and active compounds. 

• Retrospective health and life-style questionnaire 

The infant’s global health and well-being was monitored through a questionnaire recurring every 

3 months. In particular, information concerning the gastrointestinal function (e.g., stool frequency, 

consistency and colour, frequency of symptoms such as regurgitation, stomach pain, flatulence) 

and allergy (e.g., skin health, asthma) were monitored through these recurring questionnaires. 

Additionally, the child’s sleeping habits, weight and height trajectories, living environment, and 

outdoor exposure were recorded in this questionnaire. 
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3.2.2 HELMi questionnaire aggregation and curation 

First, each question was grouped according to the information they carried (maternal/paternal 

health, pregnancy, infant health, medication exposures, infant nutrition, environment, and lifestyle) 

and according to the data format (integer, boolean and categorical). Free text answers were 

excluded from the analysis. Then, the variables were mapped to their corresponding microbiota 

sample. For the background questionnaire variables, the answers were mapped to all samples 

collected for the family. However, for breastfeeding, health questionnaire and medication diary, 

each sample was mapped to the closest answer given in time.  

 

The selected variables were then explored for their usability in this project. In particular, variables 

with a high number of missing answer (>60%) were excluded. Additionally, for categorical 

variables, highly unbalanced groups were excluded (one category accounting for more than 80% 

of the responses). Finally, for numeric variables, answers were manually checked for 

inconsistencies and impossible values that were curated out of the dataset. The complete list of 

variables selected, their definition and original questions are available in supplemental table 1. 

These analyses were conducted and visualized in R (version 1.4.1717), using the tidyverse R 

package (Wickham et al., 2019). 

 

3.3 HELMi WGS metagenomes 

3.3.1 Collection and sequencing of the metagenomes in the HELMi project 

This section describes work conducted prior to the beginning of the current master’s thesis 

project. In this project, we are leveraging a collection of stool samples from 80 infants, collected 

at 3 weeks, 12 weeks, 6 months, and 12 months of age, and of parental (maternal sample and 

father’s/current partner’s sample) stool samples collected in the two weeks prior delivery. In total 

the dataset consisted of 307 infant samples and 106 adult samples. Stool samples were collected 

by the parents at home using a provided kit, and were immediately stored at home at -20°C. Upon 

receival in the laboratory, the samples were immediately stored at -80°C until processing. After 

faecal DNA extraction in 96-plate format using a repeated bead-beating method (Korpela, Kallio, 

et al., 2021), WGS DNA libraries were prepared using Illumina Nextera Flex or iGenomX Riptide 
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High Throughput Rapid Library Prep Kit and sequenced using Illumina HiSeq and NovaSeq 6000 

sequencing platforms at the sequencing unit of the Institute for Molecular Medicine Finland 

(FIMM), Helsinki, Finland. 

 

3.3.2 Taxonomic annotation of the metagenomes  

During this project, a computational pipeline was assembled to perform the following 

computational tasks: (1) quality control (QC) of the raw metagenomic reads, (2) human read 

filtering and (3) taxonomic profiling of the reads after QC (Figure 2). 

 

 

Figure 2. Taxonomic profiling of metagenomes. After quality control (QC) and human read trimming, the 

metagenomic reads were annotated by using three taxonomic tools. Metaphlan3 annotated the 

metagenomes with its inbuilt reference database, while Kraken and Braken relies on an external database 

(RefSeq or HumGut). In total, five taxonomic profiling strategies were determined in this project: (1) 

Kraken with RefSeq database, (2) Kraken with HumGut database, (3) Kraken+Braken with RefSeq 

database, (4) Kraken+Braken with HumGut database and (5) Metaphlan3. 

 

After sequencing, the sequencing fastq files first underwent quality control. First, low-quality base 

calls (below 20 Phred score) were trimmed off from the 3’ end of the reads before sequencing 

adapter removal using the tools FastQC v0.11.9 (Andrews, 2010) and TrimGalore v0.6.6 (Krueger, 

2016/2022). Then, adapters and primers were removed using the adapter detection tool of Cutadapt 

v3.4 (Martin, 2011). After these two trimming steps, reads shorter than 200 bp were discarded, 

while taking into account the paired-end nature of the dataset.  After QC, the metagenomes were 

screened to remove any contaminating human host sequences. The reads were mapped against a 
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non-redundant version of the Genome Reference Consortium Human Build 38 (available at 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.40; patch release 14) using Bowtie2 

v2.4.2 (Langmead & Salzberg, 2012). Reads with a significant match with the human genome 

were removed from the dataset. 

 

Next, the remaining reads were annotated and the taxonomic profiles of the samples were 

determined. In order to determine the best computational approach for the taxonomic profiling, 

several tools were used. First, Metaphlan3 (Truong et al., 2015), a widely used taxonomic tool that 

relies on a gene database to annotate the reads from an unassembled metagenome, was run using 

the inbuilt reference database. We additionally used Kraken2 (Wood et al., 2019), a tool that uses 

k-mer profiles to efficiently map reads to a database of known genomes. Kraken2 is often used 

along with Braken (Lu et al., 2017), which uses a Bayesian inference to re-calculate and improve 

Kraken2 profiles. In order to assess the impact of the reference database in the taxonomic profile 

obtained, we annotated the metagenomes obtained by Kraken2 and Braken using the RefSeq 

database (downloaded from https://github.com/BenLangmead/aws-indexes on 21/05/2021) (Pruitt 

et al., 2005) and the HumGut database (downloaded from https://github.com/larssnip/HumGut on 

20/09/2021) (Hiseni et al., 2021). While RefSeq is a more complete database composed of all non-

redundant complete genomes from microbial species deposited in NCBI, the HumGut database is 

a database tailored for profiling human gut metagenomes and comprises complete genomes and 

metagenome assembled genomes from human gut. 

 

3.3.3 Computational resources and environment  

As this project involves a large dataset composed of 413 metagenomes (ca. 2 TiB), the cloud 

computing resources for the QC, human read removal, taxonomic and functional profiling as well 

as for the storing of the metagenomes were utilized from the Finland’s IT Center for Science (CSC). 

Because the data used are considered as low-risk personal data, the metagenomes were stored 

encrypted in the “Allas” object storage system after human read removal. The supercomputer 

“Puhti”, composed of several computational unit nodes, was used for the computational tasks. 

 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.40
https://github.com/BenLangmead/aws-indexes%20on%2021/05/2021
https://github.com/larssnip/HumGut%20on%2020/09/2021
https://github.com/larssnip/HumGut%20on%2020/09/2021
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3.4 Variance analysis 

In order to assess each variable’s impact on the gut microbiota composition, we used a series of 

permutational multivariate analysis (PERMANOVA) tests using the adonis2 command in the 

vegan package version (Oksanen et al., 2022). First, the metagenomic taxonomic read counts were 

aggregated at the species level, and the taxonomic counts were transformed into relative 

abundances. Then, a Bray-Curtis distance was computed between the taxonomic profiles and a 

PERMANOVA test was applied for each variables using 9999 permutations. For each of these 

PERMANOVA test, a beta dispersion test was performed as well. The result of beta dispersion 

test indicates whether or not the significant result in PERMANOVA could be due to a difference 

in dispersion rather than in composition (Weiss et al., 2017). Finally, the p-values obtained from 

the multiple PERMANOVA tests were corrected for false positive rate using a false discovery rate 

(FDR) correction. 

 

Importantly, this project first assessed the influence of technical variables on the observed 

microbiota composition. From the PERMANOVA tests, we determined that the DNA extraction 

plate ID and reads number had a significant impact on the observed variance and were chosen as 

cofounders for the biological variables.  
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4. Results 

In this project, we first evaluated the impact of different taxonomic annotation methods on the 

observed gut microbiota profiles (section 4.1), allowing us to select one annotation approach. We 

then used this profiling method to evaluate the impact of technical variables on the observed 

microbiota variance between samples (section 4.2), allowing us to identify confounding factors. 

Using this knowledge, we explored the impact of biological variables on the observed taxonomic 

variance in our samples (section 4.3, 4.4 and 4.5). 

 

4.1 Assessing the impact of annotation tools on taxonomic profiling results 

To explore the potential impact of the choice of taxonomic annotation tools on the taxonomic 

profile in WGS metagenomes, we annotated the HELMi WGS metagenomes using various 

bioinformatic tools and databases.  

 

To assess the impact of the choice of database, we first compared the annotations obtained for 

Kraken using RefSeq and HumGut databases. We observed that use of the HumGut database 

allowed us to radically reduce the proportion of reads left unannotated in particular for adult 

samples (Figure 5). We then compared the results obtained using Kraken+Braken against the same 

databases. The abundance profiles obtained at the phylum and family levels using Kraken+Braken 

against the RefSeq or HumGut were highly similar (Figure 6A and B). The median Bray-Curtis 

distance computed for the same sample using the two databases was therefore low (0.16 IQR: 0.17), 

and was significantly lower than the Bray-Curtis distance obtained between different samples at 

the same time point (0.60 IQR: 0.37) (Unpaired Wilcoxon test, p-value < 2.2e-16). 

 

These results show that using Kraken+Braken along with the HumGut database allowed a higher 

proportion of reads to be annotated compared to Kraken or Kraken+Braken using the RefSeq 

database. 
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Figure 5. Proportions of annotated and unannotated reads at the phylum level using Kraken with the (A) 

RefSeq database or the (B) HumGut database. The taxonomic profiles obtained by Kraken using each 

database were aggregated at the kingdom level and averaged by infant age (3w= 3 weeks; 3m=3 months; 

6m=6 months and 1y=1 year) and by type of parental sample (F=Father’s sample, M=Mother’s sample). 
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Figure 6. Taxonomic profiles of the annotated reads obtained using Kraken+Braken with the RefSeq 

database or the HumGut database at the (A) phylum or (B) family level. The taxonomic profiles obtained 

by Kraken+Braken using each database were aggregated at the phylum or family level and averaged by 

infant age (3w= 3 weeks; 3m=3 months; 6m=6 months and 1y=1 year) and by type of parental sample 

(F=Father’s sample, M=Mother’s sample). Low abundance taxa (<10% relative abundance) were grouped 

as “Other”. 
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We next compared Kraken+Braken using the HumGut database to Metaphlan3. The taxonomic 

profiles obtained by the two methods at the family level were highly similar (Figure 7A). However, 

Metaphlan3 did not report the proportion of sequences left unannotated, whereas k-mer-based 

approaches such as Kraken+Braken reported them as “unknown”. Importantly, all tools reported 

the same evolution of richness (Chao1 index) and alpha-diversity (Shannon index) during the 

infant growth, with a significant increase in richness and alpha-diversity during the first year of 

life, and no differences between the two parental samples (Figure 7B). However, Kraken+Braken 

allowed the detection of a higher number of different species than Metaphlan3, hence the species 

richness was consistently higher for the Kraken and Kraken+Braken using either database than 

using Metaphlan3. 
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Figure 7. Microbiota composition, species richness and alpha-diversity obtained with Kraken+Braken 

using the HumGut database and Metaphlan3.  

(A) Relative abundance in taxa for infant and parental samples using Kraken+Braken and Metaphlan3. 

For each tool, the relative abundance profiles obtained for each metagenome were aggregated to the family 

level, and rare families (below 10% relative abundance and 10% prevalence) were grouped as “Other”. 

The relative abundances were then averaged by infant age (3w= 3 weeks; 3m=3 months; 6m=6 months 

and 1y=1 year) and by type of parental sample (F=Father’s sample, M=Mother’s sample). 

(B) The species richness (Chao1 index) and alpha-diversity (Shannon index) for infant and parental 

samples. Richness and alpha-diversity were calculated after rarefying the raw counts to the same 

sequencing depth. The indices are grouped by infant age (3w= 3 weeks; 3m=3 months; 6m=6 months and 

1y=1 year) and by type of parental sample (F=Father sample, M=mother sample). Comparisons between 

samples groups were performed using unpaired Wilcoxon test. 
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All in all, these results favoured the selection of the Kraken+Braken using the HumGut database 

annotation method, as it achieved the lowest relative abundance of unannotated sequences as well 

as captured the highest taxonomic richness and diversity. 

 

Using this method, the maturation of the infant microbiota can be observed during the first year of 

life, with infant microbiota composition converging toward a more adult-like composition, while 

being still distinct from the adult samples at 1 year (Figure 8). 

 

 

Figure 8. Principal coordinate analysis (PCoA) plot of the HELMi metagenomes using Bray-Curtis 

distance. The samples were annotated using Kraken with Braken using the HumGut database, the counts 

were aggregated at the species level and a Bray-Curtis distance computed between samples. The samples 

are coloured by infant age (3w= 3 weeks; 3m=3 months; 6m=6 months and 1y=1 year) and by type of 

parental sample (F=Father sample, M=mother sample). 
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4.2 Effect of technical variables on the taxonomic composition 

First, we aimed to address the impact of technical variables in the taxonomic variations observed 

in the metagenomes. In total, 14 technical variables were taken into account in this project. Among 

them, 4 categorical variables were excluded because the categories were highly unbalanced (one 

category covering more than 80% of the answers) and one variable was removed because of a high 

overlap with another variable. In total, 10 technical variables were kept for the variance analysis. 

These variables described the sample collection, in particular the storage time in days; the sample 

consistency (Bristol score) as well as the DNA extraction batch (extraction Plate ID); DNA yield; 

and the sequencing run (Figure 9). 

 

 

Figure 9. Distribution of selected technical variables for stool samples, coloured by data type.  

 

Just a few technical variables were shown to have a significant impact on the taxonomic variation 

(Figure 10). In particular, none of the variables concerning sample collection and storage 

conditions were found to have a significant impact. However, the person performing the DNA 

extraction was found to have a significant impact on the gut microbiota variation, which suggests 

that the experimenters’ habits as well as other variations among different batches of extractions 

can cause a significant bias in the final data. Additionally, the sequencing depth (total number of 
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sequencing reads/samples) and the DNA concentration after extraction were found to have a 

significant impact on the taxonomic variation.   

 

From these results, we chose the DNA extraction batch (extraction Plate ID) as a confounder in 

further analysis as it takes into account the effect of the person performing the DNA extractions as 

well as possible variations due to the date of extraction. The total number of reads were also 

selected as a confounder for the further variance analysis. 

 

 

Figure 10. Significance and explained variance of the gut microbiota by technical covariates modelled 

with PERMANOVA test. Results for variables with homogenous dispersion (Red) were deemed reliable. 

***; p < 0.0001, **: p < 0.001, *: p < 0.01, .: p < 0.1 from adonis2, (permutation=999). Only variables 

with an p ≤ 0.05 in at least one time point were plotted. 

 

4.3 Effect of background variables on the taxonomic composition 

In total, 132 background variables for the study subjects were taken into account in this project. 

These variables describe the mother’s and partner’s health prior and during pregnancy, life style 

such as cleaning habits, living surrounding, and variables describing the birth conditions (mode of 

delivery, antibiotic exposures at birth, etc.) (Figure 11). From these 132 variables, 56 were 

excluded because of they had a highly imbalanced distribution (one category covering more than 
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80% of the answers), and 37 variables were removed because of a high overlap with one or more 

variables.  

 

 

Figure 11. Distribution of background variables, coloured by data type.  

 

The PERMANOVA and beta-dispersion test of the usable variables showed that there were 21 

variables with significant impact (FDR q-value ≤ 0.25) on the variation observed in the infant gut 

microbiota on at least one time point. The infant delivery mode and intrapartum antibiotic had the 

most long-lasting effect on the infant gut microbiota, with an effect visible from 3 weeks to 12 

months after birth (FDR q-value < 0.01, with non-significant beta-dispersion at all time points for 

birth mode and after 6 months for intrapartum antibiotics) (Figure 12). Other variables on the birth 

conditions, such as stay in intensive care and the gestational age were mildly significant at only 

one time point, suggesting a potential effect that needs to be further confirmed. 

 

Paternal and maternal education level were found to have a significant impact in the early time 

points, although significant beta-dispersion in the maternal education level does not allow to 

exclude an effect of imbalanced categories. Interestingly, the maternal and paternal status in 

heritable diseases (including allergies and asthma), were found to have a significant impact on the 

infant’s gut microbiota variation at one year (Figure 12). 
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Figure 12. Significance and explained variance of the microbiota by background variables on birth, 

mother and father modelled with PERMANOVA test. Results for variables with homogenous dispersion 

(Red) were deemed reliable. ***: p < 0.0001, **: p < 0.001, *: p < 0.01, .: p < 0.1 from adonis2 

(PERMANOVA permutation=9999, confounders: plate ID and total number of reads). Only variables with 

an FDR corrected q-values ≤ 0.25 were plotted. 

 

We next explored the impact of variables describing the infant’s living environment and family 

variables (Figure 13). As previously observed for the maternal and paternal education level, the 

maximum education level of the couple had a significant impact on the infant gut microbiota 

variations at 3 weeks and 3 months. Additionally, the number of siblings and pets, as well as the 

frequency of cleaning was found to be significant, however their positive beta-dispersion does not 

allow to exclude an effect of imbalanced group sizes. 
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Figure 13. Significance and explained variance of the infant gut microbiota by life-style and family 

variables modelled with PERMANOVA test. Results for variables with homogenous dispersion (Red) were 

deemed reliable. **: p < 0.001, *: p < 0.01, .: p < 0.1 from adonis2 (PERMANOVA permutation=9999, 

cofounders: plate ID and total number of reads). Only variables with an FDR corrected q-values ≤ 0.25 

were plotted. 

 

4.4 Effect of breastfeeding variables on the taxonomic composition 

In total, we surveyed the breastfeeding habits using 20 variables. These variables described the 

infant early life diet, such as duration of breastfeeding, formula exposure, solid food introduction. 

Altogether 11 variables were excluded for a highly imbalanced distribution, and 2 variables were 

removed because they overlapped with other variables. The distribution of data types for the 

selected variables can be found in Figure 14. Interestingly, no breastfeeding and diet variables 

were shown to have a significant impact on the infant gut microbiota variation at any age. 

 

 
Figure 14. Distribution of data types for breastfeeding variables. 
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4.5 Effect of health and medication treatments variables on the metagenome composition 

In total, we collected 12 variables describing medication exposures for infants. These variables 

described the frequency and types of exposures for the infant, in particular to antibiotic treatments. 

However, 11 of these variables were highly unbalanced and had to be excluded. We tested the 

presence or absence of any medication treatment course in the 3 weeks prior sampling; however, 

this variable was not found to have a significant impact on the taxonomic composition of the gut 

microbiota at any age. 

 

Additionally, we collected 61 health-related variables in this project. These variables explore the 

infant health status, including the infant’s development of allergic disease, general health status, 

gastrointestinal health and well-being. Altogether 48 variables were excluded because of highly 

imbalanced group or overlap with other variables. The distribution and data type of the selected 

variables is represented in Figure 15.  

 

 

Figure 15. Distribution of health-related variables, coloured by data type. 

GI health = Gastrointestinal Health 
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The PERMANOVA test identified 7 health variables that had significant impact on the infant gut 

microbiota variation at least in one time point (Figure 16). First, the general health variable 

describing if the infant was sick during the past three months was found to be significant. However, 

the beta-dispersion was also significant for this variable. Several gastrointestinal (GI) health 

variables were found to be significantly impacting the infant gut microbiota composition, in 

particular the number of defecations, and flatulence regularity. 

 

 

Figure 16. Significance and explained variance of the infant gut microbiota by health-related variables 

modelled with PERMANOVA test. Results for variables with homogenous dispersion (Red) were deemed 

reliable. ***: p < 0.0001, **: p < 0.001, *: p < 0.01, .: p < 0.1 from adonis2 (PERMANOVA 

permutation=9999, cofounders: plate ID and total number of reads). Only variables with an FDR corrected 

q-values ≤ 0.25 were plotted. 
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5. Discussion 

5.1 Taxonomic annotation profiling methods 

This study aimed to identify the technical and biological variables explaining the taxonomic 

variation observed in infant and parental faecal microbiota during the first year of life. We first 

explored the impact of the choice of taxonomic profiling methods, as they have been shown to 

have profound impacts on the profiling results (Mavromatis et al., 2007; Meyer et al., 2019; Ye et 

al., 2019). Here, we compared the annotation obtained using three computational tools: 

Metaphlan3, Kraken and Kraken along with Braken. Metaphlan3 is a taxonomic annotation tool 

widely used in metagenome research (published in 2021, cited 144 times as of date) (Beghini et 

al., 2021). On the other hand, Kraken is a taxonomic annotation tool using the sequence 

composition in k-mers to annotate the sequencing reads (published in 2019, cited 1148 times to 

date) (Wood et al., 2019). One particularity of Kraken is that reads may be classified at different 

taxonomic level (species, genus, family etc.), depending on if the sequence of the considered read 

is conserved between different taxa. Braken then uses a Bayesian inference to recalculate Kraken 

annotation and provide a more precise species-level profile (Lu et al., 2017). When comparing the 

different approaches, we noted that the gene-based approach used by Metaphlan3 masks the 

number of reads left unannotated by the tool (Beghini et al., 2021). In other words, this tool reports 

the relative shares of annotated taxa in relation to the total number of annotated reads, not the total 

reads. In our context, when comparing parent and infant metagenome profiles at different ages, it 

is important to assess how the fraction of sequences annotated by the tool is varying across sample 

types. Therefore, we determined that using Kraken along with Braken was most appropriate for 

this study, as it allowed us to (1) report the number of sequencing reads left un-annotated for each 

sample type and (2) easily adapt the reference database used by the tool. 

 

Indeed, the reference database used by each annotation tools can have a major impact on the quality 

of annotation. The development of databases specifically tailored to an environment of interest 

allows for a better precision of annotation, as it limits the false positive hits. In our study we 

compared the annotation obtained by the general database RefSeq and the human gut specific 

HumGut database (Hiseni et al., 2021) using Kraken and Kraken+Braken. We observed that using 
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the HumGut database drastically reduces the number of reads left un-annotated by the tool. All in 

all, these methods and database comparison allowed us to determine that using Kraken+Braken 

along with the HumGut database was most appropriate for our study. 

 

5.2 Technical factors 

We next explored the impact of technical variables such as the sample collection, storage 

conditions, DNA extraction and sequencing methods on the overall microbiota variation. Indeed, 

in large-scale cohort such as the HELMi project, these variations may introduce significantly bias 

in microbiota composition that needs to be accounted for when studying biological variations 

(Voigt et al., 2015; Wesolowska-Andersen et al., 2014). In our dataset, few technical variables 

were found to have a significant impact on the observed microbiota composition. In particular, 

while storage time and conditions can introduce a significant bias on the microbiota profile 

(Cardona et al., 2012), we did not observe any significant impact of these variables on our dataset. 

However, we observed a significant impact of the identity of the person performing the DNA 

extraction, DNA extraction concentration and of the number of sequencing reads obtained. The 

samples were processed over a period of around 2 years by 3 different persons. This suggested that 

small differences in protocols may have significant impacts on the obtained microbiota 

composition. The DNA extraction concentration typically remains unaltered in repeated extraction 

for each sample, indicating that DNA yield is more a biological than technical variable of the 

samples. Sequencing depth is a known factor affecting richness and compositional outputs of the 

microbiota samples and hence typically normalized for samples by rarefaction or more recently 

with other methods available (McMurdie & Holmes, 2014). This exploration of the impacts of 

technical variations on the obtained microbiota profiles lead us to choose two variables as 

confounders for the rest of the analysis: (A) the DNA extraction plate ID, which accounts for 

variations in the extractor and the buffer batches and (B) the total number of reads obtained after 

sequencing, allowing to adjust for the DNA concentration and sequencing depth. 
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5.3 Biological factors from both environment and host 

We explored the impact of biological variables on the infant faecal microbiota variations. As 

extensively reported in several other cohort studies, the mode of delivery has been observed to 

significantly alter the infant faecal microbiota composition during early infancy (Bokulich et al., 

2016; Busi et al., 2021; Dominguez-Bello et al., 2010; Guittar et al., 2019; Reyman et al., 2019; 

Wampach et al., 2018). In our study, we observed a significant impact of the mode of delivery 

from 3 weeks to 1 year of age. This long-lasting impact on the early gut microbiota is thought to 

have impacts on the infant’s future health. Indeed, children delivered by Caesarean section have 

an increased risk of developing asthma and obesity during childhood (Keag et al., 2018; Kuhle et 

al., 2015; Li et al., 2013). 

 

We additionally observed a significant impact of the exposure to intrapartum antibiotics in our 

cohort. Mothers may be exposed to antibiotic treatment during labour and delivery to prepare for 

CS delivery, but also in cases of vaginal delivery due to carriage of neonatal pathogen Group B 

Streptococcus B (GBS) or suspected intrauterine infection. Previous studies have shown that 

exposures to several classes of intra-partum antibiotics can lead to a significantly less diverse early 

gut microbiota in the infant, and an altered acquisition of the gut microbiota (M. Azad et al., 2016; 

Coker et al., 2020; Korpela, Jokela, et al., 2021).  

 

Aside from birth-mode related variables, we observed that several background and environmental 

factors such a as the parental education, number of pets and siblings as well as cleaning habits 

were found to have a significant impact on the infant microbiota composition. Impact of education 

level is a general proxy for socio-economic status, which can have a profound impact on lifestyle, 

living environment and parenting habits. In our cohort, the effect of number of pets and siblings 

are still inconclusive, as groups were also found to have a significant beta-dispersion. However, 

this result is of particular interest since several other studies also report these environmental 

variables to alter the infant microbiota composition and infant health (M. B. Azad et al., 2013; 

Laursen et al., 2015; Penders et al., 2014). 
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Surprisingly, we did not find any significant impact of the infant diet and breastfeeding variables 

on our cohort. This is surprising as several previous studies have shown that infant feeding pattern, 

in particular the length of breastfeeding and the age of introduction of solid foods, can impact the 

trajectory of gut microbiota acquisition (Bäckhed et al., 2015; Stewart et al., 2018). However, our 

dataset comprised of very few formula-fed infants, and 90% of the infants included in this study 

were breastfed until 6 months of age. This uniform group of infants in terms of feeding may explain 

why no significant association between feeding and infant microbiota variation was detected. 

 

Finally, we explored the impacts of infant well-being and health on the gut microbiota composition. 

Recent sicknesses, as well as several variables regarding the GI health were found to have a 

significant association with variation in the infant microbiota composition. Importantly, some 

well-being variables have been linked to altered gut microbiota composition, such as colic (de 

Weerth et al., 2013), crying (Pärtty et al., 2012) and other GI symptoms (Korpela, Jokela, et al., 

2021). In adults, the gut transit time is known to affect the stool microbiota composition (Asnicar 

et al., 2021), and the same phenomenon could be hypothesized for infants, explaining the impact 

of variables such as defecation rate and stool consistency. However, for these health-related 

variables, especially GI health and well-being variables, it can be difficult to assess what is the 

causal relationship between health and the microbiota composition. 

 

5.4 Limitations and future directions 

The present study explored the technical and biological variables impacting the composition of the 

early life microbiota during the first year of life. However, it is important to highlight that our 

study was limited by the uniformity in life-style and habits of the included families. Indeed, the 

HELMi cohort involves Finnish families living mostly in the Uusimaa region, globally Caucasian, 

highly educated and of a high socio-economic background. This lack of diversity may mask the 

effect of some variables that may be better addressed in other cohorts, using in particular a cross-

sectional approach, although cohort heterogeneity is typically difficult to achieve, with some 

populations more difficult to enrol than others (Svensson et al., 2012). As previously noted, this 
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may explain why no association between breastfeeding habits and infant gut microbiota was found 

in this study. 

 

The HELMi cohort variables used in this study have been obtained through the extensive 

questionnaires filled in by the parents. Importantly, some questions may have been misunderstood 

by some families, or base fully on subjective assessment (e.g., parents’ estimation of child well-

being during the past months). We tried to reduce effects of subjective questions by creating 

categorical variables, and excluding questions with a high proportion of mistakes or impossible 

responses. Future studies focusing on a smaller subset of variables of interest may allow for a more 

curated approach which would increase the precision of the observed associations. 

 

Finally, this study has focused on variance partitioning (i.e., on detecting impacts of selected 

variables on the infant faecal microbiota). However, we did not investigate the impacts on gut 

microbiota richness and diversity nor on the microbiome functional composition and gene 

diversity, which will be investigated in future studies.  
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Supplementary Material 

Table 1. Overview of the variables used for PERMANOVA test. 

Variable short name Variable description Section Type 
inf_AgeHome Age in days of the child when they got home 

after delivery 
Background Numeric 

inf_BirthHeight Infant height at birth Background Numeric 
inf_BirthWeight Infant weight at birth Background Numeric 
inf_DeliveryMode Birth mode (Vaginal or C-Section) Background Categorical 
inf_HadDepartureDelayed The departure from the maternity hospital was 

delayed for health reasons 
Background Boolean 

inf_HadIntensiveCare The infant was placed in intensive care after 
birth 

Background Boolean 

inf_HospitalExtraMilk The infant received extra milk at the hospital Background Boolean 
inf_Sex Infant sex at birth Background Categorical 
reg_RecievingIAP Intrapartum antibiotic was given at delivery Background Boolean 
inf_Gestational_term Infant gestational age Background Categorical 
reg_WaterBreakH Time between water break and delivery Background Numeric 
birth_season Season of Birth Background Categorical 
env_CleanScore_sum Global score computed from house cleaning 

habits 
Background Numeric 

env_HabitationType Type of habitation Background Categorical 
env_NbPets Number of pets living with the family Background Numeric 
env_FurOrFeathers The family has a furry/feather pet, other or no 

pet 
Background Categorical 

familly_NbSiblingsFt Number of full-time siblings Background Numeric 
family_MaxEducation Maximum education level in the family Background Numeric 
f_AllergyDiseaseType_Allergy The biological father had a diagnosed allergic 

disease 
Background Boolean 

f_HasHeritableDisease The biological father has a diagnosed heritable 
disease 

Background Boolean 

f_height Biological father height at delivery time Background Numeric 
f_weight Biological father weight at delivery time Background Numeric 
f_BMI Biological father BMI at delivery time Background Numeric 
p_AgeDelivery Partner’s age at delivery Background Numeric 
p_educationScore Partner’s education level Background Categorical 
m_ActivityLeisure Mother’s typical physical activity during 

pregnancy 
Background Categorical 

m_AgeDelivery Mother’s age at delivery Background Numeric 
m_AlcoholPriorFreq Mother’s alcohol doses prior pregnancy Background Categorical 
m_AllergyDisease-
Type_Allergy 

The mother has a diagnosed allergic disease Background Boolean 

m_FattyAcid Fatty acid and oil fish supplements used 
during pregnancy by the mother 

Background Boolean 
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Variable short name Variable description Section Type 
m_FolicAcid Folic acid supplements used during pregnancy 

by the mother 
Background Boolean 

m_HasHeritable-Disease The mother has a diagnosed heritable disease Background Boolean 
m_height Mother’s height at delivery time Background Numeric 
m_OutdoorActivities-Score Global score for the mother’s outdoor activity 

hobbies 
Background Numeric 

m_PreviousDeliveries Mother’s number of previous deliveries Background Numeric 
m_ProbioticsUse Usage of lactic acid bacteria and other 

probiotic during last trimester of pregnancy 
Background Boolean 

m_BMI Mother BMI before pregnancy Background Numeric 
m_weightGain Mother’s weight gain during pregnancy Background Numeric 
m_educationScore Mother education level score Background Categorical 
all_reads Number of reads obtained after sequencing Technical Numeric 
Coll_Antibiotic-Treatment For parents, when was the last antibiotic 

treatment course before sample collection 
Technical Categorical 

Ext_FecalWeight Faecal weight in gram used for DNA 
extraction 

Technical Numeric 

Ext_BristolScore Bristol score of the faecal sample during DNA 
extraction 

Technical Categorical 

Ext_DNAconc DNA concentration obtained by DNA 
extraction 

Technical Numeric 

Ext_Extractor Person who did the DNA extraction Technical Categorical 
Ext_Plate Batch ID of DNA extraction Technical Categorical 
Run_ID Sequencing run Technical Categorical 
Storage_AtHome_ 
Days 

Number of days of sample storage at home (-
20°C) 

Technical Numeric 

Storage_Lab_Days Numbers of days of sample storage in the lab 
before extraction (-80°C) 

Technical Numeric 

ExclusiveBF_Retro The infant was exclusively breastfed at least 
until the sample collection 

Breastfeeding Categorical 

inf_SolidQuant Quantity of solid food the infant received 
during the 2 weeks prior sample collection 

Breastfeeding Categorical 

inf_AgeFirstSolids Infant age when received solid food for the 
first time 

Breastfeeding Categorical 

inf_MainFood Main food received by the infant during the 
month prior sample collection 

Breastfeeding Categorical 

inf_TypeMilk_BreastMilk The infant received breast milk during the 
month prior sample collection 

Breastfeeding Boolean 

inf_TypeMilk_ 
FormulaMilk 

The infant received formula milk during the 
month prior sample collection 

Breastfeeding Boolean 

inf_TypeMilk_ 
CowMilk 

The infant received cow milk during the 
month prior sample collection 

Breastfeeding Boolean 

Had_treatment Has received any treatment course before the 
collection of the sample 

Medication Boolean 

inf_WasSick The baby has been sick at the time of the 
sample collection 

Health Boolean 
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Variable short name Variable description Section Type 
inf_StoolAppearance Typical appearance of the infant stool in the 

weeks before sample collection 
Health Categorical 

inf_StoolColor Typical colour of the stool in the weeks before 
sample collection 

Health Categorical 

inf_HadGI The child presented signs of GI symptoms in 
the weeks before sample collection 

Health Boolean 

inf_HadPain The child presented signs of stomach pain in 
the weeks before sample collection  

Health Boolean 

inf_HadFlat The child presented signs of flatulence in the 
weeks before sample collection 

Health Boolean 

inf_Crying_cat Estimate of the total amount of baby crying 
per day in the weeks before sample collection 

Health Categorical 

inf_IntensityCrying_ 
cat 

Intensity of crying episodes in the weeks 
before sample collection 

Health Categorical 

inf_Soothing_cat The effect of soothing on the baby’s crying 
episodes in the weeks before sample 
collection 

Health Categorical 

inf_NbDef_cat Infant defecation frequency in the weeks 
before sample collection 

Health Categorical 

inf_DefEffort_cat Effort necessary for the infant to defecate in 
the weeks before sample collection 

Health Categorical 

inf_PainIntensity_cat Intensity of the stomach pain in the weeks 
before sample collection 

Health Categorical 

inf_FlatIntensity_cat Intensity of the flatulence pain in the weeks 
before sample collection 

Health Categorical 
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