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Abstract

The efficiency of Markov Chain Monte Carlo
(MCMC) depends on how the underlying ge-
ometry of the problem is taken into account.
For distributions with strongly varying cur-
vature, Riemannian metrics help in efficient
exploration of the target distribution. Unfor-
tunately, they have significant computational
overhead due to e.g. repeated inversion of the
metric tensor, and current geometric MCMC
methods using the Fisher information ma-
trix to induce the manifold are in practice
slow. We propose a new alternative Rieman-
nian metric for MCMC, by embedding the
target distribution into a higher-dimensional
Euclidean space as a Monge patch and us-
ing the induced metric determined by di-
rect geometric reasoning. Our metric only
requires first-order gradient information and
has fast inverse and determinants, and allows
reducing the computational complexity of in-
dividual iterations from cubic to quadratic in
the problem dimensionality. We demonstrate
how Lagrangian Monte Carlo in this metric
efficiently explores the target distributions.

1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) algorithms pro-
vide samples from complex distributions for which
direct sampling is difficult, and are routinely used
in Bayesian statistics for sampling from the poste-
rior distribution of a model (Chkrebtii et al., 2016;
Calderhead, 2012). The conditions for asymptoti-
cally valid samplers are mild, but efficiently exploring
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high-dimensional distributions remains a major chal-
lenge. Modern methods typically convert the problem
into numerical integration of an augmented dynamic
system, based e.g. on Langevin diffusion (Roberts
and Tweedie, 1996; Roberts and Stramer, 2002; Green
et al., 2015), Hamiltonian Dynamics (Duane et al.,
1987; Neal et al., 2011; Betancourt, 2017) or La-
grangian dynamics (Fang et al., 2014; Lan et al., 2015).

The augmented dynamics combine the logarithm of
the target distribution with a kinetic term and simu-
late the time-evolution of the system. By using gra-
dient information to drive the evolution they both
convergence to the target distribution faster and im-
prove exploration of the likely set. However, high-
dimensional problems with strong correlations be-
tween individual dimensions and/or vastly different
marginal variances are still challenging (Roberts and
Stramer, 2002; Betancourt, 2017). To an extent this
can be addressed by tuning a mass matrix M control-
ling the kinetic energy to globally de-correlate the pa-
rameter’s dependency. This is equivalent to changing
the metric on the parameter space, but still assum-
ing some Euclidean metric (Neal et al., 2011). How-
ever, every global metric is necessarily a compromise
between efficiency in regions of low curvature and ac-
curate exploration of regions of high curvature.

Geometric MCMC algorithms (Girolami and Calder-
head, 2011; Xifara et al., 2014; Lan et al., 2015; Betan-
court, 2017; Beskos et al., 2017) use differential geom-
etry to account for local curvature, replacing the mass
matrix M with position-dependent matrix G(x) that
is the metric tensor of a suitable Riemannian mani-
fold. Accounting for the local curvature improves the
efficiency of the sampler especially in high-curvature
regions (see Xifara et al., 2014; Girolami and Calder-
head, 2011; Beskos et al., 2017, for many examples).
The choice of the manifold and hence the metric is
free, but existing literature focuses almost solely on the
manifold and metric induced by the Fisher Informa-
tion (FI) matrix of an underlying probabilistic model
(Schervish, 2011). It is a natural choice that can be de-
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rived from local Kullback-Leibler divergence, but only
applicable for the specific case of posterior sampling as
it is derived from a probabilistic model which mimics
random variation in real data-sets.

The improved exploration comes with significant com-
putational cost, and hence geometric MCMC methods
are not widely used in practice. As the metric tensor is
position-dependent, we now need to compute and in-
vert it in every step of the numerical integration, some-
times several times. Already forming the FI matrix is
demanding as it requires expected second derivatives
of the log density of the model, and inversion has cubic
complexity in the problem dimensionality D.

We present a new Riemannian metric that also re-
lates to local curvature of the distribution but that
is computationally efficient and generally applicable,
based on pure geometric reasoning rather than rely-
ing on statistical properties of a model. We propose
an embedding based on the graph of the target distri-
bution πX as a manifold in a higher-dimensional Eu-
clidean space, using a scaled Monge parameterization
Ξ(x) = (x, α log πX(x)). The manifold is generated
by the Monge patch embedding named after Gaspard
Monge, one of the inventors of differential geometry
(O’Neill, 2006). This operation defines a Riemannian
manifold with a natural metric tensor. The metric
tensor GM (x) is expressed as rank-one perturbation of
the identity matrix with the rank-one term being the
outer product of the gradients of the log target den-
sity. Consequently, it has efficient closed-form inverse
as well as efficient closed-form determinant, offering
significant computational savings.

The new metric captures the local curvature of the
target density directly via simultaneous relations be-
tween the second fundamental form of the manifold,
the Hessian of the target density and the Christoffel
symbols. It provides similar advantages in exploration
of complex regions of the distribution as the Fisher
metric, and in expectation can be interpreted as reg-
ularized FI matrix. The control parameter α allows
fine-tuning the embedding and the metric for overall
computational efficiency.

The metric is general and applicable for various ge-
ometric MCMC algorithms. We demonstrate it with
the Lagrangian Monte Carlo (LMC) (Lan et al., 2015).
Compared to Riemannian manifold HMC (RMHMC),
LMC has the advantage of an explicit numerical in-
tegrator that only requires two matrix inversions per
iteration. However, it is not symplectic (volume-
preserving) and hence requires also computing de-
terminant adjustment for the proposals acceptance
check. The costly computation of the determinants
and Christoffel symbols required for the numerical in-

tegrator have limited the interest in LMC, but in our
metric both can be computed efficiently. In our exper-
iments, LMC in the Monge metric outperforms algo-
rithms operating in Euclidean or Fisher metrics.

2 BACKGROUND

We briefly summarize Hamiltonian Monte Carlo
(HMC) as an example algorithm using augmented dy-
namics and discuss the role of metrics for the simula-
tion. We then provide the foundations of differentiable
manifolds, introducing concepts relating to curvatures
of the manifolds and their relationship to metrics.

2.1 Hamiltonian Monte Carlo and Metrics

Hamiltonian Monte Carlo (Neal et al., 2011) provides
samples from a probability distribution πX(x) by sim-
ulating the time-evolution of the Hamiltonian

H(x,p) = − log πX(x) +
1

2
log |M |+ 1

2
pT M−1 p

where the momentum variables p are sampled (typ-
ically) from a normal distribution. A new proposal
is generated by simulating the trajectory of the pair
(x,p) using numeric integration that alternates be-
tween updates for the position x and the momentum p.
This simulation is done for L iterations before deter-
mining whether the proposal is accepted. Variants of
HMC, such as the No-U-Turn-Sampler (NUTS; Hoff-
man and Gelman, 2014), are today the most common
methods for statistical inference and are widely imple-
mented in probabilistic programming languages.

The efficiency of HMC depends on the choice of the
mass matrix or metric tensor M , which is typically
tuned during warm-up. For instance, M proportional
to the covariance of the target distribution effectively
de-correlates the dimensions and improves exploration
(Neal et al., 2011). However, no global metric can help
coping with differences in local stretching or squeez-
ing of the manifold, and hence techniques like explicit
reparameterization are used for complex distributions
(Papaspiliopoulos et al., 2007).

Rather than using a global metric, we can conduct
HMC on Riemannian manifolds (RMHMC) by using a
position-dependent metric tensor G(x) instead (Giro-
lami and Calderhead, 2011). This allows coping with
changes in local curvature, assuming the metric is cho-
sen suitably. This extension results in an implicit nu-
merical integrator since two of the updates have the
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same variable on both sides:

p(n+1/2) = p(n)− ε
2
∇xH

(
x(n),p(n+1/2)

)
,

x(n+1) = x(n) +
ε

2

[
∇pH

(
x(n),p(n+1/2)

)
+ ∇pH

(
x(n+1),p(n+1/2)

)]
,

p(n+1) = p(n+1/2)− ε
2
∇xH

(
x(n+1),p(n+1/2)

)
.

The solution of these equations requires matrix in-
version during every iteration since ∇xH(x,p) =
G(x)−1 p. Furthermore, the implicit equations are
solved by a fixed-point iteration and hence there is
a need of computing inverse matrices multiple times.
Usually the metric is derived from FI, as explained in
more detail in Section 2.3. MCMC chains in Fisher
metric behave better compared to any Euclidean met-
ric, but the extensive computational cost and difficulty
of computing the metric has prevented wide-spread use
of RMHMC. Paquet and Fraccaroa (2018) considered
using the Hessian of the target density as the metric
tensor as an alternative, but it has the same compu-
tational cost.

In Section 4 we will consider in detail a variant of
RMHMC, Lagrangian Monte Carlo (Lan et al., 2015),
that avoids implicit equations but requires calculation
of determinants and Christoffel symbols instead.

2.2 Differential Geometry Preliminaries

Our point of departure is the notion of a differentiable
manifold. We call a setM a differentiable manifold of
dimension m (in short manifold) if together with bijec-
tive mappings (also called parametrizations or system
of coordinates) Ξi(x1, . . . , xm) : Xi ⊂ Rm →M where
Xi is a chart, they satisfy,

(a)
⋃
i Ξi(Xi) =M

(b) For each i, j, Ξi(Xi)
⋂

Ξj(Xj) 6= ∅ and that Ξ−1
i ◦

Ξj are differentiable mappings.

The family (Ξi,Xi) is also called a differentiable struc-
ture on M, and allow us to extend notions of the dif-
ferential calculus in Euclidean space to more general
spaces such as some abstract set M (e.g. a family of
probability distributions).

One of the aims of differential geometry is to enable
characterizing the rate of change for computing deriva-
tives on M intrinsically, without referring to any ex-
ternal coordinate space. For this we need the notion
of a tangent space. To do so, consider two overlapping
curves that trace out different paths on M but inter-
sect in a unique point p ∈ M. With the aid of two
distinct charts for each path, we denote γ1 := Ξ(t) :

Figure 1: Manifold M and its tangent space TpM,
with v being a tangent vector of the curve γ(t).

I1 ⊂ R → M and γ2 := Π(t) : I2 ⊂ R → M. By
taking the usual derivatives w.r.t to the variable t at
t1 such that γ1(t1) = p and for the second curve at t2
such that γ2(t2) = p, we obtain

γ̇1 =

n∑
k=1

dxk
dt

∂

∂xk
Ξ and γ̇2 =

n∑
k=1

dyk
dt

∂

∂yk
Π.

Because of condition (b) in the manifold definition, the
set of vectors {∂/∂k Ξ}k and {∂/∂k Π}k span the same
linear subspace of Rn at p ∈ M, differing only in the
basis vectors. Henceforth, we call this linear subspace
as tangent space at p, in short TpM. To see this more
clearly, define a new chart ψ = Ξ ◦ h : I3 →M where
h = Ξ−1 ◦Π and note that

∂

∂yk
ψ =

∂

∂yk
Ξ ◦ h =

n∑
c=1

dxc
dyk

∂

∂xc
Ξ

for k = 1, . . . , n.

Since the Jacobian of transformation h does not vanish
for any p ∈ M, we have {∂/∂yk ψ}k and {∂/∂xk Ξ}k
as the only different basis vectors of the set TpM. Fur-
thermore, we can define an inner product of elements
of the space TpM as g : TpM× TpM → R and then
note that g is invariant with respect of different charts
of the manifold. Gauss (1902) noted the implications
of this alreay in 1827: If we want to study the curva-
ture (how much M deviates from a Euclidean space,
or how it stretches and squeezes locally) of the setM,
it is enough to know the metric g – we do not need the
exact form of the charts.

2.3 Riemannian Manifolds and Metrics

A Riemannian manifold is a manifold which associates
for each point p ∈ M an inner product g (sym-
metric, bilinear and positive-definite) for the vectors
in TpM. For a given parametrization Ξ and tan-
gents v = si ∂/∂i Ξ and u = ti ∂/∂i Ξ, we have
g(u, v) = 〈u, v〉p = s>G(p)t where the coefficients of
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the metric g are the elements of the positive-definite
matrix G(p) given by the inner products

Gi,j(p) =

〈
∂

∂xi
Ξ,

∂

∂xj
Ξ

〉
p

and s, t ∈ Rn.

Such a matrix is called metric tensor. In this way Rie-
mannian manifolds can be directly defined by a differ-
entiable structure on a set M and a positive-definite
matrix G at each p ∈ M, without reference to any
specific system of coordinates.

One particular Riemannian metric used broadly in
statistics and machine learning uses the Fisher infor-
mation matrix as the metric tensor (Amari et al., 2019;
Girolami and Calderhead, 2011; Lan et al., 2015).
In context of MCMC, it provides a metric that ac-
counts for a probabilistic model for data, but that
requires computing the expectation of the Hessian
that is often difficult (Pawitan, 2001). If the prob-
abilistic model satisfies suitable regularity conditions
(Schervish, 2011), we can express the metric as

Gi,j(p) = EY
(
∂

∂pi
log πY (Y |p) ∂

∂pj
log πY (Y |p)

)
= −EY

(
∂2

∂pi∂pj
log πY (Y |p)

)
= −

∫
Ω

∂2

∂pi∂pj
log πY (y|p)πY (y|p)dy.

where Y is a random variable (data yet to be ob-
served), y is the observed data and Ω is the space of all
possible data outcomes. We call the resulting metric
Fisher metric and denote the metric tensor by GF (·).

FI characterizes the lower bound of the variance of
unbiased estimators and it can also be derived from
the Kullback-Leibler divergence between two proba-
bility distribution of the same family and hence offers
interesting theoretical connections, but ultimately the
choice has still been primarily justified by good empiri-
cal properties (Girolami and Calderhead, 2011; Betan-
court, 2017). Finally, it is only applicable for posterior
sampling and not for general sampling problems.

3 MONGE PATCH AND METRIC

Our goal is to form a metric that accounts for local
curvature of the target distribution, but is (a) com-
putationally efficient and (b) applicable for general
target densities, rather than requiring an underlying
probabilistic model for forming the metric. We seek
for such a metric based on pure geometric principles
of hyper-surfaces embedded in higher-dimensional Eu-
clidean spaces (Gauss, 1902; Do Carmo and Flaherty,
1992; Do Carmo, 2017).

Let M and N be manifolds of dimension m and n
respectively with m ≤ n. We say M is an embed-
ding if for a differentiable mapping ϕ : M → N
the differential dϕp(v) : TpM → Tϕ(p)N is injec-
tive and ϕ is a bijection. Consider a target proba-
bilistic model X ∼ πX(·) from which we would like
to obtain samples from and denote its logarithm as
`(x) = log πX(x) : X ⊆ RD → R.

We then represent the manifold M as an embedding
using the target distribution to define the embedding
in N (which is a subspace of the D + 1 dimensional
Euclidean space) with ϕ as the identity function. The
embedding is,

Ξ(x) = (x, α`(x)) ∈M

and thus M = {(z1, . . . , zD+1) =: Ξ(x) ∈ (X × R) ⊂
RD+1 : x ∈ X ⊂ RD} is the embedded manifold via
the scaled Monge patch Ξ with α ≥ 0. This extends
the Monge parameterization (x, `(x)) with a param-
eter α that will be used for controlling the curvature
information of the induced metric. Alternatively, we
can interpret this as embedding of the logarithm of the
tempered distribution πX(x)α. This embedding is ar-
bitrary in the sense that we have no specific rationale
for the choice, but as will be shown next it induces a
metric that has several desirable properties.

For a tangent v =
∑n
i=1 si ∂/∂xi Ξ(x) ∈ TpM where

∂

∂xi
Ξ(x) =

(
0, . . . , 1, . . . , 0︸ ︷︷ ︸
ith position

, α
∂

∂xi
`(x)

)
,

we obtain that dϕp(v) is injective ∀p. Therefore, as
defined previously for tangents u, v ∈ TpM the metric
induce by this embedding becomes,

gM (u, v) = s>GM (p)t

= s>



D∑
d=1

∂Ξd
∂x1

∂Ξd
∂x1

· · ·
D∑
d=1

∂Ξd
∂x1

∂Ξd
∂xD

...
. . .

...
D∑
d=1

∂Ξd
∂xD

∂Ξd
∂x1

· · ·
D∑
d=1

∂Ξd
∂xD

∂Ξd
∂xD


t

= s>

 1 + α2 ∂
∂x1

`(x)2 · · · α2 ∂
∂x1

`(x) ∂
∂xn

`(x)
...

. . .
...

α2 ∂
∂xn

`(x) ∂
∂x1

`(x) · · · 1 + α2 ∂
∂xn

`(x)2

 t
where each x in the support of our target (or the do-
main of the target distribution) uniquely determines a
specific point p on the manifold M. Hence we denote
the metric tensor in matrix form as

GM (x) = ID + α2∇`(x)∇`(x)>, (1)
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slightly abusing the notation to express it directly in
terms of x. The matrix (1) is symmetric and positive-
definite and hence the pair (M, gM ) is a Riemannian
manifold. We call the resulting metric the Monge met-
ric.

3.1 Interpretation

The local geometric properties of manifolds have two
important quantities with direct interpretation: the
first fundamental form which relates to lengths of the
curves on M and the second fundamental form that
relates to the curvature, i.e., how much the manifold
locally deviates from the Euclidean space (or the tan-
gent plane). Both the Fisher metric and the Monge
metric are connected to the first fundamental form as
they tell us a way to measure lengths of curves on
M. In some statistics literature the Fisher metric has
been linked with the idea of curvature, see Calderhead
(2012), Girolami and Calderhead (2011) and Paquet
and Fraccaroa (2018), due to the its definition as the
expected value of the Hessian matrix. However, the
Monge metric has natural geometric reasoning as it
additionally has a direct notion of curvature due to
the clear manifestation of Hessian matrix of ` in the
second fundamental form on the embedded Rieman-
nian manifold M.

The second fundamental form g∗ = 〈γ̈1(x(t1)), N(x)〉
is formally defined as the inner product between the
acceleration of a curve on the manifold, γ̈1(x(t1)), and
the normal vector

N(x) = −
(
α ∂
∂x1

`(x), . . . , α ∂
∂xD

`(x), 1
)√

1 + α2||∇`(x)||2
,

for every p ∈ M. After algebraic manipulation
and cancelling the terms of γ̇1(x(t1)) orthogonal to
N(x(t1)) and dropping the notation of the argument
t1, we obtain (see Pressley, 2010; Do Carmo, 2017)

g∗ = s>
{〈

∂2

∂xi∂xj
Ξ(x), N(x)

〉}
i,j

s

Thus we can see that

g∗ = s>
α

c


∂2

∂x1∂x2
`(x) · · · ∂2

∂x1∂xD
`(x)

...
. . .

...
∂2

∂xD∂x1
`(x) · · · ∂2

∂xD∂xD
`(x)


︸ ︷︷ ︸

H(x)

s,

where c =
√

1 + α2||∇`(x)||2 and H(x) = ∇2`(x)
is the Hessian matrix of the logarithm of the target
distribution. The curvature of the Monge metric, as
measured by the second fundamental form, is hence a
scaled version of the Hessian that encodes local scaling

Figure 2: Illustration of the metric on the Rosenbrock
distribution. The Monge metric captures the shape of
the distribution in similar manner as the Fisher metric.
The α parameter controls the embedding and scales
the metric; with small α (dark green) it is close to
Euclidean and with large α (light green) we get very
elongated metric for areas of high curvature.

and stretching information. This provides an intuitive
and natural interpretation for the metric, even though
it was induced by a seemingly arbitrary embedding.

The Monge metric is derived from a different perspec-
tive than the Fisher metric, but they are related. For
the case where the logarithm of the target distribu-
tion is `(x) = log πY (Y |x) and πY (·|x) is a model
that defines the random generating mechanism of the
data, we obtain α−2 EY (GM (x)) = α−2ID + GF (x)
by computing the expectation of the negative Hessian
over Y . That is, in expectation the metric can be seen
as biased or regularized estimator for FI, so that in-
verse α controls the regularization.

Figure 2 illustrates the Monge and Fisher metrics for a
banana-shaped posterior (πX(x1, x2) ∝

∏
iN (yi|x1 +

x2
2, σ

2
y)N (x1|0, σ2)N (x2|0, σ2) with σ2

y = σ2 = 0.5
and n = 10 observations yi). Here the Fisher met-
ric is constant w.r.t. to the x1 coordinate (Bornn
and Cornebise, 2011), whereas the Monge metric is
bivariate. The Monge metric becomes identity at the
mode, and flattens towards spherical Euclidean metric
for α → 0. Outside the mode it behaves similarly to
the Fisher metric, but for large α is more elongated.
The question of optimal α is an empirical one.

3.2 Computation

Fast Inverse and Determinants The metric (1)
has efficient inverse via Sherman-Morrison lemma as

GM (x)−1 = ID − α2 ∇`(x)∇`(x)>

1 + α2 ‖∇`(x)‖2

with O(D2) complexity. Similarly, the determinant is

detGM (x) = 1 + α2 ‖∇`(x)‖2
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with linear complexity. Both are significant improve-
ments overO(D3) for general operations in the original
LMC formulation (Lan et al., 2015).

Fast Christoffel symbols The Christoffel symbols
Γki,j(x) measure the magnitude of the basis vector
∂/∂xkΞ in the rate of change of the vector ∂/∂xjΞ
at the direction of ∂/∂xiΞ for every point Ξ(x) = p of
the manifold. Formally the Christoffel symbols are de-
fined as the coefficients of the Levi-Civita connection
of the Riemannian manifold.

They are required for some algorithms operating on
Riemannian manifolds and, if not obtained in closed-
form, their computation might incur a significant com-
putational cost in general case. Since GM (x) is ob-
tained using an embedding Ξ, we can re-write the
Christoffel symbols following (Do Carmo and Flaherty,
1992, page 56, equation (10)) as

Γki,j(x) =

D∑
l=1

G−1
k,l (x)

〈
∂2

∂xi∂xj
Ξ,

∂

∂xl
Ξ

〉
=

α2

1 + α2 ‖∇`(x)‖2
∂

∂xk
`(x)

∂2

∂xi∂xj
`(x)

using the elements ∂2

∂xi∂xj
`(x) of the second fundamen-

tal form. Even though the metric tensor only requires
the gradients, we see that second-order derivatives are
needed for computing the Christoffel symbols.

4 LMC ON MONGE PATCHES

The Monge metric is general and applicable for sev-
eral geometric MCMC methods. We demonstrate it
here for Lagrangian Monte Carlo (Lan et al., 2015),
providing detailed derivations in the Supplement.

Lagrangian Monte Carlo As explained in Sec-
tion 2, RMHMC involves two implicit equations that
require fixed-point iterations and hence multiple in-
versions of the metric tensor during every update.
An explicit integrator can be developed by switch-
ing to Lagrangian dynamics and working with velocity
v = G(x)−1 p instead of the momentum, resulting in
Riemannian manifold Lagrangian Monte Carlo (Lan
et al., 2015). The energy functional and dynamics are

E(x,v) = − log πX(x)− 1
2 log |G(x)|+ 1

2 v
>G(x)v,

ẋ = v, (2)

v̇ = −1

2
G(x)−1

[
2∂xG(x)− (∂xvec G(x))>

]
(ẋ⊗ ẋ)

−G(x)−1∇φ(x),

where the notation ∂xA = [∂x1A · · · ∂xDA]. Observe
that the kth row of the matrix 1

2G(x)−1
[
2∂xG(x) −

(∂xvec G(x))>
]

is (vec Γk)> where Γki,j(x) =
1
2

∑
lG

k,l( ∂
∂xi

Gi,j+
∂
∂xj

Gi,l− ∂
∂xl

Gi,j) are the Christof-

fel symbols (See Arvanitidis et al., 2018, for similar
formulation). The matrix elements Gi,j and Gi,j are
the elements of the matrix G(x) and its inverse respec-
tively, and ∇φ(x) = −∇ log πX(x) + 1

2∇ log detG(x).

The explicit integrator repeats LF times the updates

v(n+1/2) = A−1
n,n

[
v(n)−ε

2
G(x(n))−1∇φ(x(n))

]
x(n+1) = x(n) +εv(n+1/2) (3)

v(n+1) = A−1
n+1,n+1/2

[
v(n+1/2)

− ε

2
G(x(n+1))−1∇φ(x(n+1))

]
where Ω(x,v) is a matrix whose (i, j) element is given
by
∑
k vkΓik,j(x) and An1,n2

= ID + ε
2Ω(x(n1),v(n2)).

The integrator is not volume-preserving and we need
determinant adjustment for the acceptance probability
αLMC = min

{
1, exp

(
− Ediff

)
|det J |

}
where Ediff =

E(x(LF+1),v(LF+1))− E(x(1),v(1)) and

det J =

LF∏
n=1

(
det
(
G(x(n+1))− ε

2 Ω̃(x(n+1),v(n+1))
)

det
(
G(x(n+1)) + ε

2 Ω̃(x(n+1),v(n+1/2))
)

×
det
(
G(x(n))− ε

2 Ω̃(x(n),v(n+1/2))
)

det
(
G(x(n)) + ε

2 Ω̃(x(n),v(n))
) )

,

where the matrix Ω̃(x,v) = G(x)Ω(x,v).

LMC does not require fixed-point iterations and hence
only needs two inversions per step, but the compu-
tational advantage is lost due to computation of the
determinants and the O(D3) Christoffel symbols. The
complexity of both RMHMC and LMC in a general
metric is O(D3), and their relative speed depends on
the problem.

LMC in Monge Metric In the Monge metric
GM (x) the energy becomes

E(x,v) = −`(x)− 1
2 log(1 + α2 ‖∇`(x)‖2)

+ 1
2 ‖v‖

2
+ α2

2 〈∇`(x),v〉2 .

In the dynamical system (2) we retain ẋ = v and for
the velocity we have

v̇ = − α2

1 + α2 ‖∇`(x)‖2
(
∇`(x) (vec H(x))>

)
(v⊗v)

−GM (x)−1

(
α2H(x)

1 + α2 ‖∇`(x)‖2
− ID

)
∇`(x).

For an initial velocity v and initial position x these
keep the energy constant. The Hessian H(x) ap-
pears here due to the Christoffel symbols, even though
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Figure 3: Geodesic paths of Lagrangian dynamics in
Monge metrics of different α for fixed initial velocity.
Note that α = 0 means Euclidean metric.

the metric only involves gradients. We illustrate the
geodesics for various α in Figure 3, computed for a
ring distribution. For α = 0 the metric reduces to Eu-
clidean and the geodesic paths fluctuate around the
typical set (see Betancourt, 2017, for detailed discus-
sion), whereas for large α they resemble clear orbits.

After fairly extensive simplification, the update equa-
tions (3) in Monge metric can be written as in Table 1.
The full derivation and a pseudo-code for the algo-
rithm is provided in the Supplement. These updates
are somewhat complicated, but free of matrix-matrix
products and free of explicit matrix inversions. The
proposal acceptance probability simplifies in a similar
manner using

det
(
G(x)± ε

2
Ω̃(x,v)

)
=

1 + α2 ‖∇`(x)‖2 ± α2ε

2
〈∇`(x), H(x)v〉.

The computation for one pass of the numerical inte-
grator is dominated by the formation of the gradient
vector (O(D)) and the Hessian matrix (O(D2)). Since
they are called twice in each loop of the numerical inte-
grator, the cost is dominated by 2LF (O(D) +O(D2))
operations. The overall complexity is hence quadratic
in D, not cubic as with the Fisher metric.

5 EXPERIMENTS

We evaluate LMC in Monge metric (LMC-Monge)
in two example problems, a funnel distribution
and posterior inference for logistic regression, but
note that Figures 2 and 3 already demonstrated
the metric in two other contexts. We com-
pare against competing methods in Euclidean and
Fisher metrics (when applicable). The experiments
were ran on Intel i5-8250@1.6GHz laptop CPU.

All experimental details and some additional illus-
trations are provided in the Supplement. The
methods were implemented in Julia (Bezanson
et al., 2017) and the implementation is available at
https://github.com/mahaa2/EmbeddedLMC, provid-
ing both the inference algorithm itself as well as scripts
for re-creating some of the experiments.

5.1 Funnel Distribution

We first show the metric helps in exploring areas of
strong curvature, using the funnel distrubution by
Neal (2003). The D-dimensional funnel is given by

πX(x, a) =

D∏
i=1

N (xi|0, softplus(a))N (a|µ, σ2
a), (4)

where the marginal distribution of a is N (a|µ, σ2
a)

and hence we can easily evaluate the quality of the
marginal. We set µ = 0.0 and σ2

a = 15.0, and use
60.000 samples. To illustrate the metric we use α = 1
with accurate numeric integration with small step-
length ε and LF growing from 8 to 130 when increasing
the dimensionality, adjusted by visual inspection.

Figure 4 demonstrates how LMC-Monge provides sam-
ples from the correct distribution but HMC in Eu-
clidean metric does not, even when using the more ad-
vanced NUTS algorithm (Hoffman and Gelman, 2014)
as implemented in Turing.jl (Ge et al., 2018). Both
samplers have low autocorrelation, seen by observing
the sampling chains, and hence the problems of the
Euclidean sampler could easily go unnoticed in prac-
tice. Fisher metric is here not applicable since we are
not conducting posterior inference, but rather sam-
pling from the distribution itself for given parameters.

Figure 5 investigates the quality as a function of D,
measured by approximating KL divergence between
the true marginal and the MCMC approximation with∑
k[logP (Ak)/Q̃(Ak)]P (Ak), where Ak is a histogram

bin. LMC-Monge retains good accuracy for all D
whereas NUTS gets progressive worse.

5.2 Logistic Regression

Having established the metric can explore well, we turn
the attention to performance. We replicate the logis-
tic regression experiment of Lan et al. (2015) on their
largest data sets, using 20,000 samples (warm-up of
5,000). We also otherwise match their empirical setup,
and in particular select ε and LF to obtain acceptance
probability in the range of 0.6-0.9 for each method.
We evaluate the efficiency using the standard effective
sample size (ESS) measure, but note that high ESS
does not guarantee correct sampling.
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Table 1: Numerical integration updates for LMC in the Monge metric. See Supplement for derivations.

v(n+1/2) =

[
ID −

∇`(x(n))
(
∇`(x(n))> + ε

2 (v(n))>H(x(n))
)[

∇`(x(n))> + ε
2 (v(n))>H(x(n))

]>∇`(x(n)) + 1
α2

]

×

{[(
α2∇`(x(n))> v(n) +

ε

2

)
ID −

εα2

2 + 2α2
∥∥∇`(x(n))

∥∥2H(x(n))

]
∇`(x(n)) + v(n)

}
x(n+1) = x(n) +εv(n+1/2)

v(n+1) =

[
ID −

∇`(x(n+1))
(
∇`(x(n+1))> + ε

2 (v(n+1/2))>H(x(n+1))
)[

∇`(x(n+1))> + ε
2 (v(n+1/2))>H(x(n+1))

]>∇`(x(n+1)) + 1
α2

]

×

{[(
α2∇`(x(n+1))> v(n+1/2) +

ε

2

)
ID −

εα2

2 + 2α2
∥∥∇`(x(n+1))

∥∥2H(x(n+1))

]
∇`(x(n+1)) + v(n+1/2)

}

Figure 4: 1D funnel. LMC in Monge metric (right)
explores the target distribution well, whereas HMC in
Euclidean metric (middle) does not, even though both
chains mix well (bottom left).

Table 2 compares LMC-Monge against three baselines
(using implementation and parameter settings of Lan
et al. (2015)) that differ in terms of the metric: LMC
and RHMC in Fisher metrics, and standard HMC in
spherical Euclidean metric. The Riemannian methods
have clearly higher ESS compared to the Euclidean
HMC, and Monge metric behaves similarly to the
Fisher metric but is faster. This validates our main
claim. For completeness, we also show the results for
NUTS in Euclidean metric even though direct com-
parison is not fair due to adaptive choice of LF and ε
that also helps in achieving high ESS.

Figure 6 shows the effect of the control parameter,
using 3000 samples after warm-up of 500. The optimal
choice depends on the data and often very small α are
best, but we note that this does not necessarily mean
the metric would be particularly close to Euclidean as
the magnitude of ∇`(x) and H(x) can also be large.

Figure 5: (Left) KL divergence between the true
marginal N (a) and its estimate as a function of prob-
lem dimensionality. (Right) Marginals for D = 30.

6 DISCUSSION

Augmented MCMC is the workhorse of probabilistic
programming. Geometric MCMC algorithms offer the-
oretical advantages for complex distribution, but have
slow updates and are rarely used in practice. We set
out to resolve this problem, by providing a new Rie-
mannian metric that still accounts for local curvature
but is faster. The Monge metric, a natural metric for a
Monge patch embedding, can be easily computed for
every density based on gradients alone and has effi-
cient inverse and determinant. Besides LMC, it could
be used e.g. with the explicitly symplectic integra-
tor for RMHMC (Cobb et al., 2019) or with manifold-
adjusted Langevin Monte Carlo (Girolami and Calder-
head, 2011).

We demonstrated the basic properties of the met-
ric, but significant practical steps remain on the path
to validating it in routine use. A practical tool for
probabilistic programming or arbitrary sampling tasks
would require a high-quality implementation and au-
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Table 2: Logistic regression. The best method (ESS/sec) with constant LF is indicated by boldface, and boldface
italics marks cases where NUTS with adaptive LF is overall the best. AP is average acceptance probability.

Data Method AP ESS (min, mean, median) time(s) min(ESS)/s mean(ESS)/s

Heart LMC-Monge (α = 0.01) 0.79 (15000, 15000, 15000) 34 441 441
N = 270 LMC-Fisher 0.76 (10347, 10848, 10724) 63 164 172
D = 14 RMHMC-Fisher 0.72 (6263, 7391, 7430) 90 69 82

HMC-Euclidean 0.71 (378, 1164, 2624) 7 55 170
HMC-Nuts 0 .94 (13804 , 14777 , 15000 ) 15 927 1055

German LMC-Monge (α = 0.01) 0.81 (13390, 14949, 15000) 71 194 210
N = 1000 LMC-Fisher 0.70 (13762, 14932, 15000) 202 68 74
D = 22 RMHMC-Fisher 0.75 (14885, 14995, 15000) 252 49 59

HMC-Euclidean 0.73 (766, 4803, 15000) 69 11 69
HMC-Nuts 0 .70 (14168 , 14960 , 15000 ) 40 350 374

Australian LMC-Monge (α = 0.01) 0.82 (1259, 12932, 15000) 52 24 249
N = 690 LMC-Fisher 0.75 (9636, 10464, 10443) 100 96 104
D = 15 RMHMC-Fisher 0.72 (7824, 9237, 9055) 134 58 69

HMC-Euclidean 0.74 (1225, 4440, 10691) 18 65 246
HMC-Nuts 0 .99 (1227 , 11715 , 15000 ) 54 22 216

Figure 6: Relationship between α and sample effi-
ciency. The optimal α depends on the problem.

tomatic means for adapting the controls parameter ε,
LF and α. We expect extension of the NUTS to Rie-
mannian metrics (Betancourt, 2013) to help by offer-
ing automatic choice of the integration length, and α
could be adapted during warm-up similar to how the
Euclidean metric tensor M is often adapted, for in-
stance based on gradient magnitudes. Finally, we see
a need for more detailed theoretical analysis of the
metric, e.g. along the lines of Brosse et al. (2018).
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Martin Sköld. A General Framework for the
Parametrization of Hierarchical Models. Sta-
tistical Science, 22(1):59 – 73, 2007. doi:
10.1214/088342307000000014.

Ulrich Paquet and Marco Fraccaroa. An efficient im-
plementation of Riemannian manifold Hamiltonian
Monte Carlo for Gaussian process models. Technical
report, Technical University of Denmark, Lyngby,
Denmark, 2018.

Yudi Pawitan. In All Likelihood: Statistical
Modelling and Inference Using Likelihood. Ox-
ford University Press, USA, 2001. ISBN
0198507658,9780198507659.

Andrew Pressley. Elementary Differential Geome-
try. Springer Undergraduate Mathematics Series.
Springer, 2 edition, 2010.

G. O. Roberts and O. Stramer. Langevin diffusions
and Metropolis-Hastings algorithms. Methodology
and Computing in Applied Probability, 4:337–357,
2002.

Gareth O. Roberts and Richard L. Tweedie. Expo-
nential convergence of langevin distributions and
their discrete approximations. Bernoulli, 2:341–363,
1996. ISSN 1350-7265.

Mark J. Schervish. Theory of Statistics. Springer Se-
ries in Statistics, 2011.

Tatiana Xifara, Chris Sherlock, Samuel Livingstone,
Simon Byrne, and Mark Girolami. Langevin dif-
fusions and the Metropolis-adjusted Langevin algo-
rithm. Statistics & Probability Letters, 91:14–19,
2014. ISSN 0167-7152.



Supplementary Material:
Lagrangian Manifold Monte Carlo on Monge Patches

A OVERVIEW

This Supplementary material provides additional derivations and details for the article Lagrangian Manifold
Monte Carlo on Monge Patches. Sections B, C and D provide the derivations to complement Sections 3 and 4 of
the main paper, whereas Section E provides the full experimental details, additional result plots and experiments.

B DERIVATIONS AND ADDITIONAL FORMULATIONS

In this section, we present derivations and mathematical simplifications that verify statements provided in
the main paper and that are required for derivation of the LMC Monge update rules provided in Section C.
Throughout this section, we consider shortened notation Lα(x) = 1 + α2 ‖∇`(x)‖2 whenever convenient.

Christoffel symbols Section 3.2 provided a compact closed-form expression for the Christoffel symbols in the
Monge metric. Starting with the formal definition of a D-dimensional manifold and particularizing for the case
of our proposed embedding, we thus have

Γki,j(x) =

D∑
l=1

G−1
k,l (x)

〈
∂2

∂xi∂xj
Ξ,

∂

∂xl
Ξ

〉
= α2

D∑
l=1

G−1
k,l (x)

∂

∂xl
`(x)

∂2

∂xi∂xj
`(x)

= α2
D∑
l=1

(
δk,l − α2

∂
∂xk

`(x) ∂
∂xl

`(x)

1 + α2 ‖∇`(x)‖2

)
∂

∂xl
`(x)

∂2

∂xi∂xj
`(x)

= α2

(
1− α2 ‖∇`(x)‖2

1 + α2 ‖∇`(x)‖2

)
∂

∂xk
`(x)

∂2

∂xi∂xj
`(x)

=
α2

1 + α2 ‖∇`(x)‖2
∂

∂xk
`(x)

∂2

∂xi∂xj
`(x),

which corresponds to the expression provided in the main paper. Since the Christoffel symbols are symmetric
over the indices i, j, we can further express them in full matrices as

Γk =
α2

1 + α2 ‖∇`(x)‖2
∂

∂xk
`(x) H(x)

for k = 1, . . . , D, where H(x) = ∇∇`(x) is the Hessian matrix of the log target distribution.

Matrix Ω(x,v) The LMC updates (Eq. (3) in main paper) depend on the matrix Ω(x,v), which is a matrix
whose (i, j) element is given by

∑
k vkΓik,j(x). In full matrix form this simplifies to

Ω =

v
> Γ(x)1

•,1 · · · v> Γ(x)1
•,D

...
. . .

...
v> Γ(x)D•,1 · · · v> Γ(x)D•,D

 = (ID ⊗ v>)

Γ1(x)
...

ΓD(x)

 = (ID ⊗ v>)
α2

Lα(x)


∂
∂x1

`(x)H(x)
...

∂
∂xD

`(x)H(x)


=

α2

Lα(x)
(In ⊗ v>)(∇`⊗H(x)) =

α2

Lα(x)
∇`(x)⊗ (v>H(x)) =

α2

Lα(x)
∇`(x) (v>H(x)).
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Building on this, the matrix Ω̃(x,v) = G(x) Ω(x,v) required for the determinant adjustment and the inverses
in the numerical integrator updates reduces to

Ω̃(x,v) =
(
ID + α2∇`(x)∇`(x)>

)
α2

Lα(x)∇`(x) (v>H(x))

= α2

(
Lα(x)− 1

Lα(x)
∇`(x) (v>H(x)) +

1

Lα(x)
∇`(x) (v>H(x))

)
= α2 ∇`(x) (v>H(x)).

Both of these will be required for simplifying the update rules in the Monge metric.

Determinant For the determinant det
(
G((x) + ε

2 Ω̃(x,v)
)
, that is necessary in the Metropolis-Hasting accep-

tance probability rule, we use the Sherman-Morrison matrix lemma to get

detG((x)± ε
2 Ω̃(x,v) = detG(x) det ID ± ε

2Ω(x,v)

= Lα(x) det ID ± ε
2

α2

Lα(x)∇`(x)v>H

= Lα(x)
(
1± ε

2
α2

Lα(x) 〈∇`,H(x)v〉
)

= 1 + α2 ‖∇`(x)‖2 ± ε
2α

2〈∇`(x), H(x)v〉. (5)

Inverses The inverse matrices required in the first and third updating equation of the velocity vector of the
explicitly numerical integrator are also simplified using the same matrix lemma. We have(

G(x) + ε
2 Ω̃(x,v)

)−1

=

(
ID + α2 ∇`(x)∇`(x)> +

εα2

2
∇`(x) (v>H(x))

)−1

=
(
ID + α2∇`(x)

(
∇`(x)> + ε

2 v
>H(x)

))−1

= ID −
∇`(x)

(
∇`(x)> + ε

2 v
>H(x)

)(
∇`(x)> + ε

2 v
>H(x)

)
∇`(x) + 1

α2

. (6)

Gradient of potential energy The potential energy for LMC is φ(x) = − log πX(x) + 1
2 log detG(x) and we

need the gradient of that. The first term is obvious and the latter can be computed using

∂

∂xi
log detG(x) = tr

(
G−1(x)

∂

∂xi
G(x)

)
= α2 tr

[(
ID − α2∇`(x) ∇`(x)>

Lα(x)

)
2

(
∂

∂xi
∇`(x)

)
∇`(x)>

]
=

2α2

Lα(x)

[
tr(Hi(x)∇`(x)>Lα(x))− α2tr(∇`(x) ∇`(x)>Hi(x)∇`(x)>)

]
= 2α2∇`(x)>Hi(x)

(
1− α2∇`(x)>∇`(x)

Lα(x)

)
= 2α2

(
1− α2∇`(x)>∇`(x)

Lα(x)

)
∇`(x)>Hi(x)

= 2α2∇`(x)>

Lα(x)
Hi(x),

where Hi(x) is the ith row (or column) of the Hessian matrix. Hence the gradient of the second term in the
potential energy is given by

∇ log detG =
2α2

Lα(x)
H(x) ∇`(x). (7)

Relationship to Fisher metric Section 3.1 established a relationship between Fisher and Monge metrics.
For the specific case where `(x) = log πY (Y |x) corresponds to a data generating distribution over some random
variable Y , we can compute the expectation of the Monge metric over Y . We can then write

EY (GM (x)) = ID + α2 EY
(
∇`(x)∇`(x)>

)
,
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where the latter term corresponds to the definition of Fisher metric GF (x) as expressed in Section 2. Conse-
quently, we can interpret the expected Monge metric as a biased (and scaled) estimator for the Fisher metric,
for instance writing

EY (GM (x)) = ID + α2GF (x)

or equivalently
GF (x) = α−2 [EY (GM (x))− ID] .

C CLOSED-FORM EXPLICIT NUMERICAL INTEGRATOR

Having established the required computational elements in the previous section, we proceed to deriva-
tion of the update rules for the explicit numerical integrator for LMC-Monge. Full pseudo-code for
the resulting algorithm is given in Algorithm 1 and reference implementation in Julia is provided at
https : //github.com/mahaa2/EmbeddedLMC. The code also includes scripts for re-creating some of the ex-
periments.

The LMC algorithm assumes that step-size ε, number of steps LF and the metric control parameter α are
provided as inputs, together with some initial value for x(1) (the previous sample). The integrator proposed by
Lan et al. (2015) then repeats the following steps LF times:

v(n+1/2) =
[
G(x(n)) +

ε

2
Ω̃(x(n),v(n))

]−1 [
G(x(n))v(n)−ε

2
∇φ(x(n))

]
(8)

x(n+1) = x(n) +εv(n+1/2)

v(n+1) =
[
G(x(n+1)) +

ε

2
Ω̃(x(n+1),v(n+1/2))

]−1[
G(x(n+1))−1 v(n+1/2)−ε

2
∇φ(x(n+1))

]
.

To express these updates in the Monge metric, we will use the simplifications described in the previous section.
The update for the position x does not depend on the metric, whereas the two updates for the velocity v are
analogous, requiring the same algebraic changes. Consequently, we only write the first update explicitly, using
(7) to compute the gradient of the energy and (6) to compute the inverse. This results the expression provided
also in Table 1 of the main paper:

v(n+1/2) =
[
G(x(n)) +

ε

2
Ω̃(x(n),v(n))

]−1[
G(x(n))v(n)−ε

2
∇φ(x(n))

]
=

[
ID −

∇`(x(n))
(
∇`(x(n))> + ε

2 (v(n))>H(x(n))
)[

∇`(x(n))> + ε
2 (v(n))>H(x(n))

]>∇`(x(n)) + 1
α

]
×
{[(

α2∇`(x(n))> v(n) +
ε

2

)
ID −

α2ε

2Lα
H(x(n))

]
∇`(x(n)) + v(n)

}
.

The integrator is not volume-preserving (see Lan et al., 2015). Thus the proposal’ acceptance probability needs
the determinant adjustment and becomes

αLMC =min
{

1, exp
(
− E(x(LF+1),v(LF+1)) + E(x(1),v(1))

)
|det J |

}
where the energy function E is defined as,

E(x,v) = −`(x)− 1
2 log detG(x) + 1

2 v
>G(x)v

= −`(x)− 1
2 log(1 + α2 ‖∇`(x)‖2) + 1

2 ‖v‖
2

+
α2

2
〈∇`(x),v〉2

and the determinant adjustment becomes

det J =

LF∏
n=1

det
(
G(x(n+1))− ε

2 Ω̃(x(n+1),v(n+1))
)

det
(
G(x(n+1)) + ε

2 Ω̃(x(n+1),v(n+1/2))
) det

(
G(x(n))− ε

2 Ω̃(x(n),v(n+1/2))
)

det
(
G(x(n)) + ε

2 Ω̃(x(n),v(n))
)

=

LF∏
n=1

Lα(x(n+1))− α2ε
2 〈∇`(x

(n+1)), H(x(n+1))v(n+1)〉
Lα(x(n+1)) + α2ε

2 〈∇`(x(n+1)), H(x(n+1))v(n+1/2)〉
Lα(x(n))− α2ε

2 〈∇`(x
(n)), H(x(n))v(n+1/2)〉

Lα(x(n)) + α2ε
2 〈∇`(x(n)), H(x(n))v(n)〉,

using the simplification provided in (5).
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Algorithm 1: Explicit Lagrangian Monte Carlo via embedding using the Monge patch

Result: A sample from the distribution πX(·)
Inputs : ∇`, H, ε, LF , α and x(1);

Sample new velocity v(1) =
√
G−1(x(1))z where z ∼ N (0, ID);

Calculate current E1 = E(x(1),v(1));
∆ log det = 0;
for n = 1, . . . , LF do

∆ log det = ∆ log det− log
∣∣(1 + α2ε

2Lα(x(n))
∇`(x(n))>H(x(n))v(n))

∣∣;
# update velocity explicitly with a half-step;

v(n+1/2) =

[
ID −

∇`(x(n))
(
∇`(x(n))> + ε

2 (v(n))>H(x(n))
)[

∇`(x(n))> + ε
2 (v(n))>H(x(n))

]>∇`(x(n)) + 1
α2

]

×
{[(

α2∇`(x(n))> v(n) +
ε

2

)
ID −

α2ε

2Lα(x(n))
H(x(n))

]
∇`(x(n)) + v(n)

}
∆ log det = ∆ log det + log |(1− α2ε

2Lα(x(n))
∇`(x(n))>H(x(n))v(n+1/2))|;

# update position with a full-step;

x(n+1) = x(n) +εv(n+1/2)

∆ log det = ∆ log det− log
∣∣(1 + α2ε

2Lα(x(n+1))
∇`(x(n+1))>H(x(n+1))v(n+1/2))

∣∣;
# update velocity explicitly with a half-step;

v(n+1) =

[
ID −

∇`(x(n+1))
(
∇`(x(n+1))> + ε

2 (v(n+1/2))>H(x(n+1))
)[

∇`(x(n+1))> + ε
2 (v(n+1/2))>H(x(n+1))

]>∇`(x(n+1)) + 1
α2

]

×
{[(

α2∇`(x(n+1))> v(n+1/2) +
ε

2

)
ID −

α2ε

2Lα(x(n))
H(x(n+1))

]
∇`(x(n+1)) + v(n+1/2)

}
∆ log det = ∆ log det + log

∣∣(1− εα2

2Lα(x(n+1))
∇`(x(n+1))>H(x(n+1))v(n+1))

∣∣;
end

Calculate proposed ELF = E(x(LF+1),v(LF+1));
Calculate logRatio = −E1 + ELF + ∆ log det;
Sample u ∼ U(0, 1);
if logRatio > u then

Accept (x(LF+1),v(LF+1)) as the current sample
else

Reject (x(LF+1),v(LF+1)) and keep (x(1),v(1) as the current sample
end
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D METRIC-TENSOR SQUARE ROOT AND VELOCITY SAMPLING

To sample from the multivariate Gaussian v ∼ N (0, G(x)−1), we need the square root matrix
√
G−1(x) = A such

that G−1(x) = AA>. Since the inverse matrix of the metric is also formed by the outer-product of the gradients,
it is possible to find the square root matrix with cost O(D2), instead of the standard Cholesky decomposition
with computational cost of O(D3).

For inverse matrix of the metric-tensor GM (x), let the square root matrix be of the form A = ID + tuu>, where
t ∈ R. Then we have

AA> = ID + (2t+ t2 ‖u‖2)uu>

and we want that

GM (x)−1 = ID − α2 ∇`(x)∇`(x)>

1 + α2 ‖∇`(x)‖2
= ID + (2t+ t2 ‖`(x)‖2)∇`(x)∇`(x)>

which is equivalent as finding the roots of the quadratic equation in t

‖∇`(x)‖2 t2 + 2t+
α2

1 + α2 ‖∇`(x)‖2
= 0,

whose positive root is given by

t+ = − 1

‖∇`(x)‖2
+

1

‖∇`(x)‖2
√

1 + α2 ‖∇`(x)‖2
.

Setting t = t+, u = ∇`(x) in A and rearranging, we get√
GM (x)−1 = ID +

1

‖∇`(x)‖2

(
1

Lα(x)
1
2

− 1

)
∇`(x)∇`(x)>.

Around the local modes of the log target distribution, the metric-tensor reduces to the Euclidean metric. In
these cases, the scalar value

c(‖∇`(x)‖2) =
1

‖∇`(x)‖2

(
1

Lα(x)
1
2

− 1

)
might cause instability in computer implementations since the norm of the gradient will be zero. To address this
computational issue, we obtain the limit of c(·) when the gradient approaches the zero vector. That is,

lim
‖∇`(x)‖2→0

1

‖∇`(x)‖2

(
1

(1 + α2 ‖∇`(x)‖2)
1
2

− 1

)
= lim
‖∇`(x)‖2→0

1

(1+α2‖∇`(x)‖2)
1
2
− 1

‖∇`(x)‖2

1

(1+α2‖∇`(x)‖2)
1
2

+ 1

1

(1+α2‖∇`(x)‖2)
1
2

+ 1

= lim
‖∇`(x)‖2→0

1
1+α2‖∇`(x)‖2 − 1

‖∇`(x)‖2
(

1

(1+α2‖∇`(x)‖2)
1
2

+ 1

)
= lim
‖∇`(x)‖2→0

− α2

(1 + α2 ‖∇`(x)‖2)

(
1

(1+α2‖∇`(x)‖2)
1
2

+ 1

)
= −α

2

2
,

so that for ‖∇`(x)‖2 ≈ 0 we approximate the metric-tensor square root as√
GM (x)−1 ≈ ID −

α2

2
∇`(x)∇`(x)>.
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Table 3: Parameter settings for the funnel experiments.

D 1 3 5 10 30 40 50
ε 0.2 0.2 0.09 0.04 0.025 0.02 0.017
LF 9 9 25 100 150 180 250

E EXPERIMENT DETAILS

In this section we provide all computational details for the empirical experiments and demonstrations shown in
the main paper, with some additional visualizations.

E.1 Ring Probability Distribution (Figure 3)

Figure 3 plotted geodesic curves of LMC-Monge for different α. The ring distribution used here was defined as
follows. Let the random variables R ∼ N (µ, σ2) and Θ ∼ U [0, 2π]. We now define new random variables

X = R cos(Θ)⇐⇒ R =
√
X2 + Y 2

Y = R sin(Θ) Θ = arctan(Y/X)

Since the above transformation is one-to-one and smooth, by the Jacobian method of transformation of random
variables we get the distribution

πX,Y (x, y) = N
(√

x2 + y2|µ, σ2
)
/(2π

√
x2 + y2),

where the Jacobian
∣∣∂(r, θ)/∂(x, y)

∣∣ = 1/
√
x2 + y2. The parameter µ controls the radius of the ring measured

from the origin and the parameters σ2 the thickness of the ring.

We used µ = 12 and σ2 = 0.12 for Figure 3. The geodesic trajectories were integrated using ε = 0.03 and
LF = 200 for one sample path, in order to guarantee smooth paths with minimal integration error.

E.2 Funnel (Section 5.1)

For the funnel probability distribution in Section 5.1 we used α = 1 for all dimensionalities D and the parameters
ε and LF are provided in Table 3. These were set based on manual inspection following the basic principle of
using smaller ε and larger LF for the more complex cases, but the results are not sensitive to the exact choices.
For HMC-Nuts we used the classical method from Hoffman and Gelman (2014) as implemented in Turing.jl

using the command NUTS{SliceTS, ClassicNoUTurn}(LeapFrog(stepsize)), but note that other variants of
the NUTS algorithm behaved in a very similar manner. Using MassMatrixAdaptor() to fine-tune the Euclidean
metric tensor M made convergence faster, but did not help improving the exploration. We set the initial step
size using find good stepsize().

The initial values for all cases were given by x(1) = 51D, where 1D is the vector composed by D unitary
elements. Figure 5 in the main paper showed the KL divergence as function of D and illustrated two margins
for D ∈ {3, 5, 10, 30, 40, 50}. For completeness, we plot the marginals for all D in Figure 7 to show that the
difference between LMC-Monge and NUTS is consistent.

E.3 Logistic Regression (Section 5.2)

All the binary classification tasks in the main text use the logit link function to model the probability parameter.
The un-normalised posterior distribution is given by

π(θ |y) ∝
n∏
i=1

(
exp(x>i θ)

1 + exp(x>i θ)

)yi (
1

1 + exp(x>i θ)

)n−yi
N (θ |0, 100× ID).

where each yi ∈ {0, 1} and xi is a vector of covariates (or inputs). The number n in the sample-size and D is
the number of parameters in the model. This formulation, including the prior choice, matches the one used by
Lan et al. (2015).
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Figure 7: Histograms and MCMC chains for the LMC with Monge metrics and HMC-nuts. The geometric
MCMC tends to be better in reaching corners with high curvature compared to HMC-Nuts, leading to a better
estimate of the marginal distribution of the parameter a. The blue lines depict the true marginal distribution.

For a sample from a Markov chain (Xi)i=1,...,N . The effective sample size (ESS) was computed as

ESS =
N

1 + 2

N−2∑
t=1

ρ̂t

where

ρ̂t =
1

N − t

N−t∑
r=1

(Xr − X̄)(Xr+t − X̄)

using the implementation from the package MCMCDiagnostics.jl.

For the LMC-Monge we chose ε and LF by trial and error following the same principle that Lan et al.
(2015) used for the original LMC-Fisher, aiming for acceptance probability between 0.6 and 0.9. For LMC-
Fisher, RMHMC-Fisher and HMC-Euclidean, we used the values provided in the Matlab implementations in
https://bitbucket.org/geomstatcomp/lagrangian-monte-carlo/src/master/, satisfying the same accep-
tance probability thresholds. For HMC-Nuts we again used the find good stepsize() function to set ε, but it
failed to converge due to too large-step size. We fixed this by trial and error, ending up using a smaller ε. Note
that HMC-Nuts automatically adapts the step length during the algorithm and hence the acceptance probability
differs from the aimed range, and NUTS has no parameter LF as the integration length is determined by the
algorithm. Table 4 lists the final values used for all methods for the experiment reported in Table 2. For the
experiment reported in Figure 6, we used LF = 7 and ε = 0.09 for all MCMC runs and data-sets.

E.4 Squiggle Probability Distribution (Additional experiment)

Here we define the squiggle probability distribution and provide extra empirical evidence for quality of the
proposed algorithm based on the embedding. Let the vector of random variables Y = (Y1, Y2) ∼ N (0,Σ). Define
the new vector X = (X1, X2) = (Y1, Y2− sin(aY1)). For Jacobian method of transformation of random variables
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Table 4: Parameter settings for the logistic regression experiment.

Data Method ε LF

Heart LMC-Monge (α = 0.01) 0.085 7
LMC-Fisher 0.75 5
RMHMC-Fisher 0.75 5
HMC-Euclidean 0.18 25
HMC-Nuts 0.066 NA

German LMC-Monge (α = 0.01) 0.05 5
LMC-Fisher 0.8 5
RMHMC-Fisher 0.67 6
HMC-Euclidean 0.063 64
HMC-Nuts 0.066 NA

Australian LMC-Monge (α = 0.01) 0.085 6
LMC-Fisher 0.75 6
RMHMC-Fisher 0.75 6
HMC-Euclidean 0.11 40
HMC-Nuts 0.066 NA

we need the inverse mapping given by (Y1, Y2) = (X1, X2 + sin(aX1)). Hence the joint distribution in X reads,

πX(x1, x2|a,Σ) = N (y(x1, x2)|0,Σ)|det Jx→y| = N (y(x1, x2)|0,Σ) (9)

since |det Jx→y| = 1. The parameter a ≥ 0. In the experiment we vary a ∈ {0.5, 1.0, 2.0}, Σ =
[10 0.01; 0.01 0.001] with initial point x0 = [1,−1]>. The chain size is N = 60000. For the LMC-monge
the step-size ε was 0.07, 0.07, 0.025, the leapfrog steps LF were 13, 13, 35 and α = 1.0. Those were chosen again
by the inspection of the MCMC chain’s convergence. For the HMC-Nuts, we set it similarly as before and we also
used find good stepsize function to set the initial ε at x0. See Figure 8 for the visualisation of the results.

Figure 8: The first row depicts the forms of (9) with varying a. The larger the value of a is, the longer is
its sinusoidal form. In the second row, histograms and MCMC chains for LMC and NUTS are shown. LMC
algorithm tends to be better in exploring the typical sets when compared to HMC-Nuts, leading to a better
estimate of the marginal distribution πX(x1), in blue.


