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Antimicrobial resistance (AMR) is a growing concern in public health, particularly
for the clinically relevant extended-spectrum beta-lactamase (ESBL) and AmpC-
producing Enterobacteriaceae. Studies describing ESBL-producing Escherichia coli
clinical samples from Finland to the genomic level and investigation of possible zoonotic
transmission routes are scarce. This study characterizes ESBL-producing E. coli from
clinical samples in Finland using whole genome sequencing (WGS). Comparison is made
between animal, food, and environmental sources in Finland to gain insight into potential
zoonotic transmission routes and to recognize successful AMR genes, bacterial
sequence types (STs), and plasmids. ESBL-producing E. coli isolates (n = 30) obtained
from the Eastern Finland healthcare district between 2018 and 2020 underwent WGS
and were compared to sequences from non-human and healthy human sources (n = 67)
isolated in Finland between 2012 and 2018. A majority of the clinical isolates belonged
to ST131 (n = 21; 70%), of which 19 represented O25:H4 and fimH30 allele, and 2
O16:H5 and fimH41 allele. Multidrug resistance was common, and the most common
bla gene identified was blaCTX-M-27 (n = 14; 47%) followed by blaCTX-M-15 (n = 10;
33%). blaCTX-M-27 was identified in 13 out of 21 isolates representing ST131, with
12 isolates belonging to a recently discovered international E. coli ST131 C1-M27
subclade. Isolates were found to be genetically distinct from non-human sources with
core genome multilocus sequence typing based analysis. Most isolates (n = 26; 87%)
possessed multiple replicons, with IncF family plasmids appearing in 27 (90%) and IncI1
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in 5 (17%) isolates. IncF[F1:A2:B20] replicon was identified in 11, and IncF[F-:A2:B20] in
4 isolates. The results indicate the ST131-C1-M27 clade gaining prevalence in Europe
and provide further evidence of the concerning spread of this globally successful
pathogenic clonal group. This study is the first to describe ESBL-producing E. coli in
human infections with WGS in Finland and provides important information on global
level of the spread of ESBL-producing E. coli belonging to the C1-M27 subclade. The
results will help guide public health actions and guide future research.

Keywords: antimicrobial resistance, whole genome sequencing, extended-spectrum beta-lactamases, multidrug
resistance, one health

INTRODUCTION

Antimicrobial resistance (AMR) is an increasing public health
concern worldwide. Especially extended-spectrum beta-
lactamase (ESBL) and AmpC-producing Enterobacteriaceae have
spread globally, and infections caused by resistant bacteria are
associated with prolonged hospital stays, increased mortality, and
healthcare costs (Ray et al., 2018). Clinically relevant Escherichia
coli and Klebsiella pneumoniae have also become common in
community-acquired infections in recent years (Devi et al.,
2020). The success of these pathogens is highly attributable to
epidemic plasmids, which enable AMR spread via horizontal
gene transfer (Mathers et al., 2015; Rozwandowicz et al., 2018).
Transmission of ESBL-producing E. coli from animal, food, and
environmental sources have previously been found to account for
a limited amount of human ESBL-carriage in selected countries
(Börjesson et al., 2016; Mughini-Gras et al., 2019), but gaps in
knowledge regarding the wider epidemiology of these bacteria
and the role in human carriage and infections still exist. Whole
genome sequencing (WGS) allows for in-depth analysis of
possible genetic links between different sources, and the role of
plasmids in the spread of AMR.

Extraintestinal pathogenic E. coli (ExPEC) of sequence type
(ST) 131 is a globally spread clonal lineage often associated
with multidrug resistance (MDR), conferring resistance to ESBLs
and fluoroquinolones (Nicolas-Chanoine et al., 2014). A recently
recognized subclade within the dominant ST131 clade C, termed
C1-M27, has emerged as a common cause of infection globally
(Matsumura et al., 2016; Decano and Downing, 2019) but the
occurrence of this subclade in Finland remains unknown.

Carbapenemase-producing E. coli isolates of human origin
have been described using WGS in Finland previously (Räisänen
et al., 2020), but to the best of our knowledge, publications
covering ESBL-producing E. coli isolates from Finland of human
clinical origin to a genomic level are scarce. WGS studies on
healthy individuals have been conducted in Finland (Verkola
et al., 2019; Gröndahl-Yli-Hannuksela et al., 2020) and a national
surveillance program routinely implements only phenotypic
characterization for ESBL-producers (Räisänen et al., 2019).
The proportion of ESBL-producing E. coli in blood and urine
specimens in patients in Finland has been relatively low, but
steadily increasing during recent years (Räisänen et al., 2019).
The national surveillance has found 7.3% of all blood specimens
and 3.1 and 7.2% of urine specimens in women and men,

respectively, positive for ESBL-producing E. coli in 2019. A study
investigating fecal samples from healthy, adult volunteers in
Finland found the prevalence of ESBL-producing E. coli or
K. pneumoniae to be 6.3% (Gröndahl-Yli-Hannuksela et al.,
2020). A gap in knowledge regarding bla genes and further
genomic characterization of ESBL-producing E. coli isolates
involved in clinical cases in Finland exists.

This study aimed to characterize ESBL-producing E. coli
isolates obtained from clinical specimens in Finland. This
involves genetic comparisons between previously sequenced
isolates from healthy human, animal, food, and environmental
sources in Finland to evaluate possible genetic overlap and
provide genome-level information of the ESBL-producing E. coli
found in Finland.

MATERIALS AND METHODS

Collection of Extended-Spectrum
Beta-Lactamase-Producing Escherichia
coli Isolates From Clinical Samples
Altogether 30 ESBL-producing E. coli strains were obtained
retrospectively from the Eastern Finland Laboratory Centre
Joint Authority Enterprise (ISLAB), covering the healthcare
district in Eastern Finland. The samples were part of routine
practice collected during 2018–2020 from clinical samples,
each originating from a different patient. Stored samples were
recultivated in March 2020 and transported to the University of
Helsinki for further studies with Copan M40 Transystem sterile
transport swabs (Copan Transystem, Copan Diagnostics, Italy).

Briefly, antimicrobial susceptibility testing for specimens
other than blood and urine was performed using disk
diffusion method according to European Committee on
Antimicrobial Susceptibility Testing (EUCAST) standards with
third-generation cephalosporins (cefpodoxime, ceftazidime,
and ceftriaxone), together with amoxicillin-clavulanic acid
(Oxoid, Basingstoke, Hampshire, United Kingdom). Specimens
other than blood and urine consisted of samples originating
from various body sites and tissue types, including joint,
scrotum, maxillary sinus, eye conjunctiva, wound, bile, abscess,
bronchoalveolar lavage, and abdominal cavity. Additionally,
combination disk method (cefotaxime 30 µg and cefotaxime
30 µg + clavulanic acid 10 µg; ceftazidime 30 µg and ceftazidime
30 µg + clavulanic acid 10 µg) and AmpC disk test (Mast Group
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Ltd., Bootle, United Kingdom) were used for presumptive ESBL-
producing E. coli isolates. Susceptibility testing for urine samples
was performed with a Vitek 2 AST-N385 card (bioMeriéux,
Marcy-L’Etoile, France), and for blood samples with both Vitek 2
and disk diffusion method according to EUCAST standards, to
ensure rapid and accurate diagnosis in possible septicaemia cases.

DNA Extraction and Sequencing
Bacterial DNA was extracted and purified with a PureLink
Genomic DNA Mini Kit (Invitrogen by Thermo Fischer
Scientific, Carlsbad, CA, United States) according to
manufacturer’s instructions. The assessment of DNA quality
was carried out using a NanoDrop ND-1000 spectrophotometer
(Thermo Fischer Scientific, Wilmington, DE, United States)
and DNA quantity was measured using a Qubit 2.0 fluorometer
(Invitrogen, Life Technologies, Carlsbad, CA, United States). An
optical density of 1.8–2.0 at 260/280 nm and a concentration
of ≥10 ng/µl with a minimum amount of 0.2 µg were set as
thresholds. Library preparation was performed with NEBNext
Ultra DNA Library Prep Kit for Illumina (Cat No. E7370L).
Sequencing was performed with an Illumina NovaSeq 6000
(Novogene, Cambridge, United Kingdom) with 100 × coverage
and 2× 150 bp read length and a Phred score of Q30 ≥ 80%.

Raw reads have been deposited in the European
Nucleotide Archive (ENA) at EMBL-EBI under accession
number PRJEB47797. Accession numbers are provided in
Supplementary Table 1.

Bioinformatic Analyses
Bacterial DNA sequences were analyzed with Ridom
SeqSphere+ software v7.0.4 (Ridom GmbH, Germany)
(Jünemann et al., 2013) and Center for Genomic Epidemiology
(CGE) web-based tools (DTU, Denmark) available at
http://www.genomicepidemiology.org. Within Ridom
SeqSphere+ pipeline, raw reads were assembled with SKESA
v2.3.0 (Souvorov et al., 2018) together with quality control with
FastQC v0.11.7 (Babraham Institute, 2021) and adapter trimming
with Trimmomatic v0.36 (Bolger et al., 2014), AMR genes were
identified with NCBI AMRFinderPlus v3.2.3 (Feldgarden et al.,
2019), virulence genes with VFDB (Chen et al., 2016), and ST
with E. coli MLST Warwick v1.0 (Achtman scheme) based on the
PubMLST database (Jolley et al., 2018). Sequences from isolates
with novel STs were submitted to the Enterobase database1 (Zhou
et al., 2020) to assign new Achtman scheme STs.

Using default values, PlasmidFinder 2.0 (Carattoli et al.,
2014) was employed to detect plasmid replicons and pMLST
2.0 (Carattoli et al., 2014) the plasmid multilocus ST for IncF
and IncI1 type replicons. FimTyper 1.0 (Roer et al., 2017) was
used to identify the fimH allele. ResFinder 4.1 (Camacho et al.,
2009; Zankari et al., 2017; Bortolaia et al., 2020), SerotypeFinder
2.0 (Joensen et al., 2015), MLST 2.0 (Larsen et al., 2012), and
VirulenceFinder 2.0 (Joensen et al., 2014; Tetzschner et al., 2020)
were used to confirm acquired resistance genes, serotype, and
ST, respectively.

1https://enterobase.warwick.ac.uk/

Determination of C1-M27 Clade-Specific
Prophage-Like Regions
Isolates were compared with BLASTn to strain KUN5781
(GenBank accession: LC209430) (Matsumura et al., 2016) to
determine the presence of M27-C1 clade-specific prophage-like
regions M27PP1 and M27PP2. Results were visualized with BRIG
v0.95 (Alikhan et al., 2011) for isolates with matching regions.

Core Genome Multilocus Sequence Typing-Based
Genetic Comparison
Core genome multilocus sequence typing (cgMLST) targeting
2520 genes was performed using Ridom SeqSphere+ software
v7.0.4 (Ridom GmbH, Germany) (Jünemann et al., 2013) to
compare all 30 isolates obtained from ISLAB and results were
visualized with a minimum spanning tree (MST).

Isolates were also compared to available previously sequenced
ESBL/AmpC-producing E. coli isolates from Finland (total
n = 67) collected between 2012 and 2018 from broiler meat
(n = 5) (Päivärinta et al., 2020), broiler caecum (n = 5) (Päivärinta
et al., 2020), broiler production including broiler parents (n = 8)
(Oikarainen et al., 2019), egg surfaces (n = 4) (Oikarainen
et al., 2019) and production environment (n = 1) (Oikarainen
et al., 2019), imported food products (n = 16) (Kurittu et al.,
2021a), barnacle geese (n = 9) (Kurittu et al., 2021b), wastewater
(n = 1) (unpublished), cattle (n = 1) (Päivärinta et al., 2016),
veterinarians (n = 9) (Verkola et al., 2019), and healthy adults
(n = 8) (Gröndahl-Yli-Hannuksela et al., 2020; Supplementary
Table 2). cgMLST-based MST and was constructed with Ridom
SeqSphere+ software.

RESULTS

Extended-Spectrum
Beta-Lactamase-Producing Escherichia
coli From Clinical Samples
Altogether 30 E. coli isolates obtained from human clinical
samples confirmed as ESBL-producing with phenotypic
screening from the Eastern Finland healthcare district between
2018 and 2020 were subjected to WGS. Most isolates (n = 12;
40%) originated from a urine sample, followed by blood samples
(n = 8; 27%). A majority of the isolates (n = 21; 70%) belonged to
ST131, with the remaining nine isolates representing a different
ST each, including ST38, ST1193, ST162, ST537, ST59, and
ST405 (Table 1). A novel ST was identified in three isolates and
the sequences were submitted to the Enterobase database (see
text footnote 1) to assign new Achtman scheme STs. The newly
assigned STs were as follows: ST12704, ST12703, and ST12705
for isolates D2, D4, and D9, respectively. Sequences from two
isolates from previous studies, A41.2-1 and C76.1-2 (Kurittu
et al., 2021a), were additionally submitted to Enterobase to assign
new Achtman scheme STs. All ST131 isolates from the current
study were of serotype O25:H4 and possessed the fimH30 allele,
except for two isolates, which belonged to serotype O16:H5 and
possessed the fimH41 allele.
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TABLE 1 | Genomic characterization of 30 ESBL-producing Escherichia coli isolates obtained from human clinical samples in the Eastern Finland healthcare district
during 2018–2020.

Sample Sample type Sequence type Serotype fimH type bla gene(s) Plasmid replicon(s) pMLST Year of
isolation

D1 Urine ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
IncFIB(H89-PhagePlasmid),
IncFII(pRSB107), IncX4

[F1:A2:B20] 2020

D2 Joint ST12704 O4:H27 fimH2 blaCTX-M-15 IncFIA, IncFIB,
IncFII(pRSB107)

[F1:A1:B10] 2018

D3 Scrotum ST38 O1:H15 fimH65 blaCTX-M-27 IncFIA, IncFIB,
IncFII(pRSB107),
Col(BS512), Col156

[F1:A2:B20] 2018

D4 Maxillary sinus ST12703 O18:H7* fimH18 blaCTX-M-14,
blaTEM-1

IncFIB [F46:A-:B20] 2018

D5 Eye conjunctiva ST1193 O75:H5 fimH64 blaCTX-M-55 IncB/O/K/Z, Col(BS512),
Col(MG828)

– 2019

D6 Wound ST131 O25:H4 fimH30 blaCTX-M-15,
blaTEM-1

IncFIA, IncFIB,
IncFII(pRSB107), Col156

[F1:A2:B20] 2019

D7 Blood ST131 O25:H4 fimH30 blaCTX-M-15,
blaOXA-1

No plasmid replicons found – 2019

D8 Bile ST131 O16:H5 fimH41 blaCTX-M-27 IncFIA, IncFIB,
IncFII(pRSB107), IncX3,
IncY, Col(BS512), Col156

[F1:A2:B20] 2019

D9 Abscess ST12705 O16:H5 fimH41 blaCTX-M-15,
blaTEM-1

IncFIB,
IncFIB(H89-PhagePlasmid),
IncFII(29), IncFII(pCoo)

[F29:A-:B10] 2019

D10 Blood ST131 O25:H4 fimH30 blaCTX-M-15 IncFIA, IncFIB, Col(BS512) [F36:A1:B20]** 2019

D11 Lung
(bronchoalveolar
lavage)

ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
IncFII(pRSB107), Col156

[F1:A2:B20] 2019

D12 Urine ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
IncFII(pRSB107), IncI1

[F1:A2:B20] 2020

D13 Urine ST131 O25:H4 fimH30 blaCTX-M-27 IncB/O/K/Z, IncFIA, IncFIB,
IncFII, IncFII(pRSB107),
Col156, Col8282

[F84:A2:B20]** 2019

D14 Blood ST162 O8:H19 fimH32 blaSHV-12 IncFIA, IncFIC(FII), IncI1,
IncQ1

[F18:A6:B-]**/ST26
CC-2

2019

D15 Urine ST131 O25:H4 fimH30 blaCTX-M-15 IncFII, IncI1 [F2:A-:B-]/ST173 2019

D16 Urine ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
IncFII(pRSB107), Col156

[F1:A2:B20] 2019

D17 Abdominal cavity ST537 O75:H5 fimH5 blaTEM-52 IncI1 ST36/CC-3** 2019

D18 Urine ST59 O1:H7 fimH41 blaCTX-M-55,
blaTEM-1

IncFII(pCoo) [F10:A-:B-] 2019

D19 Urine ST405 O2:H4 fimH56 blaCTX-M-3 IncFIB, IncFII(29), IncI1,
Col(BS512), Col156,
Col156, Col156

[F29:A-:B10]/ST57
CC-5

2019

D20 Blood ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
IncFII(pRSB107), Col156

[F1:A2:B20] 2020

D21 Blood ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
IncFII(pRSB107)

[F1:A2:B20]** 2020

D22 Urine ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
Col(pHAD28), Col156

[F-:A2:B20] 2020

D23 Wound ST131 O25:H4 fimH30 blaCTX-M-15 IncFIA, IncFIB, Col(BS512) [F-:A1:B20]** 2020

D24 Urine ST131 O25:H4 fimH30 blaCTX-M-15,
blaOXA-1

IncFIA, IncFIB, IncX4,
Col156

[F-:A2:B20] 2020

D25 Blood ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB [F-:A2:B20] 2020

D26 Urine ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
IncFIB(H89-PhagePlasmid),
IncFII(pRSB107), IncI1

[F1:A2:B20]/IncI1
unknown

2020

(Continued)
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TABLE 1 | (Continued)

Sample Sample type Sequence type Serotype fimH type bla gene(s) Plasmid replicon(s) pMLST Year of
isolation

D27 Blood ST131 O25:H4 fimH30 blaCTX-M-15 IncFIA, IncFIB, Col(BS512) [F22:A1:B20]** 2020

D28 Blood ST131 O16:H5 fimH41 blaCTX-M-15,
blaTEM-1

IncFIB, IncFII(29), Col156 [F29:A-:B10] 2020

D29 Urine ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
IncFII(pRSB107), Col156

[F1:A2:B20] 2020

D30 Urine ST131 O25:H4 fimH30 blaCTX-M-27 IncFIA, IncFIB,
Col(pHAD28), Col156

[F-:A2:B20] 2020

*SerotypeFinder 2.0 (Center for Genomic Epidemiology) used to verify result.
**Uncertain hit, ST cannot be trusted.

All isolates were found to match their respective phenotype
genotypically, as all were genotypically confirmed to carry at
least one bla gene representing an ESBL phenotype. The most
common bla gene identified was blaCTX-M-27 (n = 14; 47%)
followed by blaCTX-M-15 (n = 10; 33%). blaCTX-M-27 was identified
in 13 out of the 21 isolates representing ST131 and additionally
from one isolate of ST 38. Eight out of the 10 blaCTX-M-15 were
harbored by ST131, with 7 representing the serotype O25:H4
together with fimH allele 30, while 1 was of serotype O16:H5
with fimH41 allele. Two isolates of novel STs, ST12704 (isolate
D2) and ST12705 (isolate D9), were found to possess blaCTX-M-15.
Regarding other blaCTX−M genes, blaCTX-M-55 occurred in two
isolates (D5 of ST1193 and D18 of ST59), and blaCTX-M-14 and
blaCTX-M-3 each in one isolate each (D4 of ST12703 and D19 of
ST405, respectively). blaSHV-12 was found from one isolate (D14)
of ST 162 and blaTEM-52 from one isolate (D17) of ST 537.

All isolates were found to harbor at least one plasmid
replicon, except for D7, from which no replicons were identified.
Altogether 17 different replicons were detected with IncFIB
(n = 24), IncFIA (n = 21), IncFII (n = 13), and Col156
(n = 13) type replicons were most prevalent. The majority of the
isolates (n = 26; 87%) possessed multiple replicons, with IncF
family plasmids appearing in 27 (90%) isolates. IncI1 plasmids
were recovered from five isolates (D14, D15, D17, D19, and
D26), all with varying pMLST profiles. Plasmids of pMLST
IncF[F1:A2:B20] type were identified in 11 isolates, and pMLST
IncF[F-:A2:B20] in 4 isolates.

Multidrug resistance, resistance to at least one agent in three
or more antimicrobial categories (Magiorakos et al., 2012), was
common among the isolates with multiple acquired resistance
genes identified in 21 (70%) isolates, including genes against
aminoglycosides, tetracycline, sulfonamides, macrolides, and
trimethoprim (Table 2). Acquired sulfonamide resistance genes,
sul1 and sul2, were found either alone or together in 18 (60%)
of the isolates.

Genes conferring trimethoprim resistance, either dfrA17,
dfrA12, dfrA1, or dfrA14, were detected in 16 (53%) isolates.
Of these genes, dfrA17 was the most prevalent (n = 11; 37%),
followed by dfrA12 (n = 3; 10%). dfrA1 and dfrA14 appeared in
one isolate each.

Aminoglycoside resistance [aadA5, aadA2, aph(3′′)-Ib,
aph(6)-Id, and/or aac(6′)-Ib-cr] was detected in 20 (67%) isolates
and tetracycline resistance in 18 (60%) isolates [tet(A) in 17 and
tet(M) in one isolate]. No carbapenemase genes were detected.

Chromosomal quinolone resistance mutations in gyrA, parC,
parE, or marR were recovered from 27 of the 30 isolates,
whereas plasmid-mediated quinolone resistance (PMQR) gene
aac(6′)-Ib-cr was additionally identified in two isolates (D7 and
D24). Chromosomal mutations in ptsI and uhpt associated with
fosfomycin resistance were discovered in 23 (77%) isolates.

All the isolates harbored multiple virulence factors, with
extraintestinal pathogenic E. coli (ExPEC) associated virulence
genes (Johnson et al., 2003) pap (P fimbrial adhesin), kpsMII
(polysialic acid transport protein; group 2 capsule), iutA (ferric
aerobactin receptor), and sfa (S and F1C fimbriae) recovered
from 29, 28, 26, and 18 isolates, respectively. Only isolate D2
lacked the previously described threshold of two or more of the
five virulence genes (pap, kps, iutA, sfa/foc, afa/dra) defined as
discriminatory for ExPEC classification (Johnson et al., 2003;
Kanamori et al., 2017). No Shiga toxin (stx) genes were found.
Virulence factors are presented according to their pathogenicity
factor groups (Nesta et al., 2012; Pitout, 2012; Chen et al., 2016;
Sarowska et al., 2019; Duan et al., 2020; Dekker et al., 2021) in
Table 2 together with resistance genes other than bla.

Assembly statistics including the number of bases and contigs,
the N50 value and average coverage for each isolate are available
in Supplementary Table 3.

Identification of C1-M27 Clade-Specific
Prophage-Like Regions
All 12 ST131 E. coli isolates with blaCTX-M-27 and fimH30 allele
were found to possess the C1-M27 clade-specific prophage-
like 11,894-bp region M27PP1 together with the 7 bp direct
repeats (Matsumura et al., 2016; Figure 1). Four of these
12 samples additionally possessed the 19,352-bp prophage-
like region M27PP2.

Core Genome Multilocus Sequence
Typing Comparison of Human
Extended-Spectrum
Beta-Lactamase-Producing Escherichia
coli Isolates From the Eastern Finland
Healthcare District
All of the 30 human ESBL-producing E. coli isolates obtained
from the Eastern Finland healthcare district were compared
with a cgMLST-based MST (Figure 2). Results indicate isolates
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TABLE 2 | Virulence and antimicrobial resistance genes other than bla identified in 30 ESBL-producing Escherichia coli isolates obtained from Finnish patients collected in the Eastern Finland healthcare district
during 2018–2020.

Virulence factors

Sample Acquired
resistance genes
other than bla

Fosfomycin
resistance
mutations

Quinolone
resistance
mutations

Adherence Invasion Iron uptake Toxins Effector
delivery
system

D1 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fimA, fimC, fimD, fimE, fimF, fimG,
fimH, fimI, papB, papI, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fdeC, fepA, fepB,
fepC, fepD, fepG, fes, iucA, iucB,
iucC, iutA

sat

D2 aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul2, dfrA14

Not found Not found fimA, fimB, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, ibeA, kpsD,
kpsM, ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entD, entE, entS, fdeC, fepA, fepB,
fepC, fepD, fepG, fes

pic, set1A,
set1B, vat

D3 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

Not found gyrA (D87N), gyrA
(S83L), parC (S80I)

fdeC, fimA, fimB, fimC, fimD, fimE,
fimF, fimG, fimH, fimI, papB, papI,
papX, sfaX, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entD, entE, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat espL1, espL4,
espR1, espX1,
espX4, espX5,
espY1, espY2,
espY3, espY4

D4 tet(M) Not found marR (S3N) fdeC, fimA, fimB, fimC, fimD, fimE,
fimF, fimG, fimH, fimI, focC, focD,
focF, focI, papB, papC, papD,
papF, papI, papJ, papK, sfaA, sfaB,
sfaC, sfaD, sfaE, sfaF, sfaG, sfaH,
sfaS, sfaY, yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, ibeA, kpsD,
kpsM, kpsT, ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entD, entE, entS, fepA, fepB, fepC,
fepD, fepG, fes, iroB, iroC, iroD,
iroE, iroN

cnf1, hlyA,
hlyB, hlyC,
hlyD, vat

D5 Not found uhpT (E350Q) gyrA (D87N), gyrA
(S83L), marR (S3N),
parC (S80I), parE
(L416F)

fdeC, fimA, fimB, fimC, fimD, fimE,
fimF, fimG, fimH, fimI, papB, papI,
papX, sfaX, yagV/ecpE,
yagW/ecpD, yagX/ec, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
kpsT, ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entS, fepA, fepB, fepC, fepD,
fepG, fes, iucA, iucB, iucC, iutA

sat, vat

D6 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimB, fimC, fimD, fimE,
fimF, fimG, fimH, fimI, papB, papI,
papX, sfaX, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsM, ompA chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D7 aac(6′)-Ib-cr ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papC, papD, papF,
papG, papJ, papK, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

cnf1, hlyA,
hlyB, hlyC,
hlyD, sat
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TABLE 2 | (Continued)

Virulence factors

Sample Acquired
resistance genes
other than bla

Fosfomycin
resistance
mutations

Quinolone
resistance
mutations

Adherence Invasion Iron uptake Toxins Effector
delivery
system

D8 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdec, fimA, fimB, fimC, fimD, fimE,
fimF, fimG, fimH, fimI, papB, papI,
papX, sfaX, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entS, fepA, fepB, fepC, fepD,
fepG, fes, iucA, iucB, iucC, iutA

sat, vat

D9 Not found ptsI (V25I), uhpT
(E350Q)

gyrA (S83L), parE
(I529L)

fdeC, fimA, fimB, fimC, fimD, fimE,
fimF, fimG, fimH, fimI, papB, papI,
papX, sfaX, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entS, fepA, fepB, fepC, fepD,
fepG, fes, iucA, iucB, iucC, iutA

sat

D10 aadA2, mph(A),
sul1, tet(A), dfrA12

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papC, papD, papF,
papG, papJ, papK, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

hlyA, hlyB,
hlyC, hlyD,
sat

D11 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI, papX,
sfaX, yagV/ecpE, yagW/ecpD,
yagX/eC, yagY/ecpB, yagZ/ecpA,
ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D12 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A)

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fimA, fimC, fimD, fimE, fimF, fimG,
fimH, fimI, papB, papI, yagV/ecpE,
yagW/ecpD, yagX/eC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D13 Not found Not found gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papX, sfaX,
yagV/ecpE, yagW/ecpD, yagX/eC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D14 aadA2, aph(3′′)-Ib,
aph(6)-Id, mph(B),
cmlA1, sul1, sul2,
tet(A), dfrA1

Not found gyrA (D87N), gyrA
(S83L), parC (S80I)

fdeC, fimA, fimB, fimC, fimD, fimE,
fimF, fimG, fimH, fimI, papC,
yagV/ecpE, yagW/ecpD, yagX/eC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

ompA entB, entC, entD, entE, entS, fepA,
febB, fepC, fepD, fepG, fes, iucA,
iucB, iucC, iutA

astA, east1 espX1, espX4,
espX5

D15 Not found ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI, papX,
sfaX, yagV/ecpE, yagW/ecpD,
yagX/eC, yagY/ecpB, yagZ/ecpA,
ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat
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TABLE 2 | (Continued)

Virulence factors

Sample Acquired
resistance genes
other than bla

Fosfomycin
resistance
mutations

Quinolone
resistance
mutations

Adherence Invasion Iron uptake Toxins Effector
delivery
system

D16 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI, papX,
sfaX, yagV/ecpE, yagW/ecpD,
yagX/eC, yagY/ecpB, yagZ/ecpA,
ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D17 Not found Not found marR (S3N) fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, yagV/ecpE,
yagW/ecpD, yagX/eC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, ibeA, kpsD,
kpsM, ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entS, fepA, fepB, fepC, fepD,
fepG, fes

pic, set1A,
set1B, vat

D18 Not found uhpT (E350Q) Not found fimA, fimB, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papX, sfax

aslA, kpsD, kpsM,
kpsT, ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entS, fepA, fepB, fepC, fepD,
fepG, fes, iucA, iucB, iucC, iucD,
iutA

sat espL1, espR1,
espX1, espX4,
espY2, espY4

D19 Not found Not found Not found fdeC, fimA, fimB, fimC, fimD, fimE,
fimF, fimG, fimH, fimI, papC, papD,
papG, papI, papJ, papK,
yagV/ecpE, yagW/ecpD, yagX/eC,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entD, entE, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

hlyA, hlyB,
hlyC, hlyD,
sat

espL1, espL4,
espX1, espX4,
espX5, espY2,
espY3, espY4

D20 aph(3′′)-Ib,
aph(6)-Id, sul2,
tet(A)

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI, papX,
sfax, yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D21 Not found ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI, papX,
sfax, yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D22 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI,
yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D23 aadA2, mph(A),
sul1, tet(A), dfrA12

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papC, papD, papF,
papG, papJ, papK, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

hlyD, sat
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TABLE 2 | (Continued)

Virulence factors

Sample Acquired
resistance genes
other than bla

Fosfomycin
resistance
mutations

Quinolone
resistance
mutations

Adherence Invasion Iron uptake Toxins Effector
delivery
system

D24 aac(6′)-Ib-cr ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI, papX,
sfaX, yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D25 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI, papX,
sfax, yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D26 Not found ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI,
yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D27 aadA2, mph(A),
sul1, tet(A), dfrA12

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papC, papD, papF,
papG, papJ, papK, yagV/ecpE,
yagW/ecpD, yagX/ecpC,
yagY/ecpB, yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

cnf1, hlyA,
hlyB, hlyC,
hlyD, sat

D28 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (S83L), parE
(I529L)

afaA, afaB-I, afaC-I, afaC-III, afaD,
daaA, daaC, daaD, daaF, draA,
draB, draC, draD, draP, fdeC, fimA,
fimB, fimC, fimD, fimE, fimF, fimG,
fimH, fimI, papB, papI, papX, sfaX,
yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entS, fepA, fepB, fepC, fepD,
fepG, fes

hlyA, hlyB,
hlyC, hlyD

D29 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI, papX,
sfaX, yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat

D30 aadA5, aph(3′′)-Ib,
aph(6)-Id, mph(A),
sul1, sul2, tet(A),
dfrA17

ptsI (V25I), uhpT
(E350Q)

gyrA (D87N), gyrA
(S83L), parC
(E84V), parC (S80I),
parE (I529L)

fdeC, fimA, fimC, fimD, fimE, fimF,
fimG, fimH, fimI, papB, papI, papX,
sfaX, yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB,
yagZ/ecpA, ykgK/ecpR

aslA, kpsD, kpsM,
ompA

chuA, chuS, chuT, chuU, chuV,
chuW, chuX, chuY, entB, entC,
entE, entF, entS, fepA, fepB, fepC,
fepD, fepG, fes, iucA, iucB, iucC,
iutA

sat
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within ST131 form clusters, meaning allelic differences were≤10,
whereas isolates of different STs are genetically distant with allelic
differences ranging from 640 to over 2000 between two isolates.
Three different clusters were observed within isolates belonging
to the ST131 C1-M27 clade: D11 and D16, D26 and D12, and D25
together with D30 and D22. Additionally, one cluster between
three isolates (D23, D27, and D10) was identified, comprising
isolates with the same ST (ST131), serotype (O25:H4), fimH type
(fimH30), and AMR gene resistance profile [aadA2, blaCTX-M-15,
mph(A), sul1, tet(A), dfrA12].

Core Genome Multilocus Sequence
Typing Comparison to Previously
Sequenced Extended-Spectrum
Beta-Lactamase/AmpC-Producing
Escherichia coli Isolates in Finland
The 30 human ESBL-producing E. coli isolates obtained from the
Eastern Finland healthcare district were additionally compared
to available, previously sequenced ESBL/AmpC-producing E. coli
isolates obtained from different sources in Finland (Figure 3).
A cgMLST-based MST included 2520 gene targets.

Isolates obtained in the current study failed to form close
clusters with isolates recovered from earlier studies, although the
least distance (24 allelic difference) was observed between isolate
D30 and EL24E, an isolate from a healthy veterinarian volunteer.
Both isolates were of ST 131 and harbored blaCTX-M-27.

Other relatively close connections were also observed
among isolates originating from human samples (18–44 allelic
differences), all of ST 131, and positive for blaCTX-M-15. Two
isolates from the current study, D9 and D28, differed by
44 and 40 alleles, respectively, from SRR11638572, an isolate
recovered from a healthy Finnish volunteer. Two veterinarian
isolates from a previously published study, EL216E and EL256E,
differed by 18 and 26 alleles, respectively, from the same Finnish
volunteer sample.

In addition to clusters observed within the isolates from
the current study, isolates originating from poultry production
(Oikarainen et al., 2019) formed two clusters with samples from
the same study, and broiler meat (isolates 5 and 33) and broiler
caecum (Q11 and A12) (Päivärinta et al., 2020) formed a cluster
each. C15, a blaCMY−2-carrying ST1594 E. coli isolate from
broiler caecum (Päivärinta et al., 2020), did not differ at all with
cgMLST-based MST analysis from H58, an isolate originating
from barnacle goose (Kurittu et al., 2021b).

DISCUSSION

We used WGS to characterize 30 ESBL-producing E. coli isolates
obtained from clinical samples in Eastern Finland and performed
cgMLST-based genomic comparisons to ESBL/AmpC-producing
E. coli isolates of human, animal, food, and environmental
origins isolated in Finland previously. ESBL-producing E. coli
isolates from human sources were found to be genetically distinct
from non-human sources in Finland. However, most ST131
blaCTX-M-27-positive E. coli isolates from human clinical samples

were found to belong to a recently discovered international
E. coli ST131 C1-M27 subclade, providing important insight
to the epidemiology and increasing spread of this globally
successful pathogenic clonal group. Strains within the C1-M27
clade carry blaCTX-M-27, possess fimH allele 30 and a prophage-
like genomic island termed M27PP1, sometimes together with
another prophage-like region, M27PP2 (Matsumura et al., 2016).
blaCTX-M-27 has been noted to rival the globally dominant
human-associated blaCTX-M-15 in many parts of the world, having
been isolated from human, animal, food, or environmental
sources in multiple countries in Europe, North America, and Asia
(Bevan et al., 2017).

ST131 has become the dominant ExPEC lineage causing
infections in humans worldwide (Banerjee and Johnson, 2014;
Nicolas-Chanoine et al., 2014; Mathers et al., 2015). Subclones
of ST131 E. coli, mainly H30 and H30Rx, are associated with
fluoroquinolone resistance, and blaCTX-M-15 in the case of H30Rx
(Banerjee et al., 2013). Previously blaCTX-M-15 has been the most
prevalent bla gene identified from human isolates, but recent
studies have noted a rise in the prevalence of blaCTX-M-27, starting
from Japan in the late 2000s (Matsumura et al., 2016), and
more recently a rapid increase in fecal carriage was observed
in children in France (Birgy et al., 2017), along with human
isolates from Germany (Ghosh et al., 2017), as well as from
samples from hospitalized patients from four European cities
(Berlin, Geneva, Madrid, and Utrecht) (Merino et al., 2018).
Worldwide distribution is further demonstrated with the recent
finding of ST131 E. coli belonging to C1-M27 clade in Brazil
from a marine sample (Fernandes et al., 2020). Worryingly,
ST131-blaCTX-M-27-E. coli has been noted to have a higher
transmission rate compared to ST131-blaCTX-M-15-E. coli in an
Israeli hospital setting (Adler et al., 2012). Our findings support
the notion of a shift in the most dominant blaCTX−M observed
in human samples, and the emergence of blaCTX-M-27 as a
challenger for blaCTX-M-15. Our findings regarding isolates within
C1-M27 clade also are in line with previous studies where a
majority of isolates were found to possess only the M27PP1
prophage-like region, instead of possessing both M27PP1 and
M27PP2 (Matsumura et al., 2016; Decano and Downing, 2019).
Interestingly, M27PP1 was also found with 100% coverage and
99.95% identity with BLASTn from sample D18, which carries
blaCTX-M-55 and blaTEM-1 and is of ST 59 and of fimH type H41.

blaCTX-M-55 was identified in two of our isolates, D5 and
D18, with different STs (ST1193 and ST59, respectively). This bla
gene was additionally identified from two previously sequenced
ESBL-producing E. coli isolates from Finland, one from an
imported food sample (coriander from Malaysia) representing
ST155 (Kurittu et al., 2021a) and one from a healthy, human
adult fecal sample, representing ST58 (Gröndahl-Yli-Hannuksela
et al., 2020). blaCTX-M-55-harboring E. coli has been reported
especially in samples from meat and food-producing animals, as
well as in humans in Asian countries (Zheng et al., 2012; Zhang
et al., 2014; Zeng et al., 2021). Studies conducted in China have
noted an increase in the proportion of blaCTX-M-55 compared
to other prevalent blaCTX−M genes, such as blaCTX-M-15 and
blaCTX-M-14, in human patient material (Zhang et al., 2014;
Zeng et al., 2021), depicting the rapidly evolving epidemiology
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FIGURE 1 | ST131 Escherichia coli C1-M27 clade-specific regions, prophage-like genomic islands M27PP1 and M27PP2, of KUN5781 (GenBank accession:
LC209430) compared to CTX-M-27-producing ST131 E. coli with fimH30 allele from the current study. GC content and GC skew are depicted on the inner map with
distance scale and predicted coding sequences depicted on the outer ring.

of these enzymes. In addition to blaCTX-M-55, ST1193 E. coli
was notably recognized as the most prevalent ST among
uropathogenic E. coli (UPEC) isolates in female patients in China
(Zeng et al., 2021). A rapid increase in ST1193 has also been
detected in the United States from clinical fluoroquinolone-
resistant E. coli isolates from urine samples (Tchesnokova
et al., 2019). The only ST1193 isolate recovered in our study
from an eye conjunctive sample (D5) harbored chromosomal
quinolone resistance genes (gyrA, marR, parC, parE) in addition
to blaCTX-M-55. Isolates from the previously mentioned study
were, however, rarely resistant to beta-lactams, which was not
the case in our sample. An Australian study has described
fluoroquinolone-resistant ST131 and ST1193 E. coli as being less
prevalent in animals compared to humans, and considers humans
most likely as the source for possible findings of these bacteria

in animals (Kidsley et al., 2020). Although not found in the
comparative analysis of our study, ST131 E. coli isolates belonging
to C1-M27 subclade have also been isolated previously from
animal sources, more specifically from two pig isolates in the
United Kingdom (Duggett et al., 2021) and companion animals
in France (Melo et al., 2019).

A recent study in the United States found blaCTX-M-27 to be
the second most common bla gene after blaCTX-M-15 in clinical
human isolates, and notably blaCTX-M-27 was associated with
ST38 E. coli (Mostafa et al., 2020). The blaCTX-M-27 gene on
ST38 E. coli was found to be mostly plasmid-borne, residing in
an IncF[F2:A-:B10] or IncF[F1:A2:B20] plasmid (Mostafa et al.,
2020). One isolate (D3) in our study was positive for blaCTX-M-27-
carrying ST38 E. coli, and this isolate harbored several IncF
type replicons [IncFIA, IncFIB, IncFII(pRSB107)] together
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FIGURE 2 | Minimum spanning tree of 30 human ESBL-producing Escherichia coli isolates obtained from patients in Eastern Finland during 2018–2020. Tree was
calculated in Ridom SeqSphere+ with 2513 core genome multilocus sequence typing (cgMLST) targets and 7 E. coli MLST Warwick targets (pairwise ignoring
missing values, logarithmic scale). Nodes are colored according to sequence type. Number of allelic differences between isolates are indicated on the connecting
lines. Clusters are defined as ≤10 allelic difference and shaded in gray.

with Col plasmids [Col(BS512), Col156] and represented the
replicon ST [F1:A2:B20].

The majority of our human clinical isolates harbored plasmid
replicons belonging to the IncF family, which have been identified
as important carriers of globally successful AMR genes, especially
those encoding for ESBLs (Villa et al., 2010; Rozwandowicz
et al., 2018). Thirteen of our isolates harbored an IncFII replicon
together with FIA and FIB replicons, which together form a
typical IncF multireplicon (Villa et al., 2010). The most common
IncF replicon type identified in our isolates was [F1:A2:B20],
which was found from 10 ST131 E. coli isolates carrying

blaCTX-M-27 (n = 9) and blaCTX-M-15 (n = 1), and from one ST38
carrying blaCTX-M-27, similar to the findings of a study conducted
in the United States (Mostafa et al., 2020). This supports the
observation that plasmids belonging to pMLST [F1:A2:B20] are
associated with the C1-M27 subclade (Ghosh et al., 2017; Mostafa
et al., 2020). IncI1 plasmid replicons belonging to different
pMLST profiles were identified in five isolates (D14, D15, D17,
D19, and D26), together with blaSHV-12, blaCTX-M-15, blaTEM-52,
blaCTX-M-3, and blaCTX-M-27, respectively. IncI type plasmids,
especially with blaCTX-M-1, are frequently found from E. coli from
poultry sources (Rozwandowicz et al., 2018).
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FIGURE 3 | Minimum spanning tree of 97 ESBL/AmpC-producing Escherichia
coli isolates calculated in Ridom SeqSphere+ with 2513 core genome
multilocus sequence typing (cgMLST) targets and 7 E. coli MLST Warwick
targets (pairwise ignoring missing values, logarithmic scale). Nodes are
colored according to isolation source. Sequence type is indicated under the
isolate name. Number of allelic differences between isolates are indicated on
the connecting lines. Clusters are defined as ≤10 allelic difference and shaded
in gray.

The pMLST results should, however, be interpreted with
care, since long-read sequencing would allow for more robust
and accurate identification of plasmid structures and gene

locations. As plasmids are important mediators of AMR
worldwide (Carattoli, 2013; Rozwandowicz et al., 2018),
further plasmid characterization through hybrid sequencing
methods is warranted to investigate the epidemiological
events in more detail in future studies. Another limitation
of our study is the limited number of human clinical
isolates analyzed, and the confined geographical origin of
the samples. Our results do, however, represent a period of
several years and multiple different specimen types, which
provide an initial overview of the situation of ESBL-producing
E. coli in clinical samples in Finland. Furthermore, our
results strengthen the finding of blaCTX-M-27-harboring E. coli
belonging to C1-M27 subclade gaining prevalence in Europe
and describe the first published finding of C1-M27-clade
isolates in Finland.

Multidrug resistance was common among the human clinical
isolates analyzed in our study. Trimethoprim resistance is often
associated with UPEC isolates, and our frequent finding of dfrA17
and dfrA12 genes is in line with a previous study conducted in
Korea, which observed dfrA17 and dfrA12 as the most prevalent
trimethoprim resistance genes in urinary tract isolates (Lee et al.,
2001). Chromosomal quinolone resistance, as well as acquired
tetracycline, aminoglycoside, and sulfonamide resistance genes,
was also common in our human isolates.

Our findings are in line with earlier studies investigating
the possible origins of ESBL-producing E. coli in humans.
ESBL-producing E. coli isolates from human sources were
found to be genetically distant from isolates obtained from
food, animal, and environmental sources with a cgMLST-
based MST approach. The total sample size, however, was
relatively small, and closer genetic connections could possibly
have been observed with a larger dataset. The only relatively
close connections between human clinical isolates sequenced
in this study and previously sequenced ESBL-producing E. coli
isolates from Finland were observed among human-derived
samples from veterinarians and a healthy, adult volunteer. The
isolates represented ST131 and carried either blaCTX-M-27 or
blaCTX-M-15, representing typical results for a human-derived
sample. The only close connections among the other previously
sequenced isolates from non-human sources in Finland were
observed between isolates originating from poultry sources.
Interestingly, ST1594 with AmpC type beta-lactamase, blaCMY−2,
was identified from a broiler caecal sample and a barnacle goose
fecal sample and showed no allelic variation in the cgMLST-
based MST analysis.

A population-based modeling study with a larger dataset
conducted in the Netherlands investigating the community-
acquired ESBL-carriage and its attributable sources concluded
that human-to-human transmission is the main route for
acquiring ESBL E. coli, even though food, animals, and
environmental sources were found to account for transmission
to a lesser extent (Mughini-Gras et al., 2019). Another study
conducted in Sweden found no evidence for clonal transmission
events between ESBL/AmpC-producing E. coli in humans,
animals, and the environment, but similarities were discovered
in resistance genes and plasmids, indicating possible limited
transmission potential (Börjesson et al., 2016).
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In conclusion, blaCTX-M-27 was found to be the most prevalent
ESBL gene in human clinical samples, and no clear evidence for
animal, food, or environmental genetic overlap was observed in
our dataset. Our results prove the spread of E. coli belonging to
the C1-M27 clade has been successful, and WGS-based methods
for surveillance of AMR trends and is effective and warranted
for future studies. Surveillance studies are needed to detect the
rapid evolution and epidemiology of ESBL genes, and future
studies focusing on plasmid-mediated AMR spread are needed
to assess the epidemiological links between different bacterial
sources further.
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