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Toeplitz Operators on the Unit Ball with
Locally Integrable Symbols

R. Hagger, C. Liu, J. Taskinen and J. A. Virtanen

Abstract. We study the boundedness of Toeplitz operators T, with lo-
cally integrable symbols on weighted harmonic Bergman spaces over the
unit ball of R™. Generalizing earlier results for analytic function spaces,
we derive a general sufficient condition for the boundedness of Ty in
terms of suitable averages of its symbol. We also obtain a similar “van-
ishing” condition for compactness. Finally, we show how these results
can be transferred to the setting of the standard weighted Bergman
spaces of analytic functions.

Mathematics Subject Classification. Primary 47B35.

Keywords. Toeplitz operator, Harmonic Bergman space, Bergman pro-
jection, Boundedness, Compactness.

1. Introduction

Denote by dV the normalized n-dimensional Lebesgue measure on the unit

ball B,, of R" with n > 2. For A > —1 and p > 1, let b{ = b} (B,,) be the

harmonic Bergman space consisting of all harmonic complex-valued functions

in LY = LP(B,,dVy), where dVy = c(n,A)(1 — |z[»)*dV and c(n, ) is a

normalization constant (see (3.2)). We further write b” for b5 and L? for L.
The Toeplitz operator T, with symbol v is defined by

Tyf = Pr(if), (1.1)

where Py is the orthogonal projection of L3 onto b3 (see (3.3)), ¢ is a mea-
surable function on B,,, and f is harmonic in B,,. It is known that Py can be
extended to a bounded projection from L onto bY for 1 < p < oo (see [3]).
It follows that Ty, is well defined and bounded on b§ whenever 1 is bounded.
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For f € L}, P\f is still well defined as a function (see (3.3) below), but we
may have Py f ¢ L} in general.

The study of Ty on b” goes back to [8], where it was proven for non-
negative symbols ¢ € L! that T, is bounded (compact) on b if and only if
the averaging function

1

T e o) »dV (1.2)
is bounded on B,, (vanishes as || — 1), where E,.(z) = {y € B,, : l[y — 2| <
r(1 = |z])} with » € (0,1) and |E,(z)| denotes its volume. Further, it was
shown that for symbols ¢ continuous on B, Ty is compact on b if and only
if = 0 on OB, which was generalized to b3 in [8]. It is easy to see that
these conditions for boundedness (compactness) can also be formulated in
terms of boundedness (vanishing) of the Berezin transform of ¢ or variants
of the averaging function (1.2). Moreover, applying (1.2) to the positive and
negative parts of Revy and Imw shows that if

S Ty 1AV <o (13)
then Ty is bounded. However, the modulus in the integrand makes (1.3) far
from being necessary if the symbol is not positive. In this paper we propose
averages over different sets, certain spherical boxes, but also with the modulus
outside of the integral; see (2.3). In particular, we give a new, weaker sufficient
condition for the boundedness and compactness of Toeplitz operators on the
weighted harmonic Bergman spaces by in Theorems 2.3 and 2.5. In Corollary
2.6 we present the corresponding results in the case of weighted Bergman
spaces AX of analytic functions on the unit ball of C™.

Most results about Toeplitz operators on b% are generalizations from
the setting of analytic Bergman spaces A% using similar but also additional
ideas related to non-analyticity. As in b%, characterizing bounded Toeplitz
operators is an open problem in AP(D) (the unweighted Bergman space of
the unit disk D of the complex plane C) even in the case p = 2. Compared
with (1.3), much more general and weaker sufficient conditions were found
for Toeplitz operators on AP(D) in [9] with further improvements in [10].
Roughly speaking, the conditions resemble (1.3), but the modulus appears
outside the integral. This means that the modulus of a (wildly oscillating)
symbol may be very large, but it may still induce a bounded operator due
to cancellation in the integral; for an illustrative example, see [10]. Recently,
the same idea was used to introduce weak BMO and VMO type conditions
n [11]. Here, we prove similar results for the space by of the unit ball with
standard weights for the sake of maximal generality, which carries a number
of technical challenges. We note that recently in [12] it was shown that the
mentioned sufficient conditions in AP are not necessary for the boundedness.
We also refer to [12] for a concise account of the study of boundedness of
Toeplitz operators on Bergman spaces.

As for the contents of this paper, the main results are formulated in
Sect. 2 and their proofs are prepared in Sects. 3 and 4, which contain some
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more necessary notation, definitions and preliminary lemmas. The proofs of
the main results are completed in Sect. 5, and in Sect. 6 we construct examples
of radial, oscillating symbols, the modulus of which may grow arbitrarily fast,
but which still induce bounded Toeplitz operators.

2. The Main Results

In what follows we generalize the results of [9,10] from the case of analytic
functions in D to the case of harmonic functions in B, and also consider
weighted norms. Our analogous sufficient condition is a rather weak require-
ment of the boundedness of certain averages of ¢ over spherical boxes (see
Theorem 2.3). We present the main results, Theorems 2.3-2.5 and Corol-
lary 2.6, with a minimal amount of notation.

It seems likely that analogous results hold for little Hankel operators on
by, too, but we do not consider this question here; cf. [10].

Let Q, :=[0,1) x [0,7]""2 x [0,27] and ¢ : Q,, — B,, be defined by

O'(T‘, 92, . ,9,,_1,9,,)
= (r cos Oy, rsin O cos O3, r sin O sin O3 cos by, . . .
rsinfs---sind,_1cosb,,rsinfbs---sinb,_1sinb,).

We note that o is surjective, and injective almost everywhere (i.e. for almost
every x € Q,, o(x) = o(y) implies z = y). For x,y € Q,, we define the boxes

Qz,y) == {z € Qy, : zj € min{x;,y;}, max{x;,y;}]}
and B(z,y) := o(Q(x,y)). In order to distinguish between B(z,y) C B,, and

Q(z,y) C Q,, we call B(z,y) a spherical box. For the following, we need to
single out certain spherical boxes. Let

K= {(m,kg,kg,...,k;n)eNg‘:ngngkn_lg---gkggzm—l}.
For k € K we define

Cri=[1—=27™ 1= 27 x [Bhka2™™, E (ko + 1)27™] x [5 7 ha;, Thatl

3 kpt1
| x 2oy 2 )

Note that |J Cr = [0,1) x [0,3]""% x [0,2n]. If we add all the sets that
ke
can be obtained from the sets Cj by repeatedly using the reflections 5 +—

m—40,...,0,_1 — w™—0,_1, we obtain a cover of Q,,. Let Q denote the
collection of these sets. Enumerate the elements of Q by 1, @2, ... and define
B, := 0(Q;) for j € N. Then |J B; covers B,, and B; N By, is a null set
jEN

whenever j # k. If [x] € [1 —27™ 1 —27™71] for all z € Bj, then B, is
called a dyadic box of generation m. For a dyadic box B; of generation m,
we denote B} := B; + 2-™~2B,.. The collection of these spherical boxes B;
has the property that they are all of size comparable to 27" and there is a
constant N € N such that every x € B,, is contained in at most N of the sets
B7. We will prove these facts in Lemma 4.3 below.

w _kno1 mwhkno1+1

Koo X [5 kn_2+1° 2 kp_o+1
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We remark that it may be tempting and more natural to extend the
decomposition of the unit disk in [9] to higher dimensions using boxes of the
form

Cr=[1-2""1-2""""x [[l27"kjm, 27" (k; + 1)7] C Qn,
j=2

J
where k; = 1,...,2™ —1for j = 2,...,n— 1 and k, = 1,...,27F1 — 1.
After mapping them to B,, and some reordering, these boxes also provide a
countable, pairwise essentially disjoint cover {B; : j € N} of B,,. However,
it turns out that the size of these boxes is not always comparable to 27™".
This is due to the fact that the Jacobian of ¢ is singular if any of s,...,6,,_1
is equal to 0 or 7. It also means that too many of the sets B} overlap close
to the singular points. As these two properties are crucial for our analysis,
we had to be more careful in the definition of the sets B;. Having said that,
it is highly expected that many other decompositions also lead to the same
result. Our choice is not special in that regard, but it is somewhat natural as
it leads to a definition of generalized Toeplitz operators that is independent
of the decomposition; cf. Theorem 2.4.

The set of locally integrable functions on B,, will be denoted by LllOC
Note that Li . does not depend on A. The characteristic function of a mea-
surable set F C B,, will be denoted by xg.

Definition 2.1. Let ¢ € Ll , 1 < p < oo and assume that the series

loc?

Tyf(x ZTw x5, f)(x ZP,\ Uxa; f)(z) (21)
Jj=1
converges for almost every x € B, and all f € bY. Then Ty is called a
generalized Toeplitz operator.

As Py is bounded on L%, it is clear that Ty f = Px(¢f) whenever ¢ f €
L% . In particular, if ¢ is bounded, then T}, is just the usual Toeplitz operator
as defined in the introduction. However, without any further assumptions it
is a priori not even clear if Ty f € b%. Our first main result is that T}, is a well-
defined bounded linear operator under the “weak” Carleson-type condition
(2.4).

For any measurable set B C B, we denote the weighted volume by
|B|x := [ dVi. Moreover, |B| := |Blo.

Let () and y) denote the smallest, respectively largest, element of Q;
with respect to the partial order

$Sy<:> T Syla |g_$2| Z |%_y2‘7 ey |g_xn—1‘ Z ‘g_yn—l‘7
T < Yn (2.2)
imposed on Q,.
Remark 2.2. Note that for 2,y € [0,1) x [0,5]""2 x [0,27] this is just the
usual partial order of points in R", which is then mirrored to all of Q,, to

account for the construction of the sets (); and B;. In particular, the 2\ and
y\9) are two opposite corners of Q; and we have B; = B(x(),y()). In the
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following, we will only work in the subset [0,1) x [0, Z]"~2 x [0, 27| and then
use that everything is symmetric around 6y — 7 — 0o, ..., 0, 1 — 7 — 0, _1.
This simplifies the notation significantly and also means that we do not have
to worry about the slightly unusual order (2.2).

Given a function ¢ € L{ _, we define

(2.3)

Theorem 2.3. Let 1) € Ll ., 1 < p < oo and the family (Bj);en be as above.

loc”

If there exists a constant Cy > 0 such that

¥j < CylBjla (2.4)
for all j € N, then the series (2.1) converges almost everywhere and in LK.
Moreover, Ty, defines a bounded linear operator on by and there is a constant
C > 0 independent of 1 such that ||Ty|| < CCly.

For ¢ € L . and 0 < p < 1, we define ¢,(z) = () for |z| < p and
Y,(z) = 0 for p < |z| < 1. Note that Ty, is bounded on b4 by the previous
theorem (see also Lemma 3.2 below). Our next theorem gives an alternative
definition of Toeplitz operators with L -symbol that does not depend on

loc
the decomposition (B;);en-.

Theorem 2.4. Let 1 < p < oo and 1/p+1/q =1, and suppose that ¢ € Li.
satisfies (2.4). Then

T¢f = lim Till f
p—1 7
for all f € b5 and T : by — b3 can be expressed as
Tyf = 111_)ml TE,, f
for febs.
Here, T}, denotes the adjoint of the operator 7, with respect to the
standard duality of b}-spaces.

Concerning the compactness of the Toeplitz operator, we formulate the
result in terms of the corresponding vanishing weak Carleson condition.

Theorem 2.5. Let the symbol ¢ satisfy the assumptions of Theorem 2.3 and
in addition the condition

o~

Yy
lim =0. 2.5
% B 23)

Then Ty : by — bY is compact for all 1 < p < .

We emphasize that these sufficient conditions do not concern the mod-
ulus of the symbol 1, only that of the integral.

Finally, we consider Toeplitz operators, denoted by T}3", in the case of
the weighted Bergman spaces AY = A (B,,) of the open unit ball B,, of C".
Here, C" is identified in the canonical way with R?”, hence B,, = Bs,,, and the
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Bergman space AX is the closed subspace of L% (By,) consisting of analytic
functions of n complex variables in the domain B,,. The Toeplitz operator 75"
with symbol ¢ € L (Bs,) is defined as in (1.1) by replacing the projection

Py by the orthogonal projection P{" from L% (Bs,) onto AX(B,), and the
generalized Toeplitz operator corresponding to (2.1) is defined analogously.

Corollary 2.6. Let the assumptions of Theorem 2.3 (respectively, Theorem
2.5) be walid for the symbol v in the domain Ba,, n € N. Then, the Toeplitz
operator Tg* : AR (By,) — AX(By,) is bounded (resp. compact). The statement
corresponding to Theorem 2.4 is also valid in the space AL (B,,).

The proofs of the main results will be given in Sect. 5.

3. Further Notation and Definitions

By C, ¢, C’ etc. we mean positive constants which may vary from place to
place. If the constant depends on some parameter, say n, this is shown as
C(n). For positive valued expressions f and g depending on some variables
or parameters, the notation f & g (respectively, f < ¢g) means the existence
of constants ¢, C such that c¢f < g < Cf (resp. f < Cg ) for all values of the
variables or parameters. By F(a,r) C R™ we denote the open Euclidean ball
with center a € R™ and radius r > 0.
On B,, we define the standard weight function

w(z) =1 — |z (3.1)

Given A > —1 and 1 < p < oo, the norm of the weighted space L% and
harmonic Bergman space b5 C L% is defined by

1/p
1l = ( / Ifl”dVA> |

. 2 T'(n/2+)X+1)
AV = e(n, Nw* dV = -~ th av. (3.2)

The orthogonal projection Py from Li onto bi (the harmonic Bergman pro-
jection) can be expressed as an integral operator

Pyf(z) = / F ()R () AV (), (3.3)
B

n

where

where, for z,y € B,

I'(n/2) ) i D(k+n/2+ X+ 1)Zk(:c,y)

k=0
and Zj(z,y) denote the extended zonal harmonics of order k. We refer to [1,
Chapter 5] for the definition of these functions and related facts. This series
converges absolutely and uniformly on K x B,, for every compact set K C B,,;
see [7, Proposition 2.6]. In particular, Ry is a smooth bounded function on
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K x B,, and also on B,, x K by symmetry. For 1 < p < oo the boundedness
of Py : L — Y, defined as in (3.3), is proven in [3, Theorem 3.1].

The following pointwise estimate follows directly from the mean value
property of harmonic functions.

Lemma 3.1. Let A > —1, 1 < p < oo, and f € by. Then
1/ 1lp.A
< b,
|f(l’)| ~ w(x)("+>‘)/p
for all x € B,,.
For compactly supported symbols we have the following result, which is

well known to experts; however, we include its proof for completeness because
we do not know a reference.

Lemma 3.2. Let ¢ € L%\ have compact support, that is, suppyp C rB, for
some r < 1. Then, Pxv is harmonic and there is a constant C = C(r) such
that

[1Px¢llpa < Cllebllaa
for all 1 < p < co. In particular, Ty is well-defined and bounded on bY.

Proof. We have

Pl < [ IR ) <0 [ 6] dVAe) =Clol
rB,, rB,,
for all x € B,, because Ry(x,y) is bounded on B,, x rB,, as noted above. This
implies that Pyt is harmonic and [|[Pat||,x < Clj¢)]|1,x for all p.

By Lemma 3.1, | f(y)| < C(r)||f|lp.x for |y| < r. The same estimate as
above thus yields the boundedness of T, O

The maximal harmonic Bergman projection P/{‘/[ is the nonlinear oper-
ator

P f(z) = / FW)IRA ()] dVa(y).
B

For 1 < p < oo this is a well-defined mapping LY — L%, and it is also
bounded in the sense that, for some constant

12X fllon < Cllfllpn (3.4)
for f € L%; see again [3].
Recall that for each a € B,,, the Mobius transformation ¢, : B,, — B,
is defined by the formula
|z —a*a — (1 - [af*)(z — a)

[z, a]?

Qpa('r) = ’ (35)

where

[z,a] :== (1 — 22 - a + |z|*|a*)Y/2. (3.6)
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As is well known, ¢, is an automorphism (analytic bijection) of B,, onto
itself, which maps the point a to the origin, and it is also an involution, i.e.,
Va0 pa(z) =z for all z € B,,.

The technical challenge of our paper arises from the decomposition of
the unit ball into spherical boxes and a tricky integration by parts argument.
Accordingly, it is important to introduce suitable combinatorial notation.
First, we will use standard multi-index notation so that for a multi-index o« =
(o1,...,00) € Ny, we denote |a| ;= a3 + -+ ap, and if 8= (F1,...,0n) €
Ng, then 8 < o means that 8; < ay for all k. Given a multi-index «, the
corresponding partial differential operator acting on functions with n real
variables is defined by

DY =097 ... .00,
where 0y, = 9/, for all k. Differentiation will be performed both in Carte-
sian and spherical coordinates in the following.
Moreover, in order to perform the integration by parts, we need some

notation for certain parts of the boundary. For z,y € Q,, and multi-indices
a € {0,1}", let

Qa(z,y) = [I lewwd x [ {ws} (3.7)
k=1

k=1,....,n =1,...,n
ap=1 =0

For z € Q(x,y) we denote by z, the element in Q(x,y) with coordinates

N
(za)e = {55 itarZo (3-8)

4. Preparatory Lemmas

4.1. Remarks Concerning the Hyperbolic Metric
The following facts about Mobius transforms ¢, are well known and easy to
check from the definitions, cf. (3.1), (3.5), (3.6).
Lemma 4.1. Let a € B,,. The identities

- lpn(o)? = P and (o) = (a.1)
hold for every x € B,,. Moreover, for all x,y € B,

[pa (@), 2a(®)]® = 1¢4(@)] €0 )] [, y]>. (4.2)

The distance of two points a,b € B, in the hyperbolic (or Poincaré)
metric is given by

—log (LT #a(0)]
e =5 (12257 )

and, in particular, d(0,a) = log ((1+ |a|)/(1 — |a])).
Lemma 4.2. Let a,b € B,,. Then

p—dlab) < [z, a]

< pdla,b)
= ey €

forallz € B,.
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Proof. We write © = ¢,(y) and b = p,(c). By (4.2), we have

[z,a]* _ [pa(y). 2a(O? _ |t (0)[y, 0 _ [a,]?
2,0 [pa(®) 0a()?  leb@lleh(e)lly, el [y,c]?
using (4.1) for |}, (0)| and |/ (c)|. Since ¢ = p4(b), we have
w0 _fad _ 14l _ 1+l _ sy
[2,0]  ly,c] T 1=l 1—lpa(®)] '
The other inequality follows from interchanging the roles of a and b. 0

Next we prove some crucial properties of the dyadic boxes B; and their
enlargements B. Recall that the B; are essentially disjoint and B} = B; +
2-m—2R, .

Lemma 4.3. Let B; be a dyadic box of generation m. Then
(i) B| ~ 27,
(i) diam(B;)~2""™,
(iii) [Bj[~27™",
(iv) there 8 a constant N € N such that every x € B,, is contained in at
most N of the sets B},
(v) 1—|z|~=1—|z]* = 27™ whenever x € B},
(vi) [x,a] = [z,b] for all z € B,, and a,b € Bj.

Proof. Without loss of generality, we may always assume that B; = o(Cy)
for some k € K.

(i) A direct computation gives

e - kp_1+1 kntl
_9g—m—1 us m ™ 1 n
5| 1-2 5 (ka+1)2 S el (R
T i, L hg2—m Y . LTS 27 —n
272 2 kn_o+1 kn—1+1

r"Lein® 20, ...sin6,_1d6, ... d0ydr
n—1+1 k41

k
—m—1 us —m ™ n
/1—2 /2(k2+1)2 /2 oot 1 /27Tkn1+1
~ e K

1-2-m Sho2=m z 1 P

2kn—2+l TRy F1L
T2 0, 1d6, ... Ay dr
~ ((1 o 27m71)n _ (1 o 27m)n) (((k2 4 1)27m)n71 o (k227m)n71)

n k 1 n—Il+1 k‘ n—I+1
A5 ()
kl 1 + 1 k’l,1 —+ 1
~ 27 ((kg + 1) — Ry 2

n 1 n—I+1 n—l+1
X;l:[kjll—l——l)”l‘*‘l((lirl) + — k] +)

— (k 1)n—l+1 _ n—I+1
; (ki + 1)~

=2

~27™mn,
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(ii) The edges of the dyadic boxes are coordinate lines 7; of the coordinate
transform o. Those are of the form

’Yl(t) = G(T792a"'7t7' 70n)
1
0; — coordinate

The length ¢ of the edges can therefore be computed directly:

1—2~m~1 1—2~m~1
e N CHOTE Ty T

5 (ka41)27™ / 5 (kat1)27™
)= [, bl = [, rarg e,
5]4:22*7" 51&‘2277"
™ _ki+1 7w _ki+1
2% 1+1 2% 141
Un) = | lk |7 (®)] dt = ﬁ lkll rsinfsy...sin6_; dt
2 k141 2 k141
—m k31 ki1 +1 1 _
< (kg +1)27™ - : —9 ™
N(2 ) ko +1 ki_o+1 k_1+1
T _knt1 T _kntl
2 Fen_1+1 2 kp_1+1
E(’Yn) = / k ! ||")/;L(t)|| dt = / & ' rsin 92 ...sin Hn_l dt
e 211
—m k341 kp_1+1 1 _
< (k 1H2=m™. R . =2™™
S (k2 +1) ko + 1 knoot1 kyi+1

It follows diam(B;) ~ 2~ ™.

(iii) We only need to show |Bj| < 27™". Clearly, B} is contained in a ball
of diameter at most diam(B;) +2~"~! ~ 27" Hence |Bj| < 27"

(iv) Let z € B, with |z| € [I —27™,1 — 27™71] and denote the set of
indices j such that B; N E(x,27™72) # 0 by J,. It suffices to show that
the cardinality of 7, is bounded independently of x. Clearly, B; is of
generation m — 1, m or m + 1 for every j € [J,. Therefore, by (i) and
(ii), |B;| = 27" and diam(B;) =~ 2~™ for every j € J,. It follows that
there is a constant C' (only depending on n) such that B; C E(xz,C2~™)
for every j € J,. Since |E(xz,C27™)| ~ 27" FE(x,C2~™) can only
contain finitely many essentially disjoint sets of volume ~ 27", This
finite number is the constant N we are looking for; it only depends on
n. This finishes the proof.

(v) As1—2"™ < |z| €1 —-2"""! for z in a dyadic box of generation m,
this is clear.

(vi) In view of (ii), there is a constant C such that |a — b < C2™™ for all
a,b € Bj. We also have 1 — |a|*> > 2772 and 1 — [b|* > 2772, Hence,
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by (3.6) and (4.1),

1 _ b w(a)w(d)+]al* + b —2a-b
L—lpa(b)]*  w(a)w(b) w(a)w(b)
_ |a — b]? 2
=1t i <1 16C

and therefore,

d(a,b) = log <m> <log (W) < log(4 + 64C?).

The assertion (vi) now follows from Lemma 4.2. O

4.2. Basic Facts About the Space b}

We will need a number of results on the spaces b . The following was proven
in [3, Lemma 2.8].

Lemma 4.4. For all multi-indices oo € N and all A > —1,
1Dg Ra(a,y)| S [2,9]7" 10, 2,y € By

To prove the next lemma, we use the Forelli-Rudin type estimate
(1—[yP)’ 2\—s
————dV(y) = (1 — s 4.3
| e V) = (- e (43)
where s > 0 and ¢ > —1 (see [4, Proposition 2.2]).

Lemma 4.5. Let A > —1 and 1 < p < oo. Then the integral operator defined
by

Axf(z) 32/&]3/2“(1%(2/)7 z € By,

n

is bounded on LK.
Proof. Define h(z) = (1 — |z|?)® and choose ma_xl{_p)‘q} < a < 0. Then, by
(4.3), when 1/p+1/q =1, we get
hy)? 1 — |y|2)xa+A
| s av) = [ B ave) < i

x,y]n A z, y|n A

n
_h(z)?

TG dV(z) < h(y)P. Now Schur’s test completes the
proof. 0

and similarly fB

Lemma 4.6. Let A > —1, 1 <p < oo and k € N. If a is a multi-index with

la| =k and f € by, then w*Df € LY, and
[w*Dfl,\ S IS

Proof. In view of Lemma 3.1, b} C b?y for sufficiently large v, and hence

z) = / R, (2,9)f(y) dV; (1),
B,

DA
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Differentiating under the integral sign, we obtain

w(z) D f(x) /K (z,y)f(y) AV (y), (4.4)

where
K(z,y) == w(@)*lw(y) " Dg R, (x,y).
By Lemma 4.4,

w(z) iy 1
[z, y]rtrtlal ™ g, yntA?

K (z,y)| <
where the last inequality follows from
1
[2,9] 21 = Jally] 2 max{l - |z[,1 ~ [y[} = 5 max{w(z), w(y)}-
Using (4.4) and Lemma 4.5, we get

Hw\a|Daf

<
) 1l

which completes the proof. (]

4.3. Integration by Parts in Spherical Boxes

The results in [9] were based on a tricky integration by parts. We have to
exploit this procedure in even higher generality, hence, it is useful to expose
the corresponding general integration-by-parts-formula. The set of n-times
continuously differentiable functions on B,, will be denoted by C™(B,). In
the following, the Jacobian determinant of the coordinate transform o will
be denoted by J,.

Lemma 4.7. Let f € L}, g € C"(B,,) and z,y € Q,,. Then, with F = foo
and G =goo,

/ fgdVy = / F()G() o (nw(o()* dy
(z,y) Q(z,y)

- ¥ s [ ([ ronmuem )

ae{0,1}" Qalz,y) Qz,va)
x D% G(’Ya)dq/ou (45)

where sq € {£1} for all « € {0,1}".

Recall that Qo (z,y) = [ [k, yx) ¥ H {yk} which means that
k=1,..., n k=1,
akzl Otk,:O

the integration fQ (@) d~, is performed only in those variables ~; where

aj = 1. This is in concordance with the notation (3.8) since (V)i = yi if
A = 0.
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Proof. Let 1 :=(1,...,1). We will use the following well-known formula

(D'u)-v= > (=)D *(u- D), (4.6)
ae{0,1}"

which is easily proven by induction. Now choose
w)= [ PO b md o) =60,
‘1:7’Y

and observe that u(vy) = 0 if zp = 7, for some k. Integrating the formula
(4.6) over Q(z,y) and using the fundamental theorem of calculus multiple
times yields the result. O

5. Proofs of the Main Results

Before giving the proofs of our main results, we still need to consider four
lemmas. The first one is used to fix a small flaw in [9]: in the reference, the
inequality (3.8) is not true as such, but the integration domain has to be
replaced by a larger set. This, however, is not difficult, and we use here the
enlarged dyadic boxes B} to this end.

Lemma 5.1. Let f be a harmonic function on B, and let B; be one of our
dyadic boxes. Then for each j,

1
@S B B/ 71avs (51)

for every x € Bj.

Proof. Suppose that B; is of generation m. By definition of the sets B}, we
have E(z,627™72) C By for every x € Bj. The mean value property of
harmonic functions yields

1
flz) = W_m_g)‘ / fly)dV(y).

E(z,2-™—2)

Thus

)

1

E(z,2—™—2)

S2m [ f(y)dV(y)
/

|f(y)[dV (y)

< glvtim / @) w() dV(y),
g

where the last inequality follows from the fact that w(y) ~ 27" for y € BJ;
see Lemma 4.3. Since | By a2 2~ ("+N)™  this proves (5.1). O
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In order to apply Lemma 4.7, we need to transfer partial derivatives
from spherical coordinates to Cartesian coordinates. For this we need the
following lemma. We note that there is an explicit formula for iterated partial
derivatives, the Faa di Bruno formula, but since we do not need it in full
generality, we decided to give a proof in simple terms.

Lemma 5.2. Let g € C"(B,,) and o € {0,1}™, |a| > 1. Then for every € Nj
with 1 < |B] < |a] there is a dg € C*(Qy,) such that

DSglo(m) = D ca(Mds(7)(Dig)(x),

1<|8]<lal
where
n—1 { J
- max{0,18- 3 o }
cp(v) = [ ] (sin0)) =
j=2

7:(T,92,...,9n) EQn andm:g(fy)_

Proof. We only prove that one can factor out (sinfy)/#l=1=2 As will be
clear from the proof, factoring out the other terms in the product can then
be done in the same way. We also note that the power of each sin6; in the
expansion of DS (g o o) can never get negative. It can therefore be assumed
that |3] — a1 — ag > 1; otherwise there is nothing to prove.

We prove the claim by induction over |a|. First assume that |a| = 1.
Then
d(goo) dx; Og
D%(go
7(g00) = SO Z vy, Oy
for some k € {1,...,n}. Now observe that sin 5 is necessarily a factor of %

unless k € {1,2}. This completes the proof for |a| = 1.
To complete the induction process, we compute

9 Z (sin f)1Pl=e1=a2 g, DOy

P
Tk <<l

for each k € {1,...,n} with ag, = 0 and show that we can factor out suffi-
ciently many sin 5. First assume k # 2. Then

9 Z (sin By)1Al=e1=a2 g, DB

P
k1<

8d5 - &’Cl 0

- Z (sin B)Bl-e1—az <D§jg +dg Z — _—DP%.
1</6]<lal e =R

Let o’ be equal to « except that the k-th entry is flipped from 0 to 1. If k # 1,

we can factor out another sin 65 from 811 as above and therefore the power of

sin 0 again matches the order of the derlvatlve in each term. If £ = 1, then

gfyl = cosfs, so there is no additional sinfy to factor out. However, since
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o) = a1 + 1, we still have the correct power of sinfy in the expansion. Now
let k = 2. In this case

0 . —a1—a
p Z (sin By)/Plma=az g, Dl
* 1<1BI<]af
od dx; O
— |Bl—a1—az | Y98 5 ! &)
1<18]<] ]

+ (sin y)1Plm 1722 cos Bad s D g

As afy = ay + 1, we are in the same situation as for k = 1. We again have the
correct power of sinfs in each term. This completes the proof. O

The functions cg have the following important property.

Lemma 5.3. Let a € {0,1}", |a] > 1 and c3(v) be as above. Then

/ e5(7) dya < 2718
Qa2 )

for all j € N.

Proof. As usual, we may assume that Q(z),y0)) = Cj, for some k € K.
Choose h € N such that |3 = Zh: a;. If h =1, then || = a; = 1 as well as
cg(y) = 1. Therefore, -

/ cs(7) dra S 27 =271
Qa (2 @)

If h > 2, another direct computation shows

/ () dya < 27 (kg 4 1)1Flmea—azg=m(|Bl—aa)
Qo (x(3) y(d)

h
(k3 + 1)\ﬁ|*6¥1*0¢2*0¢3 (kp_1 + 1)|ﬁ|7z§1 o
(ko + 1)‘5\—(11—042 T \5|—hi10¢
(kn—Q + 1) =1 l
= 0

The following lemma is the most important technical step in the proof
of our theorems.

Lemma 5.4. Let i) € LloC For z € B,, and every dyadic box B;, we have

)181| DB
Ty (x,f)(2) 5 1/)] Z/dex(y)-

I,BI<

Proof. Suppose that the generation of Bj is m. We may further assume that
B; = o(Cy) for some k € K. Let v = (r,02,...,6,) € Q, be such that
y=o0(v) € Bj and o € {0,1}", || > 1. By Lemma 4.4, we have

DS Ra(2,y)| S [z,y) "1 (5.2)
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for every z € B,,. Using Lemma 5.2, we obtain

D5 (Ba(z. oM fe)| < Y esMlds(I D] (Ra(z.9) /()]

1<[81<] @]

< > ey D] DY RA(z, )| DS F ()|
1<1B|<| ] B<B

SO ep(y) D 2nUPEIDE g7 DY f(y)|
1<]8]<] o] B<B

where the last inequality follows from (5.2) and [z,0(7)] > 1 —[o(y)| = 27™

by Lemma 4.3. We now apply Lemma 5.1 to the functions D f and use (v)
and (vi) of Lemma 4.3. This yields

D% (B, 0(1) F(o(7))|
13 e 1 5
S Y ) 2y B/ Pl av;

1<[B]<] o B<p

w8l DB
< Y %(v)ﬁ}jﬁ?m'ﬁ'@h [ )
< By

1<[B]<]a

. 1 w(y) Pl DA f
< Y amriios [HUES e 6

1<I8I<]al -

for all z € B,,. We are now going to apply the integration by parts lemma,
Lemma 4.7. Recall that B; = B(zW,y0)) = o(Q(z),y))). Integrating
(5.3) over Qo (2, y)) and using Lemma 5.3 yields

Lo D5 (R ot) )] dr
Qa(z(),y))
1 /w(y)ﬁDﬁf(y)l

[z, y]n A

dVi(y). (5.4)

~

B
1<1B]<] e | J‘)\B;

We now apply (4.5) to the integral
T, (s, 1)z / V()1 () B (=, 9) AV (). (55)

For the factor f in (4.5) we take the function ¢ and for g the function Ry (z,-) f
with a fixed z € B,,. This yields (see the remark just after this proof)

/1/) y)RA(z,y) dVa(y )’

<y ] [ wteutetr) i ar

2C G, (2(0) y) Q) ya)

x| D2 (Ba(z, 0 (va)) flo(ra))) | de (5.6)
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The change of the variables formula turns the integral over the set
Q(zY), ) into

‘ / Y aAVy| < 1) (5.7)

B(z0),y)

for y = o(va) € Bj, see (2.3). Applying (5.4), we thus see that (5.6) is
bounded by a constant times

b w(y) Bl DB

. 1+
|B.7|A |B‘SnB* [Z7y}7

since |a| < n. So the lemma follows by combining (5.5)—(5.8). O

We emphasize that the deduction (5.6) is in the core of our result: By
using integration by parts, it is possible to make estimates only in terms of
the modulus of the integral of 1, and a direct bound involving the modulus
of 1 can be avoided.

We are now in the position to prove our main results:

Proof of Theorem 2.5. Recall that the Toeplitz operator T}, is defined with
the help of the series
Tyf(a ZTw Xa, )

cf. (2.1). We show that the series converges absolutely for almost every « € B,
and that the resulting operator is bounded. Indeed, by the previous lemma,
assumption (2.4) and Lemma 4.3, we have

e \ﬁ\ DB
Z!Tw (xB,)(@)| < sz Z /de/\(?})
j=1 Jj= 1|ﬁ\<nB
Iﬂl B
SCy Y /dex\(y) (5.9)
ﬁ<n

for all z € B,,. By Lemmas 4.5 and 4.6, we see that for all |3] < n,

H/ (y)!PI| DB f(y )‘dVA(y)

l‘ yn+)\

g D i I T e
DA

This implies that the series 3372 Ty (xB, f)(x)| is pointwise bounded by an
L -function, and thus it converges for almost all 2 € B,,. Moreover, the above
argument implies

S Cull fllpa- (5.10)

By dominated convergence, the series also converges in L%. In particular,
Tyf € bt forall febf and || Ty S Cy. O
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Proof of Theorem 2.4. We first show that Ty f — T, f for every f € b,

As (@Zp)j < sz, the estimate (5.9) is uniform in p. That is, for almost every

r € B, the series ) Ty, (xB,f)(z) converges absolutely and uniformly in p.
JEN

In particular,

hmZTwp xB,; f)(w th Ty, (xB, f)(x ZTw xB,; f)(x

Moreover, [Ty, fllpx S Cyllf]l by (5.10). By dominated convergence, we get
Ty,f — Tyf as p— 1. For the adjoint observe

(Tyf.9) =Y (Uxs, f.9) = _(f.¥xs,9) = (f. Ts9)
j=1 j=1

and thus Ti5 g — T g follows analogously. O

Proof of Theorem 2.5. A routine normal families argument shows that the
unit ball of b} is compact in the topology of uniform convergence on com-
pact subsets of B,,. It therefore suffices to show that ||T fx||p,» — 0 for all
norm bounded sequences (f)52, C b which converge to zero uniformly on
compacta of B,,.

So, we fix such a sequence (f)72; with || fx]lp.x <1 for all k. Let ¢ >0
be arbitary. For all j, k € N Lemma 5.4 implies

\ﬁ\ B
> / 22 v,

[Bl<np«

|Ty(xB, fr)(z

N\B|A

and the weak vanishing Carleson condition (2.5) implies

~

0;
lim =0.
i—oo | Bj|

We choose N € N such that |B ‘ <egforj > N.

As the sets B;‘ are bounded, there exists a constant C' > 0 such that

y)!Pl

N
Z Z —= = dW\(y) < C

< ’

for all x € B,,. Since the sequence (fx)72;, as well as the sequences of the
derivatives of f, converge to 0 uniformly on compact subsets, we may choose
M € N such that

1D fu(y)| < e

for all k > M, [B] <n,y € B} and j < N.
For k > M we get
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N )18 DB
Z Ty (xB, fr)(@ Z: Z B L]Dnik( vl dVi(y)

)18 DA
EDID> / e avs )

J=N+1[Bl<n -

S Cye+e Z / W‘Dﬁfk( ) dV(y).

A
B1<n [y

Arguing as in the proof of Theorem 2.3 we find that ||T fillpn S € for
sufficiently large k. O

Proof of Corollary 2.6. As P{™ and Py are orthogonal projections and ob-
viously A% (B,,) C b (Bs,), we have Pi® = PPy on L3 = L3(Bs,). Let
[ € L} have compact support. Choose a sequence (f,)nen in L3 with the
same support as f such that ||f — fu]1,, — 0 as n — oco. Then

IPA(f = frllon S = fallix and [PX7(F = fo)llpa S 1F = fallia
(5.11)

by Lemma 3.2 and the respective result for the analytic case, which can be
proven verbatim. In particular,

PRUPAf = P{"Pa(f — fn) + PX"Pxfo = PX"PA(f = fn) + PX" f-

By (5.11), the former converges to 0 and the latter converges to P{"f as
n — oo. Hence P"f = P{"Py f for f € L} with compact support. Now let
¢ € Ll and f € AY. Then

S T (s, f) =Y Pit(Wxs, f) =Y P"Py(yxs, f).

j=1 j=1 j=1
As the series Z;‘;l Py(¢xB, f) converges in LY by Theorem 2.3, and P§" is
continuous, we obtain

ZPf“PA xB, f) = ZPA Uxs, f) | = PiTy f.

j=1 j=1

In short, 3" = P T | At - Properties such as boundedness and compactness
therefore transfer from the harmonic to the analytic setting. O

6. An Example

Sufficient conditions for the boundedness of Toeplitz operators with radial
symbols in Bergman spaces A% (B,,) have been given for example in [2], where
p = 2, or in [5], where n = 1. All such results concern symbols ¢ belonging
at least to L'(B,,). Modifying an example first presented in [9] we show here
that there are radial symbols with arbitrarily fast growing modulus, still
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satisfying the sufficient condition (2.4) of Theorem 2.3 and thus inducing
bounded Toeplitz operators.

If A > —1 and ¥ = ¢(r) is a radial symbol on the ball B,,, then our
condition (2.4) for boundedness simplifies to

P

sup 2m1+Y) sup / " lp(r) (1 = r?) M dr| < oo, (6.1)

mGNo p€[1_2—7n71_2—7n—1] 1—2—m
Let f : [1,00) — R be any continuous function with i[r11f )f(:c)x)‘ > 0.

xe|l,00
Define
“
g:[l,00) —[0,00), g(x)= yl(idy

and note that ¢'(z) = J{I(EZ\ > 0 and g(z) — oo as x — oo. In particular, g is
invertible. Define

d(r) =r "L =) AL =) exp (img (L —1)7h).
It is plain that the modulus of 1) can be made to grow arbitrarily fast as
r — 1, nevertheless, we claim that v satisfies (6.1) and thus by Theorem 2.3,
Ty : bY — b% is bounded for all 1 < p < co.
With the substitution s := g((1 —r)71), ie., 1 —7r = 1/g71(s), we get
for the modulus of imaginary part (the real part is treated in the same way)

’Im(/lp () (1 ) dr )

—2—m

/19 (L—7r) "/ (1 =) Hsin (rg((1 —r)~1)) dr

—2—m
g((1=p)™") TN

/ (97'(s)) sin(ms) ds| .
g(2™)

Let a be the smallest integer such that a > ¢(2™) and b the largest integer
such that g((1 — p)~t) > b. Then, as g%(s) is decreasing, we get

g((1=p)™h) Y
/ (97'(s)) sin(ws) ds
g(2m)

<

/a (g_l(s))_l_A sin(rs) ds
g(2™)

S (-1 / (671(5) " sin(rs)| ds

k=a k

9((1=p)™") N
/b (97'(s)) sin(rs) ds

S 3. 2—’m(1+/\)7

+

since we have the lower estimate g~'(s) > 2™ on all integration intervals and
the series in the middle term is alternating with decreasing absolute values
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of the terms. This shows that Ty, is bounded. Similarly, replacing g by

9 [1,00) = [0,00), glx) = /1 " Hwy dy

and choosing v as above, yields a compact Toeplitz operator T,,. These ex-
amples show that symbols of arbitrary growth can induce bounded or even
compact Toeplitz operators.
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