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Abstract
Compact hash tables store a set S of n key-value pairs, where the keys are from the
universeU = {0, . . . , u −1}, and the values are v-bit integers, in close toB(u, n)+nv

bits of space, where B(u, n) = log2
(u

n

)
is the information-theoretic lower bound for

representing the set of keys in S, and support operations insert, delete and lookup
on S. Compact hash tables have received significant attention in recent years, and
approaches dating back to Cleary [IEEE T. Comput, 1984], as well as more recent
ones have been implemented and used in a number of applications. However, the
wins on space usage of these approaches are outweighed by their slowness relative
to conventional hash tables. In this paper, we demonstrate that compact hash tables
based upon a simple idea of bucketing practically outperform existing compact hash
table implementations in terms of memory usage and construction time, and existing
fast hash table implementations in terms of memory usage (and sometimes also in
terms of construction time), while having competitive query times. A related notion is
that of a compact hash ID map, which stores a set Ŝ of n keys from U , and implicitly
associates each key in Ŝ with a unique value (its ID), chosen by the data structure
itself, which is an integer of magnitude O(n), and supports inserts and lookups on Ŝ,
while using space close to B(u, n) bits. One of our approaches is suitable for use as a
compact hash ID map.

Keywords Compact hashing · Dynamic dictionary · Closed addressing ·
Word-packing
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1 Introduction

In this paper, we consider practical compact representations of dynamic dictionaries.
A dictionary is arguably the single most important abstract data type, formulated as
follows.We are given a dynamic set S of key-value pairs 〈x, y〉, where the key x comes
from a universe U = {0, 1, . . . , u} and the value y is from {0, 1, . . . , 2v}. Furthermore,
all keys in S are distinct. A dictionary supports the following operations:

lookup(x, S): Given x ∈ U , if there is a pair 〈x, y〉 in S, return y, or a null value
otherwise.
insert(〈x, y〉, S): Add the pair 〈x, y〉 to S if S does not have x as a key.
delete(x, S): Delete the pair (if any) of the form 〈x, y〉 from S.

Although it is possible to support the insertion of the same key with different values,
we do not treat this case here for simplicity.

Dictionaries can be implemented using a number of data structures such as hash
tables and balanced trees, and many standard libraries use these approaches. Our
interest, however, is in highly space-efficient approaches to the dictionary problem.
In the worst case, a dictionary cannot use less space than the information-theoretic
lower bound needed to store S. If |S| = n, the lower bound for storing the keys in S is
B(u, n) = log2

(u
n

) = n log2 u − n log2 n + O(n) bits. The lower bound on the space
for the key-value pairs in S is thus B(u, n) + nv bits. In what follows we abbreviate
B(u, n) by B, use the notation [i] = {0, 1, . . . , i − 1} for a non-negative integer i , and
write lg and ln for the logarithm to base two and base e, respectively, with lg(1) n = lg n
and lg(i) n = lg(lg(i−1) n) for i > 1.

1.1 Dictionaries in Literature

Following standard terminology, we refer to dictionaries that use O(B + nv) bits as
compact and those that use B + nv + o(B + nv) bits as succinct. In recent work [3,
22], a number of applications have been highlighted for compact dictionaries including
compact representations of graphs, tries and arrays containing variable-length entries.
In all these applications, the �(n(lg u + v))-bit space usage of a traditional dictionary
(even those with low wasted space such as [12, 18]) is prohibitively large.

Building on earlier work on succinct static dictionaries [4, 20], succinct dynamic
dictionaries were proposed by Raman and Rao [26] and Arbitman et al. [1]. In the
transdichotomous model with word size w = lg u bits, the above solutions use (B +
nv)(1 + o(1)) bits of space, answer lookup queries in O(1) worst-case time, and
perform updates in O(1) expected amortized or worst-case time.1 A slightly different
data structure using O(B + nv) bits of space was discussed in [9]. Finally, Blandford
andBlelloch [3] generalized the notionofBwhenkeys are variable-length bit-strings of
length at mostw, and gave a dictionarywith a space usage of O(B+nv) bits. However,
these data structures are complex, and although Arbitman et al. [1] discussed ideas
to make their data structure more practical, we are not aware of any implementations
along these lines.

1 These two results differ regarding the model of dynamic memory allocation used.
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We are concerned with practical approaches to compact dynamic dictionaries. A
practical solution by Blandford and Blelloch [2] uses O(B + nv) bits of space, but
takes O(lg n) time to perform (a much wider range of) operations. The only other
practical compact dictionary we are aware of is Cleary’s compact hash table (CHT)
[6]. For any constant ε > 0, Cleary’s CHT uses (1 + ε)n(lg(u/n) + v) + O(n) =
(1 + ε)(B + nv) + O(n) bits and supports lookup in O(1/ε2) expected time, and
updates in O(1/ε3) expected amortized time. Poyias et al. [23] proposed a variant of
the CHT, called the displacement CHT or dCHT, which supports lookup in O(1/ε)
expected time.However, it uses�(n) bitsmore space than theCHT (a simplified dCHT
[23] in fact takes �(n lg(5) n) bits more space than the CHT), and particularly as ε

approaches 0, the practical performance of these approaches deteriorates significantly.

1.2 Hash IDMaps

Related to a dynamic dictionary is the notion of a hash ID map, which stores a set
Ŝ of n keys (without user-provided values) from a universe U , and associates each
key in Ŝ with a unique integer, chosen by the data structure, from a range [ρ]. If
x ∈ Ŝ, lookup(x) returns the integer associated with x . A requirement is that the
integer associated with x does not change during the lifetime of the data structure,
although our solution, as well as the previous solutions, require that the data structure
is destroyed and rebuilt after �(n) update operations. In addition, we would like ρ

to be in O(n). Finally, the space usage of a compact hash ID map should be close
to B(u, n), which is the information-theoretic lower bound for storing Ŝ. A compact
hash ID map has many applications, including compact representations of tries [14,
23] (and potentially other compact data structures), LRU cache management [27], and
naming in string processing [19]. Implicit in the work of Darragh et al. [8] is a compact
hash ID map whose space usage is (1+ ε)B bits, has ρ = �(n lg n/ lg lg n) with high
probability, supports O(εn) updates before requiring rebuilding, and performs insert
and lookup in O(1/ε2) expected time. Implicit in the work of Poyias et al. [23] is a
compact hash ID map whose space usage is (1 + ε)B bits, has ρ = O(n), supports
O(εn) updates before requiring rebuilding, and performs insert and lookup in O(1/ε)
expected time. Here ε > 0 is a user-specified constant.

In this articlewe consider the use ofbucketing to design practicalCHTs and compact
hash ID maps, an approach that is distinguished by its simplicity, and is the basis of
the theoretical work of Raman and Rao [26], as well as earlier CHTs.

We should also address practical hash tables here, in particular those with small
space or SIMD instructions.

1.3 Our Contributions

We propose simple and practical CHTs with:

• B + nv + O(n lg lg u) bits, performing insert and lookup in O(lg(u/n)) and
O(min{lg(u/n), lg lg u}) expected time respectively. This approach, despite being
theoretically inferior, is extremely simple. It also yields a compact hash ID map
with ρ = O(n),B+O(n lg lg u) bits of space usage with support for�(n) updates
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before requiring rehashing, with O(lg(u/n)) expected time for both insert and
lookup.

• B+nv + O(n) bits, performing insert in O(lg(u/n)) worst-case time and lookup
in O(1) expected time. However, this approach is not suitable for use as a compact
hash ID map.

These results are obtained on the word RAMmodel with word sizew = lg u and under
the simple uniform hashing assumption, i.e., we assume that there is a hash function
f : [u] → [h] with the probability of 1/h that f (x1) = f (x2) for two pairwise
different elements x1, x2 ∈ [u].

Despite their poor asymptotic complexities, these approaches are simple and
designed for practical performance. In this evaluation, we consider two distinct sce-
narios:

• lg(u/n) and the value bit width v are both small (for instance at most eight),
motivated by the CDRW-array [23], which compactly stores a dynamic array A,
most of whose entries can be stored in very few bits. The CDRW-array works as
follows: For every bit-width v ≥ 1, let Iv denote the set of indices such that A[i]
with i ∈ Iv is a v-bit value. Then the CDRW-array creates for each bit-width v

a CHT, and stores the key-value pairs (i, A[i]) in this CHT for all i ∈ Iv . For
small v, the set of indices containing v-bit values are often a large proportion of
all indices, so lg(u/n) is small as well. In this scenario, keeping space usage low
is a priority.

• lg(u/n) and the value bit width v are both relatively large, for instance larger than
eight. This models a number of scenarios such as storing the adjacency matrix of a
fairly sparse weighted or labeled graph. In this scenario, we would be competing
against other memory-efficient implementations of conventional hash tables, and
speed would also be an important criterion.

On the implementation side, we offer three novel contributions. Firstly, our hash
table needs to be periodically resized as elements are added. Rather than resizing based
on the overall number of keys, we resize based on the size of the maximum bucket.
Secondly, we use SIMD accelerated techniques [28] to accelerate searches in a bucket.
Last but not least, we propose and study a combination with an overflow hash table to
defer the need for rehashing.

1.4 Discussion

We briefly summarize how our approaches differ from other compact hash tables.
Compact hash tables store keys not in plain form, but apply quotienting, which can be
understood as a function mapping a key to a slot in the hash table and a quotient that
needs at most as many bits as the original key. This mapping is invertible in the sense
we can restore the key by knowing the computed slot and its quotient. Unfortunately,
the computed slot may not be vacant, so additional information needs to be stored
if the quotient is placed in a different slot. We call this information displacement
information.

Regardless of whether a hash table is compact, hash tables are usually implemented
either (a) as open addressing, whereby all keys are stored in a single table, or (b) as
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closed addressing, where keys are mapped to buckets. However, combining open
addressing with compact hashing leads to difficulties, as compact hashing does not
store entire keys, but only quotient information [6], and the overhead of storing and
maintaining additional information to recover the keys from the quotients is quite
high, since open addressing schemes need to have some mechanism for resolving
collisions, such as linear probing [6, 23]. The problem is exacerbated by the use of
quite high load factors to keep the space usage low. The use of high load factors
can be avoided by switching to a sparse hash table layout.2 In contrast to standard
open addressing (storing elements in a single array), the sparse hash table layout
uses a bit-string to mark positions at which elements are stored, and represents the
keys themselves in a collection of small, variable-sized arrays. This allows for low
load factors with a moderate space overhead, and works well with compact hashing
[11, see Section “Outlook”]. However, the overhead of decoding the displacement
information for restoring a key from its quotient remains a concern.

In contrast, closed addressing does not use collision resolution: in closed addressing,
a distribution of the keys to buckets is performed. A bucket can be seen itself as a
dictionary providing the methods insert, delete, and lookup. Although it is therefore
possible to define recursive data structure, a bucket is usually represented by a singly
linked list like in the unordered_map of the C++ standard library libstdc++
[5, Sect. 22.1.2.1.2]. Such a bucket representation is also called chaining. The overhead
of chaining can make hash tables using it space-consuming and slow, and modern
implementations of hash tables tend to focus on open addressing.

In a compact hash setting, the buckets contain quotients of keys. In contrast to
hashing via open addressing, we do not need to maintain any information to recover
a key from its quotient. However, buckets have obvious overheads such as pointers to
them and auxiliary information such as their sizes. The challenge is how to balance
the overheads of the buckets (which grow as the number of buckets increases) with
the size of the quotients stored in the buckets (which reduces as the numbers of
buckets increase). Theoretical solutions (such as [26]) to this problem are complex
(e.g., recursing on the quotients in a bucket). We give up on asymptotic worst-case
performance in order to find solutions that work in practice.

1.5 Paper Overview

We begin with a review of some probabilistic bounds in Sect. 2, and then start with a
theoretical description of our algorithms in Sect. 3. In Sect. 4 we describe the imple-
mentations, which depart from theory in some ways. Section 5 presents our main
experimental evaluation. Section 6 supplements our experimental results with other
hash tables and changes in the experimental settings. In Sect. 7, we focus on broad-
word and SIMD instructions to accelerate the search of a key or quotient in a bucket,
where it turns out that SIMD instructions are especially useful if we have a good lower
bound on the number of elements n to hash. How space reservation helps us to speed
up this search while keeping the space requirements low is studied briefly in Sect.

2 https://github.com/sparsehash/sparsehash.
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7.2.2. Our last experiment in Sect. 8 studies the use of overflow hash tables to defer
rehashing. Finally, Sect. 9 concludes and states directions for further work.

Compared to the conference version [16], we elaborated on the theoretical founda-
tion of the distribution of elements performed by our hash table layout, and enhanced
our experiments with a comparison against a richer set of hash tables, andwith variants
using SIMD instructions or overflow tables.

2 Probabilistic Bounds

Before describing our new hash table, we study some tail bounds on binomial distri-
butions that we use to argue and/or estimate the performance of our hash table. Let
Pr[X > v] denote the probability that a random variable X yields a value larger than
v. We start with the following form of the Chernoff bound:

Theorem 1 [25, Theorem4.1] Suppose X1, . . . , Xn are independent random variables
taking values in {0, 1}. Let X denote their sum and let μ = E[X ] denote the sum’s
expected value. Then for every δ > 0,

Pr[X > (1 + δ)μ] <

(
eδ

(1 + δ)1+δ

)μ

.

We derive two conclusions from this theorem, which we will use for arguing about
the insertion into our hash table, and for the rehashing.

Corollary 1 Let h > 0, u > 0 be powers of 2, and let t ≥ 0 be a constant. If we place
h lg u balls into h bins uniformly at random then with probability 1− u−t no bin will
receive more than 3.4(t + 1) lg u balls.

Proof Fix a particular bin b and let Xi be a random variable such that Xi = 1 if the
i-th ball is placed in bin b and 0 otherwise. By the uniform distribution of the balls,
Pr[Xi = 1] = 1/h, and X = ∑h lg u

i=1 Xi is the random variable that specifies the

number of balls that are placed in bin b. Then μ = ∑h lg u
i=1 Pr[Xi = 1] = lg u is the

expected number of balls in b. Using Theorem 1 with δ = 3.4(t + 1) − 1 > 0 we see
that

Pr[X > (3.4(t + 1))μ] <

(
e(3.4(t+1)−1)

(3.4(t + 1))3.4(t+1)

)lg u

<

(
e(3.4(t+1))

(3.4)3.4(t+1)

)lg u

<

(
e3.4

(3.4)3.4

)(t+1) lg u

< (0.5)(t+1) lg u < u−(t+1),
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where we used that ex/xx < 0.5 for all x ≥ 3.34432. Finally, we note that the
probability that any bin receives more than (3.4(t +1)) lg u balls is at most u ·u−(t+1)

or u−t . ��
We now derive a bound that we use later for the rehashing. The first corollary is

used for the redistribution of a single bucket, and the subsequent one for the rehashing
of the complete hash table.

Corollary 2 Let t ≥ 0 and u ≥ 212 be two constants. Further let b be a bin containing
at most 30(t + 1) lg u balls. If we randomly place each ball in b into two new bins b1
and b2 then with probability u−(t+1) none of the two new bins will receive more than
(2/3) · (30(t + 1) lg u) balls.

Proof First, assume that b contains exactly 30(t + 1) lg u balls, and that the num-
ber of balls in b is divisible by 2. Pick one of the two new bins, say b1, and let
X1, . . . , X30(t+1) lg u be random variables so that Xi = 1 if the i-th ball goes to b1 and
0 otherwise (i.e., it goes to b2). Then X = ∑

i Xi is the random variable that gives the
number of balls in b1, with Pr[Xi = 1] = 1/2. The expectation is that b1 receives half
of the balls of b, i.e., μ = ∑30(t+1) lg u

i=1 Pr[Xi = 1] = 15(t + 1) lg u. By Theorem 1,
Pr[X > (2/3) · (30(t + 1) lg u)] = Pr[X > (1 + 1/3)μ] can be bounded as:

Pr[X > (1 + 1/3)μ] <

(
e1/3

(1 + 1/3)1+1/3

)15(t+1) lg u

< 0.5u−(t+1),

where we used the fact that
(

e1/3

(1+1/3)1+1/3

)lg u
< 0.5u−1 for lg u ≥ 12. Finally, if b had

fewer than 30(t + 1) lg u balls, the chance that b1 receives more than (2/3) · (30(t +
1) lg u) balls cannot increase. The claim follows by summing the equal probabilities
for b1 and b2. ��
Corollary 3 Let h ≥ 0 and u ≥ 212 be powers of 2, such that h ≤ u, and let t ≥ 0 be
a constant. Let there be h bins b1, . . . , bh, containing ≤ 30(t + 1) lg u balls each. If
we redistribute all balls of the i-th bin bi randomly into two new bins bi,1 and bi,2, for
every i ∈ [1..h], with probability 1−u−t none of the new bins b1,1, b1,2, . . . , bh,1, bh,2
will receive more than (2/3) · (30(t + 1) lg u) balls.

Proof We apply Corollary 2 to all h bins, and sum up their probabilities: The
probability that none of the 2h ≤ 2u new buckets receives more than (2/3) · (30(t +
1) lg u) balls is at most u−t , as required. ��

3 Compact Hashing via Bucketing: a Theoretical View

Equipped with the probabilistic results of Sect. 2, we here outline our approach from
a theoretical perspective. We use the word RAM model with word size w = lg u bits.
Let y mod x ∈ [x] denote the modulus of y by x , and y div x = 
y/x� the truncated
division of y by x . Let h be the number of buckets of our hash table – we assume, for
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Table 1 Overview of used symbols

Symbol Meaning

h Number of buckets or group-buckets

q Quotient bit width

d Quotient value

x Key

y Value

n Number of stored keys

u Size of the universe

v Bit width of the values

z Constant for Chernoff bound

bmax Maximal elements a bucket or group-bucket can store = z lg u

s Elements in a group-bucket

m Number of sub-buckets in a group-bucket

ease of description, that the size of the universe u and h are powers of two. We start
with an invertible function f : [u] → [u], and use f to map key-value pairs to the h
buckets. Now, given a key-value pair 〈x, y〉, we compute f (x), and assign 〈x, y〉 to
the bucket r = f (x) mod h. In the bucket r , the key x is represented by its quotient
value d = f (x) div h; observe that the key x can be recovered with f −1(dh + r) and
that the quotient value takes q = lg u − lg h bits. We analyze the hash tables assuming
the simple uniform hashing assumption [7, Sect. 11.2], which means for all keys x in
S, f (x) is uniformly and independently distributed over [h]. This is a common and
long-standing assumption, which works well in many (but not all) practical settings,
and how to realize this assumption in the worst-case complexity setting is the subject
of continuing research [31]. To easy the reading, we provide a list of used symbols in
Table 1.

3.1 Balancing Bucket Sizes

We begin by discussing our approach to rebalancing buckets, which differs in some
ways from standard approaches. Firstly, we maintain a collection of h buckets at any
given time, and set a parameter bmax which is the maximum bucket size. If an insert
causes any bucket to have bmax keys, we rehash as follows:

1. Allocate 2h new buckets (which are initially empty).
2. For each old bucket, rehash all its keys into the new buckets. Observe that a key x

in bucket i is rehashed to either bucket 2i or 2i + 1 based upon the “next” bit of
f (x), meaning that the (lg h + 1)-st least significant bits of f (x) (represented as
a binary value) now determine the bucket.

3. Delete each of the old buckets after processing all its keys.
4. Set h ← 2 · h.
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There are a number of advantages to rehashing this way. First, rehashing by dou-
bling the number of buckets each time gives the rehashing procedure good locality of
reference, since we move the elements of an old bucket i into at most two different
new buckets (2i and 2i +1). Second, our hash tables do not experience memory peaks
as observed by open addressing hash tables that need to keep (mostly) all cells of the
old and the new hash table in memory during the whole rehashing process. Finally,
having a fixed bmax is helpful for using the hash table as a hash ID map, as we will see
below. It also has some practical benefits from a code perspective, such as allowing
header information (such as the number of keys in a bucket) to be stored in variables
of fixed bit-width. Finally, it ensures we can claim worst-case time for lookup, which
might be useful in some applications.

Letting n be the number of keys currently stored in the hash table, we would like
to ensure the following invariants:

• With high probability, �(n + h) insert operations take place between successive
rebuildings, and

• Buckets on average contain �(bmax) keys.

The first point ensures that the amortized cost of rehashing is O(1). The second ensures
that the number of buckets is low relative to the number of keys; since each bucket has
a fixed overhead, this reduces the overhead per key, improving the space utilization.

To achieve this, we set bmax = z lg u, where z is a sufficiently large constant. We
derive the following consequences from Sect. 2:

(a) For any constant t > 0 there is a constant c = O(t) such that inserting h lg u keys
into h initially empty buckets results in all buckets being of size at most c lg u
with probability 1 − u−t (Corollary 1).

(b) For u large enough and a constant t > 0 there is a constant d such that splitting
h buckets each with ≤ d lg u keys into two (in the manner described above, by
rehashing the keys in a bucket into two buckets), the largest bucket remaining
after rehashing will have size at most (2/3) ·d · lg u keys with probability 1−u−t

(Corollary 3).

The constants c and d are linearly dependent on t . In what follows, if an event happens
with probability 1 − u−t , where t is a user-controllable parameter, we say it happens
with high probability (whp). Ifwe choose z = max{3c, d}, thenwhenwe rehash,we are
guaranteed by (b) that the largest bucketwill have size atmost (2z/3) lg u ≤ (z−c) lg u
keys whp. By (a), after the rehash, we can support h lg u = �(n +h) insert operations
whp before any bucket overflows. Note that this also ensures that theminimum average
size of a bucket is at least lg u, as the average size of a bucket is halved by rehashing,
but whp at least h lg u keys need to be inserted into the hash table (which are distributed
across all buckets) before a bucket becomes full again.

In what follows, we present two realizations of our up so far abstractly described
approach on hashing by bucketing. Table 2 gives an overview on the differently set
parameters of each approach.
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Table 2 Juxtaposition of our two proposed variants in Sects. 3.2 and 3.3

Measure bucket grp
Sect. 3.2 Sect. 3.3

h �(n/ lg u) �(n/ lg u)

q lg(u/n) + O(lg lg u) bits lg(u/n) + O(1) bits

space B + nv + O(n lg lg u) bits B + nv + O(n) bits

lookup time O(lg(u/n) + lg lg n) or O(lg(u/n)) or

O(lg lg u) if sorted O(1) expected

3.2 Simple Compact Hashing

The above scheme can be realized as follows: The buckets are represented by an array
of h pointers, each pointing to an array of w-bit words that stores the key quotients
and the values. The overhead per bucket is a constant number of machine words
representing the unused space within the last word of an array, plus the pointer to
the bucket. Since the average number of keys in a bucket is �(bmax), the number of
buckets is O(n/bmax), and since bmax = �(log u) = �(w), summed over all buckets,
this overhead is O(n) bits.

Each key is represented by a quotient using lg u − lg h bits. Since h = O(n/ lg u)

by the above discussion, the number of bits for a quotient is q = lg(u/n)+ O(lg lg u)

bits, and the overall space bound isB+nv+O(n lg lg u) bits as claimed, where v is the
bit width of the values. A bucket, with a total of s key-value pairs in it, is represented
as two arrays of length s, one with each entry being q bits wide (which holds the
quotients), and one with each entry being v bits wide (which holds the values). The
i-th entry in each array corresponds to the same key-value pair.

To perform a lookup, the quotients in a bucket are scanned. The scanning can be
done using standard word-parallel tricks [15] in time proportional to the number of
words that represent the quotients in a bucket, or in O(lg u

n + lg lg u) time. To perform
an insert operation, a new array of the appropriate size is allocated, the existing bucket
is copied over to the new array, and the newkey is added to the end of the new array: this
also can be done in O(lg u

n +lg lg u) time.A delete operation is processed analogously.
We first search the position in the respective bucket of the search key, delete its entry,
and shift all succeeding entries to the left to fill up the empty space. A rehashing can
be triggered if a minimum number of elements in a bucket is reached.

To use this hash table as a compact hash ID map, suppose that a key is stored
at the j-th position of the i-th bucket and j < bmax.3 Then the ID associated with
this key is the integer i · bmax + j . Clearly, the ID only remains valid until the data
structure undergoes rehashing, but there are�(n) insert operations between successive
rehashings. To support delete, we can use the classic tombstone strategy to change a
deleted element into an invalid entry.
Sorted Buckets If we do not need a hash IDmap, we can improve the time for lookup
by keeping the buckets sortedwith respect to the quotient values. Keeping the quotients

3 More precisely, the quotient of this key.
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sorted after an insert operation can again be done in O(lg(u/n) + lg lg u) time. This
allows us to perform a binary search on a bucket for lookup, thus reducing the time
to O(lg lg u). As quotients are assumed to be uniformly distributed, we can also run
interpolation search [21] to perform lookup in O(lg(3) u) average time.

Duplicate Keys In scenarios that require duplicate keys (which we do not treat in the
rest of the paper), the sorting can become additionally appealing in practical terms.
That is becausewe can answer a lookup query for unique keys by finding an occurrence
of the queried key in the assigned bucket, while we must scan the complete bucket
to collect equal keys when allowing duplicate keys. Hence, when allowing duplicate
keys, we expect that a lookup operation can be considered as slow as an unsuccessful
lookup, i.e., when the queried key is not present in the hash table. By sorting the
buckets, we group together the elements having the same key, and do not need to scan
the entire bucket.

3.3 Space-Efficient Compact Hashing

In our more space-efficient variant, we add a hierarchical layer splitting the role of
the buckets into group-buckets and sub-buckets: We group together m = �(bmax)

consecutive sub-buckets into a group-bucket such that we have h group-buckets and
m · h sub-buckets in total. On the one hand, group-buckets play the same role as
buckets previously did in terms of rehashing, i.e., rehashing is done when a group-
bucket has more than bmax keys hashed to it. On the other hand, sub-buckets are the
buckets which elements are hashed into. Specifically, a key x is mapped to sub-bucket
j within group-bucket i if i = f (x) mod h and j = ( f (x) div h) mod m. Within its
sub-bucket, the key x is represented by its quotient value d = f (x) div (h · m).

A group-bucket, with a total of s key-value pairs in it, is represented as two arrays of
length s, one for the quotients and one for the values. The quotients of all keys hashed
to the same sub-bucket are stored in a consecutive range in the array, and a bit-string of
lengthm+s = O(w) demarcates the sub-bucket boundaries by concatenating the sizes
of the sub-buckets, written in unary. Specifically, if the sub-buckets in a group-bucket
have sizes n1, . . . , nm , the bit-string 0n110n21 . . . 0nm1, which is of length m + s, is
stored to demarcate bucket boundaries. The overheads of this approach (including the
demarcating bit-string) are at most O(n) bits. However, the quotients stored in each
sub-bucket now only take lg u − lg n + O(1) = lg(u/n) + O(1) bits. To see that,
we observe that our hash table has h · �(m) = h · bmax = �(n) sub-buckets. That
is because the average number of elements in a group-bucket is �(bmax) (cf. the two
invariants in Sect. 3.1), and therefore h = �(n/bmax). Hence, we hash the keys into
�(n) sub-buckets, and therefore their quotients have a bit-length of lg u − lg n+ O(1).
Thus, the overall space usage is B + nv + O(n) bits.

To perform an operation for a given key, we need to find the sub-bucket which the
key belongs to. Random access to this sub-bucket can be obtained by performing a
broadword select operation [32, 33] on the demarcating bit-string in O(1) time. Since
the number of sub-buckets is �(n), the expected sub-bucket size is O(1) and search
within a sub-bucket takes O(1) expected time, and lookup is consequently supported
in O(1) expected time. insert is done by rewriting the entire bucket, which takes
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O(lg(u/n)) time as before. (Since each insert causes potentially all keys in bucket to
move, this approach is not suitable for use as a hash ID map.)

3.4 Memory Allocation

Our two approaches described in Sects. 3.2, and 3.3 allocate and free a number of
relatively small arrays, which can result inmemory fragmentation if usedwith conven-
tional memory allocators. Since each bucket (resp. group-bucket) is of size �(bmax),
the number of arrays is O(n/ lg u), or O(n/w). From a worst-case asymptotic per-
spective, fragmentation can be eliminated by using customized allocators such as
[13, Theorem 6]—the overhead of the allocator is O(w4 + n(lgw)/w) bits, which is
a lower-order term. This allocator, however, uses quite a lot of indirection to achieve
the above space bounds, and would be unlikely to work well in practice. Given that
the arrays we allocate come from a relatively small range of sizes, we can address
this by use of simple allocators such as the one used in [29, Appendix A] in our
implementation, albeit with a loss of worst-case guarantees.

4 Implementation

We implemented the simple approach and the space-efficient approach described in
Sect. 3.2 and 3.3, and call the implementations bucket and grp, respectively. Each
of the two implementations maintains h buckets (resp. group-buckets), where h is
a power of two. Following the discussion of different invertible functions given in
[11, Sect. 3.2], we select a fixed multiplicative function f : [u] → [u] with u =
264 for the experiments, which is f (x) = 9223372036854775291 · x mod u with
inverse f −1(x) = 3657236494304118067 · x mod u. We use the last lg h bits (resp.
lg(bmax · h)) of its return value for the index of the assigned bucket (resp. sub-bucket)
and the other bits for the quotient.We did not follow the approach of sorting the buckets
as described at the end of Sect. 3.2. Instead, we append new elements at the end of
the respective bucket/sub-bucket. If we set bmax small enough, this choice does not
hurt the query times due to data locality while keeping insertions reasonably fast. For
simplicity, a deletion of an element does not trigger a rehashing (hence it can happen
that a hash table has empty buckets after excessive delete operations).

4.1 Maximum Bucket Size and Rehashing

For both variants, we fix bmax = 255 instead of setting bmax = z lg u as suggested in
Sect. 3.1. We discuss this relatively large choice of bmax in Sect. 8. For now, we note
that it helps to reduce the per-bucket overhead (at least 17 bytes, see Sect. 4.2).

The main additional parameter in grp versus bucket is the number of sub-buckets
in a group-bucket, which we denoted by m: Given that the average number of total
elements in a group-bucket is s, a bit-string demarcating the sub-bucket boundaries in
a group-bucket costs us m + s bits on average, and therefore a group-bucket storing s
elements costs usm +s +sv+sq bits on average, where q = lg u − lg h is the quotient
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bit width. By doubling the number of sub-buckets per group-bucket (but keeping the
total number of group-buckets), the quotient bit width decreases by one such that
the average space of a group-bucket becomes 2m + s + sv + s(q − 1) bits, which
is smaller than the original size if m < s. However, changing m has an effect on
the time point when rehashing occurs—remember that a group-bucket can hold up to
bmax elements. Hence, when running an insertion benchmark on two identical hash
tables with differently set m, both hash tables can have different values for s after the
insertions have been performed. In our experiments, determining m by counting s in
the old hash table during a rehashing resulted in an overestimation of s. Therefore, we
stuck with the empirically evaluated constant m = 64.

4.2 Buckets

We focus on three different representations for the buckets:

1. Storing quotients and values combined as pairs of the form (q1, v1), . . . (q�, v�).
This is a common representation used by major hash tables such as the C++ STL
std::unordered_map, which employs singly linked lists storing these pairs.
For queries, it excels when only a few elements have to be visited. Otherwise, it
is less cache-friendly than the next two approaches.

2. Storing quotients and values separately in a list, i.e., q1, . . . , q�, v1, . . . , v�. Since
the quotients are stored consecutively, more quotients can be loaded into a cache
line than with the previous approach. However, inserting a new element into this
bucket representation is more time consuming than the above approach, because
we need to shift the values before inserting a new quotient before v1.

3. Storing quotients and values separately in a quotient bucket q1, . . . , q� and a value
bucket v1, . . . , v�. This approach supports fast insertions and has a good cache
behavior as well, but we need to spend an additional pointer for maintaining two
buckets instead of one like in the two previous approaches.

During a preliminary evaluation, we found that Approach 2 is considerably slower than
Approach 3 during the insertion, whileApproach 3 needs insignificantlymorememory
than Approach 2.We therefore choose Approach 3 for our bucket (resp. group-bucket)
representation in bucket (resp. in grp). The quotient bucket stores the quotients bit-
compact in a byte array by using bit operations. Consequently, the number of bits used
by a quotient bucket is quantized at eight bits (the last byte of the array might not be
full). We resize a bucket with the C function realloc. Whether we need to resize a
bucket on inserting an element depends on the policy we follow. With the incremental
policy, we increase the size of the bucket to be exactly one element longer, just enough
for a new element to fit in. This policy saves memory as only the minimum required
amount of memory is allocated. Because buckets store at most bmax elements, the
resize takes O(bmax) time. In practice, much of the time for resizing depends on the
speed of the memory allocator. Our second resize policy, half increase, increases the
bucket size by 50%, taking the burden off the allocator at the expense of having some
unused memory.4

4 Since grp is the more memory-efficient variant, there is no grp50. Moreover, since a group-bucket of grp
must support insertions at all ending positions of its sub-buckets, such an insertion is much more involving
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5 Core Experiments

We implemented the approaches described in Sects. 3.2 and 3.3 in C++17, and refer
to them bucket and grp, respectively. We subscript bucket with ‘++’ or ‘50’ to indi-
cate whether the hash table resizes a bucket by, respectively, one element or by 50%
(cf. Sect. 4.2). Implementations are available at https://github.com/koeppl/separate_
chaining.

Evaluation Setting Our experiments were run on an Ubuntu Linux 18.04 machine
equippedwith 32GiBofRAMandan IntelXeonCPUE3-1271v3 clocked at 3.60GHz,
having, respectively, 32KB, 256KB, and 8192KB of L1, L2, and L3 cache. We mea-
sured memory usage by instrumenting calls to malloc, realloc, and free. The
compiler was g++ version 7.5.0 with flags -O3 -DNDEBUG –march=native.
Our benchmarks for the operations insert, lookup, and delete are available at https://
github.com/koeppl/hashbench.

5.1 Bonsai Tables

We compare our implementations bucket and grp with practical implementations
of compact hash tables implemented in the tudocomp project.5 The first is called
cleary, which is an implementation of Cleary’s CHT [6] using linear probing. The
second, called layered, is based on the dCHTs of Poyias et al. [23]: layered stores
the displacement information in two associative array data structures. The first is an
array storing 4-bit integers, and the second is unordered_map (the C++ STL hash
table implementation) for displacements larger than 4 bits. There is also another hash
table variant called elias, the evaluation of which we consign to Sect. 6 due to its very
slow performance. All tables apply linear probing and support a sparse table layout.
We refer to these methods collectively as Bonsai tables, and append in subscript ‘P’
or ‘S’ if the respective variant is in its plain or sparse form, respectively. We used a
maximum load factor of 0.95 for all Bonsai table implementations.

5.1.1 Insertions and Lookups

Our first and main experiment measures the time and space requirements when (a)
filling the hash tables with data (insert) and (b) querying the data afterwards (lookup).
We filled the hash tables with 32-bit keys and 1-bit values, with keys generated via
std::rand. Fig. 1 shows the measured time and peakmemory usage when inserting
an increasing number of elements into the hash tables (construction in the plots) and
also times for lookup queries. The queries are performed in the same order as the
insertions.

TimeConsidering construction time, layeredP and bucket50 are the fastest options,
while the sparse Bonsai tables layeredS and clearyS are the slowest options. Between

Footnote 4 continued
than merely appending an element to a bucket of bucket. We are unsure whether a different resize policy
pays off.
5 https://github.com/tudocomp/compact_sparse_hash.
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Fig. 1 Top Left: Time for inserting x → 210 · (3/2)x randomly generated 1-bit values and 32-bit keys into
a compact hash table, for x ≥ 0 (cf. Sect. 5.1). Top Right: Time for querying all inserted elements. Bottom
Left: Peak memory needed during construction. Bottom Right: Memory and time per stored element. The
lower bound is based on Stirling’s approximation of B

them are bucket++, clearyP and grp. Considering the query time for large instances,
the difference to the construction time is that bucket and grp are here slower than all
variants of cleary and layered, where again layeredP is the fastest option.

Unsuccessful Search Figure 2 shows times for unsuccessful searches (i.e., when
the query is for a key not present in the table). layeredP is again generally the fastest
(though with somewhat less consistent performance). grp is faster than bucket for
unsuccessful searches.We can conclude that from the following fact:While grp spends
additional time for finding the queried sub-bucket in a group-bucket, this pays off since
the sub-buckets in grp are far smaller than the buckets in bucket.

Space grp, followed by bucket++ and then by bucket50, has the lowest peak mem-
ory requirements during the construction. The main reason is that, unlike the other
approaches, we do not need to store displacement information. The size of a group-
bucket in grp approaches bmax much better than a bucket in bucket, which helped grp
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Fig. 2 Time for looking up 210
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bucket50 clearyS layeredS
bucket++ grp clearyP
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to delay rehashings. clearyS beats on some instances bucket++ (but not grp) while
having significantly slower construction times than bucket or grp. However, the rela-
tively large memory reallocation during a rehashing prevents the memory requirement
of clearyS to stay below bucket++ for a longer time.

In summary, layeredP is consistently the fastest compact hash table in our exper-
iments for both insert and lookup queries and is also the most space consuming.
clearyP, layeredS, clearyS offer different trade-offs, being either faster at insertions,
lookups, or using less space. bucket and grp have the lowest space requirements, but
relatively high query times. The maximum bucket size bmax gives us a dial for trading
speed for space-usage with bucket and grp.

5.1.2 Spikes in Time andMemory

The Bonsai tables have clear spikes in their time and space-usage plots, which our
hash tables do not have. To understand this phenomenon, recall that the Bonsai tables
use linear probing with a maximum load factor of 0.95. (Another evaluation with a
factor of 0.5 follows in Sect. 6 with Fig. 6.) As the Bonsai tables approach fullness,
insertion and query times deteriorate, which is the case just before a peak in the space
usage plot (Fig. 1, bottom left). The peak itself is the consequence of rehashing having
been performed. Peaks are more pronounced for the non-sparse variants, which keep
all buckets of both the old and new hash tables in memory during rehashing.

Analysis We observe that, while the query times for cleary degrade dramatically
before rehashing, query times improve considerably immediately afterwards. This
reflects the way in which cleary and layered deal with displacement information. Due
to the highly set maximum load factor (0.95), with high probability elements with the
same hash value become mixed, resulting in long lists of consecutive elements. Given
that we consult an element at the i-th position in the hash table at which such a long list
of elements is stored, layered and cleary have to consult the displacement information
of i . While layered stores this information in two separate data structures, cleary may
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Fig. 3 Focus on the peaks during the query in Fig. 1 at which the hash tables have around 124498 ≈ 217

or 15938343 ≈ 224 elements stored, where we set the origin of the x-axis to 124498 and 15938343 stored
elements, respectively, and the x-axis gives the offset with respect to that number of elements

have to scan all consecutive elements to the left of i . When inserting an element at the
i-th position, linear probing scans to the right end of this list, requiring Bonsai tables
to lookup displacements of all visited elements. Our new hash tables bucket and grp
have smoother performance because of the way they handle rehashing: the contents
of the i-th bucket is moved to the 2i-th and (2i + 1)-th bucket after which the original
bucket is freed.

Two Spikes in Detail In Figs. 1 and 2, the hash tables were filled (3/2)n210

elements for n ≥ 1. However, this sampling is far too coarse to have a complete
image of the query execution times. In fact, since a Bonsai hash table doubles its size
on reaching the maximum load factor, such a doubling occurs within three consecutive
data points. Chances are that one of our data points in the chosen sampling is near
the point where the hash table needs to resize. In this case, due to the high load factor
and the nature of linear probing, the query times become very deteriorated. After a
rehashing the performance improves significantly, as we can observe in Fig. 3, which
sets focus on the vicinity of two different spikes. There, each data point measures the
time it takes to query a hash table for all stored elements (in a random order). The drop
of the computation time after a rehashing is significant for cleary (note that the times
scale is logarithmic!) and clearly visible for other hash tables with sparse layout like
layeredS.

5.2 Non-Compact Hash Tables

Figures 4 and 5 show an additional comparison with 8-bit values and two highly-
optimized non-compact hash tables, namely:6 Google’s sparse hash table2 google
and Tessil’s sparse map7 tsl.

6 Unfortunately, we could not evaluate other hash tables mentioned in the introduction. The implementation
of [12] lacks resize capabilities (http://algo2.iti.kit.edu/sanders/programs/cuckoo/).
7 https://github.com/Tessil/sparse-map.
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Fig. 4 Setting of Fig. 1 with randomly generated 8-bit values and 32-bit keys into a not-necessarily compact
hash table (cf. Sect. 5.2)
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Fig. 5 Deletion and unsuccessful search benchmark of our proposed hash tables against the time-efficient
approaches google and tsl. Left: Time for erasing 210 random keys that are present in the hash tables. Right:
Time for looking up 210 random keys that are not present in the hash tables. In both figures, the number of
elements (x-axis) is the (logarithmic) number of elements a hash table contains (cf. Sect. 5.2.2)
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Both google and tsl are sparse, resolve collisions with quadratic probing, use
the SplitMix hash function [30], and had maximum load factor set to 0.95. Section
6 provides a broader evaluation that includes the widely used STL implementa-
tion unordered_map, which we omitted here because it was always at least three
times bigger than the other hash tables.

5.2.1 Insertions and Lookups

In Fig. 4, we conducted the same experiment as in Sect. 5.1.1 on the non-compact hash
tables. While our implementations are slower for queries (grp is sometimes almost
three times slower than tsl), they consistently use half of the memory, sometimes even
less. bucket50 also shades google during construction.

5.2.2 Removing Elements

Figure 5 left shows the time to remove 210 random elements. We used the hash tables
created during the construction benchmark (Fig. 4) with 8-bit values. Bonsai tables are
not included because their current implementations do not support element removal.
Our hash tables are again consistently slower than tsl, while times for google fluc-
tuate above and below ours. grp becomes slower than bucket on large instances.
Experiments for unsuccessful searches (Fig. 5 right) show a similar pattern.

6 Extended Evaluation

For a clear visualization, we presented a careful selection of hash tables within a fixed
setting in Sect. 5. There, we chose the quite high maximum load factor of 0.95 in
the experiments resulting in unfavorably slow query times. We did so despite that a
sparse layout seems more favorable for low load factors. To support our decision, we
reran our evaluation with a maximum load factor of 0.5 in Fig. 6, where we observe,
compared to Fig. 1, that sparse compact hash tables need considerablymore space than
with the maximum load factor of 0.95. We should add a direct comparison between
max load factors of 0.5 and 0.95, perhaps with a table?

Next, we want to complement our selection of hash tables in Sect. 5 by providing
benchmark results including the Bonsai table elias and the non-compact hash tables
spp and std:

elias Avariant of the dCHTs of Poyias et al. [23] provided by the tudocomp project.
It partitions the displacement into integer arrays of length 1024, which are encoded
with Elias-γ [10].

spp Gregory Popovitch’s Sparsepp,8 a derivate of Google’s sparse hash table.
std The unordered_map implementation of the STL library libstdc++. This
implementation uses separate chaining (closed addressing). We used the default
maximum load factor 1.0, i.e., we resize the hash table after the number of stored
elements exceeds the number of buckets.

8 https://github.com/greg7mdp/sparsepp.
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Fig. 6 Experiment of Fig. 1 with maximal load factor set to 50% (cf. Sect. 6)

We set the maximum load factor of spp to 0.95, but stuck to the default maximum load
factor of 0.5 for elias due to time performance issues. We compared elias in Fig. 7,
and std and spp in Fig. 8. We additionally conducted the deletion experiment of Sect.
5.2.2 in Fig. 9. Our observations are as follows:

elias Even with a load factor of only 0.5, elias has the worst time performance
(cf. Fig. 7). eliasP is inferior to clearyS both in time and space. When setting the load
factor to 0.95, eliasS may have chances to become more lightweight than clearyS, but
is far away from being practical due to the additional time penalty of this high load
factor.

std and spp The construction of std and spp becomes much slower than bucket50
for large instances, where bucket50 starts beating spp on all larger data points, and on
some data points also std (cf. Fig. 8). The largest drawback of std is its highly memory
consumption skyrocketing the space requirements. Nevertheless, for successful and
unsuccessful queries, std is one of the best options, while spp stays at the center
(cf. Fig. 9).
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Fig. 7 Experiment of Fig. 1 with the eliasP and eliasS implementations described in Sect. 6

8-bit values. We also evaluated the compact hash tables with 8-bit values in Fig.
10. Compared to 1-bit values (Fig. 1), we only see a constant shift in the memory
requirement per element for all hash tables.

7 SIMD Instructions

A drawback of our proposed hash tables is the slow lookup operation. Since quotients
for large h become relatively small, we want to exploit the effect of scanning a bucket
of quotients by broadword search or SIMD techniques in the following.

7.1 Broadword Search

For our implementation of bucket, we propose two different approaches in how to
extract the quotients from its bit-compact byte array B. The first approach processes
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Fig. 8 Experiment of Fig. 1 with randomly generated 8-bit values and 32-bit keys evaluated on not-
necessarily compact hash tables

B sequentially during the search of a quotient d. The second approach accelerates
this search by storing 
w/q� times consecutively the bit representation of d in a w-
bit integer p, where q is the quotient bit width, and compares the same number of
quotients in B with B[i ..i + w − 1] ⊗ p for i = cq 
w/q� with an integer c, where
we interpret B as a bit-string. Using bit-shift and bitwise AND operations, we can
compute a bit-string C such that C[ j] = 1 ⇔ d = B[i + ( j − 1)q..i + jk − 1]
for 1 ≤ j ≤ 
w/q�, in O(bmaxq/w) time by using bit parallelism [15, Sect. 7.1.3].
The experiments in Fig. 11 empirically show that the broadword search is faster than
sequential search when the bucket size exceeds 64 items for a machine word size
of 64 bits. We therefore benefit from employing the broadword search on buckets
exceeding this size in our bucket implementation.9

9 The measured sizes of our grp buckets are much smaller than this threshold.
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Fig. 9 Evaluation of Fig. 5 and Sect. 5.2.2 with more hash tables. Left: Time for erasing 210 random keys
that are present in the hash tables. Right: Time for looking up 210 random keys that are not present in the
hash tables. In both figures, the number of elements (x-axis) is the (logarithmic) number of elements a hash
table contains (cf. Sect. 6)

7.2 AVX Representation

Another representation of the quotient bucket, called avx, applies SIMD instructions
to speed up the search of a quotient in a large bucket. For that, it restricts the quotients
to be quantized at 8 bits. We use the AVX2 instructions _mm256_set1_epiq and
_mm256_cmpeq_epiq for loading a quotient with q bits and comparing this loaded
value with the entries in the bucket, respectively. The realloc function for resizing
a bucket cannot be used in conjunction with avx since the allocated memory for avx
must be 32-byte aligned [17, Chapter 15].

7.2.1 Benchmarks

Following the setting of Sect. 5.1.1,wemeasured the time for insertions and lookups for
our AVX variants in Fig. 12. Here, we added the variant plain of bucket using a fixed
bit width for the quotients quantized by eight bits (i.e., plain only supports selecting
the number of bytes for the quotient representation). plain serves as a baseline for the
query time benchmarks of theAVXvariants:While plain uses the bucketing technique,
it does not need to store the quotients bit-compactly, and is therefore at least as fast
as bucket. For that, it uses the trivial injective transform fh : x → (x, h(x) mod N )

for a given hash function h(x) such that d is the quotient and r is the assigned bucket
index for a key x with fh(x) = (d, r). Effectively, plain therefore treats the keys
as quotients, i.e., it does not apply compact hashing. Like plain, avx uses the same
transform fh . For the experiments, we use the SplitMix function for h as we did for
the other non-compact hash tables. In Fig. 12, avx50 is faster than plain50 during the
construction, and far superior when it comes to searching keys.
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Fig. 10 Experiment of Fig. 1 with 8-bit values described in Sect. 6
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Fig. 11 Speedup for searching quotients of a specific bit width (13, 16, 31, and 32) in a bucket of length 2x

(x-axis) with our broadword search described in Sect. 7.1 in comparison with sequential quotient-by-
quotient comparison approach. We take the cumulative time needed for retrieving all stored quotients of the
respective bucket. The machine word size w is 64 bits. Although we would have expected that the search
becomes slower for bit widths non-dividable by eight, the figures show the same characteristics for various
bit widths

While the discrepancy in construction time between the incremental and the half
increase policy is small for plain, the construction of avx++ takes considerably longer
than avx50 since we cannot resort to the fast realloc for allocating aligned memory
required for the SIMD operations.
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We also evaluated the time for deletions and unsuccessful searches (bottom of Fig.
12). For deletions, only tsl is faster than our provided solutions. For unsuccessful
searches, std and tsl are the fastest solutions, followed by spp and avx. plain is the
slowest solution for all types of operations.

Combining avx50 with compact hashing can lead to a fast and memory-efficient
hash table if there are precise lower bounds on the number of elements that need to be
stored (cf. Fig. 12 for the time and plain50 in Fig. 13 for the space). In what follows,
we study the memory savings when exploiting such a lower bound with plain applying
compact hashing.

7.2.2 Reserved Space

Like in Fig. 10, we fill the hash tables with n random elements for increasing n ≥ 216.
However, this time we let the hash tables reserve 216 buckets in advance. We added a
percent sign in superscript to the plain hash tables that (a) apply compact hashing and
(b) take (additionally) advantage of the fact that they only need to store quotients of
at most 16 bits. The results are visualized in Fig. 13. Like in Fig. 12, a major boost for
lookups can be observed if we exchange plain with avx (cf. Sect. 7.2),10 which takes
the same amount of space as plain.

8 Choice of bmax and Overflow Tables

In the theoretical description of bucket in Sect. 3.2, we choose bmax = z lg u, for some
constant z that satisfied various constraints.ApplyingTheorem1directly,we can check
that c = 3.1 suffices to ensure the point (a) in Sect. 3 with probability 1 − u−2, and
d = 55.18 satisfies point (b) with the same probability. This would suggest z = 55.18
is appropriate, which would imply bmax ≈ 3600, assuming lg u = 64. One can play
with these numbers a bit more. For instance, changing (2/3) to (4/5) in point (b) and
choosing z = max{5c, d} allows us to choose z = 18.24, and one could optimize this
a bit further.

However, this analysis is very conservative for a variety of reasons. For example,
while it may be likely that h log u insert operations cause some bucket to increase in
size by nearly c log u (cf. point (a)), it is not likely that this bucket is one of those that
was relatively large during the previous rehashing. Unfortunately, we are not aware of
any precise analysis of this process (similar to the “balls into bins” process, studied
extensively by Raab and Steger [24]). We have therefore performed two kinds of
simulations.

Firstly, we have simulated n = 228 insertions of keys into a hash table, but choosing
bmax based upon the number of buckets currently being used. Specifically, we chose
bmax = 
c lg h� for c = 0.5, 1, 2 and 4. Thus, each time there is a rehashing, bmax
likely increases as h doubles. In this test, we focus primarily on how the average
bucket fullness (average bucket size divided by bmax) evolves with increasing number

10 avx is not shown in Fig. 13 since our memory allocation counting library does not count aligned alloca-
tions needed for avx.
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of insertions; we measure the average bucket size just before a rehashing. Studying
the bucket fullness in this way should give a couple of useful pointers:

• In case that the fullness remains roughly steady as n grows, such an observation
would suggest that rehashing has an acceptable amortized cost (because it shows
that the keys roughly double between rehashes). It also shows that the bucket space
overhead per key is constant as n rises.

• We note that the lower the bucket fullness, the greater the number of buckets
relative to the number of keys, and the greater the O(1) space cost per key arising
from the bucket overheads.

We argue that this kind of test would give some indications as to how a given choice
of bmax would perform as n increases. We noticed that, for example, with c = 4, the
average bucket fullness was varying between 50% and 56%. This gives us confidence
that choosing bmax = 256 will continue to perform fairly well – in terms of the
theoretical considerations underlying (a) and (b) – even as the number of buckets
approaches 264.

Another simulation we performed is to fix different values of bmax (keeping this
fixed throughout the series of insertions), and perform a varying number of insertions
into the hash table. This time, however, we measure the bucket fullness at the end of
the series of insertions, thus possibly providing a slightly less “worst-case” measure
of fullness. Fig. 14 shows overflow tables, which have not been introduced up till
now. Maybe we should use percentages in the y-axis to visualize how close we are
away from 100%? This test is shown in Fig. 14, where we focus on the line of ‘0.0’;
the meaning of the other lines will be explained later. In this figure, ‘0.0’ depicts
the average bucket size for a fixed bmax when scaling the number of elements n. We
observe that fullness decreases as n increases, for any given bmax. For smaller values
of bmax (e.g., 32) the fullness is quite low even at n ∼ 226, and the drop in the fullness
is quite considerable. Although we see a drop even for bmax = 255, the drop is only
about 10% from n = 215 to 226. We can draw the conclusion that the overflow tables
help significantly in keeping the buckets fuller when choosing a small bmax. In the
setting of hash ID maps, overflow tables are interesting even for large bmax, as they
help us to deter a rehashing.

OverflowTablesOne idea to improve the fullness of the buckets, and to ensure greater
robustness of this approach, is to use overflow tables. The starting point of this analysis
is to note that when inserting keys into buckets, it is likely that some buckets will grow
significantly larger than average. However, this number is small: applying Theorem
1 (more specifically, a simplification thereof, see [25, Equation (4.12)]), we see that
when inserting n keys into a collection of initially empty buckets, the probability that
a bucket exceeds the expected size s̄ = n/h by more than O(

√
s̄ lg s) decreases as

1/s̄O(1). This suggests the idea of putting a limit on the bucket sizes of the expected
size plus a modest amount, and putting all keys that would end up in buckets whose
sizes are already at their limit bmax into an overflow table. The goal is to let only very
few keys go into this overflow table, while letting all bucket sizes be quite close to bmax.
This benefits not only the overall space usage, but also the constant factor in the O(n)

bound on the range ρ of values, should we use this approach to implement a hash ID
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Fig. 14 Influence of an overflow table on the average bucket sizes (cf. Sect. 8). In this setting, an overflow
table has amaximumsize that is the product of the number of buckets of bucket and a fractional numberofrac,
which we set between 0 (i.e., no overflow table) and 1 (the overflow table can contain at most as many
elements as bucket has buckets). The benchmark shows the average bucket sizes (y-axis) with increasing
number of elements (x-axis). Each plot uses a different bmax. Each curve represents a different value ofrac
(see the legend on the right)

map, and finally also ensures that a given value of bmax (such as 255) continues to
work well for much larger values of n.

We have implemented this as follows: Whenever we want to insert an element in a
full bucket (resp. full group-bucket in grp), we put this element in the overflow table
and mark the bucket in a bit-string of length b indicating that whenever we want to
search for an element in this bucket, we also have to consult the overflow table. The
overflow table itself has a maximum size.11 Whenever this size is reached, we rebuild
the entire data structure. We evaluated the influence of the overflow table in Fig. 14,
where we set the maximum size of the overflow table in relation to the number of

11 Our implementation with overflow tables is only used in Figs. 14 and 15.
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Fig. 15 Setting like in Fig. 1 with 1-bit values featuring the variant bucketO++ equipped with an overflow
hash table (cf. Sect. 8)

buckets with a fractional number ofrac. We equipped bucket++ with layeredP as an
overflow table with ofrac = 0.6, and call the resulting approach bucketO++. (Doing
the same with grp only lead to worse performance both in time and space since the
group-bucket sizes in the experiments already closely approach bmax.) As we see, even
with very small overflow tables, the bucket fullness stays steady as n increases, even
for smaller values of bmax. However, we see in Fig. 15 that the time and space bounds
for the construction are roughly the same as without the overflow table. Note that in
these tests, the information-theoretic lower bound per key is relatively high, so the
bucket space overhead is anyway not a major part of the space usage.

We draw the conclusion that hash tables with overflow tables are performant even
with small values of bmax. Hence, with overflow tables we do not need to tweak the
bmax parameter dependent on the input data set, which can be much larger than we
evaluated here.
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9 Conclusions and FutureWork

We have suggested a simple approach for implementing compact hash tables, and our
implementations show positive results. The experiments reveal that our hash tables
grp and bucket use the least space of all tested approaches. Moreover, their time and
space requirements scale smoothly with the problem size, unlike the other compact
(i.e., Bonsai) tables tested, whose performance is periodically adversely affected by
rehashing. The new tables are also faster to construct than other hash tableswith similar
memory requirements—only hash tableswithmuch highermemory requirements have
faster construction times.

Themainweakness of grp and bucket is the slower lookup time, both for successful
and unsuccessful searches. This is the price we pay for low space usage, which is
achieved by keeping all buckets of bucket and grp as close to bmax as possible,
resulting in long scan times.

There are numerous avenues for future work. A more refined analytical treatment
of the space usage of the hash table (whose rebuilding is triggered by the parameter
bmax), and the expected frequency of rehashes, as well as a better understanding of
the use of overflow hash tables, would be welcome. In the experiments, the measured
memory is the number of allocated bytes. The resident set sizes of our hash tables may
differ significantly to this quantity, as we allocate small sizes of A dedicated memory
manager can reduce this space overhead.

The AVX2 SIMD instruction set provides a major performance boost over earlier
instruction sets like SSE—with benchmarks for comparing strings indicating a speed
boost of more than 50% for long strings.12 We wonder whether we can gain an even
steeper acceleration in our hash tables when working with the newer AVX256 instruc-
tion set. The current implementation allows only for fixed quotients of bit widths 8,
16, 32, and 64. It is possible to also support the bit widths 1, 2, and 4. Larger bit widths
like 24 need more operations and seem therefore unfavorable. However, to support
arbitrary quotient widths, we can split a quotient into two bit chunks, where the former
has a width equal to one of those fixed bit widths, say q ′, while the latter stores the
remaining bits. We then use the former exactly as in the current SIMD implementation
such that we also check only the first q ′ bits for a queried quotient. This can give false
positives, so we also have to check the remaining part, which we then do without
SIMD instructions.

Thinking about different hash table layout could also spawn future research.
For instance, we could think about linearizing the buckets into a single array like
ska::bytell_hash_map.13 This approach stores pointers of a fixed bit width
to the next element in the bucket to simulate the linked list of the separate chaining
resolution scheme. To be useful, this fixed bit width has to be small, consequently sup-
porting only small values for bmax. Complemented with an efficient overflow table,
this table could have faster query times than bucketwhile using not considerablymore
space.

12 https://github.com/koeppl/packed_string.
13 https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-
hash-table/.
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