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Abstract

Obijective: The pathogenesis of type 1 diabetes (T1D) is associated with genetic pre-
disposition and immunological changes during presymptomatic disease. Differences
in immune cell subset numbers and phenotypes between T1D patients and healthy
controls have been described; however, the role and function of these changes in the
pathogenesis is still unclear. Here we aimed to analyze the transcriptomic landscapes
of peripheral blood mononuclear cells (PBMCs) during presymptomatic disease.
Methods: Transcriptomic differences in PBMCs were compared between cases posi-
tive for islet autoantibodies and autoantibody negative controls (9 case-control pairs)
and further in monocytes and lymphocytes separately in autoantibody positive sub-
jects and control subjects (25 case-control pairs).

Results: No significant differential expression was found in either data set. However,
when gene set enrichment analysis was performed, the gene sets “defence response
to virus” (FDR <0.001, ranking 2), “response to virus” (FDR <0.001, ranking 3) and
“response to type | interferon” (FDR = 0.002, ranking 12) were enriched in the

upregulated genes among PBMCs in cases. Upon further analysis, this was also seen
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in monocytes in cases (FDR = 0.01, ranking 2; FDR = 0.04, ranking 3 and
FDR = 0.02, ranking 1, respectively) but not in lymphocytes.
Conclusion: Gene set enrichment analysis of children with T1D-associated autoim-
munity revealed changes in pathways relevant for virus infection in PBMCs, particu-
larly in monocytes. Virus infections have been repeatedly implicated in the
pathogenesis of T1D. These results support the viral hypothesis by suggesting altered
immune activation of viral immune pathways in monocytes during diabetes.
KEYWORDS
monocytes, type 1 diabetes, viral response, p-cell autoimmunity

1 | INTRODUCTION 2 | MATERIALS AND METHODS

In type 1 diabetes (T1D), functional pancreatic p-cells are lost due to 2.1 | Study subjects

an autoimmune reaction. The destruction of B-cells seems to happen
in a T cell-mediated manner after self-antigen presentation, but sev-
eral immune cell populations within both the adaptive and innate
compartments are thought to take part in the process.t

Activated cytotoxic CD8" T cells and macrophages are the major
contributors in active insulitis,? in which they infiltrate the pancreatic
islets of Langerhans. While B -cell specific CD8" cells are found at
similar frequencies in the peripheral circulation of healthy donors and
patients with T1D, they display markers of antigen-driven expansion
in patients with newly diagnosed T1D.® Additionally, the cytotoxic
reactivity against islet autoantigens from human samples has been
demonstrated.* Specific subsets of CD4* T helper cells have long
been known to contribute to the differentiation of B cells into
antibody-secreting plasma cells. Since the most prominent genetic risk
for T1D is mediated by the HLA locus,* encoding for the class Il MHC
molecules, and as CD4" T helper cells are also found in insulitis,?
CD4™" cells are an attractive candidate for facilitating the emergence
of humoral immunity in T1D. A potential model for follicular and
peripheral CD4" T helper cell involvement was recently suggested.®
In addition, CD4" T helper cells have been shown to play a critical role
in autoreactive CD8" T cell maintenance.®

B cell derived plasma cells produce p-cell specific autoantibodies
which to date are the most important biomarkers of islet autoimmu-
nity before clinical diagnosis of diabetes.”® Monocytes are precursors
to both macrophages and myeloid dendritic cells and have a role in
antigen trafficking and presentation.” Their subpopulation compart-

10-12 and

ment sizes have been observed to be altered in T1D patients
the cytokine milieu of monocyte populations has been reported to
favor more proinflammatory phenotypes.*®

Despite these discoveries, the exact mechanism underlying T1D
development remains largely unknown and heterogeneity in disease
pathogenesis is strongly suspected. In this study, to infer biological
events during T1D development, we set out to analyze transcriptional
differences in peripheral blood mononuclear cells (PBMCs) among sub-
jects with HLA-conferred risk for childhood T1D and signs of advanced

B-cell autoimmunity and autoantibody negative control subjects.

The study subjects were participants in the Finnish Type 1 Diabetes
Prediction and Prevention (DIPP) study and carried HLA class Il geno-
types associated with an increased risk for the development of T1D.*
Subjects with a disease-predisposing HLA genotype were invited to a
prospective follow-up for signs of f-cell autoimmunity and dys-
glycemia. At study visits, the participants were screened for signs of
humoral B-cell autoimmunity: during the early study, for islet cell anti-
bodies (ICA), and if ICA were detected, for biochemical autoantibodies
including insulin autoantibodies (IAA), antibodies against the 65 kD
isoform of GAD (GADA), and antibodies against the protein tyrosine
phosphatase-related IA-2 molecule (IA-2A), from all available samples,
including those obtained before seroconversion to ICA positivity.?> At
later stages of the study, all participating children were screened for
all four antibodies in samples collected during visits.!® Diabetes was
diagnosed according to WHO criteria. The study protocol was
approved by the local ethical committees and an informed consent
was obtained from the guardians of the study participants.

The current analysis consists of two parts: a pilot cohort with nine
case-control pairs and a confirmation cohort with 25 case-control
pairs (Table S1). In the pilot cohort, all case subjects were positive for
ICA and at least one biochemical autoantibody (IAA, GADA and/or |A-
2A) at the time of sample collection and had developed T1D during
later follow-up. The PBMC-samples were stored frozen after sample
collection. The first nine subjects for whom such a sample and a
healthy control, matched for age at sampling, gender, HLA-DR/DQ
genotype and length of freezing time, were available, were selected in
the cohort.

The confirmation cohort comprised 25 case-control pairs. The
case subjects tested positive for at least two of the autoantibodies
except for five cases having one biochemical autoantibody and ICA.
The controls were matched for age at sampling, gender, HLA-DR/DQ
genotype and date of sample collection. In the confirmation cohort,
fresh samples were used for cell separation and criteria meeting sub-
jects and controls were selected among children taking part in regular

follow-up visits.
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2.2 | Autoantibody analysis and HLA genotyping

The analysis of the major HLA-DR-DQ haplotypes conferring T1D risk
was performed using sequence-specific oligonucleotide probes as
described earlier.’” The protocol for determining ICA, IAA, GADA and

IA-2A in the DIPP study has been described previously.**8

2.3 | PBMCisolation and sample handling

PBMCs were collected from lithium heparin blood using Ficoll-Pagque Plus
density gradient centrifugation and resuspended in RPMI 1640 medium. In
the pilot cohort, the cells were stored frozen at —150°C (cryopreserved in
10% DMSO) until analysis. Before RNA isolation, the cells were thawed
and lysed in Buffer RLT Plus (Qiagen, Hilden, Germany).

24 | PBMC fractionation

Samples from the confirmation cohort were fractionated and lysed
fresh and immediately after PBMC isolation fractionated into mono-
cytes and the remaining PBMC fraction with EasySep Human CD14
positive selection kit Il (STEMCELL Technologies, Vancouver, BC,
Canada) according to the manufacturer's instructions. The purity of the
monocyte and remaining lymphocyte fractions was confirmed by flow
cytometry (Table S2). Both cell fractions and unfractionated PBMC
were immunostained with anti-CD3 PE (SK7, BD Biosciences, San Jose,
CA, USA) and anti-CD19 APC (SJ25C1, BD Biosciences) for 30 min at
+4°C. The PBMC and remaining fraction were furthermore stained
with anti-CD14 FITC (M5E2, BD Biosciences) for 30 min at +4°C to
assess the initial and remaining amounts of monocytes in the sample.
After immunostaining the cells were washed twice with phosphate
buffered saline (PBS) for 5 min at 2500 rpm with Sorvall MC 12 V
(Thermo Fischer Scientific, USA). The cells were fixed with 0.1% form-
aldehyde in PBS. The samples were analyzed using an Accuri Cé flow
cytometer (BD Biosciences). Fractionated cells were lysed in Buffer
RLT Plus (Qiagen) and stored at —80°C prior to RNA extraction.

2.5 | RNAisolation

RNA was extracted from the PBMCs using the RNeasy Plus Mini Kit
(Qiagen) in the pilot cohort and RNeasy Plus Micro Kit (Qiagen) in the con-
firmation cohort according to the manufacturer's instructions. RNA quality
and quantity in these cohorts were assessed using the Agilent RNA 6000
Nano Kit (Agilent, Santa Clara, CA, USA) and Agilent RNA 6000 Pico Kit
(Agilent), respectively, on a 2100 Bioanalyzer (Agilent). RNA integrity num-
ber (RIN) =8 was used as RNA-quality cut-off for inclusion.

2.6 | RNAlibrary preparation and sequencing

RNA libraries for the pilot cohort were made using a modified version
of the single-cell tagged reverse transcription (STRT) method,'?

described in detail in Reference 20 to prepare a 48-plex lllumina-
compatible sequencing library from 10 ng of each RNA sample.
Briefly, RNA samples were placed in a 48-well plate in which a univer-
sal primer, template-switching oligos, and a well-specific 6-bp barcode
sequence (for sample identification) were added to each well.?*?! The
synthesized cDNAs from the samples were then pooled into one
library and amplified by single-primer PCR with the universal primer
sequence. The library was sequenced on three lllumina HiSeq2000
(lllumina, San Diego, CA, USA) lanes, using the lllumina TruSeq v3
60-bp single-read protocol. Sequencing was performed at the Bioin-
formatics and Expression Analysis (BEA) core facility at Karolinska
Institutet (Huddinge, Sweden).

RNA libraries for the confirmation cohort were made using 20 ng
RNA as starting input and the libraries were sequenced on an lllumina
NextSeq 500, High Output (75 cycles). Sequencing was done at Bio-
medicum Functional Genomics Unit (FuGU), University of Helsinki,

Finland.

2.7 | Sequencing data analysis

For the pilot cohort, sequence data was converted to fastq files using
Casava 1.8.2 (lllumina), and processed using the STRTprep pipeline
available at https://github.com/shka/STRTprep (also described in Ref-
erence 20).

For the confirmation cohort sequence data was processed as
described previously.?? Briefly, raw base call (BCL) files were
demultiplexed and converted to FASTQ files using Picard tools
(v2.10.10; http://broadinstitute.github.io/picard/), and aligned to the
human reference genome hgl9, human ribosomal DNA unit
(GenBank: U13369), and ERCC spike-ins (SRM 2374) with the GEN-
CODE (v28) transcript annotation by HISAT2 (v2.1.0).2% The uniquely
mapped reads within the 5’-UTR or 500 bp upstream of the protein-
coding genes were counted using Subread featureCounts (v1.6.2).2%

After quality check, three controls and two cases were excluded
from the PBMC dataset, and one control and one case were excluded
from the lymphocyte dataset.

In all three datasets, differential expression analysis between the
controls and cases was performed using the R (v3.6.2) package
DESeq2 (v1.24.0),2° where gender was considered as a covariate.
Gene set enrichment analysis (GSEA) was performed using GSEA
(v4.0.3) using the GSEAPreranked tool,?® where genes were

preranked based on their p-values and fold changes.

3 | RESULTS
To characterize the profiles of RNA expression in immune cell subsets
in children with advanced autoimmunity and compare those to that of
matched controls, RNA sequencing was performed from the whole
PBMC compartment (pilot cohort) and later from monocytes and lym-
phocytes separately (confirmation cohort).

In the pilot cohort, case subjects with advanced p-cell autoimmu-
nity that developed into T1D during later follow-up were compared
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to matched control subjects. No significant differences in gene
expression between the two groups were observed (data not shown).
However, in a subsequent gene set enrichment analysis (GSEA),
implemented on RNA sequencing data pre-ranked based on fold
changes and significance of differential expression, differences linked
to virus immunity were detected (Table 1). The upregulated genes
included gene sets corresponding to the terms “defence response to
virus” (FDR <0.001, ranking 2), “response to virus” (FDR <0.001, rank-
ing 3) and “response to type | interferon” (FDR = 0.002, ranking 12;
Table S3).

A confirmation cohort, comparing case subjects with advanced
B-cell autoimmunity and matched control subjects, was then analyzed
to further investigate these findings. In this cohort, fresh PBMC sam-
ples were separated into monocyte and lymphocyte compartments to
study the role of monocytes in viral and type | interferon responses
observed in the pilot. Both fractions were analyzed separately.

As in the pilot cohort transcription profiles, there were no signifi-
cantly differentially expressed genes when comparing cases and con-
trols (data not shown). However, as in the pilot cohort, the GSEA
analysis suggested differences in virus-associated immune activation
between case and control subjects in the monocyte compartment
(Table 1). The GSEA confirmed the terms “defence response to virus”
(FDR = 0.02, ranking 2), “response to virus” (FDR = 0.04, ranking 3)
and “response to type | interferon” (FDR = 0.02, ranking 1) among
upregulated genes (Table S3). In contrast, enrichment of these gene
sets between cases and controls could not be observed in the lympho-

cyte compartment in the GSEA analysis.

4 | DISCUSSION

Various immune cell populations are implicated to play a role in the
B-cell destruction leading to T1D. However, factors affecting altered
immune activation are not fully described. Understanding the differ-
ences in the distinct immune cell compartment function might provide
essential information about the pathogenesis of T1D. Here we explored
transcriptional profiles in PBMC of children with advanced p-cell auto-
immunity and compared them with those of autoantibody negative chil-
dren matched for sex, age and HLA. The study was conducted in two
parts, first a pilot cohort performed with frozen PBMC and second, a
confirmation cohort with fresh PBMC that were fractionated into
monocytes and remaining lymphocytes. While statistically significant
gene expression differences could not be observed, three gene sets

»

associated with the terms “defence response to virus,” “response to
virus” and “response to type | interferon” were consistently upregulated
in PBMCs and further in monocytes of case subjects.

Viral infections have long been linked with T1D pathogenesis.?”
Especially enteroviral infections have been found to associate with
increased risk for disease onset?®2? and this has also been seen in the
DIPP cohort.2° Many strains are known to be able to cause chronic
systematic infections as well as infect the pancreas.?” According to
the current understanding, these conditions may drive strong inflam-

matory responses and autoimmunity. In our present study, the

observed upregulation of genes essential in response to virus infec-
tions was detected in PBMCs but in the further analysis the finding
was restricted to peripheral blood monocytes. Innate immunity is clas-
sically responsible for the acute response to viral threats, but the com-
bination of a lack of detectable response from lymphocytes and our
specific set of three significant GSEA terms also suggested that the
monocytes themselves could be infected with a virus. Coxsackie virus
B4, which belongs to the group of enteroviruses, has been shown to
infect monocytes and monocyte-derived macrophages,®**2 with the
potential to establish a persistent infection.>®> Monocyte derived mac-
rophages also produce a strong cytokine response, including IL-6 and
TNFa, to Coxsackie virus B4.3' Another study by Alidjinou et al
reported that enteroviral RNA could be detected in monocytes of
some T1D patients, although viral loads in many cases seemed low
and difficult to detect with RT-PCR.3* Furthermore, the presence of
enteroviral RNA coincided with the presence of IFNa mRNA in most
subjects. It is therefore possible that some of the cases in our study
may have an ongoing enteroviral infection, reflected both by the
upregulation of virus response genes and type | interferon response
genes.

Innate immune function accompanied by a type | interferon sig-
nature, that is, detectable transiently starting shortly before sero-
conversion, has been reported in longitudinal studies investigating
T1D pathogenesis. Kallionpaa et al detected this signature in whole
blood transcriptomics of autoantibody positive DIPP children,
starting before seroconversion and persisting until diagnosis of clini-
cal disease.®® Enterovirus-associated transcriptomic profiles were
also observed in a subset of these children.3® Similar findings to
Kallionpaa et al were evident in the Environmental Determinants of
Diabetes in the Young study (TEDDY) among the children whose
first islet autoantibody was against insulin.3” Interestingly, the asso-
ciation of Coxsackie B1 enterovirus infections and islet autoimmu-
nity was found specifically in children with insulin autoantibodies as
the first sign of autoimmunity in the DIPP study.>® Enterovirus-
associated transcriptomic profiles were observed in a subset of
these children. Ferreira et al reported a transient type | interferon
signature in genetically predisposed children before the autoanti-
bodies were developed, but not in children with existing disease.>?
Our observation, that a gene set corresponding to the term
“response to type | interferon” is upregulated in peripheral blood
immune cells, and particularly in monocytes, is in line with these
previous observations.

Several studies have explored peripheral blood transcriptomic sig-
natures in the context of T1D from various angles. Stechova et al
compared the transcriptional profiles of pediatric T1D patients, their
clinically healthy first-degree relatives and healthy, unrelated controls
and found that the most significant difference was between first-
degree relatives and unrelated controls.*® Accordingly, Elo et al did
not observe differences in gene expression profiles of children posi-
tive for p-cell autoantibodies and children who had progressed to
T1D.** Similarly, in a study investigating monocytes of twins discor-
dant for T1D, healthy twin pairs and healthy singleton controls, Beyan
et al saw that most of the abnormally expressed genes observed in
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T1D twins were also abnormal in their non-diabetic twins.* It would
therefore seem like gene expression differences already exist in
genetically predisposed but healthy individuals. Additionally, many
previous findings of differential gene expression in PBMCs in the con-
text of T1D have been made with T1D patients**=*> or a combination
of presymptomatic cases and those diagnosed with the disease*®*¢
compared to healthy controls. Observations concerning peripheral
blood monocytes have similarly been made predominantly in patients
with existing T1D%121347 and could be attributed to the metabolic
crisis and ongoing stress triggered by disease onset, as the loss of glu-
cose tolerance appears only shortly before it.*® As a consequence, it is
possible that the changes our cases have, especially in monocytes, are
difficult to distinguish due to some of the strengths of this study:
close genetic matching of cases and controls and using samples pre-
dating the metabolic state caused by T1D itself. Therefore, the con-
trols in our study may also have changes in their PBMCs because of
the genetic T1D-risk they carry and immunological changes in the
early phase of disease progression are likely to be relatively minute
compared to those during disease onset.

Limitations of this study include the use of peripheral blood cells,
limiting statistical power and in parts of the study, heterogenous
populations. Additionally, there is a lack of a control group without
HLA-conferred genetic risk to T1D. It is likely that all these factors
contribute to the lack of statistically significant gene expression differ-
ences in this study. This could be addressed in future studies by more
detailed cell fractionation and possible additional controls. A time
series could help to pinpoint the timing of monocyte activation
in T1D.

5 | CONCLUSION

Transcriptional profiles of children with advanced B-cell autoimmunity
and those of their autoantibody negative controls matched for age,
sex and genetic T1D-risk did not differ significantly in monocytes or
monocyte-depleted PBMCs. However, gene sets essential in
responses to virus were consistently upregulated in PBMCs and spe-
cifically in monocytes of subjects with advanced B-cell autoimmunity.
This result supports earlier findings implicating the role of viral infec-

tions in T1D pathogenesis and the emergence of p-cell autoimmunity.
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