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Abstract

Objective: The pathogenesis of type 1 diabetes (T1D) is associated with genetic pre-

disposition and immunological changes during presymptomatic disease. Differences

in immune cell subset numbers and phenotypes between T1D patients and healthy

controls have been described; however, the role and function of these changes in the

pathogenesis is still unclear. Here we aimed to analyze the transcriptomic landscapes

of peripheral blood mononuclear cells (PBMCs) during presymptomatic disease.

Methods: Transcriptomic differences in PBMCs were compared between cases posi-

tive for islet autoantibodies and autoantibody negative controls (9 case–control pairs)

and further in monocytes and lymphocytes separately in autoantibody positive sub-

jects and control subjects (25 case–control pairs).

Results: No significant differential expression was found in either data set. However,

when gene set enrichment analysis was performed, the gene sets “defence response

to virus” (FDR <0.001, ranking 2), “response to virus” (FDR <0.001, ranking 3) and

“response to type I interferon” (FDR = 0.002, ranking 12) were enriched in the

upregulated genes among PBMCs in cases. Upon further analysis, this was also seen
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in monocytes in cases (FDR = 0.01, ranking 2; FDR = 0.04, ranking 3 and

FDR = 0.02, ranking 1, respectively) but not in lymphocytes.

Conclusion: Gene set enrichment analysis of children with T1D-associated autoim-

munity revealed changes in pathways relevant for virus infection in PBMCs, particu-

larly in monocytes. Virus infections have been repeatedly implicated in the

pathogenesis of T1D. These results support the viral hypothesis by suggesting altered

immune activation of viral immune pathways in monocytes during diabetes.

K E YWORD S

monocytes, type 1 diabetes, viral response, β-cell autoimmunity

1 | INTRODUCTION

In type 1 diabetes (T1D), functional pancreatic β-cells are lost due to

an autoimmune reaction. The destruction of β-cells seems to happen

in a T cell-mediated manner after self-antigen presentation, but sev-

eral immune cell populations within both the adaptive and innate

compartments are thought to take part in the process.1

Activated cytotoxic CD8+ T cells and macrophages are the major

contributors in active insulitis,2 in which they infiltrate the pancreatic

islets of Langerhans. While β -cell specific CD8+ cells are found at

similar frequencies in the peripheral circulation of healthy donors and

patients with T1D, they display markers of antigen-driven expansion

in patients with newly diagnosed T1D.3 Additionally, the cytotoxic

reactivity against islet autoantigens from human samples has been

demonstrated.4 Specific subsets of CD4+ T helper cells have long

been known to contribute to the differentiation of B cells into

antibody-secreting plasma cells. Since the most prominent genetic risk

for T1D is mediated by the HLA locus,1 encoding for the class II MHC

molecules, and as CD4+ T helper cells are also found in insulitis,2

CD4+ cells are an attractive candidate for facilitating the emergence

of humoral immunity in T1D. A potential model for follicular and

peripheral CD4+ T helper cell involvement was recently suggested.5

In addition, CD4+ T helper cells have been shown to play a critical role

in autoreactive CD8+ T cell maintenance.6

B cell derived plasma cells produce β-cell specific autoantibodies

which to date are the most important biomarkers of islet autoimmu-

nity before clinical diagnosis of diabetes.7,8 Monocytes are precursors

to both macrophages and myeloid dendritic cells and have a role in

antigen trafficking and presentation.9 Their subpopulation compart-

ment sizes have been observed to be altered in T1D patients10–12 and

the cytokine milieu of monocyte populations has been reported to

favor more proinflammatory phenotypes.13

Despite these discoveries, the exact mechanism underlying T1D

development remains largely unknown and heterogeneity in disease

pathogenesis is strongly suspected. In this study, to infer biological

events during T1D development, we set out to analyze transcriptional

differences in peripheral blood mononuclear cells (PBMCs) among sub-

jects with HLA-conferred risk for childhood T1D and signs of advanced

β-cell autoimmunity and autoantibody negative control subjects.

2 | MATERIALS AND METHODS

2.1 | Study subjects

The study subjects were participants in the Finnish Type 1 Diabetes

Prediction and Prevention (DIPP) study and carried HLA class II geno-

types associated with an increased risk for the development of T1D.14

Subjects with a disease-predisposing HLA genotype were invited to a

prospective follow-up for signs of β-cell autoimmunity and dys-

glycemia. At study visits, the participants were screened for signs of

humoral β-cell autoimmunity: during the early study, for islet cell anti-

bodies (ICA), and if ICA were detected, for biochemical autoantibodies

including insulin autoantibodies (IAA), antibodies against the 65 kD

isoform of GAD (GADA), and antibodies against the protein tyrosine

phosphatase-related IA-2 molecule (IA-2A), from all available samples,

including those obtained before seroconversion to ICA positivity.15 At

later stages of the study, all participating children were screened for

all four antibodies in samples collected during visits.16 Diabetes was

diagnosed according to WHO criteria. The study protocol was

approved by the local ethical committees and an informed consent

was obtained from the guardians of the study participants.

The current analysis consists of two parts: a pilot cohort with nine

case–control pairs and a confirmation cohort with 25 case–control

pairs (Table S1). In the pilot cohort, all case subjects were positive for

ICA and at least one biochemical autoantibody (IAA, GADA and/or IA-

2A) at the time of sample collection and had developed T1D during

later follow-up. The PBMC-samples were stored frozen after sample

collection. The first nine subjects for whom such a sample and a

healthy control, matched for age at sampling, gender, HLA-DR/DQ

genotype and length of freezing time, were available, were selected in

the cohort.

The confirmation cohort comprised 25 case–control pairs. The

case subjects tested positive for at least two of the autoantibodies

except for five cases having one biochemical autoantibody and ICA.

The controls were matched for age at sampling, gender, HLA-DR/DQ

genotype and date of sample collection. In the confirmation cohort,

fresh samples were used for cell separation and criteria meeting sub-

jects and controls were selected among children taking part in regular

follow-up visits.
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2.2 | Autoantibody analysis and HLA genotyping

The analysis of the major HLA-DR-DQ haplotypes conferring T1D risk

was performed using sequence-specific oligonucleotide probes as

described earlier.17 The protocol for determining ICA, IAA, GADA and

IA-2A in the DIPP study has been described previously.14,18

2.3 | PBMC isolation and sample handling

PBMCs were collected from lithium heparin blood using Ficoll-Paque Plus

density gradient centrifugation and resuspended in RPMI 1640 medium. In

the pilot cohort, the cells were stored frozen at �150�C (cryopreserved in

10% DMSO) until analysis. Before RNA isolation, the cells were thawed

and lysed in Buffer RLT Plus (Qiagen, Hilden, Germany).

2.4 | PBMC fractionation

Samples from the confirmation cohort were fractionated and lysed

fresh and immediately after PBMC isolation fractionated into mono-

cytes and the remaining PBMC fraction with EasySep Human CD14

positive selection kit II (STEMCELL Technologies, Vancouver, BC,

Canada) according to the manufacturer's instructions. The purity of the

monocyte and remaining lymphocyte fractions was confirmed by flow

cytometry (Table S2). Both cell fractions and unfractionated PBMC

were immunostained with anti-CD3 PE (SK7, BD Biosciences, San Jose,

CA, USA) and anti-CD19 APC (SJ25C1, BD Biosciences) for 30 min at

+4�C. The PBMC and remaining fraction were furthermore stained

with anti-CD14 FITC (M5E2, BD Biosciences) for 30 min at +4�C to

assess the initial and remaining amounts of monocytes in the sample.

After immunostaining the cells were washed twice with phosphate

buffered saline (PBS) for 5 min at 2500 rpm with Sorvall MC 12 V

(Thermo Fischer Scientific, USA). The cells were fixed with 0.1% form-

aldehyde in PBS. The samples were analyzed using an Accuri C6 flow

cytometer (BD Biosciences). Fractionated cells were lysed in Buffer

RLT Plus (Qiagen) and stored at �80�C prior to RNA extraction.

2.5 | RNA isolation

RNA was extracted from the PBMCs using the RNeasy Plus Mini Kit

(Qiagen) in the pilot cohort and RNeasy Plus Micro Kit (Qiagen) in the con-

firmation cohort according to the manufacturer's instructions. RNA quality

and quantity in these cohorts were assessed using the Agilent RNA 6000

Nano Kit (Agilent, Santa Clara, CA, USA) and Agilent RNA 6000 Pico Kit

(Agilent), respectively, on a 2100 Bioanalyzer (Agilent). RNA integrity num-

ber (RIN) ≥8 was used as RNA-quality cut-off for inclusion.

2.6 | RNA library preparation and sequencing

RNA libraries for the pilot cohort were made using a modified version

of the single-cell tagged reverse transcription (STRT) method,19

described in detail in Reference 20 to prepare a 48-plex Illumina-

compatible sequencing library from 10 ng of each RNA sample.

Briefly, RNA samples were placed in a 48-well plate in which a univer-

sal primer, template-switching oligos, and a well-specific 6-bp barcode

sequence (for sample identification) were added to each well.20,21 The

synthesized cDNAs from the samples were then pooled into one

library and amplified by single-primer PCR with the universal primer

sequence. The library was sequenced on three Illumina HiSeq2000

(Illumina, San Diego, CA, USA) lanes, using the Illumina TruSeq v3

60-bp single-read protocol. Sequencing was performed at the Bioin-

formatics and Expression Analysis (BEA) core facility at Karolinska

Institutet (Huddinge, Sweden).

RNA libraries for the confirmation cohort were made using 20 ng

RNA as starting input and the libraries were sequenced on an Illumina

NextSeq 500, High Output (75 cycles). Sequencing was done at Bio-

medicum Functional Genomics Unit (FuGU), University of Helsinki,

Finland.

2.7 | Sequencing data analysis

For the pilot cohort, sequence data was converted to fastq files using

Casava 1.8.2 (Illumina), and processed using the STRTprep pipeline

available at https://github.com/shka/STRTprep (also described in Ref-

erence 20).

For the confirmation cohort sequence data was processed as

described previously.22 Briefly, raw base call (BCL) files were

demultiplexed and converted to FASTQ files using Picard tools

(v2.10.10; http://broadinstitute.github.io/picard/), and aligned to the

human reference genome hg19, human ribosomal DNA unit

(GenBank: U13369), and ERCC spike-ins (SRM 2374) with the GEN-

CODE (v28) transcript annotation by HISAT2 (v2.1.0).23 The uniquely

mapped reads within the 50-UTR or 500 bp upstream of the protein-

coding genes were counted using Subread featureCounts (v1.6.2).24

After quality check, three controls and two cases were excluded

from the PBMC dataset, and one control and one case were excluded

from the lymphocyte dataset.

In all three datasets, differential expression analysis between the

controls and cases was performed using the R (v3.6.2) package

DESeq2 (v1.24.0),25 where gender was considered as a covariate.

Gene set enrichment analysis (GSEA) was performed using GSEA

(v4.0.3) using the GSEAPreranked tool,26 where genes were

preranked based on their p-values and fold changes.

3 | RESULTS

To characterize the profiles of RNA expression in immune cell subsets

in children with advanced autoimmunity and compare those to that of

matched controls, RNA sequencing was performed from the whole

PBMC compartment (pilot cohort) and later from monocytes and lym-

phocytes separately (confirmation cohort).

In the pilot cohort, case subjects with advanced β-cell autoimmu-

nity that developed into T1D during later follow-up were compared
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to matched control subjects. No significant differences in gene

expression between the two groups were observed (data not shown).

However, in a subsequent gene set enrichment analysis (GSEA),

implemented on RNA sequencing data pre-ranked based on fold

changes and significance of differential expression, differences linked

to virus immunity were detected (Table 1). The upregulated genes

included gene sets corresponding to the terms “defence response to

virus” (FDR <0.001, ranking 2), “response to virus” (FDR <0.001, rank-

ing 3) and “response to type I interferon” (FDR = 0.002, ranking 12;

Table S3).

A confirmation cohort, comparing case subjects with advanced

β-cell autoimmunity and matched control subjects, was then analyzed

to further investigate these findings. In this cohort, fresh PBMC sam-

ples were separated into monocyte and lymphocyte compartments to

study the role of monocytes in viral and type I interferon responses

observed in the pilot. Both fractions were analyzed separately.

As in the pilot cohort transcription profiles, there were no signifi-

cantly differentially expressed genes when comparing cases and con-

trols (data not shown). However, as in the pilot cohort, the GSEA

analysis suggested differences in virus-associated immune activation

between case and control subjects in the monocyte compartment

(Table 1). The GSEA confirmed the terms “defence response to virus”
(FDR = 0.02, ranking 2), “response to virus” (FDR = 0.04, ranking 3)

and “response to type I interferon” (FDR = 0.02, ranking 1) among

upregulated genes (Table S3). In contrast, enrichment of these gene

sets between cases and controls could not be observed in the lympho-

cyte compartment in the GSEA analysis.

4 | DISCUSSION

Various immune cell populations are implicated to play a role in the

β-cell destruction leading to T1D. However, factors affecting altered

immune activation are not fully described. Understanding the differ-

ences in the distinct immune cell compartment function might provide

essential information about the pathogenesis of T1D. Here we explored

transcriptional profiles in PBMC of children with advanced β-cell auto-

immunity and compared them with those of autoantibody negative chil-

dren matched for sex, age and HLA. The study was conducted in two

parts, first a pilot cohort performed with frozen PBMC and second, a

confirmation cohort with fresh PBMC that were fractionated into

monocytes and remaining lymphocytes. While statistically significant

gene expression differences could not be observed, three gene sets

associated with the terms “defence response to virus,” “response to

virus” and “response to type I interferon” were consistently upregulated

in PBMCs and further in monocytes of case subjects.

Viral infections have long been linked with T1D pathogenesis.27

Especially enteroviral infections have been found to associate with

increased risk for disease onset28,29 and this has also been seen in the

DIPP cohort.30 Many strains are known to be able to cause chronic

systematic infections as well as infect the pancreas.27 According to

the current understanding, these conditions may drive strong inflam-

matory responses and autoimmunity. In our present study, the

observed upregulation of genes essential in response to virus infec-

tions was detected in PBMCs but in the further analysis the finding

was restricted to peripheral blood monocytes. Innate immunity is clas-

sically responsible for the acute response to viral threats, but the com-

bination of a lack of detectable response from lymphocytes and our

specific set of three significant GSEA terms also suggested that the

monocytes themselves could be infected with a virus. Coxsackie virus

B4, which belongs to the group of enteroviruses, has been shown to

infect monocytes and monocyte-derived macrophages,31,32 with the

potential to establish a persistent infection.33 Monocyte derived mac-

rophages also produce a strong cytokine response, including IL-6 and

TNFα, to Coxsackie virus B4.31 Another study by Alidjinou et al

reported that enteroviral RNA could be detected in monocytes of

some T1D patients, although viral loads in many cases seemed low

and difficult to detect with RT-PCR.34 Furthermore, the presence of

enteroviral RNA coincided with the presence of IFNα mRNA in most

subjects. It is therefore possible that some of the cases in our study

may have an ongoing enteroviral infection, reflected both by the

upregulation of virus response genes and type I interferon response

genes.

Innate immune function accompanied by a type I interferon sig-

nature, that is, detectable transiently starting shortly before sero-

conversion, has been reported in longitudinal studies investigating

T1D pathogenesis. Kallionpää et al detected this signature in whole

blood transcriptomics of autoantibody positive DIPP children,

starting before seroconversion and persisting until diagnosis of clini-

cal disease.35 Enterovirus-associated transcriptomic profiles were

also observed in a subset of these children.36 Similar findings to

Kallionpää et al were evident in the Environmental Determinants of

Diabetes in the Young study (TEDDY) among the children whose

first islet autoantibody was against insulin.37 Interestingly, the asso-

ciation of Coxsackie B1 enterovirus infections and islet autoimmu-

nity was found specifically in children with insulin autoantibodies as

the first sign of autoimmunity in the DIPP study.38 Enterovirus-

associated transcriptomic profiles were observed in a subset of

these children. Ferreira et al reported a transient type I interferon

signature in genetically predisposed children before the autoanti-

bodies were developed, but not in children with existing disease.39

Our observation, that a gene set corresponding to the term

“response to type I interferon” is upregulated in peripheral blood

immune cells, and particularly in monocytes, is in line with these

previous observations.

Several studies have explored peripheral blood transcriptomic sig-

natures in the context of T1D from various angles. Stechova et al

compared the transcriptional profiles of pediatric T1D patients, their

clinically healthy first-degree relatives and healthy, unrelated controls

and found that the most significant difference was between first-

degree relatives and unrelated controls.40 Accordingly, Elo et al did

not observe differences in gene expression profiles of children posi-

tive for β-cell autoantibodies and children who had progressed to

T1D.41 Similarly, in a study investigating monocytes of twins discor-

dant for T1D, healthy twin pairs and healthy singleton controls, Beyan

et al saw that most of the abnormally expressed genes observed in
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T1D twins were also abnormal in their non-diabetic twins.42 It would

therefore seem like gene expression differences already exist in

genetically predisposed but healthy individuals. Additionally, many

previous findings of differential gene expression in PBMCs in the con-

text of T1D have been made with T1D patients43–45 or a combination

of presymptomatic cases and those diagnosed with the disease40,46

compared to healthy controls. Observations concerning peripheral

blood monocytes have similarly been made predominantly in patients

with existing T1D10,12,13,47 and could be attributed to the metabolic

crisis and ongoing stress triggered by disease onset, as the loss of glu-

cose tolerance appears only shortly before it.48 As a consequence, it is

possible that the changes our cases have, especially in monocytes, are

difficult to distinguish due to some of the strengths of this study:

close genetic matching of cases and controls and using samples pre-

dating the metabolic state caused by T1D itself. Therefore, the con-

trols in our study may also have changes in their PBMCs because of

the genetic T1D-risk they carry and immunological changes in the

early phase of disease progression are likely to be relatively minute

compared to those during disease onset.

Limitations of this study include the use of peripheral blood cells,

limiting statistical power and in parts of the study, heterogenous

populations. Additionally, there is a lack of a control group without

HLA-conferred genetic risk to T1D. It is likely that all these factors

contribute to the lack of statistically significant gene expression differ-

ences in this study. This could be addressed in future studies by more

detailed cell fractionation and possible additional controls. A time

series could help to pinpoint the timing of monocyte activation

in T1D.

5 | CONCLUSION

Transcriptional profiles of children with advanced β-cell autoimmunity

and those of their autoantibody negative controls matched for age,

sex and genetic T1D-risk did not differ significantly in monocytes or

monocyte-depleted PBMCs. However, gene sets essential in

responses to virus were consistently upregulated in PBMCs and spe-

cifically in monocytes of subjects with advanced β-cell autoimmunity.

This result supports earlier findings implicating the role of viral infec-

tions in T1D pathogenesis and the emergence of β-cell autoimmunity.
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