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Abstract
Understanding the spatial patterns of species distribution and predicting suitable habitats 
for threatened species are central themes in land use management and planning. In this 
study, we examined the geographic distribution of threatened mire plant species and iden-
tified their national hotspots, i.e. areas with high amounts of suitable habitats for threat-
ened mire plant species. We also determined the main environmental correlates related to 
the distribution patterns of these species. The specific aims were to: (1) identify the envi-
ronmental variables that control the distribution of threatened peatland species in a boreal 
aapa mire zone, Finland; and (2) to identify the richness patterns and hotspots of threat-
ened species. Our results showed that the combination of individual species models offers 
a useful tool for identifying landscape-scale richness patterns for threatened plant species. 
The modeling performance was high across the modelled species, and the richness patterns 
generated by single models coincide with the expected richness pattern based on expert 
knowledge. The method is therefore a powerful tool for basic biodiversity applications. In 
cases where reliable models for species occurrences and hotspots can be produced, these 
models can play a significant role in land-use planning and help managers to meet different 
conservation challenges.
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Introduction

Peatlands are core ecosystems of biological diversity and are known for their wide range 
of ecosystem services (Ramsar Convention Secretariat 2013). As highly productive eco-
systems, they are used increasingly to support economic development and human well-
being. Drainage and resource exploitation of wetlands are the main reasons why they 
are among the most threatened ecosystems in the world. For example the area covered 
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by peatlands (the most widespread wetland type) has reduced by 10–20% since 1800 
(Joosten and Clarke 2002). In Finland, over half of peatlands have been drained for for-
estry (Finnish Forest Research Institute 2014), which has caused habitat degradation 
and increased the number of threatened peatland species. At present, there are 223 red-
listed vascular plant and bryophyte species with peatlands as their primary habitats 
(4.5% of all red-listed species) and 420 red-listed species with peatlands as one of their 
habitats (Rassi et al. 2010). The ongoing bioeconomy development (Spatial Foresight, 
SWECO, ÖIR, t33, Nordregio, Berman Group, Infyde 2017) and high interest in Arctic 
countries for their mineral resources (Boyd et al. 2016) are increasing pressures on peat-
lands. These intense activities are expected to have strong, and mostly negative, impacts 
on peatland biodiversity.

Many of the most adverse effects resulting from peatland use can be avoided through 
careful planning. This requires an analysis of potential ecological values in an area before 
intensive and/or large-scale use is planned and carried out. Hotspots, or concentrations of 
threatened species, are important surrogates of biological diversity that have a significant 
role in conservation and management strategies (Gaston 1994). Although locations of hot-
spots should not be the guiding principles in land use planning, they can be used to avoid 
disturbing valuable sites with high numbers of rare species (Loiselle et al. 2003; Elith and 
Leathwick 2009). Predictive species-distribution modeling offers a cost-effective method 
of exploiting the limited empirical data for the evaluation of biodiversity. Statistics-based 
spatial models are valuable for generating biogeographical information that can be applied 
across a broad range of fields, including ecology, land use planning and climate change 
(e.g. Barbet-Massin et  al. 2012; Bolliger et  al. 2007; Thuiller et  al. 2008). Habitat suit-
ability models rely on the concept of niche conservatism (the tendency of species to retain 
ancestral ecological characteristics) and assume that environmental variables will play an 
important and consistent role in shaping species distributions (Wiens and Graham 2005). 
Predictive habitat suitability models of species’ geographical distributions and species 
richness are increasingly used as an alternative for incomplete or spatially biased survey 
data as a basis for conservation planning (Hirzel and Le Lay 2008; Elith and Leathwick 
2009; Freeman et al. 2013; Lemes and Loyola 2013).

A traditional way to develop spatial projections of species richness is to directly meas-
ure numbers of species from surveyed sites and to relate this information to environmental 
variables derived from GIS data. The analysis produces models that yield predictions of 
species richness for unsampled sites. In this study, species are first modelled individually, 
and species richness is estimated by stacking individual habitat suitability models (see also 
Algar et  al. 2009; Parviainen et  al. 2009; Mateo et  al. 2012, 2013). The top 5% of grid 
squares ranked by species richness can be classified as hotspots. Individual models are con-
structed by relating species occurrence data to environmental variables and projecting the 
modelled relationships onto geographical space (Elith et al. 2006). This method may pro-
vide some useful advantages, such as better control for poorly modelled species, and easier 
identification of the set of the most important explanatory variables and of the response 
shapes between species and their environment in certain subgroups of species.

The aim of this study was to provide a comprehensive picture of environmental pre-
requisites for a set of threatened peatland species, thereby helping to plan peatland use 
in a more ecologically sustainable way. The specific aims were: (1) to scrutinize how the 
occurrence of species is affected by different environmental correlates; and (2) to identify 
the richness patterns and hotspots of threatened species. The models were developed for 
the “aapa mire zone” in central and northern parts of Finland. It is worth noting that spe-
cies richness per se was the target of our study. Predictive modelling was focused on the 
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richness of species that characterize valuable environments that need specific attention in 
planning. The study thereby provides a new approach to focused biodiversity modeling.

Study area

The study was carried out in Finland, located between 63° and 68° latitudes in northern 
Europe (Fig. 1). Biogeographically the study area lies in the middle and northern boreal 
zones covering almost the entire aapa mire zone, where climate is more continental than 
in most other parts of northern Europe but with some humid, maritime effect (Ahti et al. 
1968). The annual mean temperature declines from south (+ 5 °C) to north (− 2 °C) and 
the mean annual precipitation sum varies between 450 and 750 mm (Pirinen and Ruuhela 
2012). Peatlands and pine and spruce-dominated forest are frequent, as well as numerous 
lakes and rivers characterizing the landscape of the study area. 

The peatland habitats of the studied plant species are of three types. Mesotrophic fens 
are mainly open peatlands with deep peat deposits. The field layer vegetation is character-
ized by sedges and herbaceous plants, and the ground layer consists of sphagnum mosses 
or other bryophytes. Rich fens are open or sparsely wooded peatlands with high species 
diversity of vascular plant and mosses. They are typically found in areas where the bedrock 
and soil are calcium-rich. Approximately half of Finland’s threatened peatland species are 
primarily associated with rich fens (Rassi et al. 2010). Spruce swamp forests are wooded 
minerotrophic peatlands where the dominant tree species is usually Norway spruce (Picea 
abies), though deciduous trees may also grow abundantly in Spruce forests that are richer 
in nutrients. The presence of living and dead trees of different sizes and ages is an impor-
tant structural feature for the species diversity of Spruce swamp forests. Finnish mires have 
been intensively drained in the last century, and more than half of the 10.0 million hectares 
of originally pristine mires have been drained to improve timber growth (Finnish Forest 
Research Institute 2014).

The study area was divided into grid cells of 25 ha (500 m × 500 m), and cells where 
peatlands covered less than 5% were excluded from the study. Thus, the study area consists 
of a total of 500,545 grid cells (125,136 km2).

Plant species data

We used the occurrence records of threatened mire plant species from the national database 
of red-listed species (Rassi et al. 2010) (Table 1). The field records produced by voluntary 
amateur and professional botanists are the most important data sources for this database, 
but information on species occurrences has also been gathered from the scientific literature 
and herbaria (Ryttäri et al. 2012; Rassi et al. 2010). Species data included detailed informa-
tion on the geographical location of the occurrences (coordinates in the uniform grid sys-
tem, Grid 27°E). In total, 48 species with ten or more records in the whole study area were 
used in the analyses (Fig. 1, Table 1). Only observations with accuracy better than 100 m 
and presence observations from 1990 or later, were selected for this study. As the databases 
of red-listed species do not include records for the absence of species, the assumption was 
made that the absence of a record from a sampled grid square corresponded to true absence 
of the species, because a quasi-exhaustive sampling could be assumed for most squares 
with presence records (Guisan and Zimmermann 2000).
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We modelled the habitat requirements for all species by using the same environmen-
tal predictors for each species. Based on their different associations with the various envi-
ronmental predictors, we grouped the species into five groups as follows: Mesotrophic fen 
species (n = 6), rich fen species (n = 10), calcareous species (n = 22), spruce swamp forest 
species (n = 3) and decaying wood species (n = 7). Rich fen species and calcareous species 

Fig. 1   The location of the study area in a boreal landscape in northern Finland, together with the distribu-
tion map with the observational points of the threatened plant species studied. Land cover classification is 
based on data about the drainage status of peatlands (SYKE)
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Table 1   Number of presence records in the study area, red list category of the species, main habitats of the 
species and group for the studied plant species

Species Number of records Red List 
category

Main habitat Group

Rich fen
 Carex heleonastes 779 VU Sl VA
 Dactylorhiza incarnata subsp. cruenta 252 VU Sl VA
 Dactylorhiza incarnata subsp. incarnata 1545 VU Sl VA
 Hamatocaulis vernicosus 2453 VU Sl BR
 Leiocolea bantriensis 23 NT Sl BR
 Lophozia grandiretis 34 EN Sl BR
 Meesia longiseta 96 EN Sl BR
 Moerckia hibernica 103 VU Sl BR
 Riccardia multifida 11 NT Vl BR
 Sphagnum contortum 62 NT Sl BR

Mesotrophic fen
 Carex laxa 123 NT Snr VA
 Epilobium laestadii 56 EN Sl VA
 Hamatocaulis lapponicus 70 EN Sl BR
 Hammarbya paludosa 239 NT Sn VA
 Lycopodiella inundata 30 NT Rjt VA
 Rhynchospora fusca 261 NT Sla VA

Calcareous
 Amblyodon dealbatus 33 VU Sl BR
 Botrychium virginianum 54 EN Mlt VA
 Bryum pseudotriquetrum var. neodamense 98 VU Sl BR
 Calypso bulbosa 1265 VU Mltv VA
 Campyliadelphus elodes 30 VU Kk BR
 Carex appropinquata 178 VU Sl VA
 Carex viridula var. bergrothii 126 VU Sl VA
 Cypripedium calceolus 1557 NT Mlt VA
 Dactylorhiza fuchsii 66 NT Sl VA
 Dactylorhiza lapponica 160 VU Sl VA
 Dactylorhiza traunsteineri 376 VU Sl VA
 Dicranum acutifolium 13 NT Kk BR
 Eriophorum brachyantherum 72 VU Slr VA
 Malaxis monophyllos 28 EN Sl VA
 Palustriella commutata 60 VU Vl BR
 Palustriella decipiens 496 NT Vl BR
 Palustriella falcata 549 NT Sl BR
 Philonotis calcarea 60 EN Vl BR
 Pseudocalliergon angustifolium 68 VU Sl BR
 Pseudocalliergon lycopodioides 28 VU Sl BR
 Saxifraga hirculus 1127 VU Sl VA
 Schoenus ferrugineus 35 EN Sl VA

Spruce swamp forest
 Carex atherodes 43 NT Skr VA
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are partially overlapping. The reason for separating these two species groups was that rich 
fen species can also be found outside the calcareous areas whereas calcareous species are 
restricted only to calcareous habitats.

Environmental correlates

We selected a set of quantitative correlates that would reflect the main biophysical gradi-
ents with a recognized, physiological influence on plants. In total, 17 environmental vari-
ables were calculated for all of the studied grid squares of 25 ha and were then used to 
explain plant species distribution. Two correlates/variables indicated climate, one topog-
raphy, one geology and 13 local habitat features (Table 2). Correlations among these vari-
ables were only moderate (Spearman correlation < 0.7) and thus, none of the variables was 
excluded a priori from the actual modelling.

Temperature and moisture requirements reflect the principal limitations on plant growth 
and survival (Skov and Svenning 2004). Thus, growing degree days (> 5 °C) (GDD) and 
water balance (mm) (WAB) were calculated for the years 1981–2010 from climate data 
with 1 km2 resolution (Finnish Meteorological Institute, Pirinen and Ruuhela 2012). Water 
balance was used because precipitation alone is not a good measure of the water available 
for plant growth. A simple water balance variable was calculated as the monthly difference 
between precipitation and potential evapotranspiration, as suggested by Skov and Svenning 
(2004). The potential evapotranspiration (PET) was calculated as:

where T above 0 °C is the annual mean of monthly mean temperatures with negative val-
ues adjusted to zero (Holdridge 1967; Lugo et al. 1999).

PET = 58.92 × T above 0 ◦C,

Table 1   (continued)

Species Number of records Red List 
category

Main habitat Group

 Epipogium aphyllum 111 VU Mkt VA
 Poa remota 21 NT Sk VA

Decaying wood
 Anastrophyllum hellerianum 225 NT Mktv BR
 Calypogeia suecica 17 VU Mktv BR
 Jungermannia leiantha 29 NT Mktv BR
 Lophozia ascendens 42 VU Mktv BR
 Lophozia ciliata 15 NT Mktv BR
 Lophozia longiflora 19 NT Mktv BR
 Riccardia palmata 51 NT Skv BR

Total 13,189

Red list category: EN endangered, VU vulnerable, NT near threatened. Main habitats of the species: Kk rock 
outcrops (incl. erratic boulders), Mlt dry and mesic herb-rich forests, Mltv dry and mesic herb-rich forests, 
old-growth forests, Rjt inland open alluvial shores, Sl rich fens, Sla open rich fens (incl. herb-rich sedge 
fens), Slr rich pine fens, Sn fens, Snr mesotrophic fens, Vl spring complexes. Group: VA vascular plant, BR 
bryophytes (Rassi et al. 2010)
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Moisture conditions in peatlands can be related to many ecological processes across 
landscapes, e.g. species composition and distribution, peatland productivity (Iverson et al. 
1997) and hydrology in terms of ombrotrophy and minerotrophy. Topographic wetness 
index (TWI) was used to describe local relative differences in moisture conditions (Gessler 
et al. 2000). High values represent lower catenary positions (wet) and small values upper 
catenary positions (dry). The moisture level of the study area was calculated by defining 
the wetness index (or compound topographic index) using the following formula (Bur-
rough and McDonnell 1998):

where ɑ is the upslope contributing area per width orthogonal to the flow direction, and 
tanβ is the local slope in radians.

Moreover, data about the drainage stage of peatlands with a resolution of 25 m × 25 m 
(Finnish Environmental Institute 2009) were used to calculate the proportion of undrained 
(UNDRAINED) and drained (DRAINED) peatland area as percentage cover for each grid 
square.

As many of the threatened plant species require calcareous substrate, the proportion of 
calcareous rock (CALC) as percentage extent for each grid square was calculated from dig-
ital maps of Quaternary deposit and pre-Quaternary rocks (Digital Base Map, NLS) using 
ArcGIS software (ESRI 1991). The presence of springs (SPRINGS) was used as many of 
the modelled species benefit from springs.

Information on the percentage cover of main peatland site types and site fertility in each 
25-hectare grid square was derived from the Multi-source National Forest Inventory (MS-
NFI) from 2011 (Natural Resources Institute Finland 2013) with a resolution of 20 m × 20 
m. Site fertility classes were selected to match the habitat requirements of the studied plant 
species as accurately as possible: eutrophic peatlands and corresponding drained peatlands 
(namely herb-rich types, KP1), mesotrophic mires and fens and corresponding drained 
peatland forests, (Oxalis-myrtillus type, KP2), meso-oligotrophic natural and drained peat-
lands (Vaccinium myrtillus type, KP3), and Sphagnum fuscum-dominated (ombrotrophic) 
natural and drained peatlands (Cladina type, KP6). The proportions of open peatlands 
(OPEN MIRE) and spruce swamp forests (SPRUCE SWAMP FOREST) in grid squares 
were used to reflect general habitat patterns of peatland properties in each grid squares. 
Moreover, mean volumes (m3/ha) of four tree species—pine (PINE) (Pinus sylvestris), 
spruce (SPRUCE), birch (BIRCH) (Betula pendula and B. pubescens) and other broad-
leaved trees (OTHER) were calculated from MS-NFI-data and employed in the modeling.

Habitat suitability modelling

The presence-only habitat suitability modelling method Maxent v3.3.3  k (Phillips et  al. 
2006) was used to predict species distributions across the aapa mire zone. The resulting 
habitat suitability model represents the relative probability of the species’ distribution over 
all grid squares in the defined geographic space, where a high probability value indicates 
that the location is predicted to have suitable environmental conditions for the species (Hir-
zel et al. 2002). Maxent has been utilized extensively to model species’ ranges using pres-
ence-only data, and it has been shown to perform well even with scarce and noisy presence 
data subsets collected by different researchers and methodologies (Elith et al. 2006; Frank-
lin 2010). Maxent has also performed well in modelling other ecosystem services, such as 
the distribution of GHG-balances (Parkkari et al. 2017).

TWI = ln(�∕tan�),



1181Biodiversity and Conservation (2019) 28:1173–1204	

1 3

To be able to compare and combine or stack models for multiple species, the same 
environmental predictors and Maxent parameters were used for all species. Model calcula-
tions were made using the Maxent logistic output, rather than raw or cumulative output, in 
order to facilitate comparisons between species (Merow et al. 2013). Maximum iterations 
were set at an average of 5000, based on model performance across all target species. The 
remaining settings were left at the default setting. Moreover, response curves were created 
to show how the predicted relative probability of occurrence depends on the value of each 
environmental variable.

Model evaluation

The models and model predictions were evaluated using the area under the curve (AUC) of 
a receiver operating characteristic (ROC) plot based on a four-fold cross-validation (Field-
ing and Bell 1997), routinely calculated for each run with Maxent. Cross-validation was 
performed with subsets of the entire dataset, where each subset contained an equal number 
of randomly selected data points. Each subset was then dropped from the model, the model 
was recalculated, and predictions were made for the omitted data points. A combination 
of the predictions from the different subsets was then plotted against the observed data 
(Lehmann et  al. 2002). Following Swets (1988), model accuracy was considered low if 
AUC was below 0.7, fair if it was between 0.7 and 0.8, good if between 0.8 and 0.9, and 
excellent if AUC was above 0.9.

To identify the relative importance of various environmental variables for species, 
we employed two outcomes of the Maxent model: percent contribution and permutation 
importance of each environmental variable. The percent contribution values are only heu-
ristically defined: they depend on the particular path that the Maxent code uses to arrive 
at the optimal solution, and a different algorithm could give rise to the same solution via 
a different path, resulting in different percent contribution values. If there are highly cor-
related environmental variables, the percent contributions should be interpreted with cau-
tion. The permutation importance measure depends only on the final Maxent model, not 
the path used to obtain it. The contribution for each variable is determined by randomly 
permuting the values of that variable among the training points (both presence and back-
ground) and measuring the resulting decrease in training AUC. A large decrease indicates 
that the model depends heavily on that variable. Hence, permutation importance appears to 
be a better measure of a variable’s explanatory power—since it is path—(algorithm-) inde-
pendent. Modelling performance was evaluated using the regularized training gain, which 
describes how much better the Maxent distribution fits the presence data compared to a 
uniform distribution (Phillips and Dudic 2008).

A jackknife test was also run to obtain alternate estimates of variable importance. Each 
variable was excluded in turn, and a model was created with the remaining variables. 
The model was then created using each environmental variable in isolation. In addition, 
a model was created using all variables. For the variables with the highest predictive val-
ues, response curves show how each of these environmental variables affects the Maxent 
predictions (Phillips and Dudík 2008). The curves illustrate how the logistic prediction 
changes as each environmental variable is varied, while keeping all other environmental 
variables at their average sample value. The curves thus represent the marginal effect of 
changing any single variable alone.
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Hotspot maps

First, we produced projected distribution maps for individual species at a spatial resolu-
tion of 25 ha. The continuous Maxent output maps were reclassified into binary maps 
of suitable (1) and unsuitable (0), using the averaged species-specific logistic thresh-
old value that “maximises training sensitivity plus specificity” (Liu et  al. 2013). This 
threshold selection method has been shown to perform rather well with presence-only 
data (Liu et  al. 2005, 2013), and is suitable for this study considering the goal is to 
predict where current suitable habitats are located. Choosing a relatively high threshold 
reduces the risk of choosing unsuitable sites by identifying only those areas with the 
highest suitability (Pearce and Ferrier 2000).

Next, to create richness maps, we combined the binary maps representing suitable 
habitats for individual species and used a simple summation of the predicted suitabili-
ties using the Raster Calculator feature in ArcGIS v10.2 for each species group sepa-
rately, and also for all 48 species. The reason for doing so was that this allowed us to 
investigate whether certain species groups are more intimately related to certain envi-
ronmental predictors than other groups. Spruce swamp forest species were excluded 
from the species group analysis, as species richness and hotspot based on only three 
species is not particularly informative. However, they were included in the analyses of 
total species richness and summary hotspot based on individual species.

We then identified richness hotspots as the top 5% of grid squares ranked by spe-
cies richness in each species groups (see Prendergast et al. 1993; Williams et al. 1996). 
Finally, summary hotspot map was produced by stacking the hotspot maps from all indi-
vidual species.

Results

For all models, the AUC was excellent for the training data (mean AUC 0.924, ranging 
from 0.841 to 0.989) and good for the evaluation data (mean AUC 0.855, ranging from 
0.607 to 0.959) (Table 3). The highest test AUC values were obtained with calcareous 
species (mean 0.88) and the lowest with decaying wood species (mean 0.80), perhaps 
because decaying wood environments exist extensively outside peatland habitats.

On average, the proportions of drained peatland area, open peatland and undrained 
peatland area had the highest permutation importance (15.2, 14.7, and 10.2%, respec-
tively) across the modelled species groups (Table  4). When considering importance 
between species groups, proportions of undrained (mainly positive responses) and 
drained peatland area (negative responses) showed the greatest impact (18.0% and 
18.3%) followed by the proportion of open peatland with positive association (8.8%) in 
rich fen species models (Tables 4, 5).

In calcareous species models, the proportion of drained peatland area was the most 
influential variable with positive response (13.6%), followed by proportion of calcare-
ous rock (8.9%, mainly positive responses), and volume of pine (8.9%, mainly negative 
responses). Increasing proportions of undrained peatland (13.5%), growing degree days 
(13.5%), and proportion of open peatlands (12.8%) contributed most and positively to 
mesotrophic fen species models.
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Table 3   Performance of the models applied to individual threatened plant species distribution, as assessed 
by the AUC values from the training (Training AUC) and evaluation data (Test AUC) and the stability of 
the models (Standard Deviation)

Species Training AUC​ Test AUC​ AUC 
standard 
deviation

Rich fen
 Carex heleonastes 0.92 0.90 0.02
 Dactylorhiza incarnata subsp. cruenta 0.93 0.89 0.02
 Dactylorhiza incarnata subsp. incarnata 0.84 0.84 0.01
 Hamatocaulis vernicosus 0.92 0.91 0.01
 Leiocolea bantriensis 0.94 0.82 0.09
 Lophozia grandiretis 0.85 0.69 0.14
 Meesia longiseta 0.97 0.94 0.03
 Moerckia hibernica 0.94 0.87 0.04
 Riccardia multifida 0.97 0.96 0.02
 Sphagnum contortum 0.90 0.77 0.08

0.92 0.86 0.05
Mesotrophic fen
 Carex laxa 0.88 0.81 0.04
 Epilobium laestadii 0.94 0.88 0.05
 Hamatocaulis lapponicus 0.98 0.89 0.08
 Hammarbya paludosa 0.92 0.89 0.02
 Lycopodiella inundata 0.86 0.69 0.12
 Rhynchospora fusca 0.95 0.94 0.01

0.92 0.85 0.05
Calcareous
 Amblyodon dealbatus 0.97 0.96 0.03
 Botrychium virginianum 0.95 0.88 0.07
 Bryum pseudotriquetrum var. neodamense 0.94 0.91 0.03
 Calypso bulbosa 0.94 0.93 0.01
 Campyliadelphus elodes 0.95 0.86 0.05
 Carex appropinquata 0.92 0.87 0.03
 Carex viridula var. bergrothii 0.93 0.88 0.04
 Cypripedium calceolus 0.90 0.89 0.01
 Dactylorhiza fuchsii 0.91 0.80 0.05
 Dactylorhiza lapponica 0.97 0.95 0.02
 Dactylorhiza traunsteineri 0.85 0.81 0.02
 Dicranum acutifolium 0.95 0.91 0.02
 Eriophorum brachyantherum 0.91 0.87 0.04
 Malaxis monophyllos 0.99 0.88 0.08
 Palustriella commutata 0.95 0.91 0.03
 Palustriella decipiens 0.91 0.87 0.03
 Palustriella falcata 0.92 0.89 0.02
 Philonotis calcarea 0.95 0.90 0.06
 Pseudocalliergon angustifolium 0.95 0.87 0.10
 Pseudocalliergon lycopodioides 0.96 0.84 0.11
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Spruce swamp forest species were mainly negatively associated with proportion of 
open peatlands (36.4%), drained peatland area (13.0%), and volume of spruce (6.7%). In 
decaying wood species, the proportion of drained peatland area (19.0%, mainly negative 
associations), water balance (12.5%), and topographical wetness index (11.5%) showed 
the greatest impact.

Looking to the jackknife evaluations across all modelled species, we found that the 
proportion of undrained peatland, topographical wetness index, and volume of spruce 
were the three most effective predictors when used individually (Table 6). In addition, 
proportions of calcareous rock, open peatlands, and drained peatland area decreased 
the gain most when they were omitted, and therefore contained information that was 
not present in any other variable (Table 7). However, species groups differed from each 
other according to their habitat preferences. In mesotrophic fen species models, the pro-
portion of undrained peatland area had the highest gain when used in isolation (Table 6) 
and the largest decrease in gain when omitted (Table 7). These environmental variables 
contain information that is useful on its own and not present in other variables. Like-
wise, the proportion of calcareous rock provided the most useful and unique information 
on the distribution of calcareous species. In spruce swamp forest species models, the 
greatest change occurred when volume of spruce was used in isolation.

Predictions of threatened plant species richness, based on the summation of sin-
gle-species predictions, and hotpots, are shown in Figs.  2 and 3. Suitable habitats for 
mesotrophic fen and rich fen species were predicted in the western part of the study 
area, whereas rich fen species had high suitabilities also in northern parts. Eastern and 
southeastern parts of the study area had high suitability for presence of decaying wood 

Table 3   (continued)

Species Training AUC​ Test AUC​ AUC 
standard 
deviation

 Saxifraga hirculus 0.90 0.89 0.01
 Schoenus ferrugineus 0.94 0.86 0.07

0.93 0.88 0.04
Spruce swamp forest
 Carex atherodes 0.93 0.84 0.06
 Epipogium aphyllum 0.86 0.77 0.05
 Poa remota 0.95 0.81 0.08

0.92 0.81 0.06
Decaying wood
 Anastrophyllum hellerianum 0.89 0.83 0.03
 Calypogeia suecica 0.96 0.81 0.08
 Jungermannia leiantha 0.87 0.73 0.10
 Lophozia ascendens 0.94 0.88 0.04
 Lophozia ciliata 0.92 0.82 0.11
 Lophozia longiflora 0.87 0.66 0.10
 Riccardia palmata 0.90 0.85 0.06

0.91 0.80 0.07
All species on average 0.924 0.855 0.050
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species. Suitable habitats for calcareous species were, not surprisingly, mainly concen-
trated in the areas with much calcareous rock.

Discussion

Regional-scale biodiversity patterns, i.e. spatial resolutions ranging from 0.5 to 2 km, are 
an important component of the diversity that occurs in a landscape or region, and also 
represent the scale at which land use decisions are often made. Sustainable planning of 
peatland use requires an analysis of potential ecological resources and the effects of their 
utilization on an area. Without knowledge of the biodiversity values of peatlands, their 
unsustainable utilization continues to degrade their biodiversity and threaten the remain-
ing valuable habitats and species. Predictive habitat suitability modelling may consider-
ably increase the efficiency of biodiversity mapping schemes and incorporate un-surveyed 
regions into decision-making. Using models to predict potential species distributions is 
also likely to become increasingly important as environmental change and other dynamic 
processes are incorporated into land use planning efforts (Rondinini et  al. 2006; Under-
wood et al. 2010). The aim of this study was not to reflect the full reality, but to construct 
and evaluate simple and ecologically significant habitat suitability models that approximate 

Table 4   Relative importance (%) of single environmental variables for predicting the habitat suitability of 
five species groups based on permutation importance (in Maxent)

Three most important variables for each species group and on average are in bold. Abbreviations are 
explained in Table 2

 Environmental variable Rich fen Mesotrophic fen Calcareous Spruce 
swamp 
forest

Decaying wood Mean

CAL 3.17 0.38 8.87 2.15 0.52 3.02
GDD 7.38 13.51 8.36 2.42 2.40 6.81
KP1 3.29 4.98 7.26 4.27 7.03 5.37
KP2 0.77 3.56 2.76 1.64 5.74 2.89
KP3 2.93 4.74 1.83 4.79 2.10 3.28
KP6 3.88 2.93 2.67 3.50 5.65 3.73
BIRCH 4.81 5.32 4.76 3.34 3.91 4.42
SPRUCE 3.28 9.71 4.84 6.69 7.03 6.31
SPRINGS 2.70 1.17 1.86 2.15 1.08 1.79
PINE 5.59 3.85 8.89 5.76 4.82 5.78
OTHER 5.09 0.94 3.74 2.18 2.01 2.79
SPRUCE SWAMP FOR-

EST
1.75 4.28 4.81 1.29 0.60 2.55

OPEN MIRE 8.82 12.81 8.15 36.40 7.06 14.65
UNDRAINED 18.04 13.49 8.20 4.31 7.19 10.24
DRAINED 18.33 11.99 13.59 12.98 18.96 15.17
TWI 2.23 4.20 6.86 3.96 11.45 5.74
WAB 7.95 2.15 2.56 2.18 12.47 5.46
Total 100 100 100 100 100 100
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this reality and constitute useful tools for land use planning. By targeting on the richness 
of species of valuable environments also provide a new approach to focused biodiversity 
modelling.

Modelling performance: uncertainty issues

Although the predictive performance of the models was rather high across the species, 
it is important to be aware that the ecological significance of the observed relationships 
between environmental variables and species occurrences are not always obvious. In this 
study, species richness is simply predicted by stacking presence–absence predictions of all 
species. This method hence relies on our ability to model the distributions of individual 
species, a field that has greatly matured over the last two decades (see Guisan and Thuiller 
2005; Elith and Leathwick 2009; Franklin 2010). Thus, the main factors are those control-
ling individual species distributions, and often purely abiotic variables are used.

One of the main caveats in using individual species models to generate species richness 
patterns is that it tends to overestimate actual species richness (i.e., commission errors; 
Algar et al. 2009; Trotta-Moreu and Lobo 2010; Guisan and Rahbek 2010). The individual 
species models created in this study do not include all environmental, ecological (particu-
larly competition), and historical factors that affect species distributions. By solely using 
environmental variables at rather coarse resolution to construct predictions of a species’ 

Table 6   Results of jackknife evaluations of relative importance of environmental variables when used in 
isolation, with only the corresponding feature

The most important variable for each species group and on average is in bold. Abbreviations are explained 
in Table 2

Rich fen Mesotrophic fen Calcareous Spruce 
swamp 
forest

Decaying wood Mean

CAL 0.14 0.01 0.48 0.17 0.00 0.16
GDD 0.14 0.18 0.23 0.02 0.01 0.12
KP1 0.19 0.08 0.12 0.01 0.03 0.09
KP2 0.12 0.04 0.11 0.02 0.09 0.08
KP3 0.29 0.12 0.11 0.04 0.04 0.12
KP6 0.09 0.22 0.07 0.01 0.04 0.09
BIRCH 0.16 0.29 0.09 0.15 0.01 0.14
SPRUCE 0.13 0.44 0.06 0.21 0.09 0.19
SPRINGS 0.16 0.02 0.13 0.08 0.02 0.08
PINE 0.32 0.30 0.21 0.01 0.01 0.17
DECIDUOUS 0.08 0.15 0.05 0.04 0.01 0.06
SPRUCE 

SWAMP FOR-
EST

0.03 0.07 0.07 0.13 0.02 0.06

OPEN MIRE 0.28 0.27 0.09 0.20 0.06 0.18
UNDRAINED 0.59 0.64 0.20 0.02 0.01 0.29
DRAINED 0.23 0.11 0.20 0.07 0.19 0.16
TWI 0.22 0.33 0.20 0.14 0.36 0.25
WAB 0.16 0.09 0.05 0.02 0.27 0.12
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suitable habitat, models fail to incorporate biological, geographical or historical influences 
on species distributions (e.g., Guisan and Thuiller 2005; Heikkinen et al. 2006). This, in 
turn, can lead to an overestimation of species suitable habitats, as only areas of suitable 
habitats, not their realized distributions, are projected. This kind of overestimation may 
increase when combining multiple individual models to create species richness maps, as 
was the case in this study. In the light of these facts, we propose that the habitat suitability 
models influence on potential over-prediction is the result of the inherent nature of habitat 
suitability models.

Moreover, response curves are just simplifications of reality, and their shape may be 
strongly dependent on the setting of the study and the variable selection criteria used. First, 
a local model is fit to a particular region of the geographical space, but the model can dif-
fer in different regions of the sample space. Certain abiotic factors, such as topography and 
land cover, may be important locally, but they generally can be applied only within a lim-
ited geographical extent (Thuiller et al. 2003). Thus, conclusions about the response curve 
of species may only be made within the context of the study area. Second, it is possible that 
species may respond to a combination of a different set of variables in different parts of its 
distributional range, as the shape of responses in a multivariate model may depend on the 
nature of the correlations between the indirect variable and the causal gradients (Franklin 
1995; Guisan and Zimmermann 2000). The use of different geographical extents and spa-
tial resolutions could provide contradictory answers to the same ecological question.

Table 7   Results of jackknife evaluations of relative importance of environmental variables when used in 
isolation, without the corresponding feature

The most important variable, the exclusion of which decreased the gain most, is in bold. Abbreviations are 
explained in Table 2

Rich fen Mesotrophic fen Calcareous Spruce 
swamp 
forest

Decaying wood Mean

CAL 1.30 1.45 1.19 0.94 0.93 1.16
GDD 1.37 1.37 1.47 1.08 0.93 1.24
KP1 1.37 1.40 1.47 1.05 0.93 1.24
KP2 1.40 1.43 1.52 1.08 0.91 1.27
KP3 1.38 1.42 1.52 1.06 0.93 1.26
KP6 1.39 1.39 1.51 1.05 0.93 1.25
BIRCH 1.40 1.44 1.52 1.07 0.92 1.27
SPRUCE 1.39 1.43 1.50 1.02 0.88 1.24
SPRINGS 1.30 1.44 1.47 1.04 0.93 1.24
PINE 1.38 1.42 1.49 1.02 0.91 1.24
DECIDUOUS 1.40 1.46 1.52 1.05 0.92 1.27
SPRUCE 

SWAMP FOR-
EST

1.40 1.45 1.51 1.08 0.94 1.28

OPEN MIRE 1.37 1.38 1.50 0.95 0.89 1.22
UNDRAINED 1.36 1.35 1.51 1.06 0.89 1.24
DRAINED 1.34 1.41 1.48 1.00 0.87 1.22
TWI 1.40 1.43 1.47 1.06 0.86 1.24
WAB 1.33 1.43 1.51 1.07 0.80 1.23
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It should also be kept in mind that an area of suitable habitat is not occupied by a 
species if the species is unable to disperse there (Pulliam 2000; Newbold 2010). Dis-
persal limitation (Kadmon and Shmida 1990), source-sink dynamics (Pulliam and Dan-
ielson 1991) and metapopulation dynamics (Hanski 2005) will result in spatial patterns 
in species distributions that are at least partly independent of the environment. These 

Fig. 2   Spatial predictions of species richness by groups for the whole study area: a mesotrophic fen species, 
b rich fen species, c calcareous species and d decaying wood species
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spatial patterns are referred to as “endogenous spatial autocorrelation” (Legendre 1993). 
Several papers have discussed the importance of measuring spatial autocorrelation when 
evaluating the importance of different factors to explain species distributions (e.g. Dor-
mann et al. 2007; Hawkins et al. 2007). However, as the 25 ha grid cells in the model 
setup were distributed rather sparsely across the whole study area we assumed that the 
effect of spatial autocorrelation was rather small. Moreover, Parviainen et  al. (2008) 

Fig. 2   (continued)
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carried out autocorrelation assessment in a similar environment with a similar grid-
based approach at the same 25-ha resolution. They found that inclusion of the effect of 
spatial auto-correlation as autocovariate term reflecting the species occurrences in the 
surroundings of the focal grid cell, had only a minor effect on the importance of the 
environmental variables and the shapes of predictor-response curves.

Fig. 2   (continued)
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The observed distribution of threatened species is also affected by historical facts that 
may have restricted current distribution patterns of species (Guisan and Thuiller 2005; 
Svenning et al. 2008). This may, at least partly, explain the true absence of species in many 
areas where the environmental conditions are apparently suitable. Moreover, populations 
of threatened plant species may be extremely small and thus prone to local extinctions aris-
ing from stochastic processes in areas with appropriate environmental conditions. In light 

Fig. 2   (continued)
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Fig. 3   Spatial predictions of threatened plant species hotspots: by a species groups, and b total species rich-
ness (n = 48 species)
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Fig. 3   (continued)
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of this fact, some plant species may actually have had populations in earlier periods of sig-
nificantly better availability of suitable habitat, and current land use may have no relevance 
for their potential occurrence (Lindborg and Eriksson 2004; Helm et al. 2006; Wisz et al. 
2007). Thus, the individual habitat suitability modelling approach is limited because with-
out adding a dispersal filter, it may incorrectly predict species in areas that appear environ-
mentally suitable but that are outside their colonizable or historical range.

Threshold selection is one of the many possible biases in habitat suitability modelling. 
As suggested by Trotta-Moreu and Lobo (2010) and Mateo et al. (2012), the selection of 
an appropriate suitability threshold can reduce over-prediction in species models. However, 
selection is not straightforward and the results can vary, sometimes dramatically, depend-
ing on the threshold chosen (Milanovicha et al. 2012; Liu et al. 2013). We chose to use the 
rather conservative maximum training sensitivity plus specificity threshold, as we found 
it to be a promising selection method for presence-only data. An interesting methodologi-
cal line of future research would thus be to study the reliability of different thresholding 
approaches in modelling, as it may help to reduce over-predictions, at least in some cases. 
An additional problem in the selection of reliable and stable threshold values is the lack of 
real absences, as in the present study. When the modelling algorithm has no information on 
true absences, even small differences in the selected threshold value can have a substantial 
effect on the model outputs (see Jiménez-Valverde and Lobo 2007).

Finally, the lack of floristic data from remote areas may possibly lead to a partial bias in 
the modelling analyses. The accuracy of the model increases with increased amounts and 
accuracy of presence and absence data, and may be updated to include new information to 
further refine distribution predictions (Elith and Leathwick 2009), but we assume that the 
main drivers of habitat suitability (which were predominantly ecologically plausible) will 
remain.

Model transferability is one important feature in habitat suitability models and thus, 
developing models that are able to provide reliable predictions of species distributions in 
new areas or other times is a major challenge. As the results of this study revealed, plant 
distributions are often critically affected by certain local factors, such as soil or habitat 
properties or the occurrence of favourable microsites and microclimates (see also Parvi-
ainen et al. 2008; Elith and Leathwick 2009). Our models were generated for the boreal 
aapa mire landscape, where a relatively high proportion of the peatland landscape has 
remained in a semi-natural state despite intensive draining. On the other hand, the effect 
of draining is not limited to the drained peatlands only, but may extend over larger areas 
within the catchment (Holden et al. 2006). The models used in this study took into account 
only the local drainage effects within the grid cells. From the ecological viewpoint, our 
models may not be directly applicable to regions of highly fragmented, intensively used or 
cultural landscape typical of, for example, western and southern Europe. However, from 
the technical viewpoint, our approach is applicable over different ecosystems and habitats.

Importance of environmental variables to plant species

The distribution of plant species is limited by the availability of suitable habitats. For rare 
plants, especially those with limited geographic ranges, narrow habitat specificity can fur-
ther limit distribution. While climate is an important driver of plant species distribution 
at the continental scale, soil properties and biotic interactions determine habitat avail-
ability at smaller scales (Pearson et  al. 2004). Furthermore, competition may also affect 
species occurrence patterns and persistence capability (Virtanen et  al. 2010). Variations 
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in peatland vegetation are the result of many environmental factors at the landscape and 
local scales, including the origins of the water that feeds the peatland, acidity levels (pH), 
the availability of main nutrients (nitrogen and phosphorus), the water table level, and the 
depth of the peat. Seasonal variations in moisture levels have also been found to be related 
to the composition of vegetation communities (Laitinen 2008).

In this study, species responded differently to the analyzed habitat gradients. A mix-
ture of unimodal and linear responses was typical of the gradients. As a general observa-
tion, with most of the species the importance of variables reflecting local-scale variation 
in the habitat and land cover was superior to climate variables operating at higher scales. 
Responses to growing degree days varied according to the geographic distribution of the 
species; for example, Eriophorum brachyantherum is a northern species, for which suitable 
habitats occur at low numbers of growing degree days.

Our model confirms the importance of particular environmental variables that influence 
the presence and quality of peatland habitat for the selected threatened plant species. In 
mesotrophic fen species models, a high amount of undrained open peatlands was the most 
powerful characteristic forcing distribution patterns of threatened species. Wetness, high 
variation in site fertility types, and microtopography are distinct characteristics for und-
rained peatlands. The wettest peatlands have not been used for intensive forestry and agri-
culture, and they therefore continue to be suitable habitats for peatland species. At drained 
sites, key hydrological characteristics have changed, which has led to the degradation of 
peatland vegetation (Similä et  al. 2014). Based on our findings, species growing on wet 
surfaces are most susceptible to the effects of changes in the water table. These include 
Carex heleonastes, Dactylorhiza incarnata ssp. incarnata, Hamatocaulis vernicosus, Mee-
sia longiseta, Carex laxa, Hamatocaulis lapponicus, Dactylorhiza lapponica, Dactylorhiza 
traunsteineri, and Saxifraga hirculus. Epilobium laestadii is a demanding northern species 
that is most closely associated with nutrient-rich fens with a sparse and low field layer, and 
often occurs around springs or in seepage areas. Rhynchospora fusca is a sedge species 
characteristic of open flark fens.

Amblyodon dealbatus, Cypripedium calceolus, and Dactylorhiza traunsteineri are cal-
cium-demanding species of nutrient-rich, calcareous fens. As expected, the importance of 
calcareous bedrock was explicit to species demanding calcium, e.g. Amblyodon dealbatus, 
Malaxis monophyllos, and Pseudocalliergon lycopodioides. However, suitable habitats for 
calcareous species were also found in areas where there was not much calcareous rock. 
This kind of environments may contain for example small outcroppings, springs associated 
with distant calcareous deposits, or superficial calcareous deposits such as shell-rich sands. 
For example, Amblyodon dealbatus, Malaxis monophyllos, and Pseudocalliergon lycopodi-
oides grow mainly in herb-rich fens, calcareous springs and wet calcareous rocky outcrops 
(Ulvinen 2001). The results of this study also revealed that numerous threatened species, 
such as Philonotis calcarea, Palustriella decipiens, and P. falcata, also occur most com-
monly in springs which have a neutral pH. Sphagnum contortum is a rich fen species that 
exists in a rather restricted region within the study area, and most of the variation can be 
explained by habitat, particularly by the increasing proportion of undrained mires. How-
ever, S. contortum does not occur throughout its potential habitat space because it performs 
best in nutrient- and calcareous-rich habitats and the presence of springs. Consequently, 
successful models require also other explanatory factors than undrained peatland alone.

The models of decaying wood species performed more weakly than those of other spe-
cies groups. This may, at least partly, be explained by the fact that the models did not con-
tain dead wood as an explanatory variable. Many decaying wood species are dependent 
on old-growth forest habitats with high amounts of decaying wood (Rassi et al. 2010). We 
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can therefore expect that old spruce swamp forests are also important habitats for these 
species, although this could not be directly seen in the models. Nevertheless, there was a 
high contribution of spruce and pine in the models. Interestingly, topographical wetness 
index, with mainly negative association, was important in determining suitable habitats 
for decaying wood species. This kind of topographical variable can serve as proxies for 
other environmental variables, such as soil properties and plant-available water, which may 
drive plant distributions (Lassueur et al. 2006). The species associated with decaying wood 
require a continuing presence of deadwood at various stages of decay, as well as evenly 
moist microclimates and shady growth sites (Laaka-Lindberg et al. 2009). Despite favoring 
moisture, these species do not tolerate wet conditions, which prevail at low elevated sites 
where water accumulates.

Richness patterns and hotpots of species groups

The predicted species richness maps and the location of the most species-rich hotspots 
indicated important differences between species groups. High potential species richness 
occurred for rich fen species in northern parts of the study area, for mesotrophic fen spe-
cies in southwestern parts, and for decaying wood species broadly throughout the central-
southeastern part of the study area. These differences reflect the differing habitat require-
ments among the species groups. However, part of the differences may also arise from 
unbalanced species numbers within each group: mesotrophic fen (6), decaying wood (7), 
rich fen (19), and calcareous species (23).

Reliable identification of hotspot areas with a high number of potentially suitable habi-
tats for threatened species has a central role in land use and conservation planning. The 
grouped species approach in the landscape makes the identification of potentially high-
quality habitats for rare species more reliable and the argument for sympathetic manage-
ment of these habitats more compelling. The species richness analysis indicates that man-
agement efforts, such as restoration, would provide the most benefit in northern parts for 
all threatened mire species as a whole. One reason may be that the amount of drainage 
decreases generally towards north (Finnish Forest Research Institute 2014), and the deg-
radation of peatland habitats has not proceeded as intensively as in the heavily drained 
habitats further in the south.

It must be noted that the hotspots of threatened species are not the only habitats impor-
tant for biodiversity. Complementary approaches are needed, whereby typicalness indicates 
that abundant habitats and species at the centre of their natural range are also important 
(Latimer 2009). These typical areas also need to be maintained and actions taken to miti-
gate, slow down or prevent their degradation. Our approach can also be used to present 
peatlands’ biodiversity “non-hotspots”. They may be either areas which are important 
because they hold characteristic assemblages of peatland species, or drained peatlands 
where forestry practices have degraded all but these ecologically valuable patches. Such 
areas are also important within the design of land management planning, before large scale 
peatland re-use is planned and carried out.

Management of specific areas on behalf of one species group may not equally benefit 
all species within the overall species assemblage, since each species has its own habitat 
requirements. In contrast, summed richness maps can be readily divided into different sub-
categories, enabling land use planners to scrutinize the predictions for species with, for 
example, different endangerment status or species with different characteristics such as 
vascular plants and bryophytes. Species groups can be adaptively used to address the needs 
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of both individual species and groups of species by first setting management targets for a 
group, then testing the benefits of that management for individual species, and thereafter 
adjusting management direction to best benefit all species of concern (Wisdom et al. 2001; 
Wiens et al. 2008).

Conclusions

Our results demonstrate that the combination of individual species models offers a useful 
tool for identifying landscape-scale richness patterns for threatened mire plant species. In 
conclusion, habitat suitability models can help in determining which aspects of the envi-
ronment of a given species have a critical impact on its distribution, and thus advance our 
understanding of the ecological requirements of species, while also providing valuable 
information concerning where species are likely to be found in insufficiently surveyed land-
scapes. The modelling performance was high across the modelled species, and the rich-
ness patterns generated by single models coincide with the expected richness pattern based 
on expert knowledge. These generated richness patterns therefore offer a powerful tool 
for basic biodiversity applications (e.g., land use planning and conservation). Predictive 
habitat suitability models and the summed richness maps can provide a valuable means of 
delimiting potentially valuable geographic areas and focus survey and management efforts 
onto valuable geographic areas and focus such efforts towards ensuring the preservation of 
biological diversity in aapa mire landscapes. Thus, when examining larger landscape sites 
suitable for different land use, the models created in this study offer considerable scope for 
use as “first filters” for identifying potential locations of hotspots of threatened species in 
boreal peatland landscapes at the regional scale. It is, however, important to emphasize that 
areas should not be valued simply on the basis of model predictions of threatened species. 
Typical species and habitats are also important for the biodiversity. It is also vital that mod-
elled valuations should be subject to ground-truth assessment before planning decision-
making takes place.
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