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Abstract

Different sensors are constantly collecting information about us and our
surroundings, such as pollution levels or heart rates. This results in long
sequences of noisy time series observations, often also referred to as signals.
This thesis develops machine learning methods for analysing such sensor
data. The motivation behind the work is based on three real-world applica-
tions. In one, the goal is to improve Wi-Fi networks and recognise devices
causing interference from spectral data measured by a spectrum analyser.
The second one uses ultrasound signals propagated through different paths
to localise objects inside closed containers, such as fouling inside of indus-
trial pipelines. In third, the goal is to model an engine of a car and its
emissions.

Machine learning builds models of complex systems based on a set of ob-
servations. We develop models that are designed for analysing time series
data, and we build on existing work on two different models: convolutional
neural networks (CNNs) and Gaussian processes (GPs). We show that
CNNs are able to automatically recognise useful patterns both in 1D and
2D signal data, even when we use a chaotic cavity to scatter waves randomly
in order to increase the acoustic aperture. We show how GPs can be used
when the observations can be interpreted as integrals over some region, and
how we can introduce a non-negativity constraint in such cases. We also
show how Gaussian process state space models can be used to learn long-
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and short-term effects simultaneously by training the model with different
resolutions of the data.

The amount of data in our case studies is limited as the datasets have been
collected manually using a limited amount of sensors. This adds additional
challenges to modeling, and we have used different approaches to cope with
limited data. GPs as a model are well suited for small data as they are
able to naturally model uncertainties. We also show how a dataset can be
collected so that it contains as much information as possible with the limited
resources available in cases where we use GPs with integral observations.
CNNs in general require large datasets, but we show how we can augment
labeled data with unlabeled data by taking advantage of the continuity in
sensor data.

Computing Reviews (2012) Categories and Subject
Descriptors:

Computing methodologies → Machine learning → Machine
learning approaches → Neural networks
Computing methodologies → Machine learning → Machine
learning approaches → Kernel methods
Computing methodologies → Applied computing → Physical
sciences and engineering

General Terms:
Gaussian processes, convolutional neural networks, Gaussian process
state-space models, time series data, integral observations

Additional Key Words and Phrases:
signal data, continuous data, approximate inference, sparse Gaussian
processes, sensor placement, non-negativity constraint
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Chapter 1

Introduction

The goal of this thesis is to introduce novel machine learning approaches
for solving practical problems with time series data collected using a set
of sensors. In this chapter we describe the motivation behind the original
publications as well as outline the original contributions.

1.1 Motivation

Machine learning is used to learn models about complex systems based on
data. We develop methods for data containing some structure, in this case
temporal or spatial continuity, and we build on existing work on convo-
lutional neural networks and Gaussian processes and tailor them to our
specific needs. The work is motivated by real applications with potential
societal impact, and we have used specialised sensors to collect the datasets
manually. This means that the amount of data available for training is lim-
ited, and we show how to use the limited data efficiently, how to augment
labeled data with unlabeled data and how to collect the data so that it is
as informative as possible.

1.1.1 Sensor Data

Nowadays, sensors are continuously collecting large amounts of data all
around us. Smart watches monitor our heart rates and sleeping patterns,
various sensors collect data about our environment, such as pollution levels
and temperatures, and medical imaging sensors detect x-rays that have
traveled through the human body. More generally, sensor is physical device
that monitors its environment in the real world, detecting some specific
type of input. Sensor data is the one- or multidimensional digital output
per time point given by such devices, often also referred to as signals. The
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2 1 Introduction

time series data collected by these sensors can be analysed and used to for
example improve industrial processes, monitor health, and ease many every
day tasks.

We have three novel datasets collected using specialised sensors, and the
machine learning approaches and improvements presented were motivated
by these real-world problems. However, the presented approaches are in
general applicable to wide range of problems with temporal or spatial data,
and in some publications we demonstrate the benefits of the presented
methods also on other applications than the ones mentioned here.

In Publication I we collected data with a spectrum analyzer that per-
forms sweeps over the 2.4GHz spectrum to identify devices operating in
this frequency range. The goal is to improve Wi-Fi networks by identi-
fying interfering devices. In Publications II-V use ultrasound signals to
map an environment. The path through which the signals travel changes
the signals, and by analysing them we can form estimates about the envi-
ronment, such as localise an object inside a container (Publication II)
or non-invasively localise fouling inside pipes (Publications III-V). In
Publication VI we have measured the raw emissions of an engine, and
we want to understand the system to predict future emissions for new in-
put configurations.

1.1.2 Convolutional Neural Networks and Gaussian Pro-
cesses

Machine learning is used to learn models of real-world systems based on
collected data. Models are simplifications of the system: they are based
on making simplifying assumptions so that we are able to both define the
model and learn the model with limited computational resources. Models
can then be used to explain or learn about the system or to make predictions
or decisions based on new, previously unseen data.

Various different methods exists, but they all take data as input. We
focus on supervised learning, which means machine learning problems that
reduce to learning a mapping between an input x and an output y based
on examples for which the outputs are known. The models used here have
different approaches to learning such mappings, but they are specifically
designed for spatial or temporal data taking advantage of the special struc-
ture: continuity in the data causes the nearby values to be correlated.

Convolutional neural networks (CNN) are deep learning models (Good-
fellow et al., 2016; LeCun et al., 2015), which means that they consist of
multiple processing layers that learn representations of the data with differ-
ent levels of abstraction. They typically find one model that best represents
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the data that is then used in prediction tasks. Convolutional neural net-
works are based on applying filters on the data and finding regions where
the difference between the filter and the data are small. These filters are
automatically learned from the training data so we do not need to previ-
ously know what features in the data are important. Using these filters
is also computationally more efficient than just examining individual time
points and reduces the needed amount of training data. The benefit of DL
methods is that they scale well to high dimensional data and long trajec-
tories, which different signals often are. For example, CNNs can be used
to efficiently analyse the approximately 3000 features per time point in the
dataset in Publication I.

Publications I-II are build on convolutional neural networks, and we
provide the necessary background on deep learning and CNNs in Sections
2.1 and 3.1. Chapter 4 discusses these publications in more detail and
demonstrates how CNNs can be used to analyse time series data and to
introduce invariance in the temporal domain.

In contrast, Gaussian processes (GP) (Rasmussen and Williams, 2006)
are probabilistic or Bayesian models (Ghahramani, 2015) that use prob-
abilities to represent uncertainty about the mapping being learned. The
learned solution is a posterior distribution over all possible models, where
models that are more likely according to the data have a higher proba-
bility. The natural ability to model uncertainties is important in many
applications, especially when the amount of data is limited. This is why
they are suitable for many applications with sensor data. GPs are based
on smooth functions, which makes them a natural choice for spatial and
temporal data. In addition, GPs generalise well and we can incorporate
prior knowledge of the modeled system into the GP. However, the limita-
tion of GPs is with large datasets as the computational complexity grows
cubically with the amount of time points. Still, many approximations to
tackle this issue have been presented, and we discuss them in Section 3.2.1.

The rest of the publications build on GPs, which we introduce in Sec-
tion 3.2. Publications III-V, presented in Chapter 5, discuss using GPs
when observations consist of integrals over an unknown function. While in
traditional GP regression we observe values of certain locations, we now ob-
serve a signal that has travelled through the observation space along some
path. Objects on the path of the signal affect its properties, and we extract
information from the signal that can be interpreted as the value of the in-
tegral along that line. Publication VI, discussed in Chapter 6, is separate
from the other publications building on GPs, and extends GP based state
space models to datasets containing long- and short-term effects.
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1.1.3 Limited Data

In our applications the amount of data is limited as it was largely collected
manually using a limited amount of specialised sensors. This is typical for
many sensor data applications. Specialised sensors can be expensive and
thus the amount limited. Many times placing the sensors and recording
data requires manual labour. Even though one sensor could be collecting
data for a long time resulting in long trajectories, this still gives information
of only one location. Accurately labeling the data might require manual
labour and be the bottle neck in the data collection process. Sometimes less
data also means less exposure to possibly harmful things, such as X-rays
in CT scans. Thus, methods used to learn from sensor data often need to
be able to cope with limited amount of data.

Deep learning methods are known to be data hungry, but we can cope
with limited data by keeping the network structure fairly simple and taking
advantage of parameter sharing in CNNs (LeCun et al., 2015), by using the
data efficiently with cross-validation or by augmenting labeled data with
unlabeled data as we discuss in Chapter 4. Bayesian methods naturally
model uncertainties, and are often preferred over DL methods when the
amount of data is small or when some events in it are rare (Ghahramani,
2015). Gaussian processes (Section 3.2) are an example of such models,
and we use them in Chapters 5 and 6.

The data can also be collected efficiently so that it provides as much
information about the environment as possible by smartly designing the
locations for sensors (Krause and Guestrin, 2007). When modeling spatial
data, such as temperatures or amount of fouling inside a pipe, the question
is where should a limited amount of monitoring sensors be placed so that
we can get an accurate mapping of the environment. How to best place
sensors when we measure signals traveling through certain paths to model
the environment using GPs is discussed in Section 5.5.

1.2 Thesis Contributions

This thesis introduces machine learning based solutions for three practical
problems as well as develops novel techniques for analysing sensor data.
From the perspective of the applications, this thesis introduces advances
for the following practical problems:

• We provide a novel method for recognising radio frequency devices
that can cause Wi-Fi interference based spectral data recorded with
a specialised spectrum analyser (Publication I).
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• We show that when combined with machine learning, a chaotic cavity
can be used to increase the acoustic aperture of ultrasound signals to
localise objects inside closed containers (Publication II).

• We provide the first machine learning method for non-invasive local-
isation of fouling inside pipes based on ultrasound waves propagated
through the pipe (Publications III-V).

• We provide a novel method for learning both long- and short-term ef-
fects simultaneously when modeling emissions of a gasoline car engine
(Publication VI).

From the perspective of machine learning algorithms, the main contribu-
tions that also generalize to other applications than the ones presented here
are:

• We introduce a novel semi-supervised technique for training convolu-
tional neural networks that assigns pseudo-labels for unlabeled data
by taking advantage of continuity in time series data (Publication
I).

• We provide the first presented techniques for optimizing sensor loca-
tions for GPs with integral observations (Publication III).

• We present an easy-to-use, general technique for learning non-conjugate
GPs with integral observations. The method is based on probabilis-
tic programming, and can be easily used regardless of the reason for
non-conjugacy making it easy to use for practitioners. (Publication
IV).

• We introduce an efficient algorithm for learning Gaussian process
state-space models that can recognise both short- and long-term ef-
fects in time series data (Publication VI).
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Chapter 2

Preliminaries

This chapter provides the necessary preliminaries about machine learning
required to understand the rest of the thesis. We focus on general concepts,
principles and learning paradigms, while the specific models used in this
thesis are introduced in Chapter 3. Comprehensive overviews of machine
learning principles are provided for example by Murphy (2012) and Bishop
(2006).

Supervised machine learning

In machine learning data is used to learn some unknown parameters of a
statistical model in cases where the problem would be too difficult to solve
with rule-based algorithms. The data is typically recorded from a real life
system, and the goal is to learn and make predictions about the system.
Examples of such data are records of temperatures over time in different
areas or the amounts of particles in emissions of a car engine.

We consider supervised machine learning problems, where the data con-
sists of N input-output pairs D = {yn,xn}Nn=1. We mark the set of inputs
or features with X = {xn}Nn=1, xn ∈ R

Dx and the set of outputs with
Y = {yn}Nn=1, yn ∈ R

Dy the outputs or the observations. If the values of
Y are discrete we talk about classification and if they are real-valued we
talk about regression. In unsupervised learning the data consists of only
the inputs, but it is not in the scope of this thesis.

We assume that the dependency between the inputs and the outputs
can be described with a latent function f(x) : R

Dx → R
Dy . The goal

is to make inference about f based on a data set called the training set.
Once the mapping between the inputs and outputs has been learned, the
performance can be evaluated on previously unseen inputs called the test
set. Being able to make predictions about previously unseen data is called

7
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generalization, and it is an important quality of any machine learning model
as the training data is always limited.

Parametric and non-parametric models

Models can be divided into two groups depending on how f is parametrized:
parametric and non-parametric models. In parametric models f(x) is as-
sumed to have a certain structure with finite amount of parameters θ.
Possible prior beliefs are incorporated by placing a prior distribution on θ.
Examples of such models are linear regression, where the form of f is very
limited, and neural networks (Section 2.1) (Goodfellow et al., 2016), where
the amount of parameters θ is large and very complex functions f are possi-
ble. In non-parametric models the function f is not explicitly parametrized,
but the amount of parameters grows with the amount of data. This can be
seen to correspond to having an infinite amount of parameters. An exam-
ple of such model is Gaussian process (GP) (Section 3.2) (Rasmussen and
Williams, 2006). Parametric models are forced to make stronger assump-
tions about the data than non-parametric models, but this also means that
they are usually computationally more efficient.

Point estimates vs. posterior distributions

There are also two alternative ways to handle the parameters θ. One way is
to find the values for θ that best describe the data, called a point estimate.
Training is done by adjusting the values of the parameters by optimizing
an objective function that measures the error or distance between the pre-
dicted output and the actual output of the model, such as the squared error
over the training set or the likelihood p(Y|θ). The resulting model is then
considered to be the best available representation of the considered system,
and can be used in further applications such as getting the point estimate
of outputs Y∗ at test points X ∗. Most deep learning methods fall into this
category. They automatically learn to recognise patterns from data sets
by having multiple non-linear layers with multiple parameters that allow
learning very complicated functions from large amounts of data. Thus,
these methods have been very successful in several domains where large
data sets are available (LeCun et al., 2015). Deep learning methods are
introduced in Section 2.1.

However, in these traditional deep learning methods we do not have
estimates of the certainty of the mapping, though recent works have intro-
duced some solutions to this (Gal, 2016). There will always be uncertainties
about the system and understanding when the model is not confident about
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the predictions is important. Even large amounts of data can not always
capture the whole complexity of the system, especially when there are rare
events present. Bayesian framework provides a natural way to deal with
uncertainty, as instead of point estimates, full posterior distributions p(θ|D)
are provided for the parameters of the model and the predicted outputs. In
addition, it allows us to utilize expert information by defining a prior dis-
tribution that corresponds to our believes. The believes then get updated
through the Bayes rule after we introduce new observations. Gaussian pro-
cesses are a flexible tool for performing Bayesian inference about functions.
An introduction of Bayesian inference is given in Section 2.2.

2.1 Deep Learning

Deep Learning (DL) (LeCun et al., 2015) refers to machine learning algo-
rithms that stack multiple simple, non-linear layers into deep networks that
learn representations with multiple levels of abstraction. Such algorithms
are often referred to as (deep) neural networks ((D)NN). Neural networks
derive their name from being loosely inspired by human neurons. How-
ever, most consider neural networks to be just function approximators and
do not even aim to model human neurons or the brain (Goodfellow et al.,
2016).

While NNs are not a new invention, but the ideas stem from the 50s,
they have only fairly recently become extremely popular (LeCun et al.,
2015; Schmidhuber, 2015). DL methods have brought significant improve-
ments in several fields such as speech recognition (Hinton et al., 2012),
language processing (Devlin et al., 2019; Sutskever et al., 2014) and image
processing (Krizhevsky et al., 2012). This sudden success is often attributed
to advances in computer hardware, such as GPUs (Raina et al., 2009), avail-
ability of large amounts of data and advances in computational methods
as well as appearance of several good open source software libraries (Abadi
et al., 2016; Al-Rfou et al., 2016) that have made development easy. For ex-
tensive introduction to deep learning the readers are directed to the books
by Goodfellow et al. (2016) and Zhang et al. (2014).

DL methods iteratively get better when seeing new data, and thus can
often require very large datasets to succeed. On the other hand, the meth-
ods are able to utilize these large data sets as very little manual engineering
is required for feature extraction. While for a long time machine learning
techniques were based on manual labour by human engineers and domain
experts to carefully construct a feature vector (Andrew, 2001), deep learn-
ing methods are able to do this automatically. Taking raw data as input and
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automatically learning the relevant representations with a general-purpose
procedure is called representation learning. In deep learning, the multiple
layers are expected to learn different levels of representations.

While DL methods have achieved undeniable success in many areas,
it is good to remember that there are also limitations as there are to all
methods. NN models are often called black box models as the layers do not
necessarily learn concepts or features that are interpretable for humans.
The lack of interpretability and the need for explainable AI in many appli-
cations has been one of the main sources of critisims for DL and also an
area of active research (Gilpin et al., 2018). A related issue is the lack of
uncertainty quantification. Traditionally DL models have been criticised of
making just point predictions and not quantifying the uncertainty of their
predictions. While various methods, including probabilistic and Bayesian
neural networks (Gal, 2016), have been developed to address this issue,
many of them still fall short (Ovadia et al., 2019). The success of DL
is often based on very large data sets combined with large NN architec-
tures. This means, that the training also requires massive computational
resources that are both financially and environmentally expensive (Strubell
et al., 2020). In addition, DL models are susceptible to adversarial attacks
created to mislead the model (Goodfellow et al., 2015).

2.1.1 Structure of Deep Neural Networks

The goal in DL is to learn to approximate a function f that maps the input
x of the algorithm into an output y. Thus, a neural network is basically
a mapping y = fθ(x) where the function parameters θ are learned from
training data. A characteristic property of DNNs is that the amount of
learnable parameters θ is large, often hundreds of millions. The values
of the parameters are adjusted by optimizing an objective function (also
referred to as loss function) that expresses how different the current outputs
are from the expected outputs.

Neural networks consists of nodes or neurons that map an N dimen-
sional input x into an M dimensional output y. A node f multiplies each
incoming input dimension i with a weight wi and outputs their sum com-
bined with a bias term b:

f(x) = g(

N∑
i=1

xiwi + b) = g(wTx),

where w is a vector containing the weights and biases. The outputs are
mapped through an activation function g. In the case of a linear node, this
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Output layerInput layer Hidden layer

Figure 2.1: Illustration of a simple fully connected feed-forward neural
network with one hidden layer.

corresponds to the identity function. However, in most cases g is defined to
be some non-linear function, often the rectified linear unit function (ReLU)
defined as g(z) = max{0, z} (Glorot et al., 2011; Jarrett et al., 2009; Nair
and Hinton, 2010). Linear functions are limited in their expressiveness, and
adding non-linearities allows learning more complex functions.

Deep neural networks (DNN) consist of multiple layers of multiple
nodes. In feed-forward networks the output of the previous layer will be
used as an input to the next layer. For example, a feed-forward network
with three layers f1, f2, f3 is defined as f(x) = f3(f2(f1(x))). Having mul-
tiple layers of non-linear modules further increases the flexibility of the
model. Figure 2.1 shows an example of a simple feed-forward network con-
sisting of the input layer, the output layer and one hidden layer.

Traditionally neural networks were fully connected, which means that
each neuron is connected to all neurons in the previous layer. Later, more
specialised structures that use weight sharing to reduce the memory and
computational requirements by taking advantage of special structure in the
data were introduced. Convolutional neural networks (LeCun et al., 1995),
discussed in Section 3.1, are one example of such structure.

2.1.2 Learning Deep Neural Networks

Parameters of a neural network are optimized iteratively using gradient-
based optimizers, as is often done with parametrized machine learning
models. The learning algorithm computes the gradient of the objective
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function with respect to the parameters to indicate which direction the
parameters should be adjusted to decrease the error until a (locally) op-
timal solution has been found. In DL most objective functions become
non-convex because of the non-linearities, so optimizers do not necessar-
ily find the globally optimal solution. The gradients in DL models can be
efficiently computed using a method called backpropagation (Linnainmaa,
1970; Werbos, 1982).

The values of the weights are adjusted based on some objective function,
that can be defined to be the average of losses over training samples:

L(θ) =
N∑

n=1

L (yn, fθ (xn))

The loss is some non-negative function that describes the difference be-
tween the outputs fθ(xn) and the expected outputs yn. The loss should
be chosen to reflect the problem in hand. For example, for a regression
task the squared error can be an appropriate distance measure whereas for
classification cross-entropy is often used.

To tackle the computational challenges related to large data sets, DL
models are usually learned using stochastic gradient descent (SGD) (Bottou
et al., 1998; Robbins and Monro, 1951), where the gradients are computed
and the weights adjusted iteratively based on only a small, each time dif-
ferent subset of the data (often called a minibatch).

2.1.3 Practicalities of Deep Neural Networks

In practice, there are several design choices that need to be made when
implementing deep learning models, as there naturally are with other ma-
chine learning models too. The point of this section is not to introduce all
possible options as it is out of the scope of this thesis, but to just point
out the most important parts that we need to pay attention to when using
deep neural networks in an application. An emphasis is put on the choices
that were made on Publications I and II. While there are some general
guidelines, designing neural networks is an area of active research and often
the best choices can be found only through trial and error by evaluating
the performance of a model on a validation set.

One important choice is to choose the objective function as well as the
output of the model. This depends on the task the network is designed
to do, and the output layer transforms the output of the last hidden layer
into a form that is appropriate to completing the task. For example, in
classification it is typical for the output to just give the predicted class,
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typically one-hot encoded, while for localisation tasks we might want to
directly output the continuous coordinates. In tasks where we want the
outputs to be means of Gaussian distributions, it is common to use a linear
layer as the output layer. This choice makes using maximum likelihood
as the objective function equivalent to using mean squared error. On the
other hand, in classification problems a common choice is to use sigmoid
function to achieve Bernoulli output distributions.

DNNs are trained using stochastic gradient descent that does not have
convergence guarantees when applied to nonconvex cost functions, but is
sensitive to the initial values for the model parameters. This is why we
also need to pay attention to initialisation when training the models. Sev-
eral suggestions for this also exists, but often a good technique is to use
small random values. Most DL libraries also have different initialisations
implemented (Abadi et al., 2016). In addition to SGD, other more efficient
optimization methods have also been introduced. Out of these, ADAM
(Kingma and Ba, 2015) has been popular and is also used in Publications

I and II in this thesis. In addition to the algorithm, we need to make choices,
such as the amount of iterations used or define a stopping criterion. These
algorithms also have different tunable parameters, such as the learning rate
and the size of the used mini-batches. Learning rate describes the magni-
tude of the adjustments we make to the parameters in each iteration.

The overall structure of the deep network also matters: how many lay-
ers, how many units per layer and how should the units be connected?
Are feed-forward networks a good choice for the task, or should we use
structures designed for specific tasks? Dropout can be used for further
regularisation (Srivastava et al., 2014). Again, books by Goodfellow et al.
(2016) and Zhang et al. (2021) discuss also these practical choices for DL
algorithms in more detail and presents multiple different options.

2.2 Bayesian Inference

Bayesian or probabilistic machine learning uses probabilities to express un-
certainty (Gelman et al., 2013; Ghahramani, 2015). Uncertainty in mod-
eling stems from many sources: measurements are noisy, many values for
model parameters might be consistent with the data and many different
models can be used to describe the data. Benefits of Bayesian machine
learning include natural ability to keep track of uncertainties in the model
and the resulting automatic complexity trade-off.

In contrast to choosing one best model with point estimates, in Bayesian
approach several models can be considered to be consistent with the data.
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Thus, the goal is to find the posterior probability distribution over unknown
model parameters θ conditioned on the data D: p(θ|D). Predictions can
then be made by computing expectations over this distribution.

Learning from data happens by updating a prior probability distribu-
tion, which describes our believes before observing any data, into a poste-
rior distribution. The posterior distribution can be found using the Bayes
theorem

p(θ | D) =
p(D | θ)p(θ)

p(D)
.

Here p(θ) is the prior, p(D|θ) is the likelihood and p(D) =
∫
p(D | θ)p(θ)dθ

is the normalizing constant that ensures that the posterior is a valid prob-
ability distribution. The prior can be seen to represent the uncertainty
before observing any data, and allows incorporating prior knowledge and
formalising the assumptions made. However, even though the ability of
incorporating prior knowledge is usually seen as an advantage, it can be
also seen as a disadvantage; in Bayesian approach a prior always needs to
be specified, even when we do not have any present knowledge.

The task of computing the posterior distribution is known as inference.
Unfortunately, in many cases, especially when the dimensionality of the
parameters θ is high, computing the integral in p(D) becomes complicated
or intractable in practice. By carefully designing the model it is sometimes
possible to ease the computations so that we can avoid evaluating p(D)
completely. This is usually when we use so called conjugate priors. The
prior is called a conjugate prior for the likelihood when the posterior and
prior distributions are in the same probability distribution family. This is
the case for example in Gaussian process regression: the convenient closed-
form solutions that have made GPs a popular tool exist only when we use
conjugate priors (Rasmussen and Williams, 2006).

However, using conjugate priors means that there is only a limited set
of likelihoods and priors that can be used. This allows only a restricted
set of models and forces strong assumptions that do not necessarily hold.
Approximate inference refers to techniques that can be used to approxi-
mately solve the Bayes theorem when more complex models are needed.
For example, even though GPs can be solved in closed-form in the stan-
dard case, adding constraints or using non-Gaussian additive errors can
make the model more flexible and better suited for the problem, but also
makes approximate inference necessary.

There are a wide range of solutions for approximate inference that can
roughly be divided into two main categories: sampling based methods turn
the problem into one of sampling from the posterior distribution, whereas
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optimization based methods replace inference with optimization by approx-
imating the posterior with a simpler, tractable distribution. In the following
subsections we will shortly describe both of these approaches as we will use
them later in this thesis.

2.2.1 Sampling-based Approximations

Sampling-based methods, as the name implies, are based on taking sam-
ples from the posterior distribution θs ∼ p(θ|D), which are then used to
approximate some needed quantity. This is called a Monte Carlo estimate.
More specifically, the expectation of some quantity f can be approximated
with S samples as

Ep(θ|D)[f ] ≈
1

S

S∑
s=1

f(θs).

More comprehensive overview of sampling-based approximations is avail-
able for example in Neal (1993), Brooks et al. (2011) and Angelino et al.
(2016).

A critical question in sampling based approximate inference is how can
we efficiently obtain independent samples from high dimensional distribu-
tions. There are various ways that differ in efficiency and accuracy. The
broad class of the most popular sampling algorithms used is called Markov
chain Monte Carlo (MCMC). Monte Carlo methods refer to non-iterative
methods generating independent samples, such as rejection sampling and
importance sampling. However, these do not work well in high dimensions.
Instead, it is common to use Markov chain Monte Carlo methods that are
based on generating samples from a carefully designed Markov Chain to
scale better with the dimensionality of the sample space and to reduce the
correlation between samples.

Traditionally MCMC methods, such as Gibbs sampling (Geman and
Geman, 1984) or random-walk Metropolis (Metropolis et al., 1953), have
been seen to be computationally heavy as they require a long time to con-
verge to the target distribution, mostly because of inefficient random walks
(Neal, 1993). Hamiltonian Monte Carlo (HMC) is able to avoid the ran-
dom walk behaviour and increase the efficiency by utilising gradients of
the log joint density log p(D, θ). HMC has hyperparameters that affect
the efficiency of the algorithms, and no-U-Turn Sampler (NUTS) (Hoffman
and Gelman, 2014) can be used eliminate the need for tuning the values by
hand.
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2.2.2 Optimization-based Approximations

Optimization-based methods introduce a new, simpler distribution qλ(θ)
that is used to approximate the true posterior p(θ|D) so that qλ ≈ p. Its
parameters λ are tuned by minimizing an objective function that measures
the distance between these two distributions. More formally, Let Q be
a class of tractable distributions called the approximating family. Then
the goal is to find qλ ∈ Q that minimizes a quantity D(qλ‖p(θ|D)) that
measures the closeness between these two distributions.

We focus on variational inference (VI) (Jordan et al., 1999; Wainwright
and Jordan, 2008). A good overview on variational inference is available for
example in Blei et al. (2017), and more recent advances have been reviewed
by Zhang et al. (2019). VI uses Kullback-Leibler (KL) divergence as D as
it has convenient properties and it can be optimized using a surrogate
objective function. Other divergences are also possible, though commonly
the used divergences belong to a family of measures called f-divergence
(Csiszár, 1967). The KL divergence is used to measure the differences in
information contained within the two distributions, and it is defined as

KL(q‖p) =
∫

qλ(θ) log
qλ(θ)

p(θ|D)
dθ.

KL divergence is asymmetric, meaning that KL(q‖p) �= KL(p‖q), and the
presented formulation of KL divergence is used in VI.

However, evaluating this measure directly is not possible as it requires
knowing p, and thus it can not be directly optimized. Instead, KL can be
decomposed into two parts: a part that can be computed, and a constant
that is not needed for optimization. Thus, instead of directly optimizing
KL, in variational inference we optimize another objective called the evi-
dence lower bound

ELBO = Eq[log p(D, θ)]− Eq[log qλ(θ)].

Maximizing this is equivalent to minimizing KL(q‖p).
There are various different ways that can be used to optimize the ELBO,

though often gradient-based optimization techniques are used. In general
the techniques for obtaining the gradients can be divided into two cat-
egories: score function gradients (Paisley et al., 2012; Ranganath et al.,
2014) and reparametrization gradients (Kingma andWelling, 2014; Rezende
et al., 2014).

A critical question in variational inference is how to choose the approxi-
mating family Q, as it should be flexible enough to be able to find a density
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that is close to p(θ|D) but still simple enough for the optimization. A com-
mon choice is to use mean-field variational family where the variational
family is assumed to be fully factorized and the model parameters θ to be
independent

qλ(θ) =
∏
i

qλi
(θi).

The individual factors can still be defined in multiple ways. Mean-field
assumption is efficient, but more complex families have also been suggested
(Kingma and Welling, 2014; Saul and Jordan, 1996).
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Chapter 3

Machine Learning Models for
Sensor Data

The goal of this chapter is to give the necessary background on the methods
used in the publications in this thesis. At the same time, this functions as
an introduction to methods that can be used to analyse data collected with
different sensors, though the list is not exhaustive by any means. All data
sets in this thesis are temporal and/or spatial data, which can be seen to
have a special structure: the nearby values are known to be correlated,
and all presented methods take advantage of this. For more information
on these methods as well as other methods suitable for time series analysis
interested readers are referred to for example the following books: Billings
(2013), Box et al. (2015), Goodfellow et al. (2016), Prandoni and Vetterli
(2008), Rasmussen and Williams (2006) and Särkkä (2013).

The model for each application should be chosen to reflect our prior
knowledge of the system, the quality and the type of the data and the
question we want to answer. A simple linear regression might be an appro-
priate choice when the data is expected to be linear or we want a simple
and quick solution. When only little is known about the system we are
modeling, a more flexible model is often better. For example, deep learning
can be used to automatically find important features in the data, and CNNs
do this more efficiently when the data is structured. Gaussian processes
are good for modeling smooth functions, such as spatial or temporal data,
and can naturally model uncertainties. When choosing a model we always
make assumptions about the system. Modeling complex systems perfectly
is usually impossible, but we are required to make assumptions that are
inconsistent with the data to make the computations feasible.

19



20 3 Machine Learning Models for Sensor Data

3.1 Convolutional Neural Networks

Convolutional neural network (CNN) (LeCun et al., 1989) is a specialised
type of neural network that is designed for structured data with spatial or
temporal components. Fully connected neural networks do not scale well
for large images or signals, as the amount of parameters quickly gets too
large when the input resolution is large. The special structure in the data
makes it possible to limit the number of parameters.

In spatial and temporal data, such as images, local groups of values are
highly correlated (i.e pixels representing a carrot in a picture are similar
to each other). In addition, the data is invariant to translations as these
correlated groups of values can be located anywhere (there is still a carrot in
the picture no matter where it is). Because of these properties, CNNs have
been designed so that parameters are shared by different units to detect
the same pattern in different parts of the data array. A major benefit of
parameter sharing is that it reduces the need for memory as well as training
data by reducing the number of learnable parameters.

Depending on the dimensionality of the data and the application, con-
volutional layers can be used to introduce invariance over one or multiple
dimensions. For example, 1D convolutions are useful for analysing signals,
2D convolutions for natural images and 3D convolutions for videos and
some medical images such as computed tomography (CT) scans. CNNs
have been especially successful with 2D spatial data, leading to significant
improvements in many tasks. The CNN based ImageNet (Krizhevsky et al.,
2012), for example, almost halved the state of the art error rate for object
recognition when it was published. However, CNNs are equally applicable
to 1D data and can thus be used to analyse time series data as is done in
this thesis.

The name comes from the fact that CNNs use a mathematical operation
called convolution in at least one of their layers. It is an operation on two
functions x and w, and the output x ∗w describes how the shape of one is
modified by the other. In CNNs the first function x is referred to as the
input, and the second function w as the kernel. In other words, convolution
indicates the places where a kernel and the input data are similar so it can
be described as moving a filter window over the data. The output of the
operation is often referred to as the feature map.

In practice, we are dealing with discrete convolution as the time index
t in data sets is discretized using

s(t) = (x � w)(t) =

a=∞∑
a=−∞

x(a)w(t− a).
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Input Output

Convolutional layer

Convolution Activation Pooling 

Figure 3.1: Illustration of a convolutional layer that consists of a 1D con-
volution stage, a non-linear activation function and max pooling stage.
Convolution: Here is pictured a kernel of size three. The corresponding
value is computed as

∑3
i=1wixi = 1 × 3 + 0 × 0 + 0 × 1 = 3. Acti-

vation: The activation function pictured here is ReLU, which is defined
as g(x) = max(0, x). Other activation functions are possible. Pooling:
Here is pictured max pooling with window size two. Max pooling gives the
maximum value within the window, here 2.

As the amount of elements both in the input and the kernel is always
finite, this can be implemented as a summation over finite set of elements
by assuming that the functions are zero elsewhere. Given a 2-dimensional
kernel w and a 2-dimensional input x, the feature map or the output s of
the convolution operation is defined as

s[i, j] = (x ∗w)(i, j) =

M∑
m=1

N∑
n=1

x(m,n)w(i−m, j − n).

The indexes of rows and columns of the feature map are marked with i
and j and the dimensionality depends on the size of the input image and
the kernel as well as the used stride and padding. Here the dimensionality
of the kernel is marked with M and N . Stride defines how much a filter
is shifted at each step, and padding refers to additional borders of zeros
that are sometimes added to the input. Here the convolution is defined
in two dimensions, but naturally both the data and the kernel can have
varying amount of dimensions depending on the application. Figure 3.1
illustrates the building blocks of a convolutional layer in 1D case, including
the convolution operation.

In addition, almost all CNNs contain an operation called pooling, which
is used to introduce invariance to local translations of the input. Pooling
replaces an output with a summary of the nearby outputs. Perhaps the
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most commonly used summary is to take the maximum value of a neigh-
bourhood. Other options are for example average or minimum. Pooling
can also be used to improve computational efficiency as it can reduce the
dimensionality of the data by combining all the outputs of a neighbourhood
into one single output.

The outputs of convolutional layers are extracted features, and CNNs
are commonly extended with traditional fully connected layers that learn to
perform the task in hand, such as classification. The same practical issues
as described in Section 2.1.3, such as regularisation and initialisation, need
to be considered.

3.2 Gaussian Processes

Gaussian Processes (GPs) (MacKay, 1998; O’Hagan, 1978; Rasmussen and
Williams, 2006) are non-parametric, Bayesian models that define a prob-
ability distribution over functions f . They are Bayesian as the inference
is based on updating the prior p(f) into the posterior p(f |D) based on
data D. Each of the infinitely many potential functions that can fit the
data is assigned a probability. They are non-parametric as there are no
explicitly defined parameters θ, but p(f |D) is computed directly without
any parameters and the prior p(f) is placed directly on the function.

GPs have been widely used, perhaps due to their many desirable prop-
erties: they provide uncertainty estimations of the result, allow incorporat-
ing prior information, do not suffer from overfitting, allow computing the
predictive posterior distribution in closed form and have convenient model
selection procedures. GPs are most commonly used to perform non-linear
regression, where the goal is to fit a (non-linear) curve to data. A compre-
hensive overview of GPs from machine learning perspective is available in
the book by Rasmussen and Williams (2006).

More formally, a GP is a collection of random variables for which any
finite set of function values have a joint Gaussian distribution. Gaussian
process f(x) ∼ GP (m(x), k(x,x′)) is a random function in a d-dimensional
function space. It is specified by a prior mean function m : Rd → R and a
prior symmetric positive-definite covariance function k : Rd×R

d → R, also
known as the kernel :

m(x) = E[f(x)],

k
(
x,x′) = cov

(
f(x), f

(
x′)) = E

[
(f(x)−m(x))

(
f
(
x′)−m

(
x′))] .

A major benefit with GPs is that the predictive posterior can be com-
puted in closed form when the observation noise is assumed to be Gaussian.
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Figure 3.2: A visualisation of a Gaussian process regression with a RBF
kernel where we are modeling a one-dimensional function. The solid blue
line represents the mean and the shaded blue area the 95% confidence
interval of the GP. Green dashed lines show samples from the process.
Left: A GP not conditioned on any datapoints. Right: The posterior
after conditioning on three observed data points. The red line represents
the true function from which the data points have been observed from.

Let D = {X ,y} = {(xi, yi)}Ni=1 be a data set consisting of inputs X and
noisy scalar outputs of form yi = fi+εi, where εi ∼ N (μ, σ2) and fi = f(xi).
We denote all the training outputs with y and the corresponding training
latent function values with f . The predictive distribution of the output
y∗ = f∗ + ε∗ at a test location x∗ is a multivariate Gaussian distribution

p(y∗ | x∗,X ,y) ∼ N (y∗|μ,Σ), (3.1)

where

μ = k(x∗,X )�[k(X ,X ) + σ2I]−1y,

Σ = k(x∗,x∗) + σ2 − k(x∗,X )�[k(X ,X ) + σ2I]−1k(x∗,X ).
(3.2)

Figure 3.2 illustrates a GP before observing any data as well as after ob-
serving three data points.

A part of the appeal of GPs is the ease of encoding prior information
into the model through the mean and covariance functions. They describe
how the random functions behave and how different points in the input
space depend on each other. The prior mean function is almost always
assumed to simply be zero everywhere without any loss of generality, and
we also do this in this thesis. Information regarding the mean behaviour
as well as assumptions about for example smoothness and periodicity can
be encoded into the kernel, allowing a wide range of different modeling
assumptions. Most kernels have hyperparameters θ, such as the variance
and length scale, which determine the correlation structure. These are
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typically learned from the data by maximizing the log marginal likelihood,
as it also has a closed form expression

log p(y | X ,θ) = −1

2
y�[k(X ,X ) + σ2I]−1y − 1

2
log

∣∣[k(X ,X ) + σ2I]
∣∣− N

2
log 2π.

Exact closed-form posterior inference is possible only when the GP prior
is combined with a Gaussian likelihood, but in some cases there is a need
to use non-Gaussian predictive likelihoods. A classical example of when
this is not true is classification, here the process is squashed through a
sigmoidal inverse-link function and a Bernoulli likelihood conditions the
data on the transformed function values. Additional examples are count
data with a Poisson likelihood and constraints achieved through non-linear
transformations, such as a non-negativity constraint. In these cases either
sampling or optimization approximation strategies described in Section 2.2
need to be used.

Kernels

The choice of a kernel is important in GPs as it describes the characteristics
of the function we want to predict. A wide range of possible choices of kernel
functions exists leading to a wide range of models. In fact, many common
models, such as linear regression or Kalman filters, are examples of GPs
with a specific kernel.

A kernel (also known as the covariance function, kernel function) is a
function that receives two inputs (x1,x2) and returns a scalar describing
the similarity of those inputs as an output. The kernel is required to be
positive semidefinite in order to produce valid covariance matrices. Usually
the inputs are points in a Euclidean space, but they can also be for example
sets of points (Garnett et al., 2010), lines (Jidling et al., 2018; Purisha et al.,
2019), images or text.

The kernel defines the prior covariance between two function values,
and different kernels correspond to different assumptions about the func-
tion. Sometimes it is possible to design a specialised kernel with detailed
domain knowledge incorporated (Wahlström et al., 2013), but usually more
general kernel functions are used. Table 3.1 lists some common kernels that
we also discuss in this thesis as well as a couple of additional demonstrative
examples. More complex structures can be achieved by combining ker-
nels. Duvenaud (2014) provides a more comprehensive overview on kernel
functions and their combinations.

Common kernel functions can roughly be divided into two categories:
stationary and non-stationary kernels. In stationary kernels the covari-
ance between two function values depends only on the difference between
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Kernel name k(x,x′) Samples

Radial Basis Function
Squared Exponential

Gaussian kernel
σ2
f exp

(
− r2

2�2

)

Rational Quadratic
(
1 + r2

2α�2

)−α

Matérn (ν = 3/2) σ2(1 +
√
3r
� ) exp(−

√
3r
� )

Periodic σ2
f exp

(
− 2

�2
sin2

(
π r
p

))

Linear σ2
f (x− c) (x′ − c)

Table 3.1: Examples of common kernels. Most of these are also used in the
publications included in this thesis. Here r = |x− x′| denotes the distance
between inputs. Parameters σ2 and 	 are the variance and the lengthscale.
Samples shows examples of samples taken from the prior.

them r = x − x′, and the kernel is often expressed as a function of r:
k (x,x′) = k(r). Examples of stationary kernels are periodic kernel and ra-
dial basis function (RBF) kernel, while the linear kernel is non-stationary.
The definitions of these are given in Table 3.1.

Most kernels have a small number of parameters that usually are re-
ferred to as hyperparameters. Common parameters are the lengthscale 	
that specifies the width of a kernel or the smoothness of the functions,
and the signal variance σ2 that determines the variation of function values
from their mean. Lengthscale determines how far it is possible extrapolate
from the training data, and with small lengthscales the function values can
change quickly while large values lead to smooth functions. Small vari-
ance leads to the functions staying close to their mean value whereas larger
values allow more variation.
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3.2.1 Efficient Computation

Though Gaussian processes have many desirable features, they unfortu-
nately become computationally intractable with large data sets as the com-
putational and memory requirements increase as the cube and square of the
amount of data points N . This is due to matrix operations like the need
to invert the covariance matrix k(X ,X ) + σ2I in Equation 3.1, which is
an O(N3) operation. So even though it is possible to analytically write
down the posterior, approximate methods are needed because of the cost
of computation.

The main idea in solutions that scale to larger data sets is to use only
M < N highly informative quantities to learn the GP. Many different
sparse approximations that replace the full covariance matrix by a lowerM -
rank representation have been proposed. These reduces the computational
complexity from O(N3) to O(NM2) and storage requirements from O(N2)
to O(NM). Intuitively, in regions where there are a lot of observation, there
is often redundant information, and approximating this with a smaller set
of locations does not loose much information.

The common approach is to use M points in the same domain as the
inputs, called inducing points (Quiñonero-Candela and Rasmussen, 2005).
Another way is to rely on Fourier features that lie in the spectral domain of
the process (Hensman et al., 2017; Solin and Särkkä, 2020). Rasmussen and
Williams (2006) provide on overview on earlier methods and Quiñonero-
Candela and Rasmussen (2005) and Bui et al. (2017) discuss many methods
based on inducing points providing different unifying views on them.

More recently, Wang et al. (2019) also demonstrated that near exact
methods with large data set have become possible because of increased
computation power and algorithmic advances such as the Blackbox Matrix-
Matrix multiplication inference procedure (Gardner et al., 2018).

Here we briefly describe two different approaches: inducing points and
Hilbert space approximations. It turns out, that Hilbert space approxi-
mations are useful when dealing with integral observations (Jidling et al.,
2018; Purisha et al., 2019), which we briefly discuss in Section 5.2. Induc-
ing points we use in Publications V and VI to allow scaling the presented
method for larger data sets also.

Hilbert space approximation

Hilbert space approximation of a covariance function, originally presented
by Solin and Särkkä (2020), is a useful reduced-rank approximation for GP
regression for stationary kernels. The computational cost can be reduced
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to O(NM2) by representing the covariance function k with M < N basis
functions as

k
(
x,x′) ≈ M∑

j=1

S
(√

λj

)
φj(x)φj

(
x′) .

Here S(ω) is the spectral density, which is the Fourier transform of the
kernel. For example, for the RBF kernel it is defined as

S(ω) = σ2
f (2π)

d/2ld exp

[
− l2‖ω‖22

2

]
,

where d is the dimensionality of x. The other terms, λj and the basis
functions φj are the jth eigenvalue and the eigenfunction of the Laplace
operator in a given domain. These also have simple closed-form expressions.
The expressions, details and derivations can be found in Solin and Särkkä
(2020).

This approximation is especially useful as the convariance function pa-
rameters are independent from the basis functions, which allows for efficient
hyperparameter learning (O(M3)). It also decouples the arguments x and
x′, which makes more efficient computations possible in the case of linear
functional evaluations, such as integral observations (Jidling et al., 2018;
Purisha et al., 2019).

Inducing points

Most of the sparse GP methods are based on inducing points. Specifically,
a set of M points {zm}Mm=1, called the inducing inputs, is introduced in the
input space and f is summarized with inducing points or inducing variables
u = f(z). Inducing points can be selected to be a representing subset of
the dataset, but they can also be auxiliary pseudo-inputs (Bui et al., 2017;
Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2005).
The locations of these pseudo-inputs can be optimized, though this some-
times can lead to overfitting (Quiñonero-Candela and Rasmussen, 2005).
However the locations of the inducing inputs are chosen, they should cover
the the same region as the data. Also, for efficiency M should naturally be
smaller than the number of data points N .

We can recover p(y, f) by integrating out u from the joint GP prior
p(y, f ,u)

p(y, f) =

∫
p(y, f ,u)du =

∫
p(y, f |u)p(u)du.

The methods used to solve this can roughly be divided into two categories:
a) approximating the model with a simpler one (Quiñonero-Candela and
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Rasmussen, 2005) and b) keeping the original model but deriving an ap-
proximate inference method (Qi et al., 2010; Titsias, 2009).

Approximating the model usually means making different independence
assumptions for the conditional distribution p(y, f |u). The most common
approach is to assume that y and f are conditionally independent given u
(Quiñonero-Candela and Rasmussen, 2005)

p (y, f) 
 q (y, f) =

∫
q (y|u) q(f |u)p(u)du.

Different methods use different approaches to approximate the conditionals
p(y|u) and p(f |u), including the subset of regressors (Smola and Bartlett,
2001), DTC (Seeger et al., 2003), FITC (Snelson and Ghahramani, 2005)
and PITC (Quiñonero-Candela and Rasmussen, 2005). The fully indepen-
dent training conditional (FITC) (Snelson and Ghahramani, 2005) assumes
that the function values f are independent conditioned on the inducing
points: q(f |u) =

∏N
n=1(fn|u) and q(y|u) = p(y|u). FITC simplifies the

inference and has recently been shown to have good empirical performance
(Jankowiak et al., 2020; Rossi et al., 2021).

Instead of approximating the model, sparse variational GP methods
reformulate the posterior inference problem as variational inference (Tit-
sias, 2009). A key difference is that pseudo-inputs are considered to be
parameters of the approximation, and they are jointly selected with the
hyperparameters by minimizing the KL divergence between a variational
GP and the true posterior GP. The method was originally introduced by
(Titsias, 2009), but since then others have extended the work for exam-
ple by reformulating the variational objective and by extending it to non-
conjugate models and Gaussian process state space models (Frigola et al.,
2014; Hensman et al., 2013, 2015; Matthews et al., 2016).

3.2.2 Sensor Placement

Strategies for choosing the locations of sensors in standard Gaussian pro-
cesses have been well studied (Garnett et al., 2010; Krause and Guestrin,
2007; Krause et al., 2008; Seo et al., 2000; Zhu and Stein, 2006). Depend-
ing on the application, the sensor locations can be chosen completely be-
fore making any measurements (Krause et al., 2008), or sequentially based
on observations made by previously selected sensors (Krause and Guestrin,
2007). In model-based approaches, when the kernel function is fully known,
we do not loose anything by performing the sensor selection before making
any measurements as the posterior variance does not depend on the actual
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observed values. Pre-selecting all sensors is also the only option when us-
ing geometric approaches as they are model independent. However, in most
cases we do not know the kernel parameters, but they are optimised, and
in such cases choosing the sensors sequentially leads to better results. The
same applies if non-Gaussian likelihoods are needed.

Whether using pre-selection or sequential techniques, the best results
are typically obtained by model-based methods searching for sensor loca-
tions informative of the underlying function (Krause and Guestrin, 2007;
Krause et al., 2008), but also geometric approaches covering the space max-
imally have been considered (González-Banos, 2001). Next, we briefly de-
scribe both of these strategies for standard GPs.

Model-based approaches

Model-based approaches are based on optimizing some measure of informa-
tion content, such as mutual information or entropy (Krause et al., 2008).
However, the main issue with these methods is that finding an optimal
placement is NP-complete (Ko et al., 1995; Krause et al., 2008). Thus,
typically the placement algorithms choose the locations greedily, i.e choos-
ing one sensor at a time and placing the next sensor to the location where
the change in the wanted measure is the highest at that point. This also
means that in practice we can consider only a finite subset of possible lo-
cations V from which we choose a subset A of locations where the sensors
are placed.

An intuitive choice for the measure of information is to use the entropy
criterion H (Cressie, 2015; Shewry and Wynn, 1987)

A∗ = argminA⊂V:|A|=N H (V\A|A)

= argmaxA⊂V:|A|=N H(A).

Minimizing the uncertainty of unobserved locations after placing the sensors
is equivalent to finding a set of sensors that are most uncertain about each
other. Considering only the selected locations usually results into choosing
locations that are as far from each other as possible, and unfortunately
sensors tend to be placed along the borders of the area (Ramakrishnan
et al., 2005). As mentioned, optimizing the entropy criterion is an NP-hard
problem (Ko et al., 1995), and in practice sensors y are chosen greedily by
selecting the location y∗ from V\A that maximally increases the conditional
entropy (Cressie, 2015; Krause et al., 2008; McKay et al., 1979)

y∗ = argmaxy H(y|A) = argmaxy
1

2
log(2πeσ2

y|A).
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Using mutual information I(·, ·) (MI) (Caselton and Zidek, 1984) fixes
some of the issues related to the entropy criterion and leads to better accu-
racies, as it looks for locations that are most informative about the unused
locations using

A∗ = argmax I(A;V\A).

In practice, we solve for (Krause et al., 2008)

y∗ = argmaxy H(y|A)−H(y|V\(A ∪ y))

∝
σ2
y|A

σ2
y|V\(A∪y)

.

However, using MI is computationally more demanding and becomes un-
feasible with large sets of possible locations. Krause et al. (2008) present
some computational tricks to make the computation more efficient, such as
using lazy evaluations with priority queues or by utilizing the locality of
the kernels.

Geometric approaches

Geometric approaches refers to algorithms that take advantage of the geo-
metric properties of the are of interest. They only consider the area and not
the model, thus the same result can be used with various different models
and we do not need to assume a GP when designing the placement.

In cases where the observations are points in the measurement space,
the geometric options are limited. The intuitive and standard approach is
to assume that each sensor can observe an area with a fixed radius. The
locations are then be optimized so that the area can be covered with as
little sensors as possible (González-Banos, 2001). This is also referred to
as the disk model (Kershner, 1939). Geometric approaches become more
interesting when the observations are for example lines in the measurement
space, as discussed in Section 5.5.

3.3 Gaussian Process State Space Models

State Space Model (SSM) (Särkkä, 2013) is a common tool for modeling
time-series data with dynamical behaviour, i.e. data where there are non-
trivial correlations between different data points. Examples of such appli-
cations are forecasting the daily number of new cases in epidemiology (Zim-
mer and Yaesoubi, 2020) or predicting the emissions of a car engine (Yu
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et al., 2020). SSMs are popular in fields where dynamical time series data
is common, such as signal processing, control, ecology and finance.

Gaussian process state space model (GPSSM) (Eleftheriadis et al., 2017;
Frigola et al., 2013, 2014; Ko and Fox, 2009; Turner et al., 2010; Wang
et al., 2007) allows for a Bayesian approach to SSMs leading to the many
benefits described in Section 3.2. Especially, the natural ability of Bayesian
methods to model uncertainty makes them well suited for physical sensing
applications where amounts of data can be limited or interesting phenomena
might be rare and only present in a small subset of the data. We start this
section by introducing the general state-space model, after which we focus
on the special case of GPSSMs.

3.3.1 State Space Models

The key assumption in SSMs is that there exists some latent state, denoted
by xt ∈ R

Dx , at a particular time point t, that compresses the history of
the system and fully describes the system at each time point. To allow
more efficient learning of the state-space model, the states are defined so
that once xt is known, the previous states x0, ...,xt−1 don’t add any new
information about the later states xt+1. This is called a Markov property
and can more formally be written as

p (xt+1 | . . . ,xt−1,xt) = p (xt+1 | xt) .

In some cases, the states can be physically interpretable, such as a
direction, speed and acceleration of a car. These are sufficient for predicting
the position of the car, and knowledge of past values does not provide any
additional information. More often, we are just interested in learning the
dynamics from data and making predictions, while the states do not need
to have any specific meaning but to just act as a summary of the past.

Even though the system states are a key assumption in SSMs, it is not
possible to directly observe these as the term latent implies. Instead, we
assume that we can only make partial, noisy observations yt ∈ R

Dy at time
point t.

More specifically, a discrete-time SSM can be written as

x0 = p(x0),

xt+1 = f (xt,ut) + εt,

yt = g (xt) + γt,

(3.3)

where εt is the process noise and γt is the measurement noise. The re-
lation between the states is described by a transition function f , and the
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observation function g describes the relation between the states and the ob-
servations. In addition, a density p(x0) for the initial state x0 needs to be
defined. Here the states are assumed to be continuous, and a corresponding
model with discrete states is usually called a hidden Markov model.

Sometimes, in addition to the outputs yt, we can also observe an input
signal ut at time t that can influence the system. This is used especially in
the automatic control context, and an example of such input is for example
turbulence affecting an aircraft. To simplify the notation, it is typical to
leave the inputs out from the equations. After this section we will exclude
the inputs from all equations to avoid clutter, but note that they could be
easily included when needed.

Inference and learning in linear and non-linear SSMs

SMMs can be used to model different kinds of problems. In some cases, like
when the states correspond to known physical properties such as a speed of
an object, the model, i.e the transition function f and observation function
g, might be completely known and the only goal is to infer the states x1:T .
Perhaps more often the real physical process is not fully known and in
addition to the states, the functions f and g and their parameters need to
be determined.

In principle there is no difference between the states and the model
parameters as both are unknown quantities of the model. However, in many
cases the dimensionality of function parameters is fairly low, whereas the
state sequence can be long and grows with the size of the data y. Thus,
because of efficiency the inference of these are often handled differently.
Finding the posterior distribution of the latent states x1:T based on the data
is often referred to as inference while inferring f and g is called learning
the model.

Inference and learning in linear SSMs, where the transition and obser-
vation functions f and g are linear functions, is a well studied area and
many efficient algorithms exist. In fact, many problems can be solved in
closed form for example with a Kalman filter/smoother (Kalman, 1960).
However, linear SSMs have limited expressiveness and are often too sim-
plistic for many real world applications. Nonlinear extensions of SSMs are
more flexible and thus often more useful in practice. Typically they assume
some parametric form for the transition and observation functions f and g.
Both probabilistic and deterministic approaches to solving non-linear SSMs
exists. A comprehensive introduction to many methods such as non-linear
Kalman filtering and smoothing and particle filtering and smoothing can
be found in Särkkä (2013).
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3.3.2 Gaussian Process Prior on the Transition Function

Gaussian process state space models (GPSSM) combine GPs and SSMs into
probabilistic, non-linear SSMs (Deisenroth and Rasmussen, 2011; Wang
et al., 2005). The Bayesian non-parametric approach brings many benefits
that have made GPSSMs an interesting model for example in reinforcement
learning (Curi et al., 2020; Dörr, 2021), human motion tracking (Pöhler
et al., 2019) and modeling financial time-series data (Wu et al., 2014).

There are multiple different dynamical system models based on GPs,
of which Frigola (2015) gives a good overview. For example, it is possible
to place a GP prior on the observation function g (Ferris et al., 2007),
the transition function f (Frigola, 2015; Wang et al., 2005), or both the
observation and the transition function (Frigola et al., 2014; Turner et al.,
2010).

In this thesis GPSSMs refer to state space models with a GP prior on the
transition function: f ∼ GP (m(·), k(·, ·)). This allows capturing complex
dependencies in dynamical systems and encoding prior knowledge about
the system, such as assumptions about the smoothness of the states, into
the GP. For example, m(·) can be based on knowledge of the underlying
physics of the model.

More specifically, we discuss models where a GP prior is placed on the
transition function f of the SSM model defined in Equation 3.3. The model
can then be written as

f(x) ∼ GP
(
m(x), k

(
x,x′)) ,

x0 ∼ p (x0) ,

xt+1 | xt ∼ N (f (xt) , Q) ,

yt | xt ∼ N (Cxt + b,Ω) .

The covariance Q describes the process noise and Ω describes the obser-
vational noise. It is common to choose a simple, parametric observation
model g since it simplifies the computations but does not reduce the gener-
ality of the model when the latent state is sufficiently large (Frigola, 2015).
Here we have defined the observation function to be linear g(xt) = Cxt+b.
However, more complex observation models are naturally also possible. An-
other common design choice for reducing computational complexity is to
use independent GPs for each latent dimension (Curi et al., 2020; Doerr
et al., 2018).

Inference in GPSSMs cannot be performed analytically because of the
non-linear dynamics. Some works have presented solutions for inferring the
latent states when assuming that the system is already known (Deisenroth
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and Rasmussen, 2011; Ko and Fox, 2009). However, information about
the system is rarely available, and we are interested in the case where the
latent state distribution is optimized together with the system model. The
solutions mostly build on the approximate inference techniques introduced
in Section 2.2. Sampling-based solutions are accurate but too inefficient for
large data sets (Frigola et al., 2013).

The variational inference solutions differ on the independence assump-
tions they make in the form of the approximate posterior to improve com-
putational efficiency. Many methods introduce independence between the
latent states and the transition function (Frigola et al., 2014), between the
states (Mattos et al., 2016) or assume a linear latent state structure (Eleft-
heriadis et al., 2017). While these increase the computational tractability,
they oversimplify the model which can lead to biased, sub-optimal solu-
tions. More recent solutions have introduced non-factorised approximate
posteriors that allow preserving the temporal correlations of the prior dis-
tribution (Curi et al., 2020; Doerr et al., 2018; Ialongo et al., 2019).

Sparse GPSSM

A standard solution to learning GPSSM models is to use variational infer-
ence to optimize a Monte Carlo estimate of the lower bound (Kingma and
Welling, 2014). However, computing the lower bound scales cubically with
the number of time points O(T 3). This is because complete latent state
trajectory x1:T needs to be sampled, which requires incrementally building
a T × T matrix inverse. Sparse GPs can be used to reduce the computa-
tional complexity to O(T ) (Curi et al., 2020; Doerr et al., 2018; Ialongo
et al., 2019).

Doerr et al. (2018) use the FITC approximation (Snelson and Ghahra-
mani, 2005) described in Section 3.2.1, where the function values are as-
sumed to be independent conditioned on a set of inducing points fM . This
leads to the model

fM ∼ N (fM |0,KMM ),

ft|fM ∼ N (ft|μ(xt),Σ(xt)),

xt+1|xt, ft ∼ N (xt+1|xt + ft,Q),

(3.4)

where ft are the GP predictions at time index t with mean μ(xt) and co-
variance Σ(xt) as defined in Equation 3.2.

Another benefit of this formulation, in addition to reducing the com-
putational complexity, is that it allows decomposition of the lower bound
between the time points. This makes it possible to use mini-batches (Hens-
man et al., 2013; Salimbeni and Deisenroth, 2017), which further reduce the
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computational complexity by reducing the length of the latent state trajec-
tories T that needs to be sampled. Furthermore, long trajectories converge
poorly because of vanishing and exploding gradients Pascanu et al. (2013),
and using shorter mini-batches reduces this issue also.
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Chapter 4

Convolutional Neural Networks
for Signals

In Section 3.1 we described how CNNs have been designed for analysing
data where spatial or temporal invariance is needed. Many signal processing
applications are based on such data, and CNNs have been successfully
used for example in speech recognition (Palaz et al., 2015) and EEG signal
classification (Cecotti and Graeser, 2008). In this chapter we discuss using
CNNs to analyse signal data collected by physical sensors in two practical
applications that have been presented in Publication I and Publication

II.

Signals are sequences of data points over time, and commonly we are
looking for features in these signals that are invariant of time, i.e can be
located anywhere in the signal. Some signals are multidimensional and we
might need invariance over other domains also. Figure 4.1 gives examples
of different types of signal data. Whether to use convolutions only over the
time domain (Lee et al., 2009), or to use higher order convolutions, such
as 2D convolutions to find features that are invariant over both frequencies
and time, depends on the application in hand. Sometimes, CNNs can be
used to induce invariance only over other domains than time, while using
other techniques to model temporal continuity (Abdel-Hamid et al., 2012,
2014).

In our applications we use convolutions over the temporal domain in
both cases, as the features we are looking for can be located anywhere in
time. In Publication II, the signals are one dimensional, so 1D convolu-
tions are all we can utilize. In Publication I, the data is two dimensional
and, in fact, we do need invariance over the frequency domain also.

In both publications the data has been recorded with one receiving
sensor and collected manually. This means that the amount of data we
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Figure 4.1: Examples of different types of signal data. Left: Example
of data measurements pictured in Publication I. This one is a measure-
ment of microwave oven at 800w. This is a three minute measurement
where the microwave oven was turned on for one minute in the middle.
We use 2D convolutions in the analysis as we need invariance in both the
frequency (y axis) and the temporal domain (x axis). Right Example of
a measured pulse-echo signal used in Publication II. The data in case is
one-dimensional so we use 1D convolutions to find patterns in the signals.

have is limited. Deep learning methods on the other hand are known to
work well especially in cases where amounts of data are extremely large
(Krizhevsky et al., 2012). This is why in Section 4.1 we discuss ways to use
CNNs with small amounts of data.

Even though we are able to solve the applications presented in this
section using CNNs, it is good to note that they are by no means the only
method that could be used. For example, recurrent neural networks have
been designed for time series data, and have worked great in cases where
invariance over time domain is needed, such as language modelling (Mikolov
et al., 2010) and speech recognition (Graves et al., 2013).

4.1 Training CNNs with Limited Data

In many real world sensing applications collection of data can be expen-
sive or impractical. Often the amount of sensors is limited, sensors can
be expensive and placing sensors as well as making measurements requires
manual labour. DL methods on the other hand are traditionally data hun-
gry (Krizhevsky et al., 2012). In this section we present two alternative
approaches to deal with limited amount of data in the context of deep
learning. The first one is based on efficiently using all available data by
utilising cross-validation. The second one is based on using unlabeled data
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in addition to labeled data (Chapelle et al., 2006), as data collection in
general is often easier than accurately labeling the data.

There are naturally multiple other ways to deal with limited data.
One popular approach is to augment labeled data with transformations
(Krizhevsky et al., 2012). This is especially popular in natural image clas-
sification, where for example by turning, shifting, reversing, adding noise,
modifying contrast or the lighting etc, it possible to get more training data
that is still accurately labeled. While it is easy to imagine that these
transformations work for natural images and can improve the classification
accuracy, for signal data augmentation is not as simple. In many cases, like
with the data from Publication I and Publication II, it is not straight
forward or even possible to design rich transformations that would be guar-
anteed to preserve the labels.

This is by no means an exhaustive list of ways to deal with limited
data, but only provides examples as well as shortly describes the methods
we have chosen to use in our publications. Sometimes, the best technique is
to choose a model family that is better suited for limited data than DL is.
For example, Bayesian methods are traditionally considered to be better as
it is possible to incorporate prior information and we get better estimates
about the uncertainty of the model (Ghahramani, 2015).

Cross-validation

In some cases, we have no additional data that can be used in the training,
but we need to cope with the limited amount we have in hand. This is the
case in Publication II. There we have manually collected data from 150
different locations. Here collecting unlabeled data would not be any easier,
and data augmentation not possible. In this case, in order to have enough
data for training, testing and validation, we have used cross-validation.
Cross-validation has been used extensively in the past with many different
machine learning models. It is based on training the model multiple times
by dividing the data into subsets, and each time using some of the subsets
for training and some for evaluation. This allows maximizing the amount
of used data in training while still being able to evaluate the performance
on multiple data points.

Using unlabeled data

Sometimes, acquiring labels for the data is the bottle neck in the process,
while recording unlabeled data is easier. In these cases, it is possible to use
pre-training with unlabeled data (Erhan et al., 2010; Lee et al., 2009) or
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semi-supervised learning, which refers to using both labeled and unlabeled
data in the training process (Chapelle et al., 2006). Unsupervised pre-
training, however, is a hard task on its own, often requiring a generative
model for the data. This mostly means, that the amount of unsupervised
data is required to be substantially larger than the amount of labeled data
before considering designing a generative model for the domain makes sense.

Semi-supervised learning uses both labeled and unlabeled data in train-
ing a model. The standard and perhaps most intuitive way to do this is
to alternate between inferring the labels for unlabeled samples and then
using both the labeled data as well as the unlabeled data with inferred
labels to again update the model (Blum and Mitchell, 1998; Ghahramani
and Jordan, 1994).

In deep learning context predicting labels for unlabeled samples has
been referred to as using pseudo-labels (Lee et al., 2013), and we build
on this work in our publication. Similar technique has also been used for
example in image classification with small data sets by augmenting the
data with images from online image search (Kolář et al., 2016). We add
to these by including a component that takes advantage of the continuity
assumption in our data to make assigning pseudo-labels more reliable. We
describe this in more detail below.

More advanced techniques for semi-supervised learning naturally ex-
ists also, including pseudo-ensemble agreement (Bachman et al., 2014) and
semi-supervised learning with ladder networks (Rasmus et al., 2015) that
directly have improved the results achieved by Lee et al. (2013). However,
we do not go into details on other methods in this thesis, as the simple
pseudo-label technique was easy to extend and enough to solve the prob-
lem in Publication I.

4.1.1 Structured Pseudo-labels

In Publication I we extend the concept of pseudo-labels (Lee et al., 2013)
into structured pseudo-labels. The idea is to take advantage of the structure
in the data, i.e the continuity in time, when assigning the pseudo-labels for
unlabeled data points.

Let N and N ′ be the number of labeled and unlabeled samples, fm
and f

′
m the outputs of labeled and unlabeled data and ym and y

′
m the true

labels of labeled data and the pseudo-labels. The optimization problem
with pseudo-labels is then defined as

L(θ, y′) = 1

N

N∑
m=1

L(ym, fm) + α(t)
1

N ′

N ′∑
m=1

L(y
′
m, f

′
m). (4.1)



4.2 Application: Identifying Sources of Wi-Fi Interference 41

The coefficient α(t) can be used to scale the weight of pseudo-labels during
the training. It can be given a constant value or it can be slowly increased
during the training process when the predictions get better (Lee et al.,
2013).

Since we have temporal data, we encourage the predictions to be smooth
over the sample space instead of independently labeling each sample. The
same idea can be used also for other types of data with continuity. We
encourage continuity by adding a new term to the loss function that adds
a penalty when consecutive samples are assigned a different label. The
penalty term to be added to Equation 4.1 is

λ
n′∑

m=2

I[y
′m
i �= y

′m−1
i ],

where λ can be used to scale the weight of the penalty and I is the identity
function that evaluates to 1 when the consecutive labels are not equal and
to 0 otherwise.

When we add this term to the loss function, the assignment of pseudo-
labels can not be done independently as usually. Instead, we use a dynamic
programming algorithm corresponding to the Viterbi algorithm used for
Hidden Markov models (HMMs). The same algorithm can be used to en-
courage continuity also in the test set or the actual predictions. Pseudocode
and details can be found in Publication I.

4.2 Application: Identifying Sources of Wi-Fi In-
terference

In Publication I we use CNNs to identify radio frequency devices from
signal data. The goal is to improve wireless local area networks by detecting
interference sources. For example, every day devices such as baby monitors,
microwave ovens and Bluetooth devices operate in the same frequency range
as Wi-Fi and can have a negative impact on the performance of a Wi-Fi
network.

We have data measured with a device that performs sweeps over the
2.4GHz spectrum, providing roughly 3000 features for every data point
measured, which is once per 40ms. An example of such raw data is given
in Figure 4.1 (left). We have collected data from 14 different possible
sources of interference. We split the data into partially overlapping two-
second windows, each corresponding to 50 consecutive time points, making
the input two-dimensional spectrograms where one dimension is over the
frequencies and the other over time.
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In this case, we need invariance over both domains so we use 2D con-
volutions. Naturally, there can be devices on anywhere in time. Different
devices also operate in different frequencies, and some devices, such as
bluetooth, can switch frequencies, so we need to be able to identify similar
patterns everywhere in the frequency domain also. We build a simple CNN
with two convolutional layers and one fully connected layer with dropout.
The output layer outputs the classification label one-hot encoded. We use
categorical crossentropy as the objective function.

Previously to our work, Rayanchu et al. (2011) used manually designed
features and decision trees to accurately recognise 8 different devices. The
drawback of this is that a separate classifier needs to be trained for each
device, and the features need to be hand picked. In our work we compare
against a baseline motivated by this system, though all features can not be
incorporated as our data is too sparse in time compared to the data these
features were designed for.

When using all available data, we can solve the classification task with
97% accuracy, while the baseline only reached a 79% accuracy. We also
demonstrate that the features the CNN learns generalize over devices and
the model can thus be fairly easily be extended to new devices: we show
that when adding a new device to be classified, it is sufficient to only train
the last layer of the network to recognise the new device.

As the data was collected manually, accurate labeling of the data is
challenging especially near the time points where devices were turned on
or off. Using semi-supervised learning, and especially enforcing temporal
continuity when assigning pseudo-labels, increases the classification accu-
racy when we have only little accurately labeled training data available.
An interesting extension to the method could allow modifying the labeled
data when it looks like they have been given a wrong label. Labeling data
is a challenging task and mistakes happen. In this case, especially, precise
labeling is not possible as even if we know a device was turned on, there
might not have been any detectable interference.

4.3 Application: Using Ultrasound to Localise a
Target

Ultrasound signals are used in many environmental sensing applications,
and in Publication II we use them to locate a target inside a container.
We place a transducer that sends and receives ultrasound signals outside
the container, and based on the received signals that have travelled through
the container we can deduct the location of a target.
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With one transducer the acoustic aperture is limited, and we use a
chaotic cavity (CC) to disperse the field (Montaldo et al., 2005). Chaotic
cavity works by scattering the waves randomly. This increases the acoustic
aperture but also the complexity of the problem due to the chaotic scatter-
ing that makes signal interpretation by conventional means difficult. Thus,
we use CNNs to automatically detect the needed features. The inputs are
the recorded signals, an example of which is shown in Figure 4.1 (right).

We trained a fairly simple CNN consisting of two 1D convolutional
layers with the recorded signals as inputs and the corresponding locations
of the target as outputs. The loss function to be minimized was the mean
squared error between the predicted location and the true location.

The main goal was to show that using a chaotic cavity increases the
area inside the container we are able to map, while still allowing us to
infer useful information about the locations of targets inside the container
despite of the added complexity to the signals. Figure 4.2 illustrates the
experimental setting and the improvements we achieve by using a chaotic
cavity.

We use Gaussian process regression to visualise the accuracy of the
model in different parts of the container: we fit a GP with the distances
between true and predicted locations, and the mean of this GP is shown
with and without a chaotic cavity. These plots demonstrate that without
a chaotic cavity it is possible to observe targets only in the middle of the
container, directly in front of the transducer. A chaotic cavity increases
the accuracy of localisation around the edges: the area inside the 30 mm
contour line (black) is 49% larger with a chaotic cavity than without it.
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Figure 4.2: Advantage of using a chaotic cavity. Mean of a GP es-
timate of the distance between the true locations and predicted locations
with a chaotic cavity (left) and without a chaotic cavity (right). The black
and orange contour lines represent the 30mm and 50mm distances. The
diameter of the target was 25mm. The light gray box represents the trans-
ducer while the darker gray component on the left represents the chaotic
cavity. Picture from Publication II.



Chapter 5

Gaussian Processes with Integral
Observations

As explained in Section 3.2, Gaussian processes (Rasmussen and Williams,
2006) are a convenient tool for modeling functions as it is possible to infer
the posterior distribution in closed form. GPs have been popular especially
in regression modeling, where the goal is to learn a mapping between a
scalar input and an output. However, the closed-form inference applies also
after linear functional transformations, meaning that GPs are applicable to
a wide set of diverse observations, such as values of integrals or derivatives
over functions.

In this chapter we discuss using GPs when we can only observe integrals
over some area of interest. In other words, instead of directly observing
values of a function, the observations correspond to averages or sums over
parts of it. For example, when modeling daily rates of incidences of a disease
based on incidences per week or month, the observations are sums over
time. Observations can also be sums or averages over spatial areas, such
as census data over administrative districts on a map (Law et al., 2018) or
signal attenuations along linear paths through objects. For example, in X-
ray computed tomography (CT) imaging, where X-rays are used to map the
internal structure of an object non-invasively, the observations correspond
to values of the integrals over the paths the X-rays have traveled (Purisha
et al., 2019). We present a novel application where ultrasound signals are
used to non-invasively map fouling inside industrial pipelines.

One major limitation of GPs is that the convenient closed-form solutions
exist only when the likelihood and the the noise are Gaussian. Several
solutions exists for traditional GPs (see Section 3.2), but applying these
with integral observations is not straight forward. In Section 5.4 we discuss
possible solutions, including our contribution from Publication IV.

45
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Finally, to make solving practical inverse problems easier, we discuss
sensor placement for different physical sensing configurations in this con-
text in Section 5.5. In Publication V we provide the first comprehensive
overview on the topic, and give two practical ways to optimize sensor loca-
tions.

5.1 Related Work

Integral observations appear in many physical sensing applications, though
only a few existing works have yet applied GPs in solving these. Integral
observations with GPs have been shown to work in the context of laser
scanners (O’Callaghan and Ramos, 2011) and tomographic reconstruction
(Jidling et al., 2018; Purisha et al., 2019), while potential applications ex-
ist also for example in ultrasonic structural health monitoring (Lu and
Michaels, 2009). In computed tomography (CT), the goal is to reconstruct
a 3D object based on signal attenuation along linear paths through the
object (Jidling et al., 2018; Purisha et al., 2019). In Publications III-V
we also introduce and focus on a new application area based on ultrasonic
signals: fouling detection in pipes, which we describe in Section 5.6.

In addition to different physical sensing problems, integral observations
occur when the data of interest is collected in lower granularities than we
want to model it. Such data is often referred to as aggregated observations
(Purisha et al., 2019; Tanaka et al., 2019b; Yousefi et al., 2019) or binned
data (Smith et al., 2018a,b). For aggregated data, GPs have been applied to
model for example infectious diseases, air pollution and poverty rates on a
finer scale based on data aggregated by larger areas, such as administrative
districts, or by coarser time resolutions, such as hours or days (Law et al.,
2018; Tanaka et al., 2019b; Yousefi et al., 2019). Integral observations of
binned data can also be utilized to achieve differentially private regression
(Smith et al., 2018b).

GP based methods for aggregated data have been studied especially in
geostatistics, where GPs are known as kriging (Goovaerts, 2010; Goovaerts
et al., 1997; Kyriakidis, 2004; Xavier et al., 2018). Learning more fine-scaled
estimates from aggregated spatial data is there known as downscaling, dis-
aggregation or change of support (Gotway and Young, 2002; Xavier et al.,
2018; Zhang et al., 2014). Recent works in machine learning have focused
on multi-task learning where they aim to combine data collected from mul-
tiple sources and in multiple granularities (Hamelijnck et al., 2019; Tanaka
et al., 2019a; Yousefi et al., 2019)
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5.2 Gaussian Processes for Linear Operators

Like Gaussian distributions are closed under linear transformations, GPs
are closed under linear operators (Rasmussen and Williams, 2006; Särkkä,
2011). We define Lx to be a linear operator applied to a function f(x),
and consider cases where f(x) is modeled as a Gaussian process f(x) ∼
GP (m(x), k(x, x′)). Then Lxf(x) is GP with

E[Lxf(x)] = Lxm(x),

cov(Lxf(x),Lx′f(x′)) = LxLT
x′k(x, x′).

In principle, L could be any linear operator, such as derivative (Solak et al.,
2002; Wahlström, 2015) or finite summation (Smith et al., 2018a), but we
focus on cases where the linear operator is an integral (Jidling et al., 2018;
Law et al., 2018).

The observations are a collection of N region-response pairs (vi, yi)
N
i=1,

where the region vi is a subset of the input space, and yi is the value of the
response variable for that region, i.e the integral over it. All the regions we
deal with are regular shapes, i.e intervals in 1D space or lines in 2D space,
but in principle these regions could be anything, such as administrative
districts on maps (Tanaka et al., 2019a).

More specifically, we consider setups where the observations yi are noisy
values for integrals evaluated along a region vi computed using

yi = f(vi) + εi =
1

|vi|

∫
z∈vi

u(z)dz+ εi.

Here u(z) ∼ GP (0, k(z, z′)). In Publications III and V we assume εi ∼
N (0, σ2) so that we can solve the analytical posterior, while in Publication

IV we allow also non-Gaussian additive errors. Figure 5.1 gives an example
of GP regression when the observations vi are over lines in a 2D space.

5.3 Efficient Computation of the Kernel

In addition to computing the covariance between two points like in tradi-
tional GP regression, with integral observations we need to also define the
covariance between a region vi and a point x∗i and between two regions vi
and vj . For kernel function k, the covariance between a region and a point
is defined to be

k(vi,x
∗
i ) =

1

|vi|

∫
z∈vi

k(z,x∗
i )dz, (5.1)
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Figure 5.1: Mapping an unknown function f(x) when the observations are
integrals over lines. Left: The true function as well as nine sensors that
form 36 line integral observations vi between them. Middle: Two examples
of what a slice of the function looks like along an observation line. Right:
Mean of the GP fit after conditioned on the noisy observations of all 36 line
integrals. Reproduced from Publication IV.

and between two regions

k(vi, vj) =
1

|vi| |vj |

∫
z∈vi

∫
s∈vj

k (z, s) dsdz. (5.2)

The posterior GP can then be computed as shown in Equation 3.2, but
that requires solving the integral in Equation 5.1 and the double integral
in Equation 5.2. Computing these depends on the kernel function k, and
in general these are not analytically tractable. This is perhaps one reason
why integral observations have not been commonly used with GPs.

General methods for approximating the integrals

Numerical integration is the most flexible way to approximate the integrals
as it can be used with any kernel function and can be extended also to
non-linear cases as we show in Publication V. However, it is also compu-
tationally expensive. Still, it has been used by most of the earlier works
(Kyriakidis, 2004; O’Callaghan and Ramos, 2011; Tanaka et al., 2019b;
Yousefi et al., 2019).

In numerical integration the integral is approximated by discretizing
the observation regions vi into J points where the integrand is evaluated,
and the approximation is given by a weighted sum of these. Any numerical
integration method can be used to choose the discretization points and
weights. The simplest way is to use Riemann sums with evenly spaced
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discretization points xij ∈ vi := [xi1, . . . , xiJ ], resulting in∫
vi

f(x)dx ≈
J∑

j=1

Δvif(xij). (5.3)

Numerical integration leads to quadratic complexity for the region-vs-
region case in Equation 5.2 in terms of the number of evaluation points J ,
and thus requires us to trade off between computation time and accuracy.
The main challenge with this approach is that it becomes infeasible with
large data sets, however, for many real world sensing problems the method
is still practical.

Methods based on Hilbert space approximations (Solin and Särkkä,
2020) are applicable to all stationary kernels and allow avoiding numer-
ical integration completely by approximating the kernel with a finite set of
basis functions as described in Section 3.2.1. The method decouples both
the model parameters from the integrals as well as the input arguments
from each other. This makes it possible to analytically solve the integrals
(Jidling et al., 2018; Purisha et al., 2019). While the method can not be
used with all possible kernels, in practice most popular kernels in use are
stationary, like all the kernels used in this thesis. Even though the number
of required basis functions grows exponentially with the problem dimen-
sionality, the method is an excellent practical solution for problems in 2D
feature spaces.

Kernel specific methods

It is also possible to develop methods that are specialised for specific ker-
nels by analysing their exact functional form. This way we can sometimes
solve the integrals either fully analytically or partially analytically. The
drawback here is that clear indicators on when this can be done do not ex-
ists but each kernel has to be separately analysed. Whether on analytical
solution exists or not can also depend on the shape of the region vi.

For the frequently used RBF kernel, Hendriks et al. (2018) showed that
it is possible to solve the integral in Equation 5.1 analytically when the
observed regions are lines. They also provided a semi-analytic solution for
the double integral in Equation 5.2 using numerical integration only for
the outer integral reducing the computational cost to be linear in J . In
the case of one dimensional feature space, these integrals can be computed
fully analytically, and with certain shapes of regions, specifically rectangles,
cuboids or hyperrectangles, kernels in higher dimensions can be expressed
as the product of one dimensional kernels and the analytical result can be
applied to higher dimensional feature spaces also (Smith et al., 2018a).
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One of the contributions of this thesis is to extend these results on the
RBF kernel into the rational quadratic kernel (RQ). In Table 3.1 we gave
the equation of the kernel and showed how the samples from the prior look
like. In Publication III we show that a fully analytical solution for line
integrals exists for the RQ kernel with α = 2. The exact derivations can be
found in the publication. The benefit of kernel specific analytical methods
is that they are exact and fast. We show that even with small amounts of
evaluation points in numerical integration the analytic approach is about
40 times faster than fully numerical integration.

However, the exact results presented are still somewhat tedious and only
applicable for very specific cases. In practice, the methods based on Hilbert
space approximations allow switching between different stationary kernels
more conveniently, provide fast ways to optimize for the hyperparameters
and still provide accurate results in most cases (Jidling et al., 2018; Purisha
et al., 2019). For small data sets the numerical methods are efficient enough,
and they are the easiest to implement, work with arbitrarily shaped regions
and can be easily used with any kernel.

5.4 Non-Conjugate GPs

Like in traditional GP regression, also with integral observations the conve-
nient analytical solutions hold only with Gaussian likelihood models. Some-
times, to get more flexible models, we need to resort to non-Gaussian like-
lihoods. This is often done by assuming that the observations are integrals
of a GP that is mapped through a non-linear function g(·) with

yi =
1

|vi|

∫
z∈vi

g(u(z))dz+ εi.

Here g(·) should be selected to match the needs of an application. Another
reason for non-conjugacy is to assume a non-Gaussian additive error model.

First we start with some motivating examples. Many real world data
sets consist of only non-negative values, such as amount of fouling on a
surface or the height of a person. While we can use conjugate GPs to
model such data sets, in many cases introducing a non-negativity constraint
improves the results. In Figure 5.2 we show a motivating toy example of
modeling a non-negative latent function based on binned data. Traditional
GP regression places most of the posterior mass to be on negative values,
while the constraint (g(x) = log(1 + ef(x))) helps to correctly place the
mean at zero. Another example is modeling count data with a Poisson
likelihood. Several potential aggregate data sets consist of counts: number
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Figure 5.2: Illustration of the benefit of introducing a non-negativity con-
straint into Gaussian process modeling of aggregated data when the latent-
function is known to be non-negative. The bars represent aggregated ob-
servations we have of the black underlying true function. The blue and red
line represent the means of the GP fit without and with a non-negativity
constraint introduced by modeling the latent function as log(1 + ef(x)) for
f(x). The dashed lines show the 5% and 95% quantiles. Picture originally
published in Publication IV.

of new incidences of an infectious disease or number of votes in a voting
district. In Publication IV we provide an example of daily Google search
counts.

In this section we briefly discuss previously presented solutions for non-
conjugate GPs with integral observations, most of which rely on extending
traditional solutions based on variational inference. We then introduce a
general sampling based approach from Publication IV that can be always
applied regardless of the transformation or the likelihood used.

Related work

One approach to introducing constraints without having to deal with non-
conjugacy, is to place some virtual observations that fulfill the desired con-
dition in the input space. Riihimäki and Vehtari (2010) used this idea to
achieve approximately monotonic GP posterior means. Smith et al. (2018a)
build on this work by using virtual points to enforce non-negativity when
modeling binned data. However, the method changes the posterior as well
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as the estimates of the hyperparameters, and it might not be practical with
all data sets (Smith et al., 2018a).

A more principled approach was proposed by Yousefi et al. (2019) and
Law et al. (2018) based on variational approximations for exponential fam-
ily likelihoods. However, both of these methods are limited to some specific
cases. Yousefi et al. (2019) only allows non-linearities after the aggregation
and the method by Law et al. (2018) works for specific likelihoods and only
with some transformations that are computationally tractable.

General sampling-based solution

Publication IV presents a more general solution for the problem, allowing
for any arbitrary transformations with any likelihoods. It is based on nu-
merical integration and MCMC sampling. Integrals in Equations 5.1 and
5.2 are computed by evaluating the value of g(f(x)) for a evenly spaced
collection of J points x in vi

∫
x∈vi

g(f(x))dx ≈
J∑

j=1

Δvig(f(xij)).

In Publication IV we use simple Riemann sums, but more advanced
quadratures could also be used.

For inference we use a Markov chain Monte Carlo based method (see
Section 2.2.1) called the No-U-Turn Sampler (NUTS) (Hoffman and Gel-
man, 2014) implemented in the Stan probabilistic programming language
(Carpenter et al., 2017). This gives the presented method also many advan-
tages compared to the existing solutions. The method is easy to implement
using probabilistic programming tools, making it easy to use for practition-
ers. The generality of the method is also beneficial in many signal process-
ing tasks as it makes it possible to use any arbitrary functions. This allows
us to plug in possible existing physical knowledge of the non-linearities.

The obvious limitation of this method is the lack of computational effi-
ciency making it slower than the other approaches and thus not applicable
for some large applications. Due to the discretization, the amount of ob-
servations is NM in practice. Despite of this, the method is still perfectly
adequate for many physical sensing problems where data sets are small. In
addition, the computations can be made more efficient by using inducing
points as described in Section 3.2.1. Publication IV contains more details
on how to specifically do that in this context.
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5.5 Sensor Placement

In many physical sensing applications with integral observations the data
is collected by transmitting and receiving sensors, and a critical question in
modeling is how to place these sensors. For example, in our case of monitor-
ing structural health and locating fouling inside of industrial pipelines we
want to minimize the number of required sensors while being able to map
the inside of the pipes as well as possible. Individual sensors are expen-
sive and placing them requires manual labour and may for example require
removing the coating of the pipe at the sensor locations.

More specifically, we consider cases where we are trying to map an
unknown function inside of some area of interest I using transmitting and
receiving sensors. The observations correspond to signals traveling through
the area between two sensors. We assume that the underlying function has
a point-wise effect on the signal that can be interpreted as an integral
over the function. Examples of such effects are modulating the signal’s
amplitude, phase or velocity. In other words, we assume that from these
signals we can extract information about the integral over the path it has
travelled. The goal is to place the sensors in a way that we can get as
much information about the function as possible with a limited amount of
sensors.

To the best of our knowledge, no other works have previously stud-
ied this question in the context of integral observations and GPs, and in
Publication III we provide two different approaches that extend previ-
ously presented solutions for point observations. We describe three types
of sensors that are also pictured in Figure 5.3:

1. Paired Sensors: Each receiver listens to only one transmitter.

2. Separate Transmitters and Receivers: The sensors are split into two
groups and each receiver listens to all transmitters.

3. Universal Sensors: We have a collection of N sensors, each acting in
turn both as transmitter and receiver, listening to all other sensors.

The first case is fairly simple, as adding a pair of sensors only adds one
more observation and the problem reduces to placing point-observation
sensors. However, in the two other cases adding a new sensor introduces
multiple new observations that the evaluation depends on. The optimiza-
tion methods we present optimize the locations for the sensors via a set of
measurements induced by them.
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Paired sensors Transmitters and recievers Universal sensors

Figure 5.3: Illustration of different sensor types. Here transmitting sensors
are orange, receiving sensors are blue and sensors capable of both transmit-
ting and receiving are purple. The dashed lines represent the observations
between the sensors.

Geometric approach

Though some geometric approaches have also been proposed for point ob-
servations (González-Banos, 2001; Kershner, 1939), line integral observa-
tions make the idea more interesting. We can take advantage of the concept
of line arrangement (Agarwal and Sharir, 2010) and place the sensors so
that the intersections (vertex) of the lines and the segments (edges) and
polygons (faces) induced by the lines cover the area of interest as well
as possible. This can be done using black box optimization to optimize
some fitness function, such as minimizing the distance between vertices
and points in the area.

Model-based approach

The state of the art methods for optimizing sensors for point observations
are based on maximizing some measure of information content. The most
common choices are using entropy to find sensors that are most uncertain of
each other or mutual information to find sensors that are most informative
about unsensed locations, as described in Section 3.2.2. In most cases
solving this is NP-complete, which requires resorting to greedy algorithms
that choose the next location from a finite set of possible locations (Krause
et al., 2008).

In Publication III we directly build on these methods. However, with
line observations there are some additional points to consider. First, we
can now have three types of sensors: transmitters, receivers and universal
sensors that are able to both send a signal to all other sensors as well
as receive the signal form all other sensors. Second, one new sensor can
induce multiple new line observations if every receiver records signals from
all transmitters, or if the sensors are universal.
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It is possible to compute the reduction in uncertainty for all the newly
induced lines individually. When choosing where to place the new sensor,
we need to decide how to summarize the information from individual lines.
We denote with lsm the lines induced when adding a new sensor s, and B
is the set of lines induced by the sensor locations that have already been
chosen. There are the three approaches to choose the next sensor s when
using the entropy criterion H:

s∗a = argmaxs argmaxl H(lsm|B),
s∗b = argmaxs argminl H(lsm|B),

s∗c = argmaxs
1

M ′

M ′∑
m

H(lsm|B).

These favour slightly different configurations. For example, the first ones
selects a set of line that contains at least one new observation that we are
uncertain of. This can be similarly done using the mutual information. For
details we refer the readers to the publication.

Comparison of the approaches

Both of the presented approaches have advantages and disadvantages, and
they can work in different situations. One of the main differences is that
the geometric approach places sensors on continuous areas whereas the
model-based approach requires a discrete set of points. In addition, the
model-based algorithm is greedy, and as a result might not always find the
optimal solution. Figure 5.4 illustrates these differences. In this case the
geometric approach is able to recover a regular polygon. This also means
that for regularly shaped areas of interest we can use existing configurations
from the literature, and in some cases perhaps only optimize the orienta-
tion of the configuration as this is much faster. In this case, due to the
discretization as well as the greedines of the model-based algorithm, it is
not able to recover the same shape.

The drawback of the geometric approach is that it can be slow and thus
not necessarily applicable for large amounts of sensors, and defining the
possible locations for transmitters and receivers can be tedious for unusual
configurations. Model-based approach can easily be modified for any shapes
or configurations. It can also easily be used to decide how many transmit-
ters and receivers we should use, whereas for the geometric approach with
current specifics these need to specified. In addition, the model-based ap-
proach can be extended to sequential selection in applications where this
is appropriate. Such active learning scenarios will always lead to better or
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Figure 5.4: Comparing model based and geometric approaches for sensor
placements for universal sensors. The gray square represents the area of
interest and the sensors are placed on a circle around it. Left: Geomet-
ric approach Sensors are placed on a continuous area, which here is the
circle around the area of interest. Here we minimize the distance from
vertices to any point in the area. Picture from Publication III. Right:
Model-based approach The discrete set of possible sensor locations are
represented with black dots. The placement here is achieved using the
mean summary, and the 5th sensor chosen is shown in maroon and the
newly induced lines in lighter green.

equal results to pre-selecting the sensors when the hyperparameters are not
known in advance (Krause and Guestrin, 2007).

5.6 Application: Fouling Detection in Pipes

We apply the methods presented in this chapter in a practical problem of
localising fouling in pipes using ultrasound signals. The goal of being able
to form a map of the fouling inside a pipe has been the motivation behind
Publications III-V. We demonstrate that integral observations can be
used to estimate unknown functions also in practice. We show that taking
physical properties of the function into account, such as non-negativity
of the function, improves the results. We also show some recommended
placements for sensors for collecting the data.

Figure 5.5 illustrates the problem setting. In the picture there are two
sensors, one transmitter and one receiver, that are marked with blue both
on the surface of a pipe as well as in a setting where the pipe is pictured
flattened on a surface. The goal is to form a map of the amount of fouling
inside the pipe. In the simplified setting in the picture, we only have fouling
on the area pictured by the orange ellipse.
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Figure 5.5: Figure illustrating the problem setting. On the left we have a
picture of a pipe, and on the right we are showing the same setting flattened
on a surface. Sensors, one transmitter and one receiver, are marked with
blue. The first order helical path is marked with black and the second
order paths in grey. The goal is to localize the orange fouling inside the
pipe using information provided by signal propagating through the paths.

Because of the pipe geometry, one pair of a transmitter and receiver
actually introduces multiple observations as we obtain an observation for
each helical path along the surface. The transmitter sends ultrasonic land
waves that propagate along the pipe, and the group velocity depends on
properties of the pipe such as the thickness and the material. Thus, any
possible fouling on the surface of the pipe on the path of the signal has an
effect on it’s arrival time at the receiver. The differences in these arrival
times between a clean and a fouled pipe can be interpreted as integrals
over the fouling function of the pipe. As this thesis concentrates on the
machine learning methods rather than the physics behind the application,
the readers are directed to Publication V for more details.

We demonstrate the methods on artificially simulated data. We have
defined a simple fouling function that is pictured in Figure 5.6 (left), and
the observations are noisy values of the integrals over the lines shown in
the same picture. These are formed by one transmitter and 12 receivers,
and we included first and second order helical paths.

The picture in the middle in Figure 5.6 demonstrates that by using
integral observations combined with GPs, it is possible to approximately
locate the fouling in the pipe. We also demonstrate similar results on real
data in Publication V. The picture on the right shows that adding a
simple non-negativity constraint improves the accuracy by more than 40%.

Figure 5.7 shows the optimal sensor placements achieved using differ-
ent strategies. It turns out that having approximately balanced number
of transmitters and receivers is optimal. Using these placements the geo-
metric approach matches the accuracy of best model-based approach when
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Figure 5.6: Using ultrasound to locate fouling inside a pipe. Left: Fouling
function pictured on a surface of a flattened pipe. The gray lines represent
the paths that the signals corresponding to our observations travel. The
yellow ellipse represents the fouling in otherwise clean (blue) pipe. Middle:
Prediction of the location of the fouling when no constraints are used.
Right: Prediction of the location of the fouling when a non-negativity
constraint is used. Picture from Publication IV.

predicting the mean function using six sensors. All strategies perform bet-
ter than our original setup consisting of only one transmitter and several
receivers.

The main challenges in solving the problem now lie in prepossessing the
signal to extract the integral information for real data. In Publication V
we use simple peak detection methods to find the arrival times of different
helical paths in a clean and a fouled pipe, and used the difference between
these as the value of the integral. However, even though this can approxi-
mately work in some cases, in reality the problem is much more complex.
The effect of the fouling on the signal depends on the type of signal used,
and thus it does not necessarily even always slow it down. In addition,
the differences between a clean and a fouled pipe can be so small that the
noise from the peak detection hides all differences. Thus, even though we
have demonstrate the effectiveness of the method on simulated data, and
performed some initial experiments on real data, most questions concern-
ing real data are still currently unsolved, and the work on it continues. An
interesting approach is to focus on the amplitudes of the peaks instead of
the times of arrival.
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Figure 5.7: Optimal placements for ultrasonic fouling detection in pipes for
six sensors using model-based and geometric approaches. The purple circles
at the bottom of the pipe represent the locations where we are allowed to
place transmitters, whereas the green circles on top are the locations where
we can place the receivers. We assume that each transmitter signal can
be recorded by all receivers, and we have included first and second order
helical paths that are shown in gray. For the geometric approach, the
rectangles represent the continuous areas where transmitters and receivers
can be placed. Picture from Publication III.
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Chapter 6

Multi-Resolution Gaussian
Process State Space Models

Learning GPSSMs is a difficult task, where one of the main challenges is
scaling up to long time series. Even the efficient solutions using sparse GPs
scale linearly with the length T of the time sequence as the gradients need
to be propagated back through the whole trajectory. In addition to the
computational requirements, using long sequences in training can lead to
vanishing and exploding gradients, which effectively prevents updating the
parameters and leads to poor convergence (Pascanu et al., 2013).

Dividing the data into smaller sequences of size B < T , called mini-
batches, that are used in training solves both of the described issues, and
has led to good results in applying GPSSMs to large data (Doerr et al.,
2018). However, a big issue with training the model with mini-batches is
that long-term phenomena that evolve slower than the size of one mini-
batch can no longer be learned (Williams and Zipser, 1995). Another
approach would be to downsample the data, i.e include only every R:th
observation. Downsampling the original data allows us to see longer tra-
jectories in a shorter sequence, but sparse observations loose information
about the short-term effects.

In Publication VI we present a new multi-resolution GPSSM (MR-
GPSSM) that combines both of these approaches. It consists of L com-
ponents that are trained on different resolutions of the data to capture
effects on different time scales. Figure 6.1 illustrates the issue of learn-
ing long- and short-term effects simultaneously, while Figure 6.2 illustrates
how downsampling the data before splitting it to mini-batches of fixed size
increases the amount of the history we are able to learn.

Next, we will describe the building blocks needed for this new archi-
tecture. For efficiency, we build on a sparse GPSSM based on the FITC

61



62 6 Multi-Resolution Gaussian Process State Space Models

0 10000 20000 30000
T

−0.5

0.0

0.5
y

20500 21000 21500
T

−0.5

0.0

0.5

20500 20520 20540
T

−0.5

0.0

0.5

Figure 6.1: An illustration of the problem with using mini-batches when
the data contains long- and sort-term effects. The dataset with fast and
slowly varying dynamics (blue) was created as a sum of two functions: gray
represents a function with fast varying dynamics and green a function with
slowly varying dynamics. The picture is from Publication VI. Left: The
full dataset. Middle: A mini-batch of size B = 50 where the data has
been downsampled to include every 30th observation. The slowly varying
dynamics (green) can now be learned, but for the fast dynamics (gray) the
observations are too sparse. Right: A mini-batch of size B = 50 on the
original data. The function with fast varying dynamics can be learned, but
there is not enough information about the slow dynamics (green) in this
short mini-batch.

approximation given in Equation 3.4 that allows using mini-batches during
training as well as building a connection to stochastic differential equations.
We re-interpret the GP transition function f as a discretized SDE, which
allows using different resolutions in training. Finally, by combining results
from multiple GPSSM components trained with different resolutions, we
get the new MR-GPSSM architecture.

6.1 Training a GPSSM with Different Resolutions

Before introducing our multi-resolution GPSSM in Section 6.2, we discus
training a standard GPSSM with different resolutions. The multi-resolution
architecture is based on combining multiple such GPSSM components.

GPSSMs as discretized SDEs

The motivation behind the new architecture is based on the observation
that the GP transition function f of a GPSSM model can be interpreted
as discretized stochastic differential equation (SDE). SDEs are differential
equations with a stochastic component that are used to model systems
with dynamical behaviour. Typically, randomness is entered via Brownian
motion that is here marked with Wt ∈ R

Dx . We consider systems that are
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Figure 6.2: An illustration of the data processing for different resolutions
for different components of MR-GPSSM. In the original data (R = 1), a
mini-batch of size B = 4 covers only a small portion of the whole sequence.
Using higher resolutions allows us to see a longer time span in one mini-
batch. In fact, using R = 3 allows fitting the whole time span into one
mini-batch. However, this also makes the data so sparse that we might
not able to model all short-term effects anymore. Being able to use a
combination of different resolutions allows learning varying dynamics.

governed by a Markov process, and a corresponding SDE is given by

dxt = f(xt)dt+

√
QΔdWt,

where xt ∈ R
Dx is the state vector and f(xt) the drift component, which is

the state evaluation given by the GP predictions f(xt) ∼ N (μΔ(xt),Σ
Δ(xt)).

The diffusion term
√

QΔ gives the magnitude of the Brownian motion. SDE
is continuous in time, and the drift component f transforms the states xt

forward while the Brownian motion adds random fluctuations in them. We
use Δ to differentiate the SDE components from the corresponding com-
ponents of the GP transition function.

However, SDEs do not in general have analytical solutions, and we use
the Euler-Maruyama method (see for example (Särkkä and Solin, 2019)) to
get a numerical approximation

fj |fM ∼ N (fj |μΔ(xj),Σ
Δ(xj)), (6.1)

xj+1|xj , fj ∼ N (xj+1|xj +RΔtfj , RΔtQ
Δ). (6.2)

Here fM are a set of inducing points, Δt is the time interval between two
adjacent observations in the original data, and R is the resolution. We
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index the GP outputs fj with j instead of t, so that the time index t equals
a time tΔt after the starting time, whereas the index j is a time jRΔt after
the starting time. The method converges to the true solution when the step
size RΔt gets smaller.

Learning a GPSSM with a different resolution

The Euler-Maruyama approximation of SDEs leads to a convenient for-
mulation that resembles the GPSSM model. In the extended version of
Publication VI, we show that when R = 1 we can find such setting of
variational and model parameters that the variational objectives of the dis-
cretized SDE and the GPSSM are equal. By interpreting the transition
function f of a GPSSM as a discretized SDE as described here, we can use
Equation 6.2 with R ≥ 1 to learn the dynamics. By marginalising out the
local latent variables fj we get the transition function

pΔ(xj+1 | xj , fM ) = N (xj+1 | xj +RΔtμ
Δ(xj),

(RΔt)
2ΣΔ(xj) +RΔtQ

Δ).

This formulation allows us to use different values for R during training
and during prediction. When choosing R > 1 during training, we can fit a
longer history in one mini-batch by only including every Rth observation
while still being able to get prediction at the same resolution as the original
data by choosing R = 1 during prediction.

As described in Section 3.3, inference in GPSSMs cannot be performed
analytically, and different approximations have been suggested. We follow
the existing work and use variational inference to optimize a Monte Carlo
estimate of the lower bound to the log marginal likelihood. We use the
same variational family as Doerr et al. (2018), which means we build on
the sparse GPSSM based on the FITC approximation given in Equation
3.4. There are multiple Monte Carlo schemes for obtaining samples from
the variational posterior, and we employ the one presented by Ialongo et al.
(2019). However, a GPSSM with R �= 1 and the multi-resolution model
architecture can be learned using any these sampling schemes, and this is
not the main focus of our work. We also expect that future improvements in
inference schemes for GPSSMs can be used with our MR-GPSSM. Thus, we
will not discuss the inference and the sampling schemes here more closely,
but the details on how we perform inference as well as a discussion of
different possible Monte Carlo schemes can be found in Publication VI
and its extended version in Longi et al. (2021).
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6.2 Multiple Components with Different Resolu-
tions

We introduce a latent state that consists of L independent multi-dimensional

latent states, that we call components: xt = {x(l)
t }Ll=1, where x

(l)
t ∈ R

Dx .
The transition function of each component is given a GP prior, and a lin-
ear combination of all latent states xt defines the mean of the Gaussian
emission probability. We build on the sparse GPSSM model in Equation
3.4 and extending that to multiple components:

x
(l)
0 ∼ N (x

(l)
0 | m(l)

0 , Q
(l)
0 ),

f
(l)
M ∼ N (f

(l)
M |0,K(l)

MM ),

f
(l)
t |f (l)M ∼ N (f

(l)
t |μ(l)(x

(l)
t ),Σ(l)(x

(l)
t )),

x
(l)
t+1|x

(l)
t , f

(l)
t ∼ N (x

(l)
t+1|x

(l)
t + f

(l)
t ,Q(l)),

yt|xt ∼ N (yt|
L∑
l=1

g(l)(x
(l)
t ),Ω).

The different components are trained iteratively with a backfitting al-
gorithm (Breiman and Friedman, 1985). In each step of the algorithm, the
parameters θ(l) of one component l are updated while the parameters of all
other components are kept fixed. This sequential learning scheme makes it
possible to learn the parameters θ(l) of each component with a different res-
olution R(l). The details and the pseudocode can be found in Publication

VI and its extended version in Longi et al. (2021).

6.3 Application: Engine Modeling

The motivation behind the new architecture came from modeling emissions
of a car engine. With Publication VI, we introduce a new dataset consist-
ing of over 500,000 measurements of raw emissions of a gasoline car engine
recorded with 10Hz. As the dataset consists of long time sequences, using
full trajectories to train a GPSSM is computationally infeasible, and using
mini-batches is necessary. However, the dataset contains varying dynamics.
For example, as our experiments also show, slow dynamics are in partic-
ular predominant for the output temperature and the dynamics can only
be learned with a large enough resolution. On the other hand, nitrogen
oxide concentration can be modeled only with small resolutions, including
the standard resolution R = 1. This is why we need to be able to train the
model using multiple resolutions.
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Figure 6.3: RMSE on the four outputs of the engine modeling task: particle
numbers (PN), hydrocarbon concentration (HC), nitrogen oxide concentra-
tion (NOx) and engine temperature (Temp). We also show the relative error
with respect to our method, averaged over all outputs. The green bars rep-
resent the multi-component model and purple lines the regular GPSSM.
We report the mean value and its standard error over 5 repetitions. The
multi-resolution model was trained using three different resolutions: 1, 5
and 30. Other green lines represent a multi-component architecture, where
the latent states consists of three components that are each trained with
the same resolution to differentiate between using different resolutions and
the multi-component architecture. Picture form Publication VI.

We show that MR-GPSSM is able to achieve competitive results on
all outputs. A regular GPSSM is able to learn the dynamics for each
output only if appropriate resolution is used. Using the standard resolution
R = 1 is completely unable to learn the dynamics for temperature. MR-
GPSSM is the only one that works if the dataset contains varying dynamics.
Otherwise, it performs equally to a regular GPSSM with an appropriately
chosen resolution. Figure 6.3 illustrates these results.



Chapter 7

Conclusions

We have presented practical solutions for three real-world applications that
all have potential to have societal impact. For example, non-invasive local-
isation of fouling can have significant positive environmental impact, while
being able to recognise devices causing Wi-Fi interference is important in
improving Wi-Fi networks. At the same time, we have made contributions
to machine learning literature by improving the used models and tailoring
them to our specific needs.

First, we presented a solution based on convolutional neural networks to
analyse spectral data in order to identify radio frequency devices that can
cause Wi-Fi interference. As these devices can have an effect on the perfor-
mance of Wi-Fi networks (Chan et al., 2010), being able to identify them
is important both in planning the initial network configuration as well as
in troubleshooting when the performance of the network is poor. Collect-
ing accurately labeled data is challenging, and we used a semi-supervised
training method, where unlabeled data were assigned pseudo-labels by tak-
ing advantage of the continuity in the data. We were able to identify the
recorded devices with near perfect accuracy. One of the main limitations
of the method is that collecting labeled data from hundreds of possible de-
vices is impossible. While we showed that the model can be easily adapted
to new devices without having to train it from scratch, an unsupervised
approach would be an interesting task for future work.

Next, we used ultrasound to localise targets inside closed containers in
two different settings. In the first we had placed only one sensor outside
a container, and used a chaotic cavity to increase the acoustic aperture
of the signal. A chaotic cavity also makes it impossible to use traditional
methods to analyse the signals, and we built a convolutional neural network
based solution that was able to localise a small pipe inside the container.
The main motivation behind the work was to show that even when using a
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chaotic cavity, it is still possible to extract meaningful information from the
signals to localise objects. The goal was achieved, but the accuracy of the
method could most likely be further improved by collecting more data from
different settings and by more carefully designing the model. For example,
a recurrent neural network based solution could be an interesting question
for the future.

In the second setting we used ultrasound to localise fouling inside pipes.
This method has potential to have great societal impact if it allows us to
recognise the structural health or fouled areas in industrial pipelines in a
non-invasive way. It could have a significant environmental effect by re-
ducing the global industrial energy consumption and global CO2 emissions
(U.S. Energy Information Administration), and by reducing the amount of
hazardous chemicals currently used in industrial cleaning.

Fouling inside a pipe causes variations in wave propagation proper-
ties, and having multiple propagation paths through a pipe allows us to
locate the fouling. We interpreted the observations to be integrals over
the propagation paths, and showed how Gaussian processes can be used
with such integral observations. Our contributions included being the first
ones to present strategies for designing optimal placement for sensors in
such cases, discussing how we can efficiently compute the integrals over the
kernel function and giving a general, easy-to-use method for dealing with
non-linearities in such cases.

While we have demonstrated that ultrasound can be used to localise
fouling inside a pipe in laboratory conditions, there is still a lot to be done
before the method can be used in the real world. We interpreted the delays
in the arrival times of signals as the values for the integrals over the paths
the signals had traveled. While this worked in laboratory conditions, the
effect of the fouling on the arrival times is small and can be difficult to
observe. In addition, the effect on arrival times varies depending on many
things, suchs as the type of the signal and the type of the fouling, and more
research is needed. How to accurately transform the measured signals into
information about the value of the integral is perhaps the most important
question for the future. However, we have demonstrated on simulated data
that with accurate information about the integrals, GPs are well suited
for localisation based on integral observations, and adding a non-negativity
constraint helps significantly.

In addition, the data for Publication V was collected before the work
considering optimal locations for sensors. A better measuring configuration
would have likely led to better results on real data, as we have showed that
an optimal configuration leads to better results on simulated data.
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We also discussed efficient ways to compute the needed integrals over
the kernel function, and showed how this can be done analytically in the
case of rational quadratic (RQ) kernel. While the method is efficient, the
benefit is likely to be small. Using Hilbert space approximations (Solin and
Särkkä, 2020) has turned out to be a very useful approximation in context
of integral observations (Jidling et al., 2018; Purisha et al., 2019), and it
can be seen as a better solution than exact analytical derivations as it is
also efficient, usually accurate enough and more general as it works with
any stationary function. The analytical derivation can still be useful when
the evaluations need to be performed multiple times, such as in planning a
good sensor configuration for data collection.

Gaussian process state space model (GPSSM) is a very useful tool for
modeling dynamical systems with potential use cases especially in reinforce-
ment learning (Curi et al., 2020; Dörr, 2021). We showed how to efficiently
learn a GPSSM model when there are both short- and long-term effects
present. Existing solutions were not able to learn effects that are not vis-
ible in one minibatch (Doerr et al., 2018), and our method demonstrated
clear improvements on data sets that contained varying dynamics. This
is an important improvement that can potentially have a big effect on the
applicability of GPSSMs. Moreover, it can likely be combined with fu-
ture improvements in learning GPSSM models. We also introduced a new
dataset for modeling car engine emissions where different outputs contain
either short- or long-term effects or both, and showed that our method
performs consistently well on predicting all outputs.
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J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning
Research, 6(Dec):1939–1959, 2005.

R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised
learning using graphics processors. In International conference on ma-
chine learning, pages 873–880, 2009.

N. Ramakrishnan, C. Bailey-Kellogg, S. Tadepalli, and V. N. Pandey. Gaus-
sian processes for active data mining of spatial aggregates. In SIAM
International Conference on Data Mining, pages 427–438, 2005.

R. Ranganath, S. Gerrish, and D. Blei. Black box variational inference. In
Artificial intelligence and statistics, pages 814–822, 2014.

A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-
supervised learning with ladder networks. In Advances in neural infor-
mation processing systems, pages 3546–3554, 2015.

C. E. Rasmussen and C. K. Williams. Gaussian processes for machine
learning. MIT press Cambridge, 2006.

S. Rayanchu, A. Patro, and S. Banerjee. Airshark: detecting non-WiFi RF
devices using commodity WiFi hardware. In ACM SIGCOMM conference
on Internet measurement, pages 137–154. ACM, 2011.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International
conference on machine learning, pages 1278–1286, 2014.
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S. Särkkä. Bayesian filtering and smoothing. Cambridge University Press,
2013.
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F. Yousefi, M. T. Smith, and M. Álvarez. Multi-task learning for aggre-
gated data using Gaussian processes. In Advances in neural information
processing systems, volume 32, pages 15076 – 15086, 2019.



84 References

C. Yu, M. Seslija, G. Brownbridge, S. Mosbach, M. Kraft, M. Parsi,
M. Davis, V. Page, and A. Bhave. Deep kernel learning approach to
engine emissions modeling. Data-Centric Engineering, 1:e4, 2020.

A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into deep learning.
arXiv preprint arXiv:2106.11342, 2021.

C. Zhang, J. Butepage, H. Kjellström, and S. Mandt. Advances in Varia-
tional Inference. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(8):2008–2026, 2019.

J. Zhang, P. Atkinson, and M. F. Goodchild. Scale in spatial information
and analysis. CRC Press, 2014.

Z. Zhu and M. L. Stein. Spatial sampling design for prediction with esti-
mated parameters. Journal of agricultural, biological, and environmental
statistics, 11(1):24–44, 2006.

C. Zimmer and R. Yaesoubi. In Influenza Forecasting Framework based on
Gaussian Processes, pages 11671–11679, 2020.


	Abstract
	Acknowledgements
	Contents
	Original Publications
	Author contributions
	Chapter 1: Introduction
	Chapter 2: Preliminaries
	Chapter 3: Machine Learning Models for Sensor Data
	Chapter 4: Convolutional Neural Networks for Signals
	Chapter 5: Gaussian Processes with Integral Observations
	Chapter 7: Conclusions
	References



