
https://helda.helsinki.fi

Learning from Prior Designs for Facility Layout Optimization

Rummukainen, Hannu

Springer

2021

Rummukainen , H , Nurminen , J K , Syrjänen , T & Numminen , J-P 2021 , Learning from

Prior Designs for Facility Layout Optimization . in Heuristics for Optimization and Learning .

Studies in Computational Intelligence , vol. 906 , Springer , pp. 87-101 . https://doi.org/10.1007/978-3-030-58930-1_6

http://hdl.handle.net/10138/346831

https://doi.org/10.1007/978-3-030-58930-1_6

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Machine Learning from Prior Designs for Facility Layout
Optimization

H. Rummukainen1, J. K. Nurminen1, T. Syrjänen2, and J.-P. Numminen2

1 VTT Technical Research Centre of Finland
hannu.rummukainen@vtt.fi

2 Pöyry Finland
timo.syrjanen@poyry.com

Abstract. The problem of facility layout involves not only optimizing the locations of pro-
cess components on a factory floor, but in real-world applications there are numerous prac-
tical constraints and objectives that can be difficult to formulate comprehensively in an
explicit optimization model. As an alternative to explicit modelling, we present an optimiza-
tion approach that learns structural properties from examples of expert-designed layouts of
other similar facilities, and considers similarity to the examples as one objective in a multi-
objective facility layout optimization problem. We have tested the approach on small-scale
artificial test data, and the initial results indicate that a layout objective can be learned from
example layouts, even if the process structure in the examples differs from the target case.

1 Introduction

We consider the problem of facility layout, that is where to place the various process components,
e.g. production machines, in a manufacturing facility. Whether in process industry or in goods man-
ufacturing, the design of a facility is a complex multi-disciplinary effort. The layout of components
is directly or indirectly affected by numerous factors starting from the construction, operation and
maintenance of relevant production technologies and infrastructure, and including considerations
such as production economics, safety, security, environmental issues, and regulatory requirements.

Because the number of influencing factors is large, and often difficult to specify completely,
modelling the task explicitly as an optimization problem is difficult or impossible. The key idea
behind our work is that earlier plans for different but similar facilities contain a lot of useful
knowledge. The experts who have created the earlier plans have used their skills and expertise to
consider and balance the multiple influencing factors. As a result, the plans contain a lot of explicit
as well as hidden knowledge that can be useful for future planning tasks.

In this work we investigate the use of machine learning to distill facility layout knowledge from
old plans and apply it to the design of new facilities. Instead of attempting to include all essential
factors to facility layout optimization explicitly we use probabilistic machine learning to generate
new goals for the model automatically. In this way we think the optimization model better reflects
the real world complexities without expending modelling effort to find, formulate, and balance the
different factors.

At the time of initial layout design, the data available about the particular facility is typically
limited, and it is not practical to require the user to input large amounts of site-specific parameters.
An automated decision support tool should regardless be able to quickly provide plausible layouts
that can be used as a starting point for more detailed planning and design. If the designer disagrees
with automated layout decisions, it should then be easy to interactively improve the generated
designs.

An established design consultant or manufacturing business may have detailed design data
about dozens of facilities, which can then be used as source data for machine learning. Our research
question is whether such data is sufficient to learn relevant design rules well enough to apply them
to new designs. If so, machine learning has the advantage of both reducing the complexity of the
layout model and reducing the need for explicit site-specific parameter data.

The key contribution of this paper are:

1. We propose the idea of using knowledge automatically extracted from the plans of old facilities
in the design of new ones (Section 1)

2 Rummukainen, Nurminen, Syrjänen and Numminen

2. We formulate a probabilistic similarity model used to extract the essential planning knowledge
from old plans (Section 4).

3. We combine a basic facility layout model (Section 3) and the similarity model into an opti-
mization model which uses similarity model as an additional goal (Section 5)

4. We evaluate the idea with small-scale artificial test data (Sections 6–7).

Figure 1 illustrates how the proposed optimization approach would be used in practice in a
decision support tool by a facility designer.

Multiobjective
layout

optimization

Complete past layouts
Component positions,

connections

Layout
proposals

Case specification
Components, connections,
infrastructure, parameters

Learning
evaluation
measures

Designer

Ad hoc adjustments

Fig. 1. Concept of a decision support tool for facility layout, based on example layouts. Working on a new
facility, the designer outlines the basic process and relevant constraints to the decision support tool, and
gets a small, varied selection of plausible layouts as a starting point for more detailed design work.

2 Related work

In the operations research literature, facility layout has typically been addressed as a combinatorial
optimization problem, where the most important layout rules are explicitly modelled [1–3]. Typi-
cally the primary objective is to minimize material transport costs derived from inter-component
distances. Additional objectives and constraints may be used to model e.g. safety considerations
[4]. However, it would be complicated to fully model all relevant design considerations. Due to
the limitations of existing models, automatic facility layout models have made little headway as a
practical design tool to date [5]: The initial design of a process plant is in practice performed by
an experienced designer, and detailed design is performed by a multi-disciplinary team of experts.

The issue of how to include human expertise in automated facility layout has been commonly
addressed by actively involving expert designers either in the model specification or in the solution
process. In our work we do not require experts to directly or indirectly weight different objectives.
Instead, we implicitly learn those weights from old plans, which we suggest contain the expert
judgement used to create them. To the best of our knowledge we are the first to attempt facility
layout optimization with similarity to expert-designed layouts as an explicit optimization goal.

Because of the difficulty of modelling and weighing all relevant factors, researchers have sug-
gested using expert opinions to rate multiple plans generated by computational tools [6]. Similarly,
Garćıa-Hernández et al. [7, 8] involve a human expert designer in facility layout via interactive
multiobjective optimization: After each iteration of a genetic algorithm, a representative subset of
solutions are scored by the expert. An explicit quantitative objective (based on weighted transport
distance) and the expert scores are treated as separate objectives, and Pareto-optimal solutions
are then selected for the genetic algorithm to work on in the next iteration.

In order to automate processing of qualitative design rules, Grobelny and Michalski [9] apply
fuzzy set theory to formalize layout rules expressed in semi-formal natural language, and then run
simulated annealing to optimize the mean fuzzy truth value of the rules.

Chung [10] presents a neural network based method to generate new facility layouts that are
similar to given examples. The method does not consider any explicit objectives or constraints on
the generated layouts. Ahmad et al. [11] train a neural network to reproduce expert evaluations

Machine Learning from Prior Designs for Facility Layout Optimization 3

of given layouts, and propose that the resulting model would be useful for optimization; however
the network was limited to four quantitative measures of the layout as inputs, and as many as 500
manually evaluated layouts were used for training data.

Merrell et al. [12] generate building layouts by training a Bayesian network on example layouts.
Their method generates new layouts in two stages: room shapes, sizes and adjacencies are sampled
from the trained Bayesian network, and then the rooms are positioned by a separate optimization
procedure with an explicitly modelled objective. Our approach does not need a separate sampling
stage, but embeds a probabilistic similarity model directly in the final layout optimization model.

Machine learning has been applied to many planning tasks. Approaches to use machine learning
for VLSI circuit design are reviewed in [13].

The problem of deriving a constraint programming model from feasible and infeasible example
solutions is in general quite challenging, but has been addressed by several methods [14] including
machine learning [15]. Mizoguchi and Ohwada [16] present an inductive logic programming method
that derives constraints from examples of feasible solutions only, and apply the method to a floor
layout problem. In contrast, we derive an evaluation function instead of hard constraints, and we
avoid the complexity of the general constraint acquisition problem by focusing on the modelling of
geometric similarity. In optimization literature, the problem of deducing an objective function that
makes the given solutions optimal is known as inverse optimization, and again the general problem
is hard [17, 18]. We know of no applications of inverse optimization to facility layout problems.

Lombardi et al. [19] present a methodology for embedding a machine learning model into a
combinatorial optimization model. Our work can be seen as an application of their methodology,
extending it by 1) embedding a probabilistic machine learning model in a constraint programming
model, and 2) using a learned objective in addition to an explicit model objective.

3 Facility layout model

Here we define the basic layout model that will be combined with the similarity model in Section 5.
The production process is described by a directed graph (V,E), called process graph, where

the nodes V are identified with components, and the edges E ⊆ V × V indicate material flows
between components. Note that directedness is not needed for the layout model, but we use the
information later in the similarity model of Section 4. For each edge (i, j) ∈ E, the distance between
components i and j contributes to the objective function with a cost coefficient cij ≥ 0.

Each component i ∈ V can be realized as a number of different rectangular patterns, denoted
by the set Pi: the choice of pattern p ∈ Pi determines the width wp and height hp of the component.
Different patterns may arise when a component is rotated (by 90 degrees), or is replaced by another
interchangeable component of different dimensions.

We use a discrete model with integer coordinates on a W ×H grid. Distances between compo-
nents are measured by rectilinear (taxicab) distance between component centre points; note that
we double the distances to avoid half-integral values. We use the following decision variables:

xi ∈ {0, . . . ,H} Lower left corner x-coordinate of component i ∈ V
yi ∈ {0, . . . ,W} Lower left corner y-coordinate of component i ∈ V
pi ∈ Pi Choice of pattern for node i ∈ V
dij ∈ N Distance from component i to j, for edge (i, j) ∈ E

We start natural numbers N from 0.
The basic facility layout model is now:

min zC =
∑

(i,j)∈E

cijdij (1)

dij =
∣∣(2xi + wpi)− (2xj + wpj)

∣∣+
∣∣(2yi + hpi)− (2yj + hpj)

∣∣ ∀(i, j) ∈ E (2)

xi + wpi ≤ xj ∨ xj + wpj ≤ xi ∨ yi + hpi ≤ yj ∨ yj + hpj ≤ yi ∀i, j ∈ V (3)

The objective (1) is the sum of edge distance costs. Equations (2) link the distance variables with
the component coordinates and pattern choices. Equations (3) ensure that no two components
overlap each other.

4 Rummukainen, Nurminen, Syrjänen and Numminen

4 Similarity model

We develop a probabilistic model that assigns a probability density to each potential layout of
a given problem instance, based on examples of expert-designed layouts in different problem in-
stances. We expect that the number of observed example layouts is on the order of dozens. Due
to the low number, instead of considering the layout as a whole, we focus on pairwise geometric
relationships between components. The production processes in the example cases may differ, but
we assume a shared classification of process components is available: for example, each component
could be classified as either a large tank, a small tank, a pump, or “other component”. For best
results, all components in the same class should be of approximately the same dimensions.

4.1 Probabilistic layout model

Each example layout is assumed to be drawn independently from a random distribution of “well-
designed” process layouts. An example comprises both the process graph described in Section 3
and the positions and dimensions of the components. In addition, we assume that we can observe
an orientation for each component, indicating which of the four cardinal directions the component
is facing. Note that we assume no knowledge of any objective functions or constraints under which
the example layouts could be considered optimal solutions.

In the following, T denotes the set of shared component types, and O = {(0, 1), (1, 0), (0,−1),
(−1, 0)} is the set of orientation vectors. The random variable L represents a process layout from
the random distribution of well-designed layouts. We observe the following random variables, which
are technically functions of L.

N ∈ N The number of nodes in the process graph
V = {1, . . . ,N} The index set of nodes in the process graph
E ⊆ V × V The edges in the process graph
Ti ∈ T i ∈ V Type of component i in the shared classification
Ci ∈ R2 i ∈ V Position of the midpoint of component i
Oi ∈ O i ∈ V Orientation vector of component i

We omit the subscripts when convenient to refer to vectors or matrices formed by subscripted
random variables. This is somewhat of an abuse of notation considering that the ranges of the
subscripts are not fixed.

Commensurate with distances (2) in the basic constraint model, we define the length of vector
c ∈ R2 as d(c) = 2‖c‖1. The oriented angle between direction vectors c, c′ ∈ R2 is denoted by
α(c, c′) ∈ (−Q,Q], where the constant Q represents a half turn. For technical reasons we use a
nonstandard angle measurement, described in Section 5; however the difference to e.g. radians is
immaterial for the similarity model.

To consider locality purely on the graph level, we define a distance measure in the undirected
graph corresponding to the directed process graph (V,E): Let δij(V,E), or simply δij when clear
in the context, be the number of edges between components i and j in the graph, ignoring edge
direction. Further, we define the augmented edge set

Ẽ = {(i, j) ∈ V × V : 0 < δij ≤ δmax}, (4)

where the distance bound δmax is 3 in our tests. Other bounds are quite possible, considering the
trade-off that Ẽ = E requires the least computational effort, while Ẽ = V × V results in the most
complete similarity model.

The similarity model is built on the following auxiliary random variables:

Ẽ The edge set E augmented as above (4)

H ∈ Ẽ Uniform random edge from the augmented random graph (V, Ẽ)
I ∈ V The source node of edge H
J ∈ V The target node of edge H
AIJ = α(OI,CJ − CI) Angle between orientation of component I and the direction to component J
DIJ = d(CJ − CI) Distance between midpoints of components I and J
∆IJ = δIJ(V,E) ∈ N Number of edges between nodes I and J

Machine Learning from Prior Designs for Facility Layout Optimization 5

Given a process graph (V,E) and the component types T , we model the conditional density of
the layout distribution as

fC,O|V,E,T(C,O | V,E, T) =∏
(i,j)∈Ẽ

fAIJ|TI,TJ,∆IJ
(α(Oi, Cj − Ci) | Ti, Tj , δij)

fDIJ|TI,TJ,∆IJ
(d(Cj − Ci) | Ti, Tj , δij),

(5)

where we assume that the pairwise geometrical relationships between components are not only
independent but adequately modelled by the two conditional density functions fAIJ|TI,TJ,∆IJ

and
fDIJ|TI,TJ,∆IJ

, which describe the angles and distances between random pairs of components.
The model is independent of the overall orientation of the example layout, and the shape of

the floor plan may also vary. By using a simplified model, we avoid the need for large amounts of
example data for parameter estimation. Moreover, the simplified density can be relatively easily
incorporated in the objective function of a constraint programming model of the layout problem,
as described below.

4.2 Estimation

To evaluate the conditional density (5) of “well-designed” layouts, we estimate the conditional
density functions fAIJ|TI,TJ,∆IJ

and fDIJ|TI,TJ,∆IJ
from example layout data by kernel density estima-

tion. Specifically, we apply kernel density estimation of mixed categorical and continuous data as
described by Racine and Li [20] and Ju et al. [21]. Both conditional density functions are estimated
in the same way, so we describe the method for fAIJ|TI,TJ,∆IJ

only.
We construct a sample of the random variables (AIJ,DIJ,TI,TJ,∆IJ) by observing them on all

(augmented) edges of available example layouts. The sample is assumed to be a uniform random
sample, following the simplifying assumption we made for the layout density model (5) that the
angles AIJ and distances DIJ are independent on different edges of the same graph.

Let L be the set of observed example layouts, and let us indicate observations on layout L ∈
L by superscript L. For each edge (i, j) ∈ ẼL in each layout example L ∈ L, we denote the
corresponding multivariate sample point by (ALij , D

L
ij , T

L
i , T

L
j , ∆

L
ij). We get the total sample size

n =
∑
L∈L

∣∣∣ẼL∣∣∣. Note that we have both continuous observations of angle ALij and distance DL
ij ,

and discrete observations of component type TLi , TLj and path distance ∆L
ij .

Following Racine and Li [20], we use an unnormalized joint density estimate of the form

f̂AIJ,DIJ,TI,TJ,∆IJ
(a, d, t, t′, δ) =

1

n

∑
L∈L

(i,j)∈ẼL

k(
ALij − a
hA

)k(
DL
ij − d
hD

)l(TLi , t, λT)l(TLj , t
′, λT ′)l(∆L

ij , δ, λ∆),

(6)

where k(x) = 1√
2π
e−

1
2x

2

is the Gaussian function, and l is the unnormalized Aitchison-Aitken

kernel for unordered discrete variables, defined as

l(X,x, λ) =

{
1 if X = x,

λ if X 6= x.
(7)

The smoothing parameters hA, hD, λT , λT ′ and λ∆ are estimated by the least-squares cross-
validation method.

The unnormalized estimate of conditional density is derived from estimates of joint densities as

f̂AIJ|TI,TJ,∆IJ
(a|t, t′, δ) =

f̂AIJ,TI,TJ,∆IJ
(a, t, t′, δ)

f̂TI,TJ,∆IJ
(t, t′, δ)

, (8)

where the unnormalized density in the numerator is derived by eliminating a k factor from (6):

f̂AIJ,TI,TJ,∆IJ
(a, t, t′, δ) =

1

n

∑
L∈L

(i,j)∈ẼL

k(
ALij − a
hA

)l(TLi , t, λT)l(TLj , t
′, λT ′)l(∆L

ij , δ, λ∆), (9)

and the denominator is derived analogously by eliminating both k factors from (6).

6 Rummukainen, Nurminen, Syrjänen and Numminen

5 Similarity in layout optimization

We extend the layout optimization model of Section 3 to address layout similarity. The constraint
model is applied to a specific non-random instance of the layout problem, where the process graph
(V,E) and other parameters of Section 3 are known. In addition, each component i ∈ V is assumed
to have a type ti ∈ T in the shared classification.

Rotations of components were already represented as alternative patterns. We extend the notion
so that each pattern choice pi ∈ Pi also determines the orientation of component i, denoting the
orientation vector by (xO(pi), y

O(pi)) ∈ O.
To be able to use integer-only constraint solvers, we use a nonstandard discrete angle measure

in the range {−Q + 1, . . . , Q}, closely related to the one described by Todd [22]. With a solver
supporting floating point and trigonometric functions, we could use angles measured in radians
instead. In our tests we set Q = 11.

The following auxiliary decision variables are used:

(xRij , y
R
ij) ∈ Z2 Direction vector from component i to j, relative to orientation of compo-

nent i
aRij ∈ {−Q+ 1, . . . , Q} Angle of direction vector (xRij , y

R
ij), i.e. direction from component i to com-

ponent j, relative to orientation of component i

The auxiliary variables are linked to the variables of the basic model by

xRij = xO(pi)(xj − xi) + yO(pi)(yj − yi) ∀(i, j) ∈ Ẽ (10)

yRij = −yO(pi)(xj − xi) + xO(pi)(yj − yi) ∀(i, j) ∈ Ẽ (11)

aRij =

Q+1
2 − trunc

(
Q+1

2 xR
ij

1+|xR
ij|+|yRij|

)
if yRij ≥ 0

−Q−12 + trunc

(
Q+1

2 xR
ij

1+|xR
ij|+|yRij|

)
if yRij < 0

∀(i, j) ∈ Ẽ (12)

where trunc : R→ Z maps a real number to its integer part, i.e. rounds towards zero.
We note that the angle measurement function α in Section 4.1 can now be determined as

the mapping that equations (10)–(12) define from the orientation (xO(pi), y
O(pi)) and the offset

(xj − xi, yj − yi) to the angle aRij .
In addition to the distance cost objective (1), we define two similarity objective functions

zA =
∑

(i,j)∈Ẽ

− log f̂AIJ|TI,TJ,∆IJ
(aRij |ti, tj , δij), (13)

zD =
∑

(i,j)∈Ẽ

− log f̂DIJ|TI,TJ,∆IJ
(dij |ti, tj , δij), (14)

representing the log-densities of the angles and the distances in the solution, respectively. Both are
minimization objectives. By the model (5), the sum −(zA + zD) is the unnormalized log-density of
the solution in the distribution of “well-designed” layouts, conditioned on parameters of the known
problem instance.

In a discrete constraint model, the objectives zA and zD are naturally implemented by tabu-
lating the values of the log terms for feasible values of aRij and dij on each edge (i, j) ∈ Ẽ. Storage
requirements are quite low as we only need two one-dimensional arrays for each edge.

6 Experiments

We have implemented a prototype of the proposed similarity model and facility layout model
in order to test the viability of the proposed decision support approach. We implemented the
similarity model estimation in Python, using multivariate conditional kernel density estimation
from the Python statsmodels library [23]. We implemented the facility layout model in the MiniZinc
constraint modelling language [24]. We use the local search based constraint solver Yuck [25].

Machine Learning from Prior Designs for Facility Layout Optimization 7

We report here initial tests on artificial test data. There are components of three types: large
cylinder, medium-size rectangle and small square. In addition, small round nodes are used to guide
the example layout, but not included in the process graph for the similarity model or layout case.
We use only four different process graphs, shown in Figure 2, and vary the layouts of the graphs.

(a) (b)

(c) (d)

Fig. 2. Artificial process graphs used in the tests. Only the graph structure is of importance, the specific
layouts are not. The bounding boxes of the components are shown in pink. Black triangles point in the
direction of component orientation. Edge colours indicate which edge we apply different edge weights on.
Some edges are curved solely for clarity of visualization.

The goal of all our experiments is to optimize the layout of graph (d) of Figure 2, called the
layout case. The similarity model is built from example layouts, in which the graph structure may
differ from the layout case. We report results for two experiments:

U. Learning similarity measure from uniform example data: All layout examples as well as the
layout case have the same graph structure (d), and only the layout varies. There are nine
example layouts of graph (d).

V. Learning similarity measure from varied example data: The layout examples use three different
graphs (a)–(c), all of which differ from the structure (d) of the layout case. There are three
example layouts of each of the graphs (a)–(c), for a total of nine examples.

We generated the example layouts by running the basic layout optimization model of Section 3.
We used unit cost on the yellow edges and 0 cost on the green edges: in other words, our example
layouts have short yellow edges, and the length of green edges is ignored. We collect all solutions
produced by a local search solver, and then pick a diverse subset of solutions within 10 % of the
lowest-cost solution found. For component orientations, we pick the major direction closest to the
mean direction of the edges connected to each component.

As we optimize the layout case after the construction of the similarity model, we apply two
objective functions: 1) the similarity objective zA + zC measures similarity to the example layouts

8 Rummukainen, Nurminen, Syrjänen and Numminen

and 2) the case objective is the distance cost objective zC with unit cost on the green edges and
0 cost on the yellow edges. In other words, here the similarity objective implicitly minimizes the
length of yellow edges and the case objective explicitly minimizes the length of green edges.

We use a different explicit objective in the layout case and in the examples, so that machine
learning is necessary to consider the example objective in the layout case. The intention is that by
applying different weights on the similarity and distance cost objectives, we can trade off similarity
to the examples and optimality with respect to the case objective.

It is important to note that the edge colour is not a factor in the similarity model: the effect of
the different distance cost objectives in the examples and the layout case must be learned indirectly
via the types of the edge endpoints.

The optimization of the layout case was run with a range of weights on the similarity objective
zA+zD and the case objective zC , i.e. green edge length. The relative proportion of similarity weight
to distance weight ranged from 1/64 to 64/1, with an additional run optimizing pure similarity
with 0 weight on the case objective. From each optimization run with specific objective weights,
we collected three solutions within 10 % of the best weighted objective value.

Two specific case layouts for experiment V are shown in Figure 3: these are the solutions with
(a) the best similarity value, found by pure similarity optimization, and (b) the best distance cost
value, which in this experiment was found with weights 2/1 on the objectives.

(a) Weighting similarity (b) Weighting green edge length

Fig. 3. Case layouts after learning, minimizing (a) similarity to example layouts with short yellow edges,
and (b) the case objective, i.e. green edge length. The thin translucent lines show the augmented edges of
the similarity model.

An overview of the distance cost objective values reached with different similarity weights in
experiments U and V is shown in Figure 4.

7 Discussion

The similarity model works reasonably well to reproduce geometrical relationships between com-
ponents, even when the examples are not identical in structure to the current case: In particular, in
Figure 3(a) it is clear that optimizing similarity has resulted in short yellow edges at the expense
of long green edges, as desired.

In Figure 4 we see that as the similarity weight increases, the case objective (green edge length)
tends to increase, and in exchange, the example objective (yellow edge length) decreases. Never-
theless, the case results (learned-U and learned-V in Figure 4) do not fully reach the level of the
examples (example-U and example-V), even when optimizing only the similarity objective without
regard to the case objective: This indicates that our simplified similarity model does not fully
reproduce the example layouts, since the model is limited to pairwise geometrical relationships

Machine Learning from Prior Designs for Facility Layout Optimization 9

●

●●

●

●

●

●

●●●●● ●
●●●●●●●●

●●●
●● ●●●●

●
●

●
●●

●

●

●

●

●●
●

●●●

●●●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●●●●● ●
●●

●●●●●●
●●●

●●
●●●●

●
●

●●●

●

●

●

●

●●
●

●●●

●●●

●●

●

●●
●●

●

●

250

500

750

1000

1250

2−6 2−4 2−2 20 22 24 26 inf

similarity weight

ca
se

 o
bj

ec
tiv

e
(g

re
en

 e
dg

e
le

ng
th

)

●● ●●example−U example−V learned−U learned−V

●

●●

●

●

●

●

●●

●
●●

●●

●

●●●

●●●

●
●●

●

●

●●●

●

●

●

●●●
●

●

●

●

●●

●

●

●
●

●●●

●●
●●
●●
●
●●●

●●

●

●

●

●

●●

●●
●

●
●

●

●
●
●

●●
●

●
●
●

●

●

●●
●

●

●

●

●●●
●

●

●

●

●
●
●

●

●
●

●
●
●

●●
●
●●
●●
●●

200

400

600

2−6 2−4 2−2 20 22 24 26 inf

similarity weight

ex
am

pl
e

ob
je

ct
iv

e
(y

el
lo

w
 e

dg
e

le
ng

th
)

●● ●●example−U example−V learned−U learned−V

(a) (b)

Fig. 4. Objective values of case layout results with different weights on the similarity and case objectives,
showing also the objective values of the example layouts. The proportion of similarity weight to case
objective weight is on the x-axis, with examples and results of pure similarity optimization at “infinity”.
The y-axis represents either (a) the explicit case objective, i.e. green edge length or (b) the example layout
objective, i.e. yellow edge length.

between components. A more accurate model would likely require far more training data than
typically available in facility layout planning.

Looking at the right half of Figure 4, we arrive at the natural conclusion that increasing the
weight of the similarity objective gives more consistent reductions in the example objective, when
the similarity model is derived from examples of the same process graph as in the case (experiment
U), as compared to example of different process graphs (experiment V). In any case, there appears
to be more variance in the results with larger weights on the similarity objective; this may be related
to the fact that similarity to examples with long green edges conflicts with the minimization of
green edge length in the case objective.

The presented similarity model is limited to geometrical features, and more abstract relation-
ships that involve e.g. numerical properties of the process components are not considered: for
example, the minimum safe distance from a tank to a furnace might depend both on the tank
volume and the stored material.

Another limitation of our model is that it has difficulties reproducing continuous physical spaces
between components, e.g. walkways for machine operators. We believe this issue can be solved by
alternative similarity models with a more global view of the layout, not just pairwise geometrical
relationships between components. It can also be useful to learn hard constraints in addition to
the purely objective function based approach employed here.

The general approach shows promise, and we aim to evaluate it further with real-world data, and
to verify its usefulness by soliciting feedback from expert facility designers. Although the presented
model is limited to basic two-dimensional layouts, it would be relatively straightforward to extend
the layout similarity model to three-dimensional layouts on multiple interconnected floors.

Acknowledgement

This work was supported by Tekes -– the Finnish Funding Agency for Innovation, through project
Engineering Rulez.

10 Rummukainen, Nurminen, Syrjänen and Numminen

References

1. Armour, G.C., Buffa, E.S.: A heuristic algorithm and simulation approach to relative location of
facilities. Management Science 9 (1963) 294–309

2. Anjos, M.F., Vieira, M.V.C.: Mathematical optimization approaches for facility layout problems: The
state-of-the-art and future research directions. European Journal of Operational Research 261 (2017)
1–16

3. Hosseini-Nasab, H., Freidouni, S., Fatemi Ghomi, S.M.T., Fakhrzad, M.B.: Classification of facility
layout problems: a review study. International Journal of Advanced Manufacturing Technology 94
(2018) 957–977

4. Jung, S.: Facility siting and plant layout optimization for chemical process safety. Korean Journal of
Chemical Engineering 33 (2016) 1–7

5. Moran, S.: An Applied Guide to Process and Plant Design. Elsevier (2015) ISBN 978-0-12-800242-1.
6. Cambron, K.E., Evans, G.W.: Layout design using the analytic hierarchy process. Computers &

Industrial Engineering 20 (1991) 211–229
7. Garćıa-Hernández, L., Pierreval, H., Salas-Morera, L., Arauzo-Azofra, A.: Handling qualitative aspects

in unequal area facility layout problem: An interactive genetic algorithm. Applied Soft Computing 13
(2013) 1718–1727

8. Garćıa-Hernández, L., Arauzo-Azofra, A., Salas-Morera, L., Pierreval, H., Corchado, E.: Facility layout
design using a multi-objective interactive genetic algorithm to support the DM. Expert Systems 32
(2015) 94–107

9. Grobelny, J., Michalski, R.: A novel version of simulated annealing based on linguistic patterns for
solving facility layout problems. Knowledge-Based Systems 124 (2017) 55–69

10. Chung, Y.K.: A neuro-based expert system for facility layout construction. Journal of Intelligent
Manufacturing 10 (1999) 359–385

11. Ahmad, A.R., Tasadduq, I.A., Imam, M.H., Shaban, K.B.: Automated discovery and utilization of tacit
knowledge in facility layout planning and optimization. Journal of Software & Systems Development
(2015) Article ID 369029.

12. Merrell, P., Schkufza, E., Koltun, V.: Computer-generated residential building layouts. ACM Trans-
actions on Graphics 29 (2010) Article 181

13. Yu, B., Pan, D.Z., Matsunawa, T., Zeng, X.: Machine learning and pattern matching in physical
design. The 20th Asia and South Pacific Design Automation Conference (2015) 286–293

14. O’Sullivan, B.: Automated modelling and solving in constraint programming. In Fox, M., Poole, D.,
eds.: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), AAAI
Press (2010) 1493–1497

15. Bessière, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of examples
in automated constraint acquisition. In Wallace, M., ed.: CP’04: 10th International Conference on
Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, Springer
(2004) 123–137

16. Mizoguchi, F., Ohwada, H.: Constrained relative least general generalization for inducing constraint
logic programs. New Generation Computing 13 (1995) 335–368

17. Schaefer, A.J.: Inverse integer programming. Optimization Letters 3 (2009) 483–489
18. Aswani, A., Shen, Z.J., Siddiq, A.: Inverse optimization with noisy data. Operations Research 66

(2018) 870–892
19. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artificial Intelligence 244

(2017) 343–367
20. Racine, J., Li, Q.: Nonparametric estimation of regression functions with both categorical and contin-

uous data. Journal of Econometrics 119 (2004) 99–130
21. Ju, G., Li, R., Liang, Z.: Nonparametric estimation of multivariate CDF with categorical and contin-

uous data. Advances in Econometrics 25 (2009) 291–318
22. Todd, J.: Encoding 2d angles without trigonometry. https://www.freesteel.co.uk/wpblog/2009/06/05/encoding-

2d-angles-without-trigonometry/ (2009) Accessed 2018-08-20.
23. Seabold, S., Perktold, J.: Statsmodels: Econometric and statistical modeling with python. In: 9th

Python in Science Conference. (2010)
24. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a

standard CP modelling language. In Bessiere, C., ed.: Proceedings of the 13th International Conference
on Principles and Practice of Constraint Programming. Volume 4741 of Lecture Notes in Computer
Science., Springer (2007) 529—-543

25. Marte, M.: Yuck. https://github.com/informarte/yuck (2018) Accessed 2018-10-04.

