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ARTICLE OPEN

Dynamic prediction of mortality after traumatic brain injury
using a machine learning algorithm
Rahul Raj 1,11✉, Jenni M. Wennervirta1,2,11, Jonathan Tjerkaski3, Teemu M. Luoto 4, Jussi P. Posti5, David W. Nelson6, Riikka Takala7,
Stepani Bendel8, Eric P. Thelin3,9, Teemu Luostarinen10 and Miikka Korja1

Intensive care for patients with traumatic brain injury (TBI) aims to optimize intracranial pressure (ICP) and cerebral perfusion
pressure (CPP). The transformation of ICP and CPP time-series data into a dynamic prediction model could aid clinicians to make
more data-driven treatment decisions. We retrained and externally validated a machine learning model to dynamically predict the
risk of mortality in patients with TBI. Retraining was done in 686 patients with 62,000 h of data and validation was done in two
international cohorts including 638 patients with 60,000 h of data. The area under the receiver operating characteristic curve
increased with time to 0.79 and 0.73 and the precision recall curve increased with time to 0.57 and 0.64 in the Swedish and
American validation cohorts, respectively. The rate of false positives decreased to ≤2.5%. The algorithm provides dynamic mortality
predictions during intensive care that improved with increasing data and may have a role as a clinical decision support tool.
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INTRODUCTION
Traumatic brain injury (TBI) is a leading cause of death and
disability worldwide1. The global incidence is estimated to be
369–790 per 100,000 and the incidence is increasing1,2. Approxi-
mately 10% of patients with TBI require admission to an intensive
care unit (ICU)3. Hospital and six-month mortality of patients with
TBI treated in the ICU are approximately 15% and 20%,
respectively4.
Increased intracranial pressure (ICP) is the main cause of TBI-

related death. The degree of brain injury is indirectly characterized
by the ICP and the derived cerebral perfusion pressure (CPP)
(defined as mean arterial pressure [MAP] - ICP)5–7. Consequently,
optimizing ICP and CPP is the cornerstone of modern treatment of
severe TBI8,9. The recommended fixed ICP and CPP thresholds are
<20–22mmHg and 60–70mmHg, respectively, although these
thresholds may vary according to cerebrovascular reactivity, age
and sex10–12. However, although the prognostic value of ICP and
CPP is undisputed in terms of mortality, apart from static
thresholds, the prognostic value of ICP and CPP has not been
translated into a clinically useful tool that could be used to guide
the treatment of individual TBI patients5–7. As there is a clear
association between mortality and time spent above specific ICP
thresholds, quantifying the effects of ICP and CPP on patient
prognosis could aid clinicians to make more standardized and
data-driven treatment decisions that are less affected by cognitive
or personal biases, available resources and cultural factors13. Such
measures would plausibly be particularly helpful when treatment
periods are prolonged and clinical decision-making becomes
increasingly challenging. Current prediction models in TBI are
usually static, utilizing admission parameters and only result in an
explained variance of about 35% in severe TBI14,15. Furthermore,
TBI is a dynamic disease with lesion progression and subsequent

deterioration in certain individuals, requiring longitudinally
monitored data to optimize treatment.
One of the main challenges in translating machine learning

applications to the bedside is the lack of external validation16.
Here, we evaluate the external validity of the previously
developed ICP-MAP-CPP algorithm in two international TBI
cohorts after retraining the algorithm with additional available
data in an extended training cohort17. To evaluate the perfor-
mance of the algorithm, we calculated the area under the receiver
operating characteristic curve (AUC) and precision recall curve
(AUPRC), accuracy, false positives (i.e., the algorithm predicts
death when the patient survives, which may lead to under-
treatment) and false negatives (i.e., the algorithm predicts survival
when the patient dies, which may lead to overtreatment). We
calibrated the algorithm to minimize the number of false positives
to avoid the worst-case clinical scenario of inaccurately with-
drawing active life-saving treatment, as patients with severe TBI
may recover remarkably well despite a poor initial prognosis18.

RESULTS
Data and preprocessing
We collected 1 to 5min median values of ICP, MAP and CPP from
electronic databases during the first 120 h following ICU admission
(Fig. 1). As in the original study, we excluded extreme measurements
(ICP > 100mmHg, ICP < 0mmHg, MAP > 150mmHg, MAP
< 20mmHg) and did not impute missing values17. Missing values
may occur frequently during intensive care and can themselves
include important clinical information. If values were completely
missing in a time window, the patient was excluded from that
specific time window-based estimate.
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Patient characteristics
The training cohort included 686 patients from four hospitals
(Supplementary Table 1). 30-day mortality varied between 15%
and 24% in the training cohort hospitals. The external validation
cohorts consisted of 464 (Stockholm cohort) and 174 patients
(eICU cohort), respectively (Fig. 2). The 30-day mortality rate was
17% in the training cohort and 13% in the Stockholm cohort. In-
hospital mortality in the eICU cohort was 30%. Patient character-
istics are shown in Tables 1 and 2. In short, patients in the
Stockholm cohort were slightly older (median age 51 y vs. 46 y),
were more frequently not obeying/localizing upon admission, had
more frequently intracranial mass lesions >25 cm3, traumatic
subarachnoid hemorrhages, epidural hematomas on their admis-
sion CT scans than patients in the Finnish training cohort (Table 1).
Craniotomy for hematoma evacuation (61% vs. 40%) and the use
of external ventricular drains (53% vs. 17%) were more frequent in
the Stockholm cohort than in the training cohort, whereas
decompressive craniectomies were less frequently performed in
the Stockholm cohort (10% vs. 16%). Patients in the eICU cohort
were younger (median age 38 vs 51 years), had lower GCS scores
(prevalence of GCS 3–8 83% vs. 71%, had longer ICU length of
stays (median 12 vs 10 days) and higher mortality rate (30% vs.
13%) than patients in the Stockholm cohorts (Table 2). The mean
ICP level was higher in non-survivors than in survivors in all three
cohorts during the first 120 h (Supplementary Fig. 1).

Training cohort and internal validation
Of the 55 evaluated features (Supplementary Table 2), 14 features
were selected into the final retrained algorithm (Supplementary

Fig. 2). Feature correlation is shown in Supplementary Fig. 3 and
the features’ regression coefficients are shown in Supplementary
Table 3. In the training cohort, the mean time of ICP monitoring
was 90.7 h (SD 31.4) per patient.
The four most important features were the slope of the linear

coefficient of the mean differences between two consequent CPP
values in the derived time-window (cpp_diff_coef), the slope of
the linear coefficient of the mean differences between two
consequent MAP values in the derived time-window (map_diff_-
coef), the mean MAP from the first 24 h in relation to the mean
differences between consequent MAP values in the derived time-
window (map_diff_begin), the slope of the linear coefficient of the
mean differences between two consequent ICP values in the
derived time-window (icp_diff_coef) (Fig. 3).
In the training cohort (n= 686), the mean time of ICP

monitoring was 90.7 h (SD 31.4) per patient. The AUC increased
from 0.67 after the first 24 h to 0.79 after 120 h and the AUPRC
increased from 0.33 after the first 24 h to 0.55 after 120 h (Fig. 4).
The average fp and fn rates in all cross-validation repetitions
decreased from 11.7% to 2.2% and remained stable between
11.7% and 13.1%, respectively (Supplementary Fig. 4). The
accuracy (tp+ tn/all) at 120 h was 85.4%.

Stockholm cohort
In the Stockholm cohort (n= 464), the mean time of ICP
monitoring was 97.3 h (SD 31.9) per patient. The AUC increased
from 0.66 after the first 24 h to 0.79 after 120 h. The AUPRC
increased from 0.31 after the first 24 h to 0.57 after 120 h (Fig. 4).
The fp rate decreased from 20.3% after 24 h to 2.4% at 120 h (Fig.

Fig. 1 Summary of the workflow of the data extraction, preparation, retraining, validation and algorithm evaluation. Data were extracted
from the electronic intensive care unit databases. Patients were filtered according to inclusion and exclusion criteria before forming the final
patient cohorts. Data were explored and extreme measurements were removed (a).The model was based on intracranial pressure (ICP),
cerebral perfusion pressure (CPP), mean arterial pressure (MAP) features and patient age. Following feature engineering and recursive feature
elimination the final features were used in a time-window-based dynamic logistic regression model. The model was retrained in the Finnish
patient cohort and validated separately in the Stockholm cohort and in the eICU cohort by assessing the area under the receiver operating
characteristic curve, the area under the precision-recall curve, false positives, false negatives, and accuracy (b). Key algorithm evaluation
metrics were the rate of false positives and false negatives, prevision, recall and accuracy (c).
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5). The fn rate remained stable at around approximately 7%. The
accuracy at 120 h was 90.3%. Decreasing the 50% prediction
threshold to 25% increased the fp rate but decreased the fn rate.
In contrast, increasing the 50% prediction threshold to 75%
decreased the rate of fp and increased the rate of fn
(Supplementary Fig. 5). With a threshold of 50%, 55% of the false
positives had an unfavorable functional outcome at 1-year after
admission.

eICU cohort
In the eICU cohort (n= 174), the mean time of ICP monitoring was
87.7 h (SD 34.3) per patient. The median hospital length of stay
was 5 days (IQR 4–11 days) in patients who died and 21 days (IQR
16–30 days) in patients who survived. The AUC increased from
0.67 after the first 24 h to 0.73 after 120 h. The AUPRC increased
from 0.48 after the first 24 h to 0.64 after 120 h (Fig. 4). The fp rate
decreased from 10.3% to 1.1% and the fn rate remained stable at
approximately 23% (Fig. 5). The accuracy at 120 h was 75.9%.
Similarly, to the Stockholm cohort, decreasing the threshold
increased the fp rate and increasing the threshold decreased the
fp rate at the cost of a higher fn rate (Supplementary Fig. 6).

DISCUSSION
The ICP-MAP-CPP algorithm for dynamic mortality prediction in
patients with TBI treated in the ICU displayed improving
performance metrics in a time-dependent manner. In the Stock-
holm cohort, the AUC increased with time from 0.66 to 0.79 and
the AUPRC from 0.31 to 0.57. In the eICU cohort, the correspond-
ing metrics increased from 0.67 to 0.73 and from 0.48 to 0.64. The
false positive rates were <2.5% in both cohorts and the false
negative rates were 7% and 23%. In other words, fewer than 3 out
of 100 patients survived when the algorithm predicted death and
7 to 23 out of 100 patients died despite the algorithm predicting
survival. Thus, the accuracy of the algorithm was good in the
Stockholm cohort (90%) and satisfactory in the eICU cohort (76%).
Noteworthy, 55% of the false positives in the Stockholm cohort
had unfavorable functional outcomes at 1 year. The potential use
of the ICP-MAP-CPP algorithm is to alarm the clinician of changes
in patient prognosis over the course of treatment, function as an
objective decision-making support tool when trying to decide to
continue or stop active treatment and inform relatives and next-

of-kin. However, future prospective studies are needed to
determine clinically relevant changes and their timing and
whether the use of the algorithm improves patient prognosis
and/or treatment cost-effectiveness. Still, we believe that a change
in risk of death to worse or better informs clinicians about the
impact of given pharmaceutical or interventional treatments.
The algorithm performed slightly better in the Swedish cohort

than in the eICU cohort. The performance metrics improved
clearly over time in the Swedish cohort while they were more
stable in the eICU cohort. The reasons for these differences are
speculative. For example, the prevalences of high-energy motor
vehicle accidents, assaults and gunshot injuries are lower in the
Nordic countries than in the USA18–20. Though, patients with
penetrating brain injury were excluded from the training cohort
and the Swedish validation cohort17. Hence, it is possible that
patients in the eICU cohort suffered from more severe and
etiologically different brain injuries than patients in the Finnish
training and Swedish validation cohorts, partly explaining the
differences in algorithm performance. Although patients were
younger in the eICU cohort, they had a more than doubled
mortality rate (30 vs. 13%). Moreover, patients in the eICU cohort
had lower GCS scores on admission than patients in the
Stockholm cohort. Therefore, these differences between the
cohorts may contribute to the differences in algorithm perfor-
mance between the eICU and Stockholm cohorts. In addition,
factors such as socioeconomic, ethnic and insurance status
differences might have affected the mortality rates in the eICU
cohort, while these factors presumably have less importance for
patient outcomes in the Nordic countries that use government-
funded single-payer healthcare systems21–23. Nevertheless,
despite considerable demographic differences, we observed that
the ICP-MAP-CPP algorithm performed well in both validation
cohorts, which suggests that this prediction tool can be expected
to perform well in a real-world setting.
There are some limitations that should be highlighted. First, as

the eICU database did not contain data regarding 30-day
mortality, we relied on in-hospital mortality. However, among
hospital survivors in the eICU cohort, the median hospital length
of stay was 21 days compared to 5 days among hospital non-
survivors. Thus, the likelihood of patients dying between hospital
discharge and 30 days is small and its effect on our results is likely
non-relevant. Still, whether some of the patients did die between

Fig. 2 Study flow chart. The training cohort was collected from four university hospitals in Finland and the external validation cohorts were
collected from Karolinska University Hospital (Stockholm, Sweden) and the eICU database.
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hospital discharge and 30 days they would be misclassified by the
algorithm. This could falsely increase the number of false positives
in the eICU cohort (i.e., a patient is alive at discharge but dies
within 30 days when the algorithm predicted death). Second, we
used all-cause 30-day mortality and not specifically neurological

cause death. Although it is possible that the direct cause of death
is a non-neurological cause, the death will still be indirectly injury
related. Moreover, derangements in ICP correlate poorly with non-
neurological causes of death and, thus, these may not be captured
by the algorithm (i.e., increasing false negatives)11,24. Third,
prospective validation with treatment data for more than 5 days
is necessary to assess the validity of the model over the first 120 h.
Based on the Stockholm cohort, predictions might improve with
an increasing amount of big data, i.e., with increasing days of
monitoring. Fourth, although the included variables (age, MAP,
ICP) are widely available in ICUs all over the world, the algorithm is
developed and validated in three high-income countries (Finland,
Sweden, USA). The burden and mortality of TBI is highest in low-
and middle-income countries1,25. Thus, it would be of importance
to test the algorithm in such settings, where the potential benefits
may be more substantial. Such data were unfortunately not
available for this study and might be challenging to obtain in large
numbers. Noteworthy, the retrained algorithm included somewhat
different features than the original ICP-MAP-CPP algorithm17. The
original ICP-MAP-CPP algorithm included 15 features, of which 6
are included in the retrained algorithm. Further, in the original
algorithm, there were 2 CPP-based features, 6 ICP-based features
and 6 MAP-based features compared to 4 CPP-based features, 6
ICP-based features and 3 MAP-based features in the retrained
algorithm. Still, the performance of the original and retrained
model was as good as identical.
High ICP is associated with a higher risk of death5–7,11,24.

Nevertheless, there is wide variation in the practice of ICP

Table 1. Patient characteristics in the training cohort and in the
Stockholm cohort.

Variables Training cohort
(n= 686)

Stockholm
cohort (n= 464)

p-value

Age, median (IQR) 46 (28, 59) 51 (33, 62) <0.001

Female sex 135 (20%) 106 (23%) 0.196

Admission GCS scorea

3 to 8 465 (68%) 321 (71%) 0.301

9 to 12 157 (23%) 87 (19%)

13 to 15 64 (9%) 47 (10%)

Admission motor scoreb

None 186 (27%) 85 (20%) <0.001

Extension 34 (5%) 52 (13%)

Abnormal flexion 35 (5%) 52 (13%)

Normal flexion 124 (18%) 72 (17%)

Localizes/obeys 307 (45%) 156 (37%)

Pupillary light reactivityc

None react 32 (5%) 73 (16%) <0.001

One reacts 100 (15%) 45 (10%)

Both react 554 (80%) 325 (73%)

Hypoxiad 110 (16%) 96 (23%) 0.004

Hypotensione 74 (11%) 16 (5%) 0.002

Marshall CT classf

DI I 12 (2%) 0 (0%) <0.001

DI II 260 (38%) 122 (26%)

DI III 121 (17%) 77 (17%)

DI IV 25 (4%) 14 (3%)

EML/NEML 268 (39%) 249 (54%)

Traumatic SAHg 491 (72%) 387 (84%) <0.001

Epidural hematomah 57 (8%) 66 (14%) 0.001

Craniotomy and
hematoma evacuation

273 (40%) 281 (61%) <0.001

Decompressive
craniectomy

113 (16%) 48 (10%) 0.003

Primary 48 (7%) 39 (8%) <0.001

Secondary 65 (9%) 9 (2%)

External ventricular drain 114 (17%) 244 (53%) <0.001

ICU length of stay (days),
median (IQR)

9 (4, 14) 10 (5, 16) 0.021

30-day mortality 120 (17%) 60 (13%) 0.037

Hypoxia defined as any prehospital spO2 value <90%. Hypotension
defined as any prehospital systolic blood pressure value mmHg.
CT Computer Tomography, DI Diffuse Injury, EML Evacuated Mass Lesion
(>25 cm3), NEML Non-Evacuated Mass Lesion (>25 cm3), GCS Glasgow
Coma Scale, IQR Interquartile Range.
a9 missing values in the Stockholm cohort.
b47 missing values in the Stockholm cohort.
c21 missing values in the Stockholm cohort.
d47 missing values in the Stockholm cohort.
e137 missing values in the Stockholm cohort.
f2 missing values in the Stockholm cohort.
g5 missing values in the Stockholm cohort.
h2 missing values in the Stockholm cohort.

Table 2. Patient characteristics in the eICU cohort.

Variable eICU cohort (n= 174)

Age, median (IQR) 38 (24, 57)

Female sex 35 (20%)

Ethnicity

Caucasian 132 (76%)

African American 20 (12%)

Hispanic 7 (4%)

Asian 2 (1%)

Native American 1 (1%)

Other/Unknown 11 (6%)

GCS scorea

3–8 129 (83%)

9–12 17 (11%)

13–15 10 (6%)

Motor scorea, median (IQR)

None 72 (46%)

Extension 7 (4%)

Abnormal flexion 9 (6)

Normal flexion 27 (17%)

Localizes/obeys 41 (27%)

APACHE IV scoreb, median (IQR) 75 (56, 90)

APACHE IV physiology scoreb, median (IQR) 82 (53, 87)

Length of ICU stayb, median (IQR) 12 (7, 19)

Length of hospital stayb, median (IQR) 18 (8, 27)

Hospital mortality 53 (30%)

APACHE acute physiology and chronic health evaluation, ICU intensive care
unit, IQR interquartile range.
aGCS score defined as the worst within the first 24 h of admission
according to the APACHE IV criteria. GCS score was missing for 19 patients.
bMissing for 16 patients.
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monitoring in Europe26, Australia and New Zealand27, Canada28,
and the US29. The ICP-MAP-CPP algorithm offers a few properties
that could enable its clinical implementation with the potential to
improve quality of care and patient outcomes, as well as
standardize treatment policies of severely injured TBI patients
with a prolonged ICU stay. First, as a dynamic prediction model
based on more than 60,000 h of ICP and CPP data to quantify the
effect of ICP and CPP on patient outcomes, the algorithm provides
repeated simple numbers informing the clinicians about the
developing trend of the patient’s clinical status. Therefore, the
algorithm is particularly useful in the case of prolonged treatment
when decisions to continue or withdraw the treatment become
perhaps more and more challenging. In this context, however, it is
important that the algorithm does not suggest any specific
treatment approach or policy. Second, the ICP-MAP-CPP algorithm
is based upon averaged low-frequency data (1 to 5-min medians)
from variables that are all widely available in ICUs around the
world. The use of low-frequency data overcomes some major
challenges in terms of data interruption and artifact signals, all of
which are frequent during ICU stay. Artifacts and interruptions
may occur, for example, in association with, e.g., probe zeroing,
catheter flushing, patient position changes, emergency medical
interventions and radiological investigations. Thus, the algorithm
is designed to function even in clinical situations with repeatedly
disrupted data. Third, the algorithm is completely automatized
and does not require any manual input, which minimizes the risk
of human errors. Fourth, the outcome of interest is 30-day
mortality. Mortality is a hard and crude outcome, which is not
subject to interpretability, or cultural or societal differences.
Further, 30-day mortality is short enough to be regarded as a
direct injury related endpoint. However, predicting long-term TBI-
related neurological outcomes using more granular functional
outcome metrics could be one of the future aims. Fifth, the
algorithm is calibrated (threshold 50%) to minimize the risk of
giving false positive predictions (i.e., predicting death when the
patient survives) at the cost of false negatives (i.e., predicting
survival when the patient dies). This is to minimize the risk of a
scenario where a clinician would withdraw critical treatment
based on false positive predictions. Similarly, as the reliability of
the predictions increases with increasing data, the algorithm use

could be formally restricted for prolonged ICU treatments, i.e.,
patients monitored for at least 3 days or longer. This would further
minimize the risk of early treatment withholds or withdrawals
based on algorithm predictions.

METHODS
Study design and patient cohorts
We conducted a multicenter observational retrospective study including
adult patients (16 years or older) who were acutely admitted to the
intensive care unit (ICU) due to TBI. We only included patients that had ICP
data for at least 24 h.
The study was approved by the research committees of Helsinki

university Hospital (HUS/182/2021), Kuopio University Hospital (507T013),
Turku University Hospital (TP2/008/18), Tampere University Hospital
(R18525) and Karolinska University Hospital (Dnr 2020-05227). Access to
the eICU database was granted through https://physionet.org/.

Training cohort
The training cohort consisted of patients with TBI treated in four university
hospital ICUs in Finland (Helsinki University Hospital, Helsinki Finland
[2010–2019], Kuopio University Hospital, Kuopio Finland [2004–2013],
Turku University Hospital, Turku, Finland [2003–2013]) and Tampere
University Hospital, Tampere, Finland [2007–2017]). Together, these tertiary
ICUs cover approximately 85% of Finland’s population. The TBI treatment
protocols in the Finnish ICUs are similar and based upon the most recent
Brain Trauma Foundation guideline10,30,31.
Clinical data were collected and manually verified from electronic health

care records. ICU data were collected from electronic databases (“PICIS
Critical Care Suite”, PICIS Clinical Solutions, Barcelona, Spain and “Centricity
Critical Care Clinisoft”, GE Healthcare, Chicago, Ill, USA). From the electronic
ICU databases, we collected ICP, MAP and CPP in 1 to 5-min median values
(as locally stored) and rounded them to the nearest full minute time
resolution.

External validation cohorts
For the external validation, we used a cohort of patients with TBI treated in
the neurosurgical intensive care unit at Karolinska university hospital,
Stockholm, Sweden (referred to as “Stockholm cohort”) and a cohort of
patients with TBI from the eICU database, coming from several ICUs in the
USA (referred to as “eICU cohort”)32,33.

Fig. 3 Relative feature importance and the direction of the predictions. The relative feature importance in descending order: cpp_diff_coef,
map_diff_coef, map_diff_begin, icp_diff_coef, cpp_diff_begin, icp_q90_coef, icp_end, agec, cpp_end, cpp_var_coef, icp_diff_end, icp_coef,
map_var_coef, icp_var_coef (a). Heat map showing the predictive role of included features (b). Red indicates that a higher feature value
increases probability of death and blue indicates that a higher feature value increases probability survival. begin = mean value from the first
derived 24-hour time-window; end = mean value from the last derived 8 h; coef = slope of the linear coefficient from the start of the derived
time-window up to the time of the prediction; q90= 90th percentile in the derived time-window; diff=mean of differences between
consequent values in the derived time-window, var variance in the derived time-window, icp intracranial pressure, cpp cerebral perfusion
pressure, map mean arterial pressure, agec age deciles.
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The patients in the Stockholm cohort were all admitted to the
neurosurgical ICU of Karolinska University Hospital in Stockholm, Sweden
during 2006–2019. The unit has a catchment area of approximately 2.5
million people and is the only unit providing neurosurgical and
neurointensive care in the Stockholm metropolitan area (including the
island of Gotland). Clinical and outcome data were collected prospectively,
and intensive care data were stored electronically in electronic databases
(“Centricity Critical Care Clinisoft”, GE Healthcare, Chicago, Ill, USA). ICP,
MAP and CPP values were stored in 1 to 2-minute median values. The
treatment protocol at the neurosurgical ICU at Karolinska University
Hospital is similar to that of the Finnish ICUs’ cohort34.
The patients in the eICU cohort were extracted from the PhysioNet

database after obtaining proper permissions [9,10]. The eICU database is a
telehealth system developed by Philips Healthcare. The eICU database
includes over 200,000 patients from several ICUs in the USA treated during
2014–2015. From the eICU database, we extracted patients with an
APACHE IV (Acute Physiology and Chronic Health Evaluation)35 diagnosis
indicating TBI (see Supplementary Table 4 for diagnosis list) and were
monitored for ICP for at least 24 h. In the eICU database, ICP, MAP and CPP
values were stored in 5-minute median values.

Definition of the outcome
The algorithm was developed to predict the risk of 30-day all-cause
mortality from admission17. We used 30-day mortality as the primary
outcome of interest when training the algorithm and for testing the
algorithm in the Stockholm cohort. For external validation in the eICU
cohort, we used in-hospital mortality, as 30-day mortality was not available.
In the Stockholm cohort, we assessed one-year functional outcome for
false positives (unfavorable functional outcome defined as a Glasgow
Outcome Scale of 1–3)36.

Algorithm description and retraining
The algorithm has previously been developed in a cohort consisting of 472
patients with TBI from three Finnish tertiary ICUs17. The original code is
open-sourced and be found at https://static-content.springer.com/esm/art
%3A10.1038%2Fs41598-019-53889-6/MediaObjects/41598_2019_53889_
MOESM1_ESM.pdf. The code for the retraining and testing can be found at
https://github.com/ralleraj/aip_tbi. The ICP-MAP-CPP algorithm was devel-
oped as a fully automated and objective dynamic algorithm to predict 30-
day mortality based upon ICP, MAP and CPP. The algorithm uses a logistic
regression approach with rolling time windows. Before retraining, extreme
measurements (ICP > 100mmHg or < 0mmHg, MAP > 150mmHg or <
20mmHg) were excluded. Features were designed as means from the first

24 h time-window (begin), means from the last 8 h time-window (end),
linear trend coefficients from the last time-window (coef), minimum values
from the last time-window (min), maximum values from the last time-
window (max), means of differences from the last time-window (diff),
variances from the last time-window (var) and mean values from the last
time-window (avg). Specific ICP features were designed to capture the
percentage of data points being higher than 20mmHg (ht20) and lower
than 10mmHg (lt10). Specific MAP features were designed to capture the
percentage of data points being higher than 120mmHg (ht120), as a
measure of severe arterial hypertension. Features were designed to
capture the trends of the most extreme values in terms of the highest 90th
percentile (q90) and the lowest 10th percentile (q10). Finally, 54 features
(+age in deciles, “agec”) were considered for the ICP-CPP-MAP model
(Supplementary Table 2). The features’ regression coefficients (Supple-
mentary Table 3) are constant, and the features’ values were calculated in
4 h rolling time-windows. The optimal features and number of features
were chosen using a stratified cross-validation technique. Thus, the
included features might differ depending on how the folds are
randomized. The algorithm gives a prediction ranging from 0% to 100%
every 8 h following the first 24 h.
Here, we retrained the algorithm with additional available data in an

extended training cohort including 686 patients from four Finnish tertiary
ICUs. A five-fold cross-validation technique was used for the internal
validation.

Statistical analysis
We conducted all analyses using Stata version 15 (StataCorp, College
Station, TX) and Google Colaboratory (Mountain View, CA, USA). In Google
Colaboratory, we used python 3.7.12 for the retraining and validation of
the algorithm. The following libraries were used scikit-learn (version 1.0.1),
tqdm (version 4.62.3), pandas (version 1.1.5), numpy (version 1.19.5),
matplotlib (version 3.2.2), seaborn version 0.11.2), joblib (version 1.1.0) and
bayesian-optimization (version 1.2.0).
Continuous data were tested for skewness using the

Kolmogorov–Smirnov test. Normally distributed data were presented as
means with standard deviations and nonparametric data were presented
as medians with interquartile ranges. Differences in categorical variables
between groups were tested using a two-sided chi-square test and
differences between non-parametric continuous variables were tested
using a Wilcoxon rank-sum test.
We externally validated the trained algorithm in the Stockholm and eICU

cohorts. To assess algorithm performance, we calculated the area under
the receiver operating characteristic curve (AUC), the area under the
precision-recall curve (AUPRC) and accuracy as functions of time. The AUC

Fig. 4 Time-dependent area under receiver operating curves (AUC) and area under the precision recall curves (AUPRC). Time-dependent
AUCs (a) and time-dependent AUPRCs (b). The first AUC and AUPRC values are calculated after 24 h after which a new value is calculated for
every 8 h. In green, the cross-validation results from the algorithm retraining, in blue, the results from the Stockholm cohort validation and in
red, the results from the eICU cohort validation. The increase in AUC was more pronounced in the Stockholm cohort than in the eICU cohort,
whereas the increase in AUPRC was more pronounced in the eICU cohort than in the Stockholm cohort.
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is a combination of sensitivity and specificity and tests the discriminatory
power of the algorithm, i.e., what is the likelihood that a patient with the
outcome (death) has a higher risk of death than a patient without the
outcome (alive).
We calculated the rate of false positives (i.e., patients that were

predicted to have a fatal outcome but survived, fp) and false negatives
(patients that were predicted to survive but had a fatal outcome, fn) at
every prediction time-point. Ideally, the fp and fn rates are low, but for an
algorithm that deals with real-time prognoses of death, avoidance of fp is
crucial to minimize the risk of withdrawing active treatment (Fig. 1).
AUPRC is a combination of precision and recall. Precision depicts how

well the classifier manages not to label a negative sample as positive.
Precision is defined: tp/(tp+ fp), where tp is the number of true positives
and fp the number of false positives. Recall is defined as: tp/(tp+ fn),
where fn is the number of false negatives. Hence, it represents the ability
of the classifier to find all the positive samples. Accuracy is the fraction of
correctly classified samples; the maximum value for it is 1 if normalization
is used, which is the case in this study.
If the predicted risk of death was higher than 50% and the patient

survived, he/she was considered an fp. If the predicted risk of death was
lower than 50% and the patient died, he/she was considered an fn [5]. The
fp and fn rates were plotted as a function of time. We also increased and
decreased the 50% threshold to 75% and 25%, respectively, to
demonstrate its effect on the fp and fn rates.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Finnish healthcare data for secondary use can be obtained through FINDATA (Social
and Health Data Permit Authority according to the Secondary Data Act. Access to the
eICU database can be obtained through https://physionet.org/. Swedish healthcare
data cannot be shared openly. Data can be made available upon request on a case-
by-case basis as allowed by the legislation and ethical permits. Requests for access
can be made to the Karolinska Institutet’s Research Data Office at rdo@ki.se.

CODE AVAILABILITY
The code for the ICP-MAP-CPP algorithm is available at https://github.com/ralleraj/
aip_tbi and https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-019-
53889-6/MediaObjects/41598_2019_53889_MOESM1_ESM.pdf. Included features
included and their regression coefficients are shown in Supplementary Table 3.
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