

https://helda.helsinki.fi

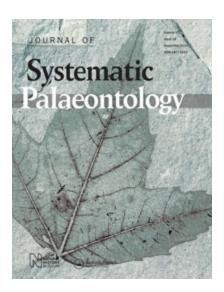
Phylogeny of Middle-Late Ordovician lituitid cephalopods based on cladistic analysis

Fang, Xiang

2021-07-26

Fang , X , Pohle , A , Kröger , B , Aubrechtova , M , Burrett , C , Zhang , Y & Zhang , Y 2021 , ' Phylogeny of Middle-Late Ordovician lituitid cephalopods based on cladistic analysis ' , Journal of Systematic Palaeontology , vol. 19 , no. 9 , pp. 633-650 . https://doi.org/10.1080/14772019.2021.1944354

http://hdl.handle.net/10138/346432 https://doi.org/10.1080/14772019.2021.1944354


cc_by_nc acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Phylogeny of Middle-Late Ordovician lituitid cephalopods based on cladistic analysis

Journal:	Journal of Systematic Palaeontology	
Manuscript ID	TJSP-2020-0087.R4	
Manuscript Type:	Original Article	
Keywords:	cladistic analysis, maximum parsimony, Lituitidae, Sinoceratidae, Lituitida, Middle-Late Ordovician	
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.		
Matrix for lituitid cephalopod-R	1.tnt	

SCHOLARONE[™] Manuscripts

2		
3 4	1	Phylogeny of Middle–Late Ordovician lituitid cephalopods based on
5	-	
6 7	2	cladistic analysis
8		v
9	3	
10		
11 12	4	Xiang Fang ^{a,*} , Alexander Pohle ^b , Björn Kröger ^c , Martina Aubrechtová ^{d,e} , Clive
13	·	Thang Fung , Therander Fonde, Djoin Rioger, martina Tuoroento ta , entre
14	5	Burrett ^f , Yunbai Zhang ^a and Yuandong Zhang ^{a,g}
15	5	Durren, Tunbai Zhang and Tuandong Zhang ?
16 17	(
17 18	6	
19		
20	7	^a State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of
21		
22 23	8	Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment,
23 24		
25	9	Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
26		
27	10	^b Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4,
28 29		
30	11	8006 Zurich, Switzerland
31		
32	12	^c Finnish Museum of Natural History, PO Box 44, Fi-00014 University of Helsinki,
33 34	12	
35	12	Finland
36	13	r iniuna
37		
38	14	^d Institute of Geology and Palaeontology, Faculty of Science, Charles University in
39 40		
41	15	Prague, Albertov 6, 12843 Praha 2, Czech Republic
42		
43	16	^e Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00
44 45		
45 46	17	Praha 6, Czech Republic
47		
48	18	^f Palaeontological Research and Education Centre, Mahasarakham University, Maha
49		
50 51	19	Sarakham 44150, Thailand
52		
53	20	^g University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049,
54	20	- Oniversity of Chinese Actuenty of Sciences, 17A Tuquun Roua, Deifing 100049,
55 56	0.1	China
56 57	21	China
58	. -	
59	22	
60		

23 *Corresponding author. Email: <u>xfang@nigpas.ac.cn</u>

25	Abstract: Phylogenetic studies are rare in early Palaeozoic cephalopods. Here, we
26	present the first cladistic analysis of the order Lituitida based on published, as well as
27	some new material. Three clades are recovered within the ingroup of lituitids, which
28	are the Sinoceras, Ancistroceras and Lituites groups, and the former two groups
29	correspond to the families Sinoceratidae, and the latter one to Lituitidae. The
30	topology shows that Sinoceratidae represents the basal branch, while the Lituitidae
31	represents a monophyletic, derived clade. Furthermore, we describe new material of
32	four species (three of which are newly defined) in four genera of the order Lituitida
33	from the well-exposed, Middle to Upper Ordovician of Hubei (South China). The
34	described species include Lituites evolutus Fang, Chen & Zhang, Sinoceras
35	complexum Fang (sp. nov.), Tyrioceras longicameratum Fang (sp. nov.), and
36	Rhynchorthoceras yizanense Fang (sp. nov.). T. longicameratum from South China is
37	the first reported occurrence of Tyrioceras in China, which has significant
38	palaeogeographic implications.
39	
40	Keywords: cladistic analysis; maximum parsimony; Lituitidae; Sinoceratidae;
41	Lituitida; Middle–Late Ordovician
42	
43	Introduction
44	

Page 3 of 54

2	
3 4	
4 5	
6	
7 8	
9	
10 11	
12	
13	
14 15	
16	
17 18	
19 20	
20	
20 21 22	
22 23 24	
24 25	
26 27	
27 28	
28 29	
29 30 31	
31 32	
32 33 34	
34 35	
36	
37 38	
30 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50	
51 52	
53	
54 55	
56	
57 58	
58 59	
60	

45	Several attempts of cladistic analysis have been conducted with focus on the
46	phylogeny of different groups of 'nautiloid' cephalopods, including the classification
47	at lower taxonomic levels (Kröger & Isakar 2006; Kröger 2008a), the generic
48	affinities (Kröger & Mapes 2007a), and the evolutionary path at higher taxonomic
49	levels (Kröger & Mapes 2007b; Kröger et al. 2011). However, a systematic and
50	comprehensive analysis is still pending, and many taxa have never been investigated.
51	Lituitid cephalopods are distinguished from other Ordovician cephalopods by their
52	specific conch shape and ornaments (Aubrechtová & Meidla 2020). Most of them
53	have a coiled or cyrtoconic part at the early growth stage, and then develop the
54	uncoiled or fully straight conch at the late stage.
55	The taxonomic position and ancestry of lituitids have long been debated
56	intensely. Members of the order Lituitida Starobogatov, 1983 were previously placed
57	within the Tarphyceratida or Barrandeoceratida based on the morphology of the
58	siphuncle, and the spiral or cyrtoconic juvenile phragmocone form (Flower &
59	Kummel 1950; Sweet 1958; Teichert et al. 1964; Flower 1975). By contrast,
60	Schindewolf (1942) concluded that the predecessors of the Lituitida must be sought
61	within the order Orthoceratida. Similarly, Dzik (1984) proposed a new suborder
62	Lituitina (see King & Evans (2019) for discussion on the original authorship of the
63	Lituitina and Lituitida, p. 77), which he assigned to the Orthoceratida. Dzik (1984)
64	additionally assigned sinoceratids to the Lituitina (Lituitida), based on the
65	phragmocone form and the presence of thin connecting rings, which was later
66	supported by King (1993, 1999). In the view of Dzik (1984), members of the

67	Lituitida were characterized by a 'subcentral, cylindrical siphuncle with long septal
68	necks, exogastric coiling of the apical part of the conch, extended in phylogeny over
69	later ontogenetic stages, and funnel sinus narrow and deep, except in the most
70	primitive forms'.
71	Mutvei (2002) suggested that the connecting ring ultrastructure of orthoceratids
72	agrees with that of lituitids, because in both groups the connecting rings consist of an
73	outer spherulitic-prismatic layer and an inner calcified-perforate layer, the latter
74	transversed by numerous large and elongated pores. Another common feature of
75	orthoceratids and lituitids is the dorsal position of the retractor muscle scars (see also
76	Schröder 1882; Noetling 1882; Sweet 1958).
77	Concerning the evolutionary relationship among lituitids, Flower (1955)
78	suggested that Lituites evolved from lineage leading from Angelinoceras to
79	Rhynchorthoceras (or Holmiceras) and Ancistroceras. Sweet (1958) considered that
80	the group including Lituites, Trilacinoceras and Cyclolituites evolved from the group
81	consisting of Ancistroceras, Angelinoceras and Rhynchorthoceras, and regarded
82	Cyclolituites as a specialized form of Lituites, modified in size and shape as an
83	adaptation to a restricted ecological niche. Chen (in Qi 1980) suggested
84	Ancistroceras is the basal form, from which the other lituitids evolved. Based on
85	conch structure and biostratigraphic information, three groups were recognized by
86	Lai (1986): one basal group, i.e. Ancistroceras, Angelinoceras, Holmiceras, which
87	evolved into the other groups, including Lituites, Trilacinoceras, Cyclolituites and
88	Sinoceras, Tyrioceras and Rhynchorthoceras during the late Darriwilian, then

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
72	

89	gradually vanished starting in the mid-Katian. It is important to note that most of
90	these hypotheses were based on the assumption that lituitids were derived from
91	tarphyceratids, and the coiled juvenile phragmocone would therefore represent the
92	ancestral state. In contrast, Dzik (1984) proposed a different evolutionary sequence,
93	with Rhynchorthoceras as the ancestral taxon, which evolved into the Sinoceras
94	lineage on the one hand, and into the Ancistroceras and Lituites lineages on the other
95	hand. In addition, Dzik (1984) included the Silurian Ophidioceratidae among the
96	lituitids, which, however, properly belong to the Tarphyceratida according to more
97	recent evidence (Turek & Manda 2016).
98	Hence, as shown above, the origin and phylogeny of the lituitids has been
99	controversial, but the recent research strongly suggests orthoceratidan instead of
100	tarphyceratidan affinities (Evans 2005; Kröger 2006; King & Evans 2019). In the
101	currently proposed classification of 'nautiloid' cephalopods for the revised Treatise
102	Part K (King & Evans 2019), the Lituitina is proposed to be assigned to the order
103	Astroviida Zhuravleva & Doguzhaeva, 2004 of the subclass Orthoceratia Teichert,
104	1967. However, in the present study, we follow the assignment of lituitid
105	cephalopods to the order Lituitida after several scholars (Starobogatov 1983; Kröger
106	et al. 2007; Aubrechtová & Meidla 2020).
107	Lituitids are regarded as the dominant elements of Middle to early Late
108	Ordovician cephalopod faunas in several parts of the world, e.g. South China, Baltica
109	and Tarim (Sweet 1958; Wang 1981; Lai 1986). In the present contribution, some
110	new information on the morphology of lituitid cephalopods was acquired from

3 4 5	111	plentiful intact, newly collected specimens, mostly from the Middle and Upper
6 7	112	Ordovician limestones of the Middle Yangtze Platform, and from previously
8 9 10	113	published materials. A preliminary cladistic analysis of the lituitids is conducted in
11 12 13	114	order to assess their phylogenetic relationships.
14 15	115	
16 17 18	116	Geological setting
19 20 21	117	
22 23	118	The newly studied materials were collected at the Chenjiahe section in Yichang,
24 25 26	119	Hubei Province (Fig. 1A), and the Mengxiao and Yizan sections in the Yongshun,
27 28	120	Hunan Province (Fig. 1B). All the sections are located on the southeast margin of the
29 30 31	121	Yangtze Platform, South China Block, and their lithostratigraphic and
32 33 34	122	biostratigraphic sequences have precise intraplatform correlations (Fig. 1C; Fang et
35 36	123	al. 2020). The Darriwilian (Middle Ordovician) strata of the Yangtze Platform are
37 38 39	124	characterized by the transition from interbedded clastics and carbonates to a
40 41	125	carbonate succession. The Kuniutan Formation, characterized by nodular and
42 43 44	126	reticulated limestones, yields shelly faunas, dominated by cephalopods, as well as
45 46 47	127	brachiopods, trilobites, and conodonts (Zhan & Jin 2007).
47 48 49	128	
50 51 52	129	[Insert Fig. 1 here]
53 54	130	
55 56 57	131	The Sandbian Datianba and Miaopo formations and the early Katian Pagoda
58 59	132	Formation consist mainly of limestones on the Yangtze Platform. The Datianba
60		6

1 2 3 4 5 6	
 7 8 9 10 11 12 13 14 15 16 17 10 	
15 16 17 18 19 20 21	
18 19 20 21 22 23 24 25 26 27 28 29	
30 31 32 33 34 35	
36 37 38 39 40 41 42	
43 44 45 46 47 48 49	
50 51 52 53 54 55 56	
57 58 59 60	

133	Formation is characterized by medium-bedded argillaceous banded limestone, with
134	small-scale network structures, yielding abundant cephalopods (Fang et al. 2017a).
135	The contemporaneous Miaopo Formation consists of limestones interbedded with
136	black shales. During the deposition of the Datianba and Miaopo formations, the
137	seafloor probably consisted of a relatively gently dipping ramp lacking steep slopes
138	and interfingering with more distal facies (Song et al. 2017). Contemporaneous
139	graptolitic facies were developed on the Jiangnan Slope, where the Hulo and Jiuxi
140	formations were deposited. These two formations are characterized by black shales,
141	mudstones and cherts, and stratigraphically range from the upper Acrograptus ellesae
142	Zone to the Nemagraptus gracilis Zone (Zhang et al. 2008, 2019).
143	Carbonate strata of the overlying Pagoda Formation were deposited across the
144	entire Yangtze Platform in the late Sandbian to the early Katian. These carbonates are
145	characterized by a polygonal reticulate structure that formed as shrinkage cracks on
146	the sea bottom (Chen & Qiu 1986), or are alternatively interpreted as due to the
147	prolonged growth of nodular carbonate (Zhan et al. 2016). The Pagoda Formation
148	
1.0	yields mainly cephalopods (Fang et al. 2017b), trilobites (Zhou et al. 2016) and
149	yields mainly cephalopods (Fang <i>et al.</i> 2017b), trilobites (Zhou <i>et al.</i> 2016) and conodonts (Wang <i>et al.</i> 2017; Fang <i>et al.</i> 2019), as well as some brachiopods (Zhan
149	conodonts (Wang et al. 2017; Fang et al. 2019), as well as some brachiopods (Zhan
149 150	conodonts (Wang <i>et al.</i> 2017; Fang <i>et al.</i> 2019), as well as some brachiopods (Zhan & Jin 2007). In the studied area, the carbonate strata of the Kuniutan, Datianba and
149 150 151	conodonts (Wang <i>et al.</i> 2017; Fang <i>et al.</i> 2019), as well as some brachiopods (Zhan & Jin 2007). In the studied area, the carbonate strata of the Kuniutan, Datianba and Pagoda formations are divided into, in ascending order, the <i>Pygodus serra</i> , <i>Pygodus</i>

2
4 5 6 7 8 9 10 11 12 13 14
6
7
8
9
10
11
12
13
14
15
17
18
19
20
13 14 15 16 17 18 19 20 21
22
23
24
25
26
24 25 26 27 28
28
29
30 31
22
33 34 35 36 37
35
36
37
37 38 39
39
40
41
42
43
44
45 46
40 47
47 48
49
50
51
52
53
54
55
56
57
58
59

1

155 cephalopod biozones can be recognized within this limestone succession, including

- 156 Proterovaginoceras incognitum (synonymized with Dideroceras wahlenbergi;
- 157 Kröger 2012), Ancistroceras, Lituites–Cyclolituites, Sinoceras chinense,
- 158 *Richardsonoceras simplex* and *Dongkalaceras–Discoceras* zones (Fang *et al.*
- 159 unpublished data).

160

161 Material and methods

162

163 Species sampling

The studied material includes published specimens of some genera, which have in 164 165 part been remeasured from previous publications (e.g. Sweet 1958; Frye 1982; Yun 166 1999, 2003; Kröger 2004, 2013; Fang et al. 2017a, b; Aubrechtová & Meidla 2020), as well as material representing three new species collected from Hunan and Hubei 167 168 provinces of South China. In total, seventeen species of the Lituitida belonging to 169 nine genera were selected, consisting of two species of Ancistroceras, one of 170 Angelinoceras, one of Cyclolituites, two of Holmiceras, three of Lituites, two of 171 Rhynchorthoceras, three of Sinoceras, one of Trilacinoceras, and two of Tyrioceras. Detailed information of the species sampled, and their distributions and horizons are 172 173 presented in Table 1. All nine well known and confidently assigned lituitid genera are represented by one to three taxa in the analysis. Several disputed taxa are excluded 174 175 due to the lack of key characters preserved. Those excluded are Tapinolituites (Gao et al. 1982), Sinoceroides (Xu & Lai 1987), Pseudoancistroceras (Xu & Lai 1987), 176

2
5
4
5
6
7
8
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 6 7 8 9 10 11 23 24 25 6 27 28 9 30 31 23 34 35 36 37 8 9 30 31 23 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37
23
24
27
25
26
27
28
29
30
31
37
JZ 33
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

177	Nevadaceras (Flower 1968). Michelinoceras chaoi Chang, 1957 and Orthoceras
178	regulare Schlotheim, 1820, representing two genera of the family Orthoceratidae, are
179	treated as outgroups, determining the evolutionary path. All species in this analysis
180	occur in the Middle and Late Ordovician in different parts of the world, e.g. South
181	China, North China (including Korea), Sibumasu (Thailand), Baltica, Precordillera
182	and Himalaya (Table 1).
183	
184	Institutional abbreviations
185	NIGP: Nanjing Institute of Geology and Palaeontology, Chinese Academy of
186	Sciences, Nanjing, China.
187	
188	Methods
100	
189	Morphological terminology used in this study follows several previous publications
189	Morphological terminology used in this study follows several previous publications (e.g. Chao <i>et al.</i> 1965; Frey 1995; Kröger <i>et al.</i> 2007; Kröger 2008b; Fang <i>et al.</i>
190	(e.g. Chao et al. 1965; Frey 1995; Kröger et al. 2007; Kröger 2008b; Fang et al.
190 191	(e.g. Chao <i>et al.</i> 1965; Frey 1995; Kröger <i>et al.</i> 2007; Kröger 2008b; Fang <i>et al.</i> 2017b; Aubrechtová & Turek 2018). In the present analysis, twenty-four multistate
190 191 192	(e.g. Chao <i>et al.</i> 1965; Frey 1995; Kröger <i>et al.</i> 2007; Kröger 2008b; Fang <i>et al.</i> 2017b; Aubrechtová & Turek 2018). In the present analysis, twenty-four multistate characters comprising 55 unordered character states were used to code the genera
190 191 192 193	 (e.g. Chao <i>et al.</i> 1965; Frey 1995; Kröger <i>et al.</i> 2007; Kröger 2008b; Fang <i>et al.</i> 2017b; Aubrechtová & Turek 2018). In the present analysis, twenty-four multistate characters comprising 55 unordered character states were used to code the genera selected for this study. Cladistic analysis was undertaken using TNT version 1.5
190 191 192 193 194	(e.g. Chao <i>et al.</i> 1965; Frey 1995; Kröger <i>et al.</i> 2007; Kröger 2008b; Fang <i>et al.</i> 2017b; Aubrechtová & Turek 2018). In the present analysis, twenty-four multistate characters comprising 55 unordered character states were used to code the genera selected for this study. Cladistic analysis was undertaken using TNT version 1.5 (Goloboff & Catalano 2016), with traditional search employing 1000 random
190 191 192 193 194 195	(e.g. Chao <i>et al.</i> 1965; Frey 1995; Kröger <i>et al.</i> 2007; Kröger 2008b; Fang <i>et al.</i> 2017b; Aubrechtová & Turek 2018). In the present analysis, twenty-four multistate characters comprising 55 unordered character states were used to code the genera selected for this study. Cladistic analysis was undertaken using TNT version 1.5 (Goloboff & Catalano 2016), with traditional search employing 1000 random addition sequences. Unambiguous characters were mapped on the tree using

198 proceeded via deletion of 33% of characters.

199	
200	Characters and coding
201	1. Hyponomic sinus: 0) absent; 1) present.
202	2. Hyponomic sinus length: 0) short (< 20% of conch width); 1) deep (\geq 20% of
203	conch width).
204	Inapplicable if character 1 is scored as state 0
205	3. Hyponomic sinus width: 0) broad (\geq 75% of conch width); 1) narrow(< 75%
206	of conch width).
207	Inapplicable if character 1 is scored as state 0
208	4. Hyponomic sinus shape: 0) round; 1) sharp.
209	Inapplicable if character 1 is scored as state 0
210	5. Dorsal sinus: 0) absent; 1) present.
211	6. Lateral sinuses: 0) absent; 1) present.
212	7. Annulations: 0) absent; 1) present.
213	8. Body chamber length: 0) short ($\leq 200\%$ of body chamber height); 1) long (>
214	200% of body chamber height).
215	9. Cameral deposits: 0) restricted apically; 1) well developed.
216	10. Epichoanitic deposits: 0) absent; 1) present.
217	11. Ontogeny cameral length: 0) decreasing; 1) constant; 2) increasing.
218	12. Ontogeny expansion rate: 0) decreasing; 1) constant; 2) increasing.
219	13. Conch size: 0) small (\leq 100 mm conch height); 1) large (> 100 mm conch
220	height).
	 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

2		
3 4 5	221	14. Adult phragmocone form: 0) orthocone; 1) cyrtocone; 2) coiled.
6 7	222	15. Juvenile phragmocone form: 0) orthocone; 1) cyrtocone; 2) coiled.
8 9 10	223	16. Looseness index: 0) small; 1) large.
11 12	224	Inapplicable if character 15 is scored as state 0 or 1
13 14 15	225	17. Early uncoiled part form: 0) straight; 1) sigmoidal.
16 17 18	226	Inapplicable if character 15 is scored as state 0 or 1
19 20	227	18. Umbilical perforation: 0) absent; 1) present.
21 22 23	228	Inapplicable if character 15 is scored as state 0 or 1
24 25	229	19. Expansion rate: 0) slow (< 6°); 1) moderate (\geq 6°, < 15°); 2) rapid (\geq 15°).
26 27 28	230	20. Conch width: 0) compressed; 1) circular
29 30	231	21. Cameral length: 0) short (< 20% of conch width); 1) moderate (\geq 20% of
31 32	222	conch width).
33	232	conch width).
34 35	232	22. Siphuncle position: 0) central; 1) subdorsal; 2) dorsal.
34 35 36 37 38		
34 35 36 37 38 39 40	233	22. Siphuncle position: 0) central; 1) subdorsal; 2) dorsal.
34 35 36 37 38 39 40 41 42 43	233 234	22. Siphuncle position: 0) central; 1) subdorsal; 2) dorsal.23. Siphuncular segment shape: 0) tubular; 1) slightly expanded.
34 35 36 37 38 39 40 41 42	233 234 235	 22. Siphuncle position: 0) central; 1) subdorsal; 2) dorsal. 23. Siphuncular segment shape: 0) tubular; 1) slightly expanded. 24. Septal neck length: 0) short (< 50% of cameral length); 1) long (≥ 50% of
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	233 234 235 236	 22. Siphuncle position: 0) central; 1) subdorsal; 2) dorsal. 23. Siphuncular segment shape: 0) tubular; 1) slightly expanded. 24. Septal neck length: 0) short (< 50% of cameral length); 1) long (≥ 50% of cameral length).
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	 233 234 235 236 237 	 22. Siphuncle position: 0) central; 1) subdorsal; 2) dorsal. 23. Siphuncular segment shape: 0) tubular; 1) slightly expanded. 24. Septal neck length: 0) short (< 50% of cameral length); 1) long (≥ 50% of cameral length). The codings for all taxa studied are listed above. Table 2 gives the data matrix
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	 233 234 235 236 237 238 	 22. Siphuncle position: 0) central; 1) subdorsal; 2) dorsal. 23. Siphuncular segment shape: 0) tubular; 1) slightly expanded. 24. Septal neck length: 0) short (< 50% of cameral length); 1) long (≥ 50% of cameral length). The codings for all taxa studied are listed above. Table 2 gives the data matrix used in the analyses containing 19 taxa (including outgroup <i>M. chaoi</i> and <i>O</i>.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	 233 234 235 236 237 238 239 	 22. Siphuncle position: 0) central; 1) subdorsal; 2) dorsal. 23. Siphuncular segment shape: 0) tubular; 1) slightly expanded. 24. Septal neck length: 0) short (< 50% of cameral length); 1) long (≥ 50% of cameral length). The codings for all taxa studied are listed above. Table 2 gives the data matrix used in the analyses containing 19 taxa (including outgroup <i>M. chaoi</i> and <i>O. regulare</i>) and 24 characters. All characters are treated as unordered and equally
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	 233 234 235 236 237 238 239 240 	 22. Siphuncle position: 0) central; 1) subdorsal; 2) dorsal. 23. Siphuncular segment shape: 0) tubular; 1) slightly expanded. 24. Septal neck length: 0) short (< 50% of cameral length); 1) long (≥ 50% of cameral length). The codings for all taxa studied are listed above. Table 2 gives the data matrix used in the analyses containing 19 taxa (including outgroup <i>M. chaoi</i> and <i>O. regulare</i>) and 24 characters. All characters are treated as unordered and equally weighted, and inapplicable data are coded with '-', and unavailable or unpreserved

243	observed variation, and which are commonly employed in systematic studies.
244	
245	Systematic palaeontology
246	
247	Order Lituitida Starobogatov, 1983
248	Family Lituitidae Phillips, 1848
249	Genus <i>Lituites</i> Bertrand, 1763
250	
251	Type species. Lituites lituus de Montfort, 1808, Middle Ordovician, Baltoscandia
252	(type locality unknown; see Aubrechtová & Turek 2018).
253	
254	Diagnosis (adapted from Teichert et al. 1964). Gradually expanded annulate conchs
255	with whorls of spiral portion in contact or loosely coiled, but not impressed; body
256	chamber may equal or exceed the length of sigmoid orthoconic phragmocone; fully
257	mature aperture characterized by pair of pronounced ventrolateral lappets, and
258	similar, but shorter dorsolateral lappets; dorsal sinus generally divided by low salient;
259	siphuncle subdorsal.
260	
261	Remarks. Based on the expansion rate and coiling geometry, Fang et al. (2017a)
262	proposed three ontogenic stages in <i>Lituites</i> : the juvenile stage with variable
263	characters, corresponding to the coiled part; the rapid growth stage, typified by
264	rapidly expanding straight conch; and the mature stage for which a decreasing growth

2		
3 4	265	rate at the body chamber is characteristic. Ontogenetic changes of characters need to
5	203	Tate at the body chamber is characteristic. Ontogenetic changes of characters need to
6	• • • •	
7	266	be considered in taxonomic identifications and consequently, poorly preserved
8		
9 10	267	specimens should not be assigned to different species.
10 11		
12	268	
13		
14	269	Lituites evolutus Fang, Chen & Zhang in Fang et al. 2017a
15	207	Luuies evoluius 1 ang, Chen & Zhang in 1 ang et ut. 2017a
16		
17	270	(Figs 2A–D, 3A)
18 19		
20	271	
21		
22	272	2017a Lituites evolutus Fang, Chen & Zhang in Fang et al.: 340, fig. 7-1-3, 7, 8.
23	272	
24	272	
25	273	
26 27		
28	274	Diagnosis. <i>Lituites</i> species with a sigmoid conch and moderate expansion rate.
29		
30	275	Whorls of the coiled part are significantly loose.
31		
32	276	
33	270	
34 35		
36	277	Materials. Two specimens, NIGP169582 and NIGP173636.
37		
38	278	
39		
40	279	Locality and horizon. Datianba Formation, Sandbian Stage, Mengxiao section,
41 42		
42 43	280	Yongshun, China, Upper Ordovician.
44	280	rongsnun, ennna, opper ordovieran.
45	• • • •	
46	281	
47		
48	282	[Insert Fig. 2 here]
49 50		
50	283	
52	200	
53	204	Description Specimen NICD172625 (Fig. 2C) is 22 mm lange nearly complete
54	284	Description. Specimen NIGP173635 (Fig. 2C) is 33 mm long, nearly complete
55		
56	285	phragmocone and part of the body chamber; the diameter changes from 2–13.1 mm,
57 59		
58 59	286	more than 15 camerae are contained in the phragmocone ($c. 2.5-3$ chambers per
60		

2	
3	
4	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
35 36	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
53 54	
55 56	
56	
57	
58	
59	
~~	

1

corresponding conch diameter). The coiled part is composed of 1.5 contiguous whorls
followed by half a whorl that is completely separated from the preceding whorls; the
siphuncle is subdorsal in position, and the siphuncular perforation is narrow
(diameter *c*. 0.08 of corresponding conch diameter), septal necks are orthochoanitic.
The connecting rings are thin and straight. Cameral deposits are developed, but
recrystallized in the curved growth stages. The conch surface ornament has not been
preserved.

Specimen NIGP173636 (Fig. 2D) is a 37 mm long fragment of a phragmocone, 294 295 with a diameter between 1.3–14.4 mm; the body chamber is not preserved. The coiled part of the conch consists of two and half whorls, where the first two are contiguous, 296 297 and the last half whorl is then separated from the previous. There are over 42 camerae 298 preserved in the entire phragmocone, with c. two chambers per corresponding conch 299 diameter; the siphuncular perforation is narrow, subdorsal in position (diameter c. 0.1 of corresponding conch diameter), septal necks are orthochoanitic (length c. 0.25 of 300 301 corresponding camera length). The connecting rings are thin and straight. Cameral deposits are developed, but recrystallized in the curved growth stages. The conch 302 303 surface ornament is not preserved.

304

Remarks. In Fang *et al.* (2017a), the looseness index of the coiled part was defined to determine the *Lituites* species. The helix polar formula, $r(\theta) = b \times \theta + a$, could be used to represent the form of the coiled phragmocone. The looseness of the coiled part is positively correlated with the index *b*, namely looseness index. The specimens

1 2		
3 4 5	309	described above meet the diagnostic features of <i>L. evolutus</i> established by Fang <i>et al.</i>
6 7	310	(2017a), differing from other species of the genus <i>Lituites</i> in the looseness index (Fig.
8 9 10	311	3B, C). Herein, L. evolutus has a low looseness index in the early coiled part which
11 12 13	312	increases sharply in the last half whorl.
14 15	313	
16 17 18	314	[Insert Fig. 3 here]
19 20 21	315	
22 23	316	Family Sinoceratidae Shimizu & Obata, 1935a
24 25 26	317	Genus <i>Sinoceras</i> Shimizu & Obata, 1935b
27 28 29	318	
30 31	319	Type species. Orthoceras chinense Foord, 1888, from the Pagoda (Limestone)
32 33 34	320	Formation, lower Katian Stage, Nanjing? (200 miles from Shanghai), South China,
35 36	321	by original designation.
37 38 39	322	
40 41 42	323	Emended diagnosis. (Modified from Fang et al. 2017b). Conch orthoconic,
43 44	324	subcylindrical; the surface of conch ornamented by well-marked flexuous transverse
45 46 47	325	growth lines; septal necks slightly expanded, nearly half of camera length; connecting
48 49	326	rings slightly expanded; siphuncle central or subcentral; without longitudinal
50 51 52	327	impressions of the body chamber.
53 54 55	328	
56 57	329	Sinoceras complexum Fang (sp. nov.)
58 59 60	330	(Fig. 4A–E)

URL: http://mc.manuscriptcentral.com/tjsp

331	
332	Diagnosis. Sinoceras species with orthoconic conch; septal necks over half of the
333	camera length; connect rings slightly expanded; siphuncle central.
334	
335	Derivation of name. Referring to the Latin 'complex', because of its more
336	complicated internal structure compared to the type species S. chinense.
337	
338	Holotype. Specimen NIGP173637.
339	
340	Paratype. Specimen NIGP173638.
341	
342	Type locality and horizon. Richardsonoceras simplex Zone (cephalopod), lowest
343	Linhsiang Formation, lower-middle Katian Stage, Chenjiahe section, Yichang, South
344	China.
345	
346	[Insert Fig. 4 here]
347	
348	Description. Specimen NIGP173637 (Fig. 4A) is a phragmocone fragment, with a
349	total conch length of 65 mm and a conch diameter of $7.2-16.8$ mm (expansion rate <i>c</i> .
350	9°). The surface ornaments are not preserved, and the suture is straight (Fig. 4B). The
351	phragmocone is almost straight, with 13 camerae preserved. The conch cross-section
352	is circular. The apex and body chamber are absent. The siphuncle is central, and the

Page 17 of 54

1	
2	
3	
4 5	
6 7	
8	
9	
10	
11 12	
12	
14	
15	
16	
17	
18 19	
20	
21	
22	
23	
24	
25 26	
27	
28	
29	
30	
31 32	
32 33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50 51	
51 52	
53	
54	
55	
56 57	
57 58	
59	
60	

353	diameter of the septal perforation occupies c . 0.1 of the conch diameter. The septal
354	necks are orthochoanitic with a length c . 0.6 of cameral length. The chambers are
355	filled with episeptal, hyposeptal and mural deposits.
356	Specimen NIGP173638 (Fig. 4D, E) is a fragment of a phragmocone, with a
357	conch length of 96.1 mm and a diameter of 6.6–11 mm (expansion rate c . 9°). The
358	siphuncle is located 8.4 mm from the conch margin at the corresponding conch
359	diameter of 19.2 mm; the diameter of the septal perforation is c . 0.1 of the conch
360	diameter. The septal necks are orthochoanitic, with a length c. 0.6 of camera length,
361	and connecting rings are slightly thickened and expanded (Fig. 4C).
362	
363	Remarks. Sinoceras complexum Fang (sp. nov.) differs from other Sinoceras species,
364	such as the type species S. chinense and S. huanghuaense Wang, 1978, in having long
365	septal necks, which are longer than half of the camera length, and in having slightly
366	expanded siphuncular segments.
367	
368	Genus Tyrioceras Strand, 1934
369	
370	Type species. Tyrioceras kjaerulfi Strand, 1934, from Grimsøy Formation, lower
371	Katian Stage, Upper Ordovician, Furuholmen, Asker District, Norway.
372	
373	Diagnosis (adapted from Kröger 2013). Large straight, compressed to depressed conch
374	cross-section; ornamented with broad bands or narrower raised transverse lines, which

375	form broad and well-marked, but not very deep ventral sinus with ventrolateral and
376	dorsolateral salients, siphuncle eccentric; septal necks orthochoanitic, relatively long,
377	siphuncular segments tubular.
378	
379	Tyrioceras longicameratum Fang (sp. nov.)
380	(Fig. 5A–E)
381	
382	Diagnosis. Tyrioceras species showing extremely wide septal spacing (1.2 times
383	conch diameter). Conch is cyrtoconic in the juvenile stage, straight in later growth
384	stages. Conch cross-section is slightly compressed. Septal necks are relatively long,
385	just slightly shorter than half of cameral length. The siphuncle is tubular with
386	diameter c. 0.13 of corresponding conch diameter.
387	
388	Derivation of name. Referring to the Latin 'long camera', due to the
389	characteristically high septal spacing differing the new species from other species of
390	the genus Tyrioceras.
391	
392	Holotype. Specimen NIGP173643.
393	
394	Paratype. Specimen NIGP173644.
395	
396	Type locality and horizon. Richardsonoceras simplex Zone (cephalopod), lowest

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21 22	
22	
23	
24	
25	
26 27	
27	
28	
29 30	
31 32	
32 33	
33 34	
35	
35 36	
30 37	
20	
38 39	
40	
40 41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

397	Linhsiang Formation, lower-middle Katian Stage, Chenjiahe section, Yichang, South
398	China.
399	
400	[Insert Fig. 5 here]
401	
402	Description. Specimen NIGP173643 (Fig. 5D) is a fragment of a phragmocone, with
403	a total length of 98 mm, and a diameter of 5.4–20 mm, indicating the expansion rate
404	8°. The conch is slightly cyrtoconic in the initial 15 mm, straight in the later stages,
405	with ten camerae preserved. Conch cross-section is slightly compressed (Fig. 5C).
406	The septal spacing is extremely wide, equal to 1.2 of conch diameter. The siphuncle
407	is tubular and central in position, occupying 0.13 of corresponding conch diameter,
408	with orthochoanitic septal necks, shorter than 0.5 of cameral length. The ornaments
409	on the conch surface are not preserved (Fig. 5E).
410	The other specimen NIGP173644 (Fig. 5A, B) is a fragment of a straight conch
411	with five camerae. The specimen has a length of 65 mm, and a diameter of 11–20
412	mm, with expansion rate 10°. The septal spacing is 1.2 times conch diameter. The
413	siphuncle is central, its diameter is 0.15 of conch diameter. Septal necks are
414	orthochoanitic, yet slightly inclined apically, with the length shorter than half the
415	cameral length.
416	
417	Remarks. According to Kröger et al. (2013), Tyrioceras species have orthochoanitic

418 and relatively long septal necks, and plentiful cameral deposits. Based on the present

2 3 4	
5	
6 7	
8	
9 10	
11 12	
13	
14 15	
16 17	
18	
19 20	
21 22	
23	
24 25	
26 27	
28	
29 30	
31 32	
33 34	
35	
36 37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48 49	
50	
51 52	
53 54	
55 56	
57	
58 59	
60	

419	specimens, very long camerae are characteristic for Tyrioceras, distinguishing the
420	genus from Rhynchorthoceras. The above-described specimens also represent the
421	first record of Tyrioceras in China, as well as the record from Northern Ireland
422	(Evans 1993), indicating the palaeogeographical affinity among South China, Baltica
423	and Luarentia during the Late Ordovician. Tyrioceras longicameratum sp. nov. is
424	unique in the genus with its wide septal spacing and relatively long septal necks. T.
425	kjaerulfi and T. warburgae differ in having narrower septal spacing.
426	
427	Genus <i>Rhynchorthoceras</i> Remelé, 1882
428	
429	Type species. Lituites breynii Boll, 1857, from Orthoceratite Limestone erratics,
430	Darriwilian Stage, Middle Ordovician, northern Germany.
431	
432	Diagnosis (modified from Kröger et al. 2007). Lituitidans with orthoconic conchs
433	with a slight curvature at the apex. The siphuncle is tubular or slightly expanded
434	within chambers, large (diameter one-sixth of conch diameter), subcentral or central.
435	Septal necks are orthochoanitic, cameral deposits cover septal necks in some
436	specimens. Cameral deposits with single vertical lamella on the concave side of the
437	conch.
438	
439	Rhynchorthoceras yizanense Fang (sp. nov.)
440	(Fig. 6A–I)

e 21 of	54	Journal of Systematic Palaeontology
	441	
	442	Diagnosis. Rhynchorthoceras species showing moderate septal spacing (0.3 of
	443	corresponding conch diameter), and expansion rate c . 10°. Conch is cyrtoconic in the
	444	juvenile stage, nearly straight in the later growth stages, lirae strongly sinuous. Septal
	445	neck length is c. half the corresponding cameral length. The siphuncle is tubular with
	446	diameter c. 0.1 of corresponding conch diameter.
	447	
	448	Derivation of name. Referring to the type locality, Yizan village, Sangzhi county,
	449	South China.
	450	
	451	Materials. Four specimens, NIGP173639, NIGP173640, NIGP173641 and
	452	NIGP173642.
	453	
	454	Holotype. Specimen NIGP173639 from the Datianba Formation, Sandbian Stage,
	455	Yizan section, Sangzhi, South China.
	456	
	457	Paratype. Specimens NIGP173640, NIGP173641 and NIGP173642 from the
	458	Datianba Formation, Sandbian Stage, Sangzhi, South China.
	459	
	460	Type locality and horizon. Lituites-Cyclolituites Zone (cephalopod), Datianba
	461	Formation, Sandbian Stage, Sangzhi, South China.
	462	
		21
		URL: http://mc.manuscriptcentral.com/tjsp

463 [Insert Fig. 6 here]

465	Description. Holotype specimen NIGP173639 (Fig. 6E–G) is an almost complete
466	phragmocone and part of the body chamber, with a total conch length of 69 mm, and
467	diameter of 3.5–14 mm (expansion rate 9.5°). The conch is slightly cyrtoconic in the
468	initial 10 mm, straight in the later stages, with over 30 camerae with moderate septal
469	spacing (0.3 of corresponding conch diameter). The conch cross-section is circular.
470	The conch is ornamented with strongly sinuous lirae, with seven lirae per 1 mm
471	apically and two lirae per 1 mm adorally. The ornaments indicate a very shallow and
472	broad ventral lobe (hyponomic sinus). The tubular siphuncle is central, the septal
473	perforation is narrow, c. 0.1 of corresponding conch diameter, the septal necks are
474	orthochoanitic, and shorter than half of the camera length.
475	The second specimen, NIGP173640 (Fig. 6H, I) is a nearly complete
475 476	The second specimen, NIGP173640 (Fig. 6H, I) is a nearly complete phragmocone and body chamber, lacking an apical part, with a length of 75 mm and a
476	phragmocone and body chamber, lacking an apical part, with a length of 75 mm and a
476 477	phragmocone and body chamber, lacking an apical part, with a length of 75 mm and a diameter of 4.6–16 mm (expansion rate 10°). The conch cross-section is circular. The
476 477 478	phragmocone and body chamber, lacking an apical part, with a length of 75 mm and a diameter of 4.6–16 mm (expansion rate 10°). The conch cross-section is circular. The conch is ornamented with lirae, yet apically inclined lirae (six lirae per 1 mm apically
476 477 478 479	phragmocone and body chamber, lacking an apical part, with a length of 75 mm and a diameter of 4.6–16 mm (expansion rate 10°). The conch cross-section is circular. The conch is ornamented with lirae, yet apically inclined lirae (six lirae per 1 mm apically and three lirae per 1 mm adorally). The tubular siphuncle is central (0.1 of
476 477 478 479 480	phragmocone and body chamber, lacking an apical part, with a length of 75 mm and a diameter of 4.6–16 mm (expansion rate 10°). The conch cross-section is circular. The conch is ornamented with lirae, yet apically inclined lirae (six lirae per 1 mm apically and three lirae per 1 mm adorally). The tubular siphuncle is central (0.1 of corresponding conch diameter), with orthochoanitic septal necks, reaching half of
476 477 478 479 480 481	phragmocone and body chamber, lacking an apical part, with a length of 75 mm and a diameter of 4.6–16 mm (expansion rate 10°). The conch cross-section is circular. The conch is ornamented with lirae, yet apically inclined lirae (six lirae per 1 mm apically and three lirae per 1 mm adorally). The tubular siphuncle is central (0.1 of corresponding conch diameter), with orthochoanitic septal necks, reaching half of cameral length.

486

1

is tubular, and its diameter occupies 0.13 of the corresponding conch cross-section.

Septal necks are orthochoanitic with a length of 0.4–0.5 of cameral length.

2
3
4
5
6
-
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
54 55
56
57
58
59
60

487	
488	Remarks. Rhynchorthoceras yizanense conchs are unique in the genus, because of
489	the combination of long septal necks, moderate cameral spacing and low expansion
490	rate. R. guiyangense Yang, 1978 and R. conicum (Hisinger, 1837) differ in having
491	shorter septal necks (a quarter of conch diameter). R. minor, R. aff. beyrichi Remelé
492	(Dzik 1984) and <i>R. jurongense</i> differ in narrow septal spacing (0.2 times conch
493	diameter). <i>R. zaddachi</i> Remelé, 1882 has similar expansion rate (<i>c.</i> 11°), and similar
494	type of ornament (sinuous lirae), whereas differs in having a wider siphuncle ($c. 0.14$
495	of the conch diameter).
496	of the conch diameter).
497	Results
498	
499	Maximum parsimony analyses of the 19 taxa with 24 characters by TNT yielded four
500	most parsimonious trees (MPTs) with branch length = 54, consistency index (CI) = (CI)
501	0.57 and retention index (RI) = 0.76. Four most parsimonious trees are given in
502	Figure 7, one of which with unambiguous characters is shown in Figure 8. The strict
503	consensus tree with added bootstrap and jackknife values is given in Figure 9.
504	
505	[Insert Fig. 7 here]

507	The four MPTs (Fig. 7A–D) are closely similar and differ only in the position of
508	Sinoceras chinense relative to S. complexum, and in the relationship between
509	Cyclolituites lynnensis, and the other species of the Lituites group (see below). In
510	addition, while two of the four MPTs agree on the monophyly of the Lituites group,
511	the phylogenetic position of the species within this group agrees across all MPTs.
512	The high bootstrap and jackknife values (90% and 92%; Fig. 9) indicate strong
513	support for the monophyly of the ingroup, namely the order Lituitida (Fig. 8, node
514	A). Its monophyly is well supported by several non-homoplasious apomorphies,
515	including the presence of a hyponomic sinus (character 1: 1), the apically restricted
516	cameral deposits (character 9: 0), the presence of epichoanitic deposits (character 10:
517	1), the moderate expansion rate (character 19: 1) and the long septal necks (character
518	24: 1).
519	
520	[Insert Fig. 8 here]
521	
522	The MPTs show that within the Lituitida, species of the same genus are always
523	resolved to be closely related, although not all genera represent monophyletic groups.
524	Sinoceras species are distributed along the basal branch in all trees. S. eccentrica is
525	resolved as the most basal species of the ingroup (Fig. 7). Paraphyly is supported for
526	the clade consisting of <i>Rhynchorthoceras</i> and <i>Tyrioceras</i> , which branch successively.
527	The paraphyletic Sinoceratidae therefore represents the basal group of the Lituitida,
528	which accordingly represents a derived, monophyletic clade with the Lituitidae.
	24

Within the Lituitidae, two distinct monophyletic clades can be recognized in two of the four MPTs, namely the Ancistroceras and Lituites groups (Fig. 7). The monophyletic Ancistroceras group contains the genera Ancistroceras and *Holmiceras*, out of which the former is resolved as monophyletic, and the latter as paraphyletic, with *Holmiceras kjerulfi* as the ancestral taxon in the group. Within the *Lituites* group, the genera *Angelinoceras*, *Cyclolituites* and *Trilacinoceras* are all represented by a single species in our dataset, and their monophyly cannot be evaluated. Trilacinoceras and Angelinoceras are resolved as the sister taxon to the monophyly of the Lituites species in all MPTs (Fig. 7). ielieu Discussion The present phylogenetic reconstruction indicates that several lituitid genera represent monophyletic groups, i.e. Ancistroceras and Lituites, which is well supported. The paraphyly of the genus *Sinoceras* is probably a result of its basal position among lituitids. All species of the genus occupy a position close to each other on the tree, and are closely similar in terms of morphology. We consider that it is nevertheless practical to retain the genus in its current state. *Lituites* represents a monophyletic genus, forming a monophyletic clade with Angelinoceras, Trilacinoceras and Cyclolituites. The genus Cyclolituites is so distinctly different from *Lituites* in its conch form lacking the orthoconic portion that we propose retaining it. Because *Cyclolituites* retained the coiled conch form throughout its life,

551	this represents a case of neoteny (Stephen 2001). Angelinoceras is closely similar to
552	Lituites (see also Teichert et al. 1964), and mainly differs from the latter in its higher
553	looseness index, more rapid expansion rate, and much larger diameters of the coiled
554	parts. However, the material investigated here indicates that there is some variation in
555	the looseness index of <i>Lituites</i> and expansion rate alone may not be sufficient for a
556	separation at the genus level. In addition, most of the differences between
557	Angelinoceras latum and species of Lituites are homoplasious characters (Fig. 8). We
558	therefore propose that the two genera may be synonymized and Angelinoceras latum
559	(the only species of that genus) accordingly should be transferred to Lituites, pending
560	confirmation through future studies. Tyrioceras and Rhynchorthoceras may also be
561	synonymized, since none of the most parsimonious trees recovered either of them as
562	monophyletic, but the four species were always recovered basal to the Lituitidae.
563	Nevertheless, more derived when compared to Sinoceras. This result needs
564	confirmation by further studies of better preserved material, since the surface
565	ornaments are missing in Tyrioceras longicameratum. This, if known, could
566	potentially change the phylogenetic position of the genus.
567	
568	[Insert Fig. 9 here]
569	
570	Despite some of the problems with the monophyly of certain genera, the two
571	families belonging to the Lituitida, namely the Sinoceratidae and Lituitidae, are
572	distinctly recognized in the phylogenetic trees. The Sinoceratidae, which constitutes a

1	
2	
3	
4	
5	
6	
7	
, 0	
8	
9	
10	
11	
11 12	
12	
15	
13 14	
15	
16	
16 17	
18	
10	
19	
20	
21	
22	
20 21 22 23	
23 24 25 26 27 28 29	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
21	
34 35	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

573	paraphyly, represents the ancestral group of lituitids, while the monophyletic
574	Lituitidae represents the derived clade. The boundary between the Sinoceratidae and
575	Lituitidae is traced rather arbitrarily between Rhynchorthoceras minor and its sister
576	group. However, this represents a useful distinction, because all members of the
577	Lituitidae share the coiled juvenile phragmocone as a synapomorphy. This is
578	probably highly relevant, because of the palaeoecological affinity between South
579	China and Baltic blocks, which could be exactly explained by the equatorial cold-
580	water tongue in the Late Ordovician (Jin et al. 2018).
581	The earliest stratigraphic records of lituitid cephalopods are Ancistroceras
582	densum and A. subcurvatum from the Dawan Formation of South China,
583	<i>Rhynchorthoceras minor</i> from the San Juan Formation of western Argentina, and <i>R</i> .
584	aff. beyrichi from the erratic boulders of the Baltic region (Qi 1980; Dzik 1984;
585	Kröger et al. 2007), all of which are constrained to the Paroistodus originalis Zone of
586	the lower Dapingian, Middle Ordovician (Wang et al. 2019). However, juvenile
587	phragmocones of A. densum and A. subcurvatum are unknown, which results in their
588	uncertain assignment at the genus level (Kröger et al. 2007). In the present
589	phylogenetic trees (Figs 7, 8, 9), a close relationship between A. undulatum and A.
590	subcurvatum is supported, suggesting that the assignment of A. subcurvatum is
591	reasonable. The hypothetical ancestral group displayed in the phylogenetic
592	reconstruction, namely species of Sinoceras, is still mainly recorded from the Upper
593	Ordovician of Chinese blocks/terranes. However, some previous studies suggest that
594	the first appearance datum (FAD) of Sinoceras could be extended to the Middle

595	Ordovician, maybe Dapingian (e.g. Sinoceras fenxiangense Xu & Lai, 1987 from the
596	Dawan Formation of South China), and the early representatives of the genus are thus
597	probably coeval to A. densum, A. subcurvatum and R. minor. Therefore, it appears
598	that the Lituitida was already present in different parts of the world in the late
599	Dapingian, suggesting that it may have originated slightly earlier, and undergone a
600	rapid diversification with wide geographic dispersal. The basal position of most
601	species of Sinoceras is probably the most significant deviation from the stratigraphic
602	sequence shown by our study. A possible solution to the problem might be that while
603	Sinoceras originated earlier (e.g. S. fenxiangense), other species are descendant from
604	that species, rather than representing individual long-ranging ghost lineages. More
605	studies with additional species and material are needed to resolve these
606	incongruencies.
607	Apart from the clade comprising the ingroup, the bootstrap and jackknife values
608	are relatively low (Fig. 9). This is likely a result of frequent homoplasies. The fact
609	that only four MPTs were retained, and that previously recognized genera and
610	families were also recovered suggests that the results are nonetheless relevant. Future
611	studies with additional species, more detailed characters (e.g. continuous or
612	morphometric geometric data) may provide additional insights.
613	Overall, the evolutionary history of lituitids leading from the Sinoceratidae to the
614	Lituitidae supports previously published schemes proposing, e.g. the derivation of the
615	Lituitidae from Rhynchorthoceras and related taxa (Dzik 1984), the close relationship
616	between Ancistroceras and Holmiceras (Sweet 1958) and between Angelinoceras,

Trilacinoceras and Lituites (Sweet 1958). Together with the fact that both the Sinoceratidae and the Lituitidae are recovered as distinct groups in the phylogenetic trees indicates that phylogenetic methods are appropriate for lituitids despite frequent homoplasies. This contribution presents the first phylogenetic analysis within the order Lituitida, and briefly discusses the phylogenetic relationships and history among the lituitid genera. However, the poorly preserved and limited number of samples have resulted in low support values of several nodes, and their phylogenetic relationship. In the future, more specimens should be examined, and more characters described to eller confirm this hypothesis. Acknowledgements We are indebted to David Evans, Tim Ewin and an anonymous reviewer for their helpful constructive suggestions. This work was supported by the Chinese Academy of Sciences (grant number XDB2600000), National Natural Science Foundation of China (grant numbers 42002009, 42030510), State Key Laboratory of Palaeobiology and Stratigraphy (grant number 20192102), and Administrative Committee of Zhangjiajie UNESCO Global Geopark (No. 202001) to Xiang Fang and Yuandong Zhang. Martina Aubrechtová acknowledges support from Research Plan of the Institute of Geology of the Czech Academy of Sciences (RVO67985831), and Faculty of Science, Charles University (SVV 244-2604372 and UNCE/SCI/006). This is a contribution to the IGCP projects 653 (The Onset of the Great Ordovician

639	Biodiversification Event) and 735 (Rocks and the Rise of Ordovician Life).
640	
641	References
642	
643	Angelin, N. P. & Lindström, G. 1880. Fragmenta Silurica. Samson and Wallin,
644	Stockholm, 60 pp.
645	Aubrechtová, M. & Turek, V. 2018. Lituitid cephalopods from the Middle
646	Ordovician of Bohemia and their paleobiogeographic affinities. Bulletin of
647	<i>Geosciences</i> , 93 , 401–417.
648	Aubrechtová, M. & Meidla, T. 2020. Lituitid cephalopods from the upper
649	Darriwilian and basal Sandbian (Middle–Upper Ordovician) of Estonia. GFF.
650	https://doi.org/10.1080/11035897.2020.1762723
651	Bertrand, E. 1763. Dictionnaire universel des fossils propres, et des fossiles
652	accidentels. Louis Chambeau, Avignon, 606 pp.
653	Boll, E. 1857. Beitrag zur Kenntnis der silurischen Cephalopoden im norddeutschen
654	Diluvium und den anstehenden Lagern Schwedens. Archiv des Vereins der
655	Freunde der Naturgeschichte in Mecklenburg, 11, 58–95.
656	Breyn, J. P. 1732. Dissertatio physica de Polythalamiis; adj. Commentatiuncula de
657	Belemnitis Prussicis. Gedani, 64 pp.
658	Brøgger, W. C. 1882. Die silurischen Etagen 2 und 3 im Bristianiagebiet und auf
659	Eker. Universitätsprogram für 2. Sem., 1882, 367 pp.
660	Chang, J. 1957. Nautiloid fossils from the Middle Ordovician Yangtzeella poloi

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
$\begin{array}{c} 3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 31\\ 32\\ 33\\ 4\\ 35\\ 36\end{array}$	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
 31 32 33 34 35 36 37 38 	
32	
33	
34	
35	
26	
50	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

661	Beds in Changyang, Hubei. Acta Palaeontologica Sinica, 5, 33-61.
662	Chao, K., Liang, X., Zou, X., Lai, C. & Chang, J. 1965. Cephalopod Fossils of
663	China. Science Press, Beijing, 126 pp.
664	Chen, T. 1984. The Ordovician cephalopod fauna and the subdivision of Ordovician
665	from Southern Xizang (Tibet). Acta Palaeontologica Sinica, 23, 452–471.
666	Chen, X. & Qiu, J. 1986. Ordovician palaeoenvironmental reconstruction of
667	Yichang area, W. Hubei. Journal of Stratigraphy, 10, 1–15.
668	De Montfort, P. D. 1808. Conchyliologie systématique et classification méthodique
669	des coquilles, Tome 1. F. Schoell, Paris, 409 pp.
670	Dzik, J. 1984. Phylogeny of the Nautiloidea. Palaeontologia Polonica, 45, 3–219.
671	Evans, D. H. 1993. The Cephalopod Fauna of the Killey Bridge Formation
672	(Ordovician, Ashgill), Pomeroy, County Tyrone. Irish Journal of Earth
673	Sciences, 12 , 155–189.
674	Evans, D. H. 2005. The Lower and Middle Ordovician Cephalopod Faunas of
675	England and Wales. Monograph of the Palaeontographical Society, 628, 1–81.
676	Fang, X., Chen, T., Zhang, Y. B., Li, W. & Zhang, Y. D. 2017a. Lituitidae
677	nautiloids from the Datianba Formation (Uppermost Darriwilian to Sandbian,
678	Ordovician) in western Hunan Province and its ontogenical study. Acta
679	Palaeontologica Sinica, 56 , 331–346.
680	Fang, X., Zhang, Y. B., Chen, T. & Zhang, Y. D. 2017b. A quantitative study of the
681	Ordovician cephalopod species Sinoceras chinense (Foord) and its
682	palaeobiogeographic implications. Alcheringa, 41, 321-334.

683	Fang, X., Zhen, Y. Y., Zhang, Y. D., Wang, Z., Li, W. & Ma, X. 2019. New
684	biostratigraphic data of the Middle-Late Ordovician Datianba Formation from
685	Yongshun and Taoyuan areas, Hunan, China. Journal of Stratigraphy, 43, 158-
686	170.
687	Fang, X., Li, W., Zhang, J., Song, Y. & Zhang, Y. D. 2020. Paleo-environmental
688	changes during the Middle-Late Ordovician transition on the Yangtze Platform,
689	South China and their ecological implications. Palaeogeography,
690	Palaeoclimatology, Palaeoecology, 560 , 109991.
691	Flower, R. H. 1955. Saltations in nautiloid coiling. <i>Evolution</i> , 9, 244–260.
692	Flower, R. H. 1968. Some additional Whiterock cephalopods. New Mexico Institute
693	of Mining and Technology, State Bureau of Mines and Mineral Resources,
694	Memoir, 19 , 21–40.
695	Flower, R. H. 1975. American Lituitidae (Cephalopoda). Bulletins of American
696	Paleontology, 67 , 139–173.
697	Flower, R. H. & Kummel, B. 1950. Classification of the Nautiloidea. Journal of
698	Paleontology, 24 , 604–616.
699	Foord, A. H. 1888. Catalogue of the fossil Cephalopoda in the British Museum
700	(Natural History), Part. 1. British Museum (Natural History), London, 344 pp.
701	Frey, R. C. 1995. Middle and Upper Ordovician Nautiloid Cephalopods of the
702	Cincinnati Arch Region of Kentucky, Indiana, and Ohio. U.S. Geological Survey
703	Professional Paper, 1066, 1–126.
704	Frye, M. W. 1982. Upper Ordovician (Harjuan) nautiloid cephalopods from the Boda

2	
2	
2	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 9 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	
24	
27	
25	
26	
27	
28	
29	
28 29 30 31 32 33 34 35 36 37 38	
31	
37	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

705	Limestone of Sweden. Journal of Paleontology, 56, 1274–1292.
706	Gao, Y., Lai, C. & Wen, Y. 1982. Cephalopoda. Pp. 187–208. in Xi'an Institute of
707	Geology and Mineral Resources (ed) Atlas of Palaeontology of Northwest
708	China, Shan-Gan-Ning (1). Geological Publishing House, Beijing.
709	Goloboff, P. A. & Catalano, S. A. 2016. TNT, version 1.5 with a full
710	implementation of phylogenetic morphometrics. Cladistics, 32, 221-238.
711	Hisinger, W. 1837. Lethaea Suecica seu Petrificata sveciae iconibus et
712	characteribus illustrata. Norstedt, Stockholm, 124 pp.
713	Jin, J., Zhan, R. & Wu, R. 2018. Equatorial cold-water tongue in the Late
714	Ordovician. <i>Geology</i> , 46 , 759–762.
715	King, A. H. 1993. Mollusca: Cephalopoda (Nautiloidea). Pp. 169–188 in M. J.
716	Benton (ed) The Fossil Record 2. Chapman and Hall, London.
717	King, A. H. 1999. A review of Volkhovian and Kundan (Arenig-Llanvirn) nautiloids
718	from Sweden. Pp. 137–159 in F. Olóriz & F. J. Rodríguez-Tovar (eds)
719	Advancing research on living and fossil cephalopods. Kluwer Academic-Plenum
720	Publishers, New York.
721	King, A. H. & Evans, D. H. 2019. High-level classification of the nautiloid
722	cephalopods: a proposal for the revision of the Treatise Part K. Swiss Journal of
723	Palaeontology, 138 , 65–85.
724	Kröger, B. 2004. Revision of Middle Ordovician orthoceratacean nautiloids from
725	Baltoscandia. Acta Palaeontologica Polonica, 49, 57–74.
726	Kröger, B. 2006. Early growth-stages and classification of orthoceridan Cephalopods

Journal of Systematic Palaeontology

727	of the Darriwillian (Middle Ordovician) of Baltoscandia. Lethaia, 39, 129–139.
728	Kröger, B. 2008a. A new genus of middle Tremadocian orthoceratoids and the Early
729	Ordovician origin of orthoceratoid cephalopods. Acta Palaeontologica Polonica,
730	53 , 745–749.
731	Kröger, B. 2008b. Nautiloids before and during the origin of ammonoids in a Siluro-
732	Devonian section of the Tafilalt, Anti-Atlas, Morocco. Special Papers in
733	Palaeontology, 79 , 1–110.
734	Kröger, B. 2012. The "Vaginaten": the dominant cephalopods of the Baltoscandian
735	Mid Ordovician endocerid limestone. GFF, 134 , 115–132.
736	Kröger, B. 2013. The cephalopods of the Boda Limestone, Late Ordovician, of
737	Dalarna, Sweden. European Journal of Taxonomy, 41, 1–110.
738	Kröger, B. & Isakar M. 2006. Revision of annulated orthoceridan cephalopods of
739	the Baltoscandic Ordovician. Fossil Record, 9, 137–163.
740	Kröger, B. & Mapes R.H. 2007a. Carboniferous actinoceratoid Nautiloidea
741	(Cephalopoda)—a new perspective. <i>Journal of Paleontology</i> , 81 , 714–724.
742	Kröger, B. & Mapes R.H. 2007b. On the origin of bactritoids (Cephalopoda).
743	Paläontologische Zeitschrift, 81, 316–327.
744	Kröger, B. & Aubrechtová, M. 2018. Cephalopods from reef limestone of the
745	Vasalemma Formation, northern Estonia (latest Sandbian, Upper Ordovician)
746	and the establishment of a local warm-water fauna. Journal of Systematic
747	Palaeontology, 16, 799–839.
748	Kröger, B., Beresi, M. S. & Landing, E. 2007. Early orthoceratoid cephalopods

1	
2	
3	
4	
5 6	
6 7	
8	
9	
10	
11 12	
12 13	
14	
15	
16	
17	
18 19	
20	
21	
22	
20 21 22 23	
24	
25 26	
27	
28	
29	
30	
31 32	
32 33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44 45	
45 46	
47	
48	
49	
50	
51 52	
52 53	
54	
55	
56	
57 58	
58 59	
~ ~ ~	

749	from the Argentine Precordillera (Lower-Middle Ordovician). Journal of
750	Paleontology, 81, 1266–1283.
751	Kröger, B., Vinther, J. & Fuchs D. 2011. Cephalopod origin and evolution: A
752	congruent picture emerging from fossils, development and molecules. Bioessays,
753	33 , 602–613.
754	Lai, C. 1986. On Lituitidae. Bulletin of the Chinese Academy of Geological Sciences,
755	12 , 107–126.
756	Mutvei, H. 2002. Connecting ring structure and its significance for classification of
757	the orthoceratid cephalopods. Acta Palaeontologica Polonica, 47, 157–168.
758	Nixon, K. C. 2002. WinClada ver. 1.00.08. Published by the author, Ithaca, NY.
759	Noetling, F. 1882. Über Lituites lituus Montfort. Zeitschrift der Deutschen
760	Geologischen Gesellschaft, 34 , 156–193.
761	Noetling, F. 1883. Die Cambrischen und Silurischen Geschiebe der Provinzen Ost-
762	und West-Preussen. Jahrbuch der Königlich Preussischen geologischen
763	Landesanstalt und Bergakademie zu Berlin, 3 , 261–324.
764	Phillips, J. 1848. The Malvern Hills, Compared with the Palaeozoic Districts of
765	Abberley, Woolhope, May Hill, Tortworth and Usk. Geological Survey of Great
766	<i>Britain Memoir</i> , 1–2 , 246–250.
767	Qi, D. 1980. Ordovician cephalopods from Wuwei of Anhui and their stratigraphical
768	significance. Acta Palaeontologica Sinica, 19, 245–261.
769	Remelé, A. 1882. Nachträgliche Bemerkungen zu Strombolituites m. und
770	Ancistroceras Boll. Zeitschrift der deutschen geologischen Gesellschaft, 33,

2
2
ر ۸
4
5 6 7 8
6
7
8
9
9 10
10
11 12 13
12
13
14 15
15
16
17
16 17 18 19
10
20
21
22
23
24
25
26
26 27
27
28
29
30
31
32
33
34
25
22
35 36 37
37
38
39
40
41
42
43
43 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
<u> </u>

771	478-481.

772	Schindewolf, O. H. 1942. Evolution im Lichte der Paläontologie. Bilder aus der
773	Stammesentwicklung der Cephalopoden. Jenaische Zeitschrift für Medizin und
774	Naturwissenschaft, 75, 324–386.
775	Schlotheim, E. F. 1820. Die Petrefactenkunde auf ihrem jetzigen Standpunkte, durch
776	die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des
777	Tier- und Planzenreichs der Vorwelt erläutert. Becker Verlag, Gotha, 437 pp.
778	Schröder, H. 1882. Beiträge zur Kenntniss der in ost- und westpreussischen
779	Diluvialgeschieben gefundenen Silurcephalopoden. Schriften der physikalisch-
780	ökonomischen Gesellschaft zu Königsberg , 22 , 54–96.
781	Shimizu, S. & Obata, T. 1935a. New genera of Gotlandian and Ordovician
782	Nautiloids. Journal of the Shanghai Science Institute, section 2, 2, 1–10.
783	Shimizu, S. & Obata, T. 1935b. On a new Ordovician nautiloid genus Sinoceras.
784	Proceedings of the Imperial Academy Tokyo, 11, 324–325.
785	Starobogatov, Y. I. 1983. The System of Cephalopod Mollusks. Systematics and
786	Ecology of Cephalopod Mollusks. Trudy Zoologicheskogo Instituta Akademii
787	Nauk SSSR, 4–7.
788	Stephen, D. A. 2001. The impact of reproductive strategy on cephalopod evolution.
789	Unpublished PhD thesis, Texas A&M University, College Station, 211 pp.
790	Strand, T. 1934. The Upper Ordovician cephalopods of the Oslo area. Norsk
791	geologiske Tidsskrift, 14, 1–117.
792	Song, Y., Yu, S., Zhang, Y. D., Sun, X., Muir L. A. & Liu, P. 2017. Reconstruction

1 2	
3 4 5	793
6 7 8	794
9 10	795
11 12 13	796
14 15	797
16 17 18	798
19 20 21	799
22 23	800
24 25 26	801
27 28	802
29 30 31	803
32 33 34	804
35 36	805
37 38 39	806
40 41	807
42 43 44	808
45 46 47	809
48 49	810
50 51 52	811
53 54	812
55 56 57	813
58 59 60	814

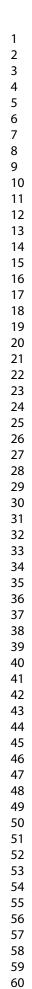
793	of a shallow intraplatform depression by microfacies analysis of the Upper
794	Ordovician Miaopo and Datianba formations in the northwestern Yangtze
795	Region, China. Palaeoworld, 26, 589-601.
796	Sweet, W. C. 1958. The Middle Ordovician of the Oslo Region, Norway. 10.
797	Nautiloid cephalopods. Norsk Geologisk Tidsskrift, 38, 1-176.
798	Teichert, C., Kummel, B., Sweet, W. C., Stenzel, H. B., Furnish, W. M.,
799	Glenister, B. F., Erben, H. K., Moore, R. C. & Zeller, D. E. N. 1964. Treatise
800	on Invertebrate Paleontology, Part K, Mollusca 3. The University of Kansas
801	Press, Lawrence, 466 pp.
802	Teichert, C. 1967. Major features of cephalopod evolution. Pp. 162–210 in C.
803	Teichert & E. L. Yochelson (eds) Essays in paleontology and stratigraphy, R. C.
804	Moore commemorative volume. Special Publications of the University of
805	Kansas, Cephalopoda, Vol. 2. Geological Society of America and The
806	University of Kansas Press, Kansas.
807	Turek V. & Manda, Š. 2016. Early ontogeny, anomalous growth, and healed injuries
808	in the Silurian nautiloid Ophioceras Barrande – Implications for hatching and
809	the autecology of the Tarphycerida. Bulletin of Geosciences, 91, 331–366.
810	Wang, M. 1981. Cephalopoda. Pp. 115–134. in Regional Geological Survey Group
811	of Xinjiang Bureau of Geology (ed) Atlas of Palaeontology of Northwest China,
812	Xinjiang (1). Geological Publishing House, Beijing.
813	Wang, R. 1978. Nautiloida. Pp. 401–431 in Southwest Institute of Geological

Sciences (ed) *Atlas of Palaeontology of Southwest China, Sichuan (1).*

815	Geological Publishing House, Beijing.
816	Wang, Z., Zhen, Y. Y., Ma, X. & Zhang, Y. D. 2017. Middle to Upper Ordovician
817	conodonts succession from the Qiliao section of Shizhu, Chongqing-revealing a
818	depositional hiatus between lower Darriwilian and Sandbian. Acta
819	Palaeontologica Sinica, 56 , 37–53.
820	Wang, Z., Zhen, Y. Y., Ma, X. & Zhang, Y. D. 2018. Ordovician conodonts from
821	the Kuniutan to Pagoda formations at Chenjiahe and Zhenjin of Yichang, Hubei
822	Province, China and their stratigraphic significance. Acta Micropalaeontologica
823	<i>Sinica</i> , 35 , 13–29.
824	Wang, Z., Zhen, Y. Y., Bergström, S. M., Wu, R., Zhang, Y. D. & Ma, X. 2019. A
825	new conodont biozone classification of the Ordovician System in South China.
826	<i>Palaeoworld</i> , 28 , 173–186.
827	Xu, G. & Lai, C. 1987. Cephalopoda. Pp. 245–293 in X. Wang, S. Ni, Q. Zeng, G.
828	Xu, T. Zhou, Z. Li, L. Xiang & C. Lai (eds) Biostratigraphy of the Yangtze
829	Gorge area (2), Early Palaeozoic Era. Geological Publishing House, Beijing.
830	Yang, S. 1978. Nautiloidae. Pp. 358–379 in Southwest Institute of Geological
831	Science (ed) Atlas of Palaeontology of Southwest China, Guizhou (1).
832	Geological Publishing House, Beijing, 843 pp.
833	Yun, C.S. 1999. Three Ordovician cephalopods from the Jigunsan Formation of
834	Korea. Paleontological Research, 3, 65–80.
835	Yun, C.S. 2003. Further study of the Middle Ordovician cephalopod Holmiceras
836	coreanicum with a revision of two Geisonoceras species from Korea.

2			
3 4 5	837	Paleontological Research, Short Notes, 7, 363–366.	
6 7	838	Zhan, R. & Jin, J. 2007. Ordovician–Early Silurian (Llandovery) Stratigraphy and	
8 9 10	839	Palaeontology of the Upper Yangtze Platform, South China. A guide to the field	
11 12	840	excursion across the South China, Indochina and Sibumasu. Science Press,	
13 14 15	841	Beijing, 169 pp.	
16 17 18	842	Zhan, R., Jin, J., Liu, J., Corcoran, P., Luan, X. & Wei, X. 2016. Meganodular	
19 20	843	limestone of the Pagoda Formation: a time-specific carbonate facies in the	
21 22 23	844	Upper Ordovician of South China. Palaeogeography, Palaeoclimatology,	
24 25	845	Palaeoecology, 448 , 349–362.	
26 27 28	846	Zhang, Y.D., Chen, X. & Wang, Z. 2008. A comprehensive research report of the	
29 30 31	847	Global Stratotype Section and Point (GSSP) for the base of Darriwilian Stage	
32 33	848	(Middle Ordovician). Pp. 436–454 in The 3rd National Commission on	
34 35 36	849	Stratigraphy of China (ed) Research Reports on Chinese Stages of the Major	
37 38	850	Geological Periods (2001–2005). Geological Publishing House, Beijing.	
39 40 41	851	Zhang, Y. D., Zhan, R. B., Zhen, Y. Y., Wang, Z. H., Yuan, W. W., Fang, X.,	
42 43	852	Ma, X. & Zhang, J. P. 2019. Ordovician integrative stratigraphy and timescale	
44 45 46	853	of China. SCIENCE CHINA Earth Sciences, 62, 61-88.	
47 48 49	854	Zhou, Z. Q., Zhou, Z. Y. & Xiang, L. 2016. Trilobite fauna from the Ordovician	
50 51	855	Pagoda Formation of central and western Yangtze Block, China. Geological	
52 53 54	856	Publishing House, Beijing, 442 pp.	
55 56	857	Zhuravleva, F. A. & Doguzhaeva, L. A. 2004. Astrovioidea: A new superorder of	
57 58 59	858	Paleozoic cephalopods. Palaeontological Journal, 38, 1-73.	
60			

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 25
25
26
27
28
29
30
31
32
33
34
35
36
37
•
38 39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
56
57
58
59
60


860	Figures and tables
861	
862	Figure 1. A, Fossil localities and lithofacies distributions of the Darriwilian Stage
863	(Middle Ordovician) of South China (modified from Fang et al. 2020); B, detailed
864	locality and transportation map in Yichang; C, detailed localities and transportation
865	map in Yongshun and Sangzhi. 1. Chenjiahe section, Yichang; 2. Yizan section,
866	Sangzhi; 3. Mengxiao section, Yongshun.
867	
868	Figure 2. Lituites evolutus Fang, Chen & Zhang, Datianba Formation (Sandbian
869	Stage, Upper Ordovician), South China. A, NIGP164742 (Fang et al. 2017b), lateral
870	view; B, NIGP164748 (Fang et al. 2017b), dorso-ventral polished section; C,
871	NIGP169582 (Fang et al., 2019), dorso-ventral polished section; D, NIGP173636,
872	dorso-ventral polished section. Scale bar = 1 cm.
873	
874	Figure 3. <u>Horizontal Conch-conch</u> cross-section of <u>the coiled part of <i>Lituites</i> species</u> .
875	A, NIGP173645, Lituites evolutus Fang, Chen & Zhang, showing the separation
876	between last two whorls; B, NIGP173646, Lituites lii (Yü), showing the completely
877	separation among each whorl; C, NIGP173647, Lituites ningkiangense Lai, showing
878	<u>the contact whorls</u> . Scale bar = 1 cm.
879	
880	Figure 4. Sinoceras complexum Fang (sp. nov.), Linhsiang Formation (Katian Stage,

Upper Ordovician), South China. A, B, NIGP173637; A, median polished section; B,

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
12 13 14 15	
16	
16 17	
10	
18	
19 20	
20	
21	
//	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

882	lateral view, scale bar = 1 cm; C–E, NIGP173638; C, detail of connecting rings, scale
883	bar = 1 mm; D, median polished section; E, lateral view, scale bar = 1 cm.
884	
885	Figure 5. Tyrioceras longicameratum Fang (sp. nov.), Linhsiang Formation (Katian
886	Stage, Upper Ordovician), South China. A, B, NIGP173644; A, median polished
887	section; B, latral view; C-E, NIGP173643; C, conch cross-section; D, dorso-ventral
888	polished section; E, lateral view. Scale bar = 1 cm.
889	
890	Figure 6. Rhynchorthoceras yizanense Fang (sp. nov.), Datianba Formation
891	(Sandbian Stage, Upper Ordovician), South China. A, B, NIGP173642; A, lateral
892	view showing the sinuous lirae; B, dorso-ventral polished section; C, D,
893	NIGP173641; C, lateral view showing the sinuous lirae; D, median polished section;
894	E-G, NIGP173639; E, dorso-ventral polished section; F, lateral view showing the
895	sinuous lirae; G, conch cross-section; H, I, NIGP173640; H, lateral view and growth
896	lines; I, dorso-ventral polished section. Scale bar = 1 cm.
897	
898	Figure 7. Four most parsimonious trees with <i>M. chaoi</i> and <i>O. regulare</i> as outgroups.
899	Abbreviations of the genera: <i>M</i> . = <i>Michelinoceras</i> , <i>O</i> . = <i>Orthoceras</i> , <i>A</i> . =
900	Ancistroceras, Ang. = Angelinoceras, C. = Cyclolituites, H. = Holmiceras, L. =
901	<i>Lituities</i> , R . = $Rhynchorthoceras$, S . = $Sinoceras$, T . = $Trilacinoceras$, Ty . =
902	Tyrioceras.
903	

3 4 5	904	Figure 8. One of the four most parsimonious trees with <i>M. chaoi</i> and <i>O. regulare</i> as
6 7	905	outgroups. Only unambiguous characters are shown. Non-homoplasious characters
8 9 10	906	are marked by filled circles and homoplasious characters by open circles. The
11 12 13	907	character numbers and states are placed above and below the circles, respectively. For
14 15	908	the genus abbreviations, see Fig. 7.
16 17 18	909	
19 20 21	910	Figure 9. The strict consensus tree with <i>M. chaoi</i> and <i>O. regulare</i> as outgroups, with
22 23	911	bootstrap and jackknife values above and below the branches, respectively. Three
24 25 26	912	groups are recognized in the ingroup. For the genus abbreviations, see Fig. 2. The
27 28 29	913	depicted representative of Sinoceras group is modified from Fang et al. (2017), the
30 31	914	representative of Ancistroceras group is modified from Teichert et al. (1964), and the
32 33 34	915	representative of <i>Lituites</i> group is modified from Teichert et al. (1964) and
35 36 37	916	Aubrechtová & Meidla (2020).
38 39	917	
40 41 42	918	Table 1. Lituitida species sampled and their distributions and horizons.
43 44	919	
45 46 47	920	Table 2. Character code-taxa matrix used for cladistic analysis. For the genus
48 49 50	921	abbreviations, see Fig. 2.
51 52 53 54 55 56 57	922	

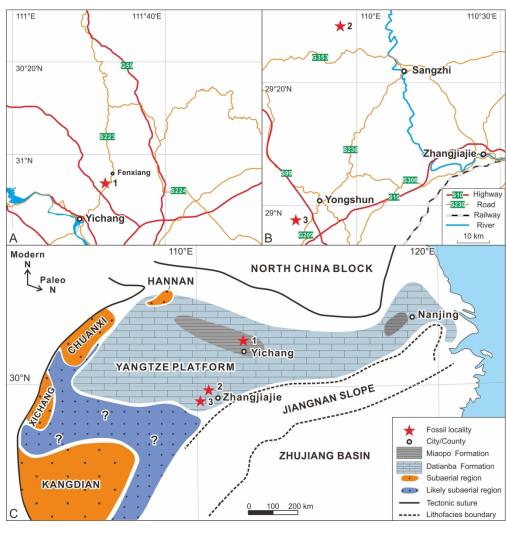
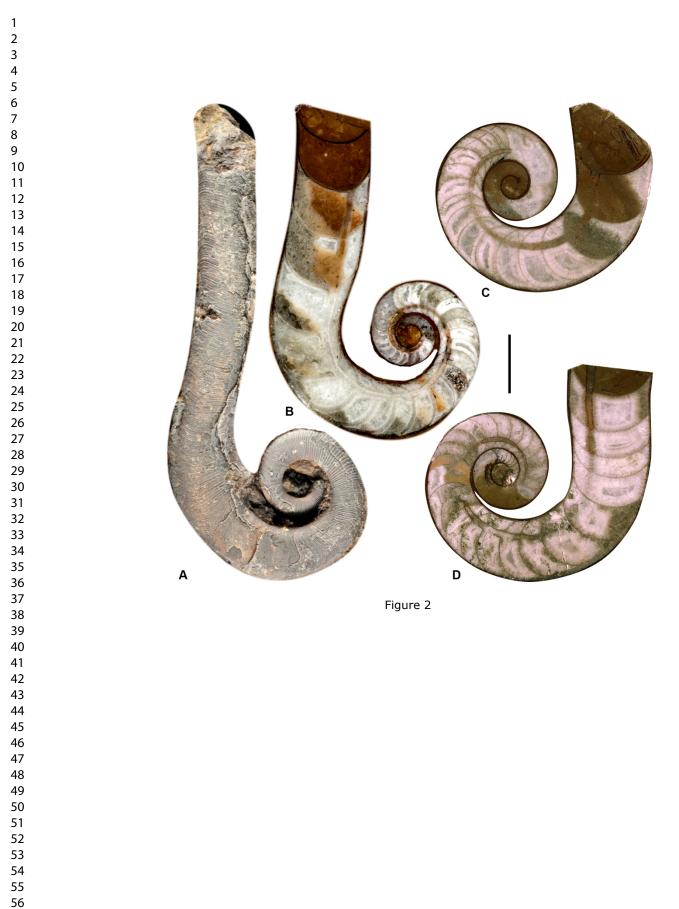



Figure 1

173x176mm (300 x 300 DPI)

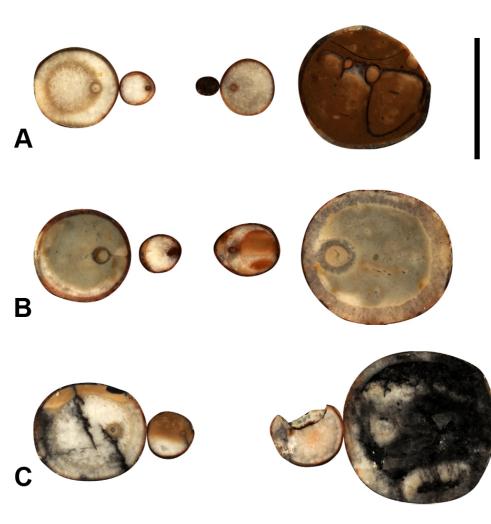


Figure 3

335x328mm (72 x 72 DPI)

Е

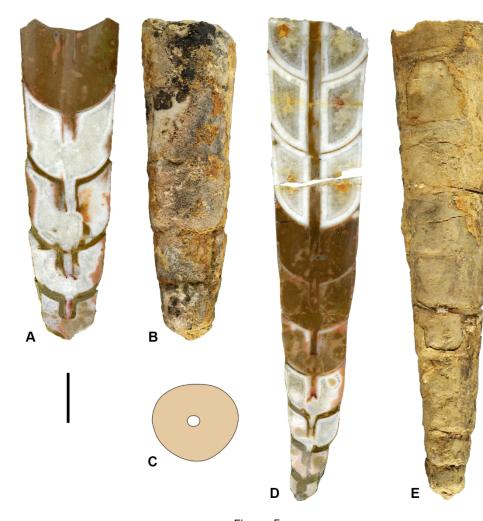
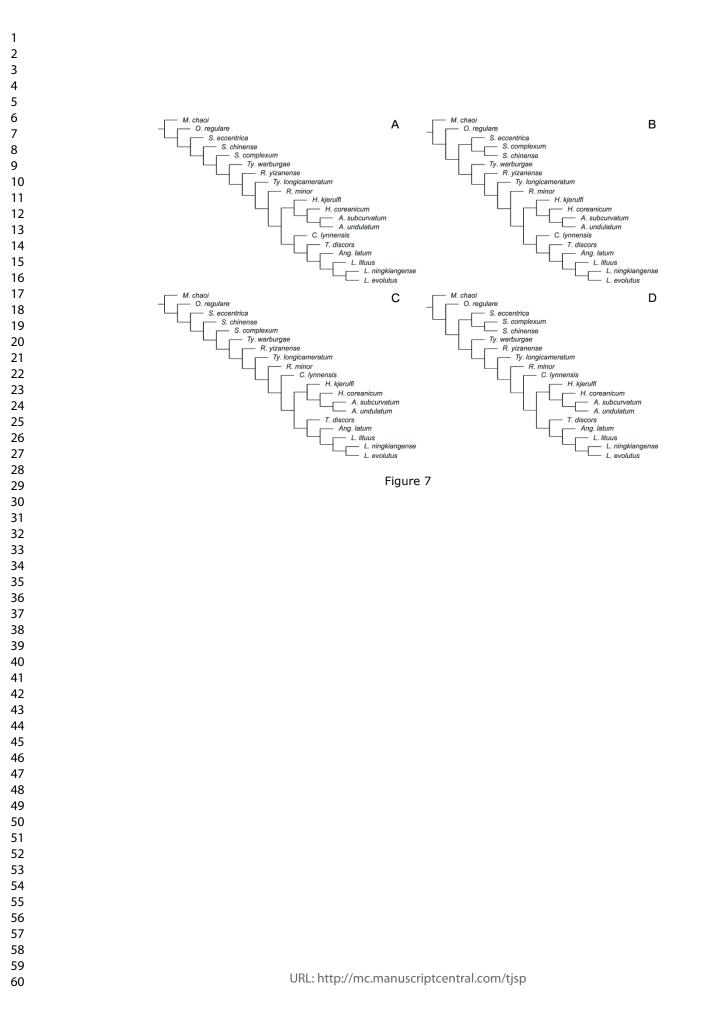



Figure 5

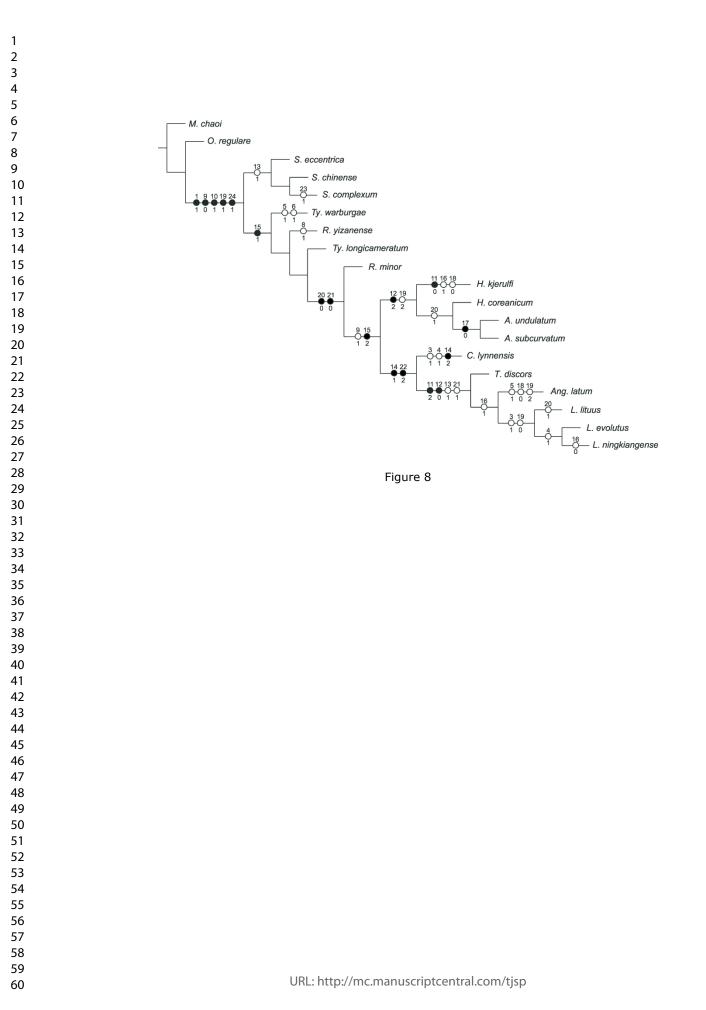


Figure 9

Table 1. Lituitida species sampled and their distributions and horizons.

Species	Distributions	Horizons	References				
Ancistroceras undulatum	Baltica; South China	Darriwilian Stage, Middle	Noetling 1883; Aubrechtová &				
		Ordovician	Meidla 2020				
Ancistroceras	South China; Himalaya	Dapingian Stage, Middle	Qi 1980; Chen 1984				
subcurvatum		Ordovician					
Angelinoceras latum	Baltica	Darriwilian Stage, Middle	Angelin & Lindström 1880				
		Ordovician					
Cyclolituites lynnensis	Baltica; South China	Sandbian Stage, Upper	Sweet 1958; Fang et al. 2017b				
		Ordovician					
Holmiceras coreanicum	North China	Darriwilian Stage, Middle	Yun 1999, 2003				
		Ordovician					
Holmiceras kjerulfi	Baltica	Darriwilian Stage, Middle	Brøgger 1882; Sweet 1958				
		Ordovician					
Lituites evolutus	South China	Sandbian Stage, Upper	Fang <i>et al.</i> 2017b				
		Ordovician					
Lituites lituus	Baltica	Darriwilian Stage, Middle	Sweet 1958; Aubrechtová &				
		Ordovician	Meidla 2020				
Lituites ningkiangense	South China	Sandbian Stage, Upper	Fang et al. 2017b				
		Ordovician					
Rhynchorthoceras minor	Precordillera, Argentina	Darriwilian Stage, Middle	Kröger et al. 2007				
		Ordovician					
Rhynchorthoceras	South China	Sandbian Stage, Upper	New species in this study				
yizanense		Ordovician					
Sinoceras chinense	South China; Sibumasu	Darriwilian Stage, Middle	Fang <i>et al.</i> 2017 <i>a</i>				
		Ordovician-Katian Stage,					
		Upper Ordovician					
Sinoceras complexus	South China	Katian Stage, Upper	New species in this study				
		Ordovician					
Sinoceras eccentrica	South China	Katian Stage, Upper	Fang <i>et al.</i> 2017 <i>a</i>				
		Ordovician					
Trilacinoceras discors	Baltica	Darriwilian Stage, Middle	Sweet 1958; Aubrechtová &				
		Ordovician	Turek 2018				
Tyrioceras	South China	Katian Stage, Upper	New species in this study				
longicameratum		Ordovician					
Tyrioceras warburgae	Baltica	Katian Stage, Upper	Frye 1982; Kröger 2013				
		Ordovician					

Table 2. Character code-taxa matrix used for cladistic analysis. For the genus

abbreviations, see Table 1.

		Character numbers and codes																							
0	Selected taxa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	M. chaoi	0	-	-	-	0	0	0	?	1	0	1	1	0	0	0	-	-	-	0	1	1	1	0	0
2 3	O. regulare	0	-	-	-	0	0	0	1	1	0	1	1	0	0	0	-	-	-	0	1	1	1	0	0
4	A. undulatum	1	0	0	0	?	1	1	?	1	1	1	2	1	0	2	0	0	1	2	1	0	0	1	0
5 6	A. subcurvatum	?	?	?	?	?	?	?	?	1	1	1	2	?	0	?	?	0	?	2	1	0	0	1	0
0 7	Ang. latus	1	1	0	0	1	1	1	?	?	?	?	0	1	1	2	1	1	0	2	0	?	?	?	?
8	C. lynnensis	1	1	1	1	0	1	0	1	1	1	1	1	0	2	2	0	?	1	1	0	0	2	0	1
9 0	H. coreanicum	1	0	0	0	0	0	1	1	1	1	1	2	0	0	2	?	1	?	2	1	0	0	1	0
1	H. kjerulfi	?	?	?	?	?	?	?	?	?	?	0	2	0	0	2	1	1	0	2	0	0	1	?	?
2	L. evolutus	1	1	1	1	0	1	1	?	1	1	2	0	?	1	2	1	1	1	0	0	1	2	0	1
3 4	L. lituus	1	1	1	0	0	1	1	0	1	?	2	0	1	1	2	1	1	1	0	1	1	2	0	1
5	L. ningkiangense	1	1	1	1	0	1	1	?	1	1	2	0	1	1	2	0	1	1	0	0	1	2	0	1
6	R. minor	1	0	0	0	0	0	0	?	0	1	1	1	?	0	1	-	-	-	1	0	0	0	0	1
7 8	R. yizanense	1	0	0	0	?	0	0	0	0	1	1	1	0	0	1	-	-	-	1	1	1	0	0	1
9	S. chinense	1	0	0	0	0	0	0	1	0	1	1	1	1	0	0	-	-	-	1	1	1	0	0	1
0	S. complexum	?	?	?	?	?	?	?	?	0	1	1	1	1	0	0	-	-	-	1	1	1	0	1	1
1 2	S. eccentrica	1	0	0	0	0	0	0	1	0	1	1	1	1	0	0	-	-	-	1	1	1	1	0	1
3	T. discors	1	0	0	0	0	1	1	?	?	?	2	0	1	1	2	0	1	1	1	0	1	2	?	?
4 5	Ty. longicameratum	?	?	?	?	?	?	?	?	0	1	1	1	• 0	0	1	-	-	-	1	1	1	0	0	1
6	Ty. warburgae	1	0	0	0	1	1	0	?	0	1	1	1	0	0	1	-	-	-	1	1	1	0	0	1
7																									
8 9																									
0																									
1																									
2 3																									
4																									
5 6																									
7																									
8																									
9 0																									
1																									
2																									
3 4																									
5																									
6																									
7 8																									
0																									