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a b s t r a c t

Tumors consist of heterogeneous cell subpopulations that may develop differing phenotypes, such as
increased cell growth, metastatic potential and treatment sensitivity or resistance. To study the dynamics
of cancer development at a single-cell level, we model the tumor microenvironment as a metapopulation,
in which habitat patches correspond to possible sites for cell subpopulations. Cancer cells may emigrate
into dispersal pool (e.g. circulation system) and spread to new sites (i.e. metastatic disease). In the
patches, cells divide and new variants may arise, possibly leading into an invasion provided the aberra-
tion promotes the cell growth. To study such adaptive landscape of cancer ecosystem, we consider var-
ious evolutionary strategies (phenotypes), such as emigration and angiogenesis, which are important
determinants during early stages of tumor development. We use the metapopulation fitness of new vari-
ants to investigate how these strategies evolve through natural selection and disease progression. We fur-
ther study various treatment effects and investigate how different therapy regimens affect the evolution
of the cell populations. These aspects are relevant, for example, when examining the dynamic process of a
benign tumor becoming cancerous, and what is the best treatment strategy during the early stages of
cancer development. It is shown that positive angiogenesis promotes cancer cell growth in the absence
of anti-angiogenic treatment, and that the anti-angiogenic treatment reduces the need of cytotoxic treat-
ment when used in a combination. Interestingly, the model predicts that treatment resistance might
become a favorable quality to cancer cells when the anti-angiogenic treatment is intensive enough.
Thus, the optimal treatment dosage should remain below a patient-specific level to avoid treatment
resistance.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cancer is a complex disease that develops and adapts uniquely
in each patient and tumor. Cancer cells overcome physiological
restrictions limiting the behavior of normal cells, for example, cell
division, death and adaptation to hypoxic environments. Further-
more, unlike benign tumors, cancer cells are more prone to detach
from the place of origin and cause metastases (Tiwari et al., 2012).
These phenotypes are often caused by somatic mutations and
other molecular or functional aberrations in cancer cells. The aber-
rant cells, or variants, may acquire survival benefits because their
genetic, functional or epigenetic qualities are more suitable than
those of the pre-existing main population (residents). Often these
qualities are unfavorable to the patient because the cancer cells
develop to become more malignant, invasive or treatment resis-
tant. Cancer cells with these features usually form fitter popula-
tions that survive better in the dynamic evolutionary processes
when competing for resources and space. A better understanding
of these dynamic processes and cancer development is a key factor
when trying to improve the effectiveness, personalization and pre-
cision of cancer treatment.

In addition to experimental studies, cancer development is also
investigated with tools provided by mathematical modeling.
Dynamic modeling has already shown promising results, including
theoretical mono- or combination therapy suggestions (Halkola
et al., 2020; Lai et al., 2019). Most models consider tumors that
have already reached a considerable size, and thus it is justified
to model the dynamics with differential equations (Fassoni et al.,
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Fig. 1. The metapopulation structure. Black circles represent habitat patches, i.e.,
possible sites for cell subpopulations. The red rectangle represents the dispersal
pool, i.e., the circulation system. Cells (C) may emigrate into the dispersal pool and
immigrate from there into habitat patches to form metastases. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

A.S. Halkola, T. Aittokallio and K. Parvinen Journal of Theoretical Biology 545 (2022) 111147
2019; Halkola et al., 2020; Letellier et al., 2017; Pinho et al., 2013;
Yonucu et al., 2017; Zhang et al., 2017). Other models start from
single cells and utilize branching processes, e.g., when focusing
on the early stages of primary tumor development or relapse after
surgery (Avanzini and Antal, 2019; Bozic and Nowak, 2014;
Kozłowska et al., 2018). Other modelling approaches, such as cellu-
lar automata (Lai et al., 2019; Alarcón et al., 2006), stochastic con-
tinuous time birth–death process (Komarova et al., 2014) and
Wright-Fisher model (Fischer et al., 2015), have also been used to
model cancer development and progression. However, to the best
of our knowledge, there are no mathematical modelling
approaches in which cancer ecosystem is considered as a
continuous-time metapopulation with varying strategies.

A metapopulation is a group of populations that are spatially
distinct. The populations are part of the same species and the pop-
ulations are connected at some level, for example, through disper-
sal. The populations inhabit so-called patches, which are separate
environments within the larger ecosystem. In each patch, the
behavior of individuals affects the local surroundings and the living
conditions. In our case, the individuals are cancer cells and the
patches are possible sites for the cell subpopulations. The cancer-
cell populations in a patient together constitute a metapopulation
of cancer microenvironment. In the metapopulation, the cancer
cells can disperse through blood and inhabit new patches, e.g.,
metastases, either close to the original site or further away. In gen-
eral, cells do not detach easily from the extracellular matrix and
survival is compromised if detached (Frisch and Screaton, 2001).
However, cancer cells may utilize other mechanisms, such as
epithelial-mesenchymal transition (EMT), to escape the pro-
grammed cell-death initiated after detachment (Tiwari et al.,
2012). Dispersal of cancer cells may lead to inhabited patches
around the body, and hence, to a metastatic disease. Dispersal also
helps the cancer-cell metapopulation to survive if a local popula-
tion is entirely erased by a catastrophe such as surgery.

When the cancer-cell populations grow, their resources might
become insufficient if transported only through the pre-existing
blood vessels. To overcome the resource restriction, cancer cells
often adapt to the hypoxic surroundings or promote the formation
of new vessels. The formation of new vessels, angiogenesis, is influ-
enced by cell-secreted substances, such as vascular endothelial
growth factor (VEGF) (Takahashi et al., 1995). Angiogenesis can be
inhibited by anti-angiogenic treatments (Khan and Bicknell, 2016;
Rajabi and Mousa, 2017; Ramjiawan et al., 2017; Shaheen et al.,
1999). Such treatments target distinct inductors of angiogenesis as
well as distinct benchmarks in the induction. For example, the func-
tion of VEGF canbe blockedby binding to theVEGFmolecule itself or
to its receptors such as VEGFR2 (Bergers and Hanahan, 2008). Anti-
angiogenic treatments have shown promising results both in
inhibiting the tumor growth and the number of metastases
(Melnyk et al., 1996; Rowe et al., 2000; Warren et al., 1995). How-
ever, anti-angiogenic treatments cannot eradicate the whole tumor
or they only inhibit the tumor growth. Furthermore, anti-angiogenic
treatments have less or no effect on mature, pre-existing vessels
(Benjamin and Keshet, 1997), causing the resource inflow to remain
at a constant level. In addition to challenges in achieving full
response, tumors are prone to develop resistance to any single treat-
ment. Anti-angiogenic treatment is not an exception since a single
angiogenic mechanism can be bypassed (Bergers and Hanahan,
2008; Khan and Bicknell, 2016). Therefore, anti-angiogenic treat-
ments have been tested in combinations with other therapies such
as immunotherapy or cytotoxic treatment (Khan and Kerbel, 2018;
Ramjiawan et al., 2017; Robert et al., 2011; Vasudev and Reynolds,
2014). In any case, the treatment effect is dependent on dosage
and timing, thus patient-specific treatment regimens are required.

In the present work, we consider the cancer microenvironment
as a metapopulation and analyze the dynamics of cancer develop-
2

ment and treatment effects using a metapopulation model. We
investigate the evolution of cancer cells with respect to changes
in three evolutionary strategies: angiogenesis, emigration and
treatment resistance. In particular, we investigate the effects of
anti-angiogenic and cytotoxic treatment and their combinations,
as well as the effect of othermodel parameters, such as the resource
inflow and immigration rate, that affect the cell population dynam-
ics. First, we analyze the single-strategy dynamics without treat-
ment (Section 3.1) to provide an overview of how the different
strategies evolve separately. Second, we investigate how the angio-
genesis and emigration strategy evolve together (Section 3.2). Espe-
cially, we focus on the treatments effects and the changes they
cause in the ecosystem both individually (Section 3.2.1) and
together in a combination therapy (Section 3.2.2). Third, we bring
the treatment resistance under investigation and consider all the
three strategies together with the anti-angiogenic treatment to
investigate how and when the resistance emerges (Section 3.3).
2. Materials and methods

In our metapopulation model of tumor microenvironment, can-
cer cells inhabit habitat patches (Fig. 1). It is assumed that there are
infinitely many habitat patches, even though in reality there are
eventually some restrictions when considering the sites where
cells can grow. Each habitat patch has its own microenvironment
and living conditions determined by the resource availability (via
vasculature) and the cells living in the patch. In contrast to cellular
automata, the spatial relation to other patches is not under consid-
eration and the patches have no direct interactions or exchange.
The cells can leave the patch into a dispersal pool (red rectangle
in Fig. 1), which connects all patches. It is assumed that in the dis-
persal pool, there is no proliferation and cells may only die or
immigrate into a patch. The spatial location of a patch does not
affect immigration, but the population size does: Cells are more
likely to immigrate into a less-populated patch since there is more
space and there may be less competition for resources. The dead
cells exit the system and are no longer under consideration.
2.1. Within-patch dynamics

2.1.1. Fast within-patch resource dynamics
Resources (R), such as glucose, flow into and out of the patch

following chemostat dynamics (Smith and Waltman, 1995). The



Fig. 2. The states and transitions of the Markov chain describing monomorphic
resident population dynamics.
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pre-existing vessels provide a constant resource inflow bR, which is
called the baseline resource inflow. If cells contribute to angiogen-
esis, the amount of inflowing resources increases locally by the fac-
tor f, which is an increasing function of the angiogenesis
contribution (e.g. amount of VEGF produced). An upper bound
(Amax) is assumed for the increase because of limited space for
new vessels to form in the microenvironment of a patch. Resources
flow out of the patch with concentration of R, and both the inflow
and outflow have the same relative flow speed of k. Cells collect
resources by law of mass action with their resource consumption
rate (Tóth and Érdi, 1989).

Local resources follow a differential equation:

dR
dt

¼ k f n;að ÞbR � R
� �

� R
Xk
i¼1

nisi; ð1Þ

in which

f n;að Þ ¼ 1þ Amax
Pk

i¼1niai
1þPk

i¼1niai

 !
: ð2Þ

Here, n ¼ n1; . . . ; nkð Þ and a ¼ a1; . . . ; akð Þ, where ni is the num-
ber of type i cells and ai is the corresponding angiogenesis strategy
that tells how much cell type i contributes to angiogenesis. Fur-

thermore, bR is the baseline resource inflow, si is the resource con-
sumption rate of type i cells, and k is the relative flow speed of
resources. Amax is the upper limit of angiogenesis-increased
resources inflow. It is assumed that the dynamics of local resources
(1) are fast and in equilibrium (satisfying the condition dR=dt ¼ 0),
resulting in the resource concentration

R� n;að Þ ¼ kf n;að ÞbR
kþ

Xk
i¼1

nisi

: ð3Þ

When the angiogenesis strategies are zero (ai ¼ 0) or contribut-
ing cells do not exist (e.g. ai > 0 but ni ¼ 0), the resource inflow is

at the baseline (bR).
2.1.2. Within-patch cancer-cell dynamics

The cell population dynamics within a patch is modelled as a
continuous-time Markov chain, in which the population’s state is
determined by the numbers of different cell types present in the
patch. The state of a local population changes when cells prolifer-
ate, die or migrate. Transitions of one cell type into another are
assumed to be so rare that such transitions can be excluded from
the Markov chain. It is assumed for computational reasons, and
because of biological limitations of space, that a patch has a max-
imum limit of K cells. It is assumed that cells cannot divide in a full
patch with K cells. The states and potential transitions of the Mar-
kov chain in a monomorphic resident population are illustrated in
Fig. 2. How the probabilities of the Markov chain to be in different
states change in time are given by forward Kolmogorov equations.
For a monomorphic population, i.e., when all cells have the same
strategy, these equations are presented in Section 2.2, Eq. (14).

Cells proliferate using collected resources and thus the birth
rate depends on the resource intake. The resource availability is
collectively affected by the angiogenesis contribution of all cells
in the patch. Through resource usage, angiogenesis indirectly
affects the birth rate. However, the angiogenesis strategy has also
a direct negative effect on the birth rate since higher angiogenesis
contribution reserves resources from the proliferation.

The birth rate of cell type i is

bn;a;i ¼ csiR� n;að Þg aið Þ; ð4Þ
3

in which

g aið Þ ¼ 1
1þ ai

: ð5Þ

Here, si is the resource consumption rate, describing how much
a cell type i collects resources in order to divide. Cell division is
proportional to the resource usage with conversion coefficient c.
The resource concentration R� is as in Eq. (3). Vectors n and a con-
tain the numbers and angiogenesis strategies of all cell types cor-
respondingly, and ai is the angiogenesis strategy of the cell type
i. In addition, g að Þ describes the trade-off on proliferation caused
by the angiogenesis contribution.

The death rate is the same for all cell types and it depends only

on the total number of cells in the patch nT ¼Pk
i¼1ni:

dnT ¼ d0 þ dnT ; ð6Þ
where d0 is the baseline death rate. It is assumed that the death rate
is higher in patches with higher population size (Qiao and Farrell,
1999) and thus the factor d is positive (and set to 1=K). Cells may
also emigrate and leave the patch with a rate of qi, which depends
on the emigration strategy ei, describing how easily a cell detaches
and leaves the patch. The emigration rate depends also on the
angiogenesis strategies ai, because it is assumed that emigration
becomes more likely when there are more vessels through which
to emigrate (Bielenberg and Zetter, 2015). Accordingly,

qn;a;ei
¼ eif n;að Þ; ð7Þ

where the function f is given in Eq. (2). Emigrated cells die in the
dispersal pool (circulation system) with the rate m. Cells in the dis-
persal pool encounter patches with the rate a, and upon encounter,
immigrate into the encountered patch with probability
Sn ¼ K � nð Þ=K , where n is the current number of cells in the patch.
Upon encounter, cells are thus more likely to immigrate into a less-
populated patch. Cells compete with each other indirectly through
limited resources and space.

2.1.3. Effect of the treatments
It is assumed that the cytotoxic treatment increases the death

rate d with a value of wc . Anti-angiogenic treatment prevents
angiogenesis and thus the increase in inflowing resources. It is
assumed that the anti-angiogenic treatment does not decrease

the inflowing resources below the baseline bR. The original mature
vessels are assumed to be VEGF independent and thus not affected
by the anti-angiogenic treatment (Baffert et al., 2004; Gee et al.,
2003). Eq. (2) is modified to include the anti-angiogenic treatment

f n;a;wað Þ ¼ 1þ h wað Þ
Amax

Xk
i¼1

niai

1þ
Xk
i¼1

niai

0BBBB@
1CCCCA; ð8Þ



Table 1
Parameters, functions and strategies used in the model. Here # denotes individuals
(cells).

Symbol Value Unit Meaning

Parameters
k 1 1/timeunit Relative flow speed of resourcesbR 10 mass/

volume
Baseline inflow of resources

c 1 1/(mass/
volume)

Resource usage conversion coefficient

l 0.01 1/timeunit Rate of a catastrophe (such as surgery)
sr 1 1/

(timeunit*#)
Resource consumption rate of resident

cells
sm 1 1/

(timeunit*#)
Resource consumption rate of variant cells

a 0.2 1/timeunit Immigration rate of cells
m 0.5 1/timeunit Death rate of cells in circulation

(dispersion pool)
K 10 # Maximum number of cells in a patch
d0 0 1/

(timeunit*#)
The baseline death rate

d 1=K 1/# Effect of population size on the death rate
wa 0–18 mass/

volume
The concentration of anti-angiogenic

treatment
wc 0–4.5 1/timeunit The effect of cytotoxic treatment

Amax 5 – Maximum effect of angiogenesis
b 0.5 - Trade-off factor for resistance
nr # Number of resident cells
nm # Number of variant cells

Functions
f n;að Þ Eq.

(2)
1/timeunit The effect of angiogenesis

bn;a;r Eq.
(4)

1/
(timeunit*#)

Birth rate of resident cells when population
size is nT

bn;a;m Eq.
(4)

1/
(timeunit*#)

Birth rate of variant cells when population
size is nT

g aið Þ Eq.
(5)

- Trade-off function of angiogenesis
contribution

dnT ;r Eq.
(6)

1/
(timeunit*#)

Death rate of resident cells when
population size is nT

dnT ;m Eq.
(6)

1/
(timeunit*#)

Death rate of variant cells when population
size is nT

qn;a;er Eq.
(7)

1/
(timeunit*#)

Emigration rate of resident cells

qn;a;em Eq.
(7)

1/
(timeunit*#)

Emigration rate of variant cells

hwa
Eq.
(9)

- The effect of anti-angiogenic treatment

l qi;wað Þ Eq.
(11)

- The effect of treatment resistance

pnr ;nm tð Þ – Probability that a patch has nr resident and
nm variant cells

Strategies
ar P 0 1/# Angiogenesis strategy of resident cells
am P 0 1/# Angiogenesis strategy of variant cells
er P 0 – Emigration strategy of resident cells
em P 0 – Emigration strategy of variant cells
qr [0,1] – Resistance strategy of resident cells
qm [0,1] – Resistance strategy of variant cells
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with the anti-angiogenic treatment effect

h wað Þ ¼ 1
1þ wa

; ð9Þ

where wa is the concentration of anti-angiogenic treatment. We
note that this modification of Eq. (2) affects also the emigration rate
in Eq. (7), i.e., the emigration rate decreases with the increasing
anti-angiogenic treatment. It has been reported that anti-
angiogenic treatment resulted in a fewer metastases when com-
pared to untreated controls (Rowe et al., 2000; Warren et al., 1995).

2.1.4. Resistance to the anti-angiogenic treatment
To escape the effects of treatment, cancer cells may develop

resistance to anti-angiogenic therapy (Bergers and Hanahan,
2008; Khan and Bicknell, 2016). The resistance strategy qi of cell
type i has a value between zero (no resistance) and one (full resis-
tance). The resistance decreases the effect of anti-angiogenic treat-
ment and allows the angiogenesis to prevail, resulting in a
modified Eq. (7),

f n;a;q;wað Þ ¼ 1þ h wað Þ
Amax

Xk
i¼1

niail qi;wað Þ

1þ
Xk
i¼1

niai

0BBBB@
1CCCCA; ð10Þ

where q ¼ q1; . . . ;qkð Þ are the resistance strategies of cell types
1; . . . ; k. Since the resistance affects the treatment, the resistance
effect

l qi;wað Þ ¼ 1þ waqi ð11Þ
is determined by the treatment function h wað Þ. Here, l qi;wað Þ is cho-
sen such that with full resistance (qi ¼ 1) the treatment does not
have any effect on cell type i. With no resistance (qi ¼ 0), the treat-
ment has full effect on cell type i. Resistance of a cell type i cancels
the treatment effect only on cell type i.

It is assumed that acquiring and maintaining resistance requires
energy. Therefore, resistance has a cost in terms of decreased birth
rate. The trade-off between resistance and the birth rate is added to
Eq. (4):

bn;a;i ¼ csiR� n;að Þg ai;qið Þ; ð12Þ
where

g ai;qið Þ ¼ 1
1þ ai þ bqi

: ð13Þ

Here, b is the trade-off factor for resistance. The trade-off factor
of angiogenesis (ai) is set to 1.

2.1.5. Parameters
The parameter values are set as in Table 1, unless otherwise

mentioned. Due to large number of combinatorial possibilities,
most of the parameters are kept constant in the analyses. The main
focus in on the treatments, which are also the easiest to alter by an
external intervention. In addition to the main analyses on the
treatments, intervals for multiple parameters are investigated in
the Supplement Sections 3, 5 and 6. The initial parameters in
Table 1 are selected so that the metapopulation is viable without
angiogenesis. An opposite case is investigated in the Supplemen-
tary Section 4. Depending on the parameter and the analysis, the
parameter interval was selected such that the metapopulation
becomes non-viable, or the angiogenesis strategy becomes zero,
or the main trend is detected.

The cytotoxic treatment parameter is the realized effect of the
drug concentration on the death rate. For real-life applications,
the connection between the effect and the concentration of a speci-
4

fic drug (e.g., docetaxel or doxorubicin) should be determined and
scaled to the model. Dose–response curves determine the cell via-
bility in relation to the drug concentration (Wang et al., 2014;
Wang et al., 2017). Dose–response curves are often formed with
logistic scale for drug concentration, thus it is plausible to investi-
gate even small changes in the effect size as the changes in the cor-
responding drug concentrations could be attainable. In our model
the 0% cell viability (or 100% response) in dose–response curve
would correspond to the effect size (wc) that leads to non-viable
metapopulation.

Since anti-angiogenic treatment does not directly cause cancer
cell death, the dose–response curves are in relation to the forma-
tion of vessels (Truelsen et al., 2021). Instead of confining on a
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specific drug (e.g., bevacizumab), we included a simple dose–re-
sponse curve (Eq. (9)), that depends on the anti-angiogenic treat-
ment concentration wa. To keep the model more adjustable, the
concentration unit is also left unspecified as mass/volume. How-
ever, the unit could be, for example, ng/ml as in Truelsen et al.
(2021).

2.2. Metapopulation dynamics

On the metapopulation level, we investigate the probability dis-
tribution of the number of cells in habitat patches. When the pop-
ulation is monomorphic, pn denotes the probability that a
randomly chosen patch has n cancer cells. Thus, pn must satisfy
the condition

P
npn ¼ 1. Additionally, these probabilities satisfy

the following system of differential equations (forward Kol-
mogorov equations):

dp0 tð Þ
dt ¼ �aDS0p0 tð Þ þ d1 þ q1;a;e

� �
p1 tð Þ þ l

XK
n¼1

pn tð Þ
dpn tð Þ
dt ¼ � aDSn þ n bn;a þ dn þ qn;a;e

� �þ l
� �

pn tð Þ
þ aDSn�1 þ n� 1ð Þbn�1;a½ �pn�1 tð Þ
þ nþ 1ð Þ dnþ1 þ qnþ1;a;e

� �
pnþ1 tð Þ dpK tð Þ

dt ¼
� K dK þ qK;a;e

� �þ l
� �

pK tð Þ þ aDSK�1 þ K � 1ð ÞbK�1;a½ �pK�1 tð Þ;
ð14Þ

where the dispersal pool size D satisfies the differential equation:

dD tð Þ
dt

¼ � a
XK
n¼0

pnSn þ m

 !
D tð Þ þ

XK
n¼1

qn;a;enpn tð Þ: ð15Þ

Here Sn ¼ K � nð Þ=K is the probability that a cell in the dispersal
pool that has encountered a patch, actually immigrates into it. The
model parameters are listed in Table 1. Note that according to (14)
we have

XK
n¼0

dpn tð Þ
dt

¼ 0 )
XK
n¼0

pn tð Þ ¼
XK
n¼0

pn 0ð Þ ¼ C: ð16Þ

Since pn are probabilities, we must have C ¼ 1.

2.2.1. Metapopulation-dynamical steady state
In a metapopulation-dynamical steady state, the probabilities

pn tð Þ and D tð Þ do not depend on time, so that pn tð Þ ¼ �pn and
D tð Þ ¼ D. The metapopulation-dynamical steady state can thus be

solved from (14) and (15) with dpn tð Þ
dt ¼ 0 and dD tð Þ

dt ¼ 0. Note, how-
ever, that because of (16), we need to replace one of the equations
in (14) by �p0 þ �p1 þ � � � þ �pK ¼ 1. For a fixed value of D, the proba-
bilities �pn can be solved from the linear system of equations

0 ¼ �aDS0�p0 þ d1 þ q1;a;e

� �
�p1 þ l 1� �p0ð Þ

0 ¼ � aDSn þ n bn;a þ dn þ qn;a;e

� �þ l
� �

�pn

þ aDSn�1 þ n� 1ð Þbn�1;a½ ��pn�1 þ nþ 1ð Þ dnþ1 þ qnþ1;a;e

� �
�pnþ

1 ¼ �p0 þ �p1 þ � � � þ �pK :

ð17Þ
Let �pn Dð Þ denote the solution of (17) for a fixed value of D. The

equilibrium value D must then satisfy

1 ¼

XK
n¼1

qn;a;en�pn Dð Þ

a
XK
n¼0

�pn Dð ÞSnþm
 !

D

ð18Þ

derived from (15). Solutions �pn and D, that satisfy both Eqs. (17) and
(18) are searched numerically.
5

2.3. Evolutionary dynamics

2.3.1. Variant’s fitness
Cell’s strategies variate randomly, for example, through point

mutations in DNA. Variant cells experience the environment set
by the resident population, which in this model is characterized
by the distribution of different growth conditions in the patches.
Invasion fitness (Metz et al., 1992) is the long-term exponential
growth rate of a rare variant in the environment set by the resi-
dent. If the variant’s invasion fitness in the environment defined
by the resident is negative, the variant cannot invade and the vari-
ant population diminishes. Only the variants with positive invasion
fitness may invade and replace the original resident, becoming a
new resident. However, due to chance, even a variant with positive
fitness may not be able to invade.

2.3.2. Metapopulation fitness
In metapopulation models, calculating the invasion fitness is

often complicated. However, the metapopulation fitness Rmetapop

(Metz and Gyllenberg, 2001; Parvinen, 2011; Parvinen and
Metz, 2008) is usually easier to calculate, and it can be used to
determine the sign of the invasion fitness. Instead of measuring
growth in real time, the metapopulation fitness measures growth
between dispersal generations. It is analogous to the basic repro-
duction ratio R0, which measures growth between actual genera-
tions, for example in the context of infectious diseases. Consider
an initially small variant population in the dispersal pool. A focal
variant in the dispersal pool will either die in the dispersal pool,
or immigrate into a patch, in which all other cells are residents
at that moment. The focal variant and all its descendants in this
patch form a variant colony. As the variant population in the dis-
persal pool is initially small, no other variants are expected to
arrive in this patch during the lifetime of the variant colony.
The number of residents and variants in the patch changes
according to a Markov chain (Supplementary Figs. S1 and S2).
Eventually the variant colony goes extinct, i.e., the number of
variants in the patch goes to zero. During its lifetime, the variant
colony sends emigrants from the patch. The variant’s metapopu-
lation fitness is the expected number of variant emigrants pro-
duced by the variant colony during its lifetime. Note that the
case of death of the focal variant in the dispersal pool corre-
sponds to a variant colony of size zero without produced emi-
grants, and it is included in the calculation of the expected
number of emigrants.

The state of the variant colony is determined by the number of
residents nr and variants nm in the patch, in which nr P 0; nm P 1
and nr þ nm 6 K. At the moment when the focal variant immigrates
into the patch, there is exactly one variant, and the number of the
residents depends on chance according to the resident population
distribution. Therefore, the initial probability distribution of the
Markov chain is

d0 nr ;1ð Þ ¼ pnr SnrXK�1

n¼0

pnSn

; for 0 6 nr < K

d0 nr;nmð Þ ¼ 0; for nm > 1

ð19Þ

The transition intensities from the state nr ;nmð Þ to neighboring
states are

c0;þnr ;nm ¼ nmbn;a;m; if nT ¼ nr þ nm < K

c0;�nr ;nm ¼ nm dnT þ qn;a;m

� �
cþ;0
nr ;nm ¼ aDSnT þ nrbn;a;r ; if nT ¼ nr þ nm < K

c�;0
nr ;nm ¼ nr dnT þ qn;a;r

� �
:

ð20Þ
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Here the original state is in the subscript and the superscript
indicates the change in the numbers of individuals. For example,
the superscript 0;þð Þ indicates that the number of residents is
unchanged while the number of variants increases by one. Taking
also the catastrophes into account, the transition intensity out of
the state with nr residents and nm variants is

cnr ;nm ¼ c0;þnr ;nm þ c0;�nr ;nm þ cþ;0
nr ;nm þ c�;0

nr ;nm þ l: ð21Þ
The waiting time, i.e., the time that the continuous-time Mar-

kov chain spends in a state before the next transition, is exponen-
tially distributed with parameter cnr ;nm . Once the transition
happens, the probability that the population changes from the
state nr ;nmð Þ to the state nr;nm þ 1ð Þ is c0;þnr ;nm=cnr ;nm . Other transition
probabilities are formed correspondingly. These transition proba-
bilities form the transition probability matrix P. The probability
that the Markov chain is in state nr ;nmð Þ after j transitions is
dnr ;nmj , which can be calculated from

dj ¼ d0P
j: ð22Þ

We calculate the expected number of visits wnr ;nm in the state
nr ;nmð Þ:

w ¼
X1
j¼0

dj ¼
X1
j¼0

d0P
j: ð23Þ

The states wnr ;nm with nm P 1 are transient, and therefore, the
expected number of visits wnr ;nm are finite. Furthermore, we get
(Kemeny and Snell, 1960)

w ¼ d0 I � Pð Þ�1
; ð24Þ

where the matrix inverse exists for transient states. Now, w can be
numerically solved. Formula for the fitness is:

Rmetapop ¼
am

XK�1

n¼0

pnSn

mþ am

XK�1

n¼0

pnSn

Xnmqmwnr ;nm

cnr ;nm
; ð25Þ

where the transition intensity cnr ;nm is as in Eq. (21). The average
amount of visits wnr ;nm is the component corresponding to the state
nr; nmð Þ in the vector (23). Here, qm is the emigration rate of variants,
pn is the probability that a variant emigrant encounters a resident
patch with n cells, and Sn is the probability that the variant actually
immigrates into the patch it has encountered. The invasion fitness is
positive if and only if Rmetapop > 1.

2.3.3. Pairwise invasibility plots
Evolutionary dynamics are illustrated using pairwise invasibil-

ity plots (PIPs) in which resident’s strategy is on the horizontal axis
and variant’s strategy on the vertical axis. Areas where variant’s fit-
ness is negative or positive (metapopulation fitness is below one or
above one) are marked with different colors (see e.g. Fig. 3a).
Curves on which variant’s fitness is exactly zero, are called neutral
contours. They are seen as the edges between the positive and neg-
ative fitness in the PIPs. The diagonal, where the variant’s strategy
is equal to the resident’s strategy, is a neutral contour, since the
resident has a neutral fitness against itself. Depending on parame-
ters, there can exist also other neutral contours.

2.3.4. Fitness gradient and singular strategy
As the random variants keep emerging, the highest chance of

successful invasion is on those variants, which have highest fitness.
A variant’s fitness increases the most in the direction given by the
fitness gradient. In reality, the changes do not happen straight
along the gradient. However, as the chances of invasion in that
6

direction are higher, in time the strategies will evolve to the gradi-
ent’s direction. The fitness gradient is calculated by differentiating
the fitness function (Eq. (25)) with respect to a variant’s strategy
and then setting the variant’s strategy to be equal to resident’s
strategy. In case of a multi-dimensional strategy (strategy vector),
the fitness gradient is obtained in similar fashion by calculating
partial derivatives with respect to each strategy (component). A
variant’s fitness increases the most in the direction given by the fit-
ness gradient.

D ar ; er ;qrð Þ ¼ @

@am
Rmetapop;

@

@em
Rmetapop;

@

@qm
Rmetapop

� 	
jam¼ar ;em¼er ;qm¼qr

:

ð26Þ
A point where the fitness gradient vanishes (all components

become zero) is called evolutionarily singular strategy, or briefly
just a singular strategy. For one-dimensional strategies, a singular
strategy is attracting when near the point smaller values have a
positive gradient and higher values have a negative gradient. In
an opposite case, the singular strategy is repelling. A singular strat-
egy is uninvadable (evolutionarily stable) if there is no strategy
that could make an invasion. Correspondingly, a singular strategy
is invadable if some other strategy could make an invasion. In a
PIP, the singular strategies are positioned at the intersections of
the diagonal and other neutral contours.

2.3.5. Average population size and average emigration
To monitor the effect of cell strategies on the population level,

average population size is calculated from the distribution of the
population size, i.e. the probabilities pn from the residents steady
state (Eq. (17)). Average population size is then

XK
n¼0

npn: ð27Þ

Average emigration is calculated using the distribution of the
population size pn with the emigration rate (Eq. (7)):

XK
n¼0

pnef n; að Þ: ð28Þ
3. Results

We investigate the cancer development in the metapopulation
model to gain insights into cancerous qualities (strategies) and
how different treatment regimens affect these qualities. For exam-
ple, when and how much cells contribute to the angiogenesis,
when they become resistant, and how treatment affects the transi-
tion. We demonstrate the model dynamics regarding different
strategies on their own as well as with respect to each other. We
use a variant’s fitness and singular strategies to determine the pos-
sible endpoints of development and to investigate changes caused
by alterations in the cancer’s environment (parameters). We focus
especially on the parameters of anti-angiogenic and cytotoxic
treatments and their relation to the strategies. See the Supplemen-
tary Sections 3 and 5 for the other parameters.

3.1. Single-strategy dynamics without treatment

3.1.1. Angiogenesis strategy
Angiogenesis increases the birth rate of all cells indirectly,

through increased availability of resources. Therefore, if there were
no cost on angiogenesis, natural selection would cause the angio-
genesis strategy to increase without bounds. However, there is a
trade-off between the angiogenesis strategy and the cell birth rate,
since angiogenesis reserves resources from proliferation, and



Fig. 3. a) Pairwise invasibility plot (PIP) for angiogenesis strategy when the emigration strategy is 0.2 and the resistance strategy is zero. b) The corresponding average
population size with respect to the angiogenesis strategy for Amax ¼ 5 (solid) and Amax ¼ 1 (dashed). c) The singular angiogenesis strategy with respect to Amax when the
emigration strategy is 0.2 and the resistance is zero. The red dot denotes the singular strategy for Amax ¼ 5 and the blue dot for Amax ¼ 1. Calculation of average population size
is explained in Eq. (27). Other parameters are as in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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therefore, higher angiogenesis directly decreases the birth rate.
Despite the cost, some investment may become worthwhile to can-
cer cells, as can be seen from the positive singular strategy (e.g.,
around 0.11 in Fig. 3a). The cost of angiogenic investments (posi-
tive angiogenesis strategy) is paid by the investor itself, but bene-
fits are obtained by all cells in the habitat, not only the cell itself.
Some of them may be cell’s kin. Especially, in small local popula-
tions, it is likely that some habitants are relatives and thus kin
selection plays a role in evolution in this model. Depending on
the relative benefits and costs, angiogenesis may evolve in the
model, so that a positive singular strategy exists (Fig. 3a), in which
case the positive singular angiogenesis strategy is attracting and
uninvadable.
3.1.2. Emigration strategy
Similar to angiogenesis, kin selection affects dispersal evolution.

Emigration can have direct benefits for the emigrating cell, if it
arrives in a better patch than its original patch. In addition, rela-
tives of the emigrant remaining in the original patch may benefit
from an increased resource availability. Therefore, there typically
exists a positive singular emigration strategy (e.g., around 0.07 in
Fig. 4a). For zero or very small emigration strategy (0–0.0008 in
Fig. 4a), the metapopulation is non-viable due to the positive catas-
trophe rate. A catastrophe can be assimilated with surgery,
through which some populations are erased whereas possibly
undetected metastases guarantee the survival of the cancer
metapopulation. The emigration strategy is also affected by the
death rate of cells in the dispersal pool. Intuitively, a higher death
Fig. 4. a) PIP for emigration strategy when the angiogenesis strategy is 0.2 and the resist
The corresponding average population size with respect to emigration strategy for m ¼
average emigration rate (dashed) with respect to mwhen the angiogenesis strategy is 0.2
The red dot denotes the m ¼ 0:5 and the blue dot denotes m ¼ 5. Calculation of average

7

rate results in a decreased emigration strategy since the benefit of
emigration is also decreased. However, we observe, that in our
model the benefit from emigration becomes less straightforward
when the death rate in the dispersal pool is increased (Fig. 4c).
Eventually, the singular emigration strategy increases when the
death rate in the dispersal pool is increased. Similar non-
monotonic results have been reported by Comins et al. (1980),
Gandon and Michalakis (1999), and Heino and Hanski (2001).
Angiogenesis affects the population sizes through resources and
the birth rate, and the probability of a cell finding a less-
populated patch changes accordingly. On the other hand, angio-
genesis also makes the emigration easier by adding vessels, and
to prevent over-emigration, the emigration strategy decreases
when the angiogenesis strategy is increased, if the death rate in
the dispersal pool is kept constant (see the dashed curves in Fig. 5).
3.1.3. Resistance strategy
Without treatment, cells do not benefit from the treatment

resistance, so that there are only costs, because of the trade-off
with birth rate. In this case, the resistance strategy evolves to zero.
Thus, there is no positive singular resistance strategy without
treatment (see Supplementary Section 2).
3.2. Joint evolution of angiogenesis and emigration in the absence of
treatment resistance

Among the three strategies, we focus first on the angiogenesis
and emigration strategies and how those evolve and affect the pop-
ance strategy is zero. For smaller values (0–0.0008), the population is non-viable. b)
0:5 (solid) and m ¼ 5 (dashed). c) The singular emigration strategy (solid) and the
and the resistance is zero. Calculation of average emigration is explained in Eq. (28).
population size is explained in Eq. (27). Other parameters are as in Table 1.



Fig. 5. The zero-contour curves of the components of the fitness gradient (blue curve for the angiogenesis strategy, black dashed curve for the emigration strategy). The
intersection of these two curves is the singular strategy of joint evolution of angiogenesis and dispersal. Arrows show the direction of the components of the fitness gradient.
The average population size is presented as a heatmap for each strategy combination. a) No treatment is used. Only b) anti-angiogenic (with concentration 3) or c) cytotoxic
treatment (with effect size of 1.5). d) Combination of anti-angiogenic (concentration 3) and cytotoxic (effect size 1.5) treatment. Other parameters are as in Table 1.
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ulation. In Figs. 3 and 4, the strategy dynamics were investigated
separately, but more interesting is how those two strategies evolve
together. A change in either of the strategies shifts the fitness land-
scape, and consequently also the fitness gradient. The direction of
the fitness gradient (angiogenesis and emigration components) are
illustrated in Fig. 5 for different treatment options. Especially, solid
and dashed curves illustrate such strategy vectors, for which one
component of the fitness gradient is zero. These zero-contour
curves are thus singular strategies of one-dimensional strategy
dynamics of the corresponding component, when other strategy
components are kept constant. We observe that the zero-contour
curve corresponding to each strategy component is a decreasing
function of the other strategy component, so that increasing one
component makes the other one less favorable to cancer cells. In
these phase-plane plots, the intersections of the contour curves
mark the singular strategies of vector-valued strategy evolution.
These attractors do not necessarily maximize the average popula-
tion size (shades of red and orange color in Fig. 5), because the best
interest for an individual is not necessarily the best for the popula-
tion. This phenomenon can be observed also when only a single
strategy is investigated (see, e.g., Fig. 3a vs. 3b). The attractor of
strategy dynamics, and hence the average population size, is
affected by the microenvironment and the parameters defining it.
The treatment parameters are the easiest to alter by external inter-
ventions, and therefore we focus on those in the next subsections.

3.2.1. Cytotoxic treatment leads to non-viability, anti-angiogenic
treatment decreases population size

Cytotoxic treatment increases the death rate and thus decreases
the average population size. Cancer cells tend to be more related in
8

smaller populations. Through kin selection, such circumstances
favor cooperative strategies, such as angiogenesis. Similarly, higher
emigration strategy is expected to evolve because, due to the treat-
ment, cells are more likely to find less-populated patches. In addi-
tion, emigrating cells will leave more resources for their relatives.
When considering the evolution of the two strategy components
separately, increasing the cytotoxic treatment is expected to
increase the singular strategies. However, as we observed above,
the zero-contour curve of each component of the fitness gradient
is a decreasing function of the other strategy component (Fig. 5).
Therefore, when considering the joint evolution of the two strategy
components, increasing the cytotoxic treatment could increase one
strategy component while the other one decreases due to indirect
effects. However, the direct effects of increasing the cytotoxic
treatment dominate, and in the joint singular strategy, both strat-
egy components increase (Fig. 6a). Initially, the average emigration
rate, and possibility of metastases, increases when cytotoxic treat-
ment effect is increased. However, if the treatment effect is further
increased, the average emigration rate decreases as fewer and
fewer cells are contributing to angiogenesis. Eventually, when
the average population size approaches zero, the average emigra-
tion rate becomes equal to the emigration strategy due to the lack
of angiogenesis-contributing cells. Regardless of the evolutionary
response in the angiogenesis and emigration strategies, the popu-
lation becomes eventually non-viable when the cytotoxic treat-
ment is high enough (around 4.25 in Fig. 6a).

The anti-angiogenic treatment decreases the benefits of angio-
genesis for the cancer population. As a result, increasing the anti-
angiogenic treatment at least initially causes the singular angio-
genesis strategy to decrease (Fig. 6b). High levels of angiogenesis



Fig. 6. The singular strategies of both angiogenesis strategy (blue curve) and emigration strategy (black curve) as a function of the treatment parameters. The average
emigration rate is marked with black dashed line. The average population size is marked on the right-hand side y-axis with red. a) Cytotoxic treatment. b) Anti-angiogenic
treatment. Other parameters are as in Table 1.
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are unwanted, because they may lead into increased tumor sizes
and metastases. The decrease in angiogenesis decreases the emi-
gration opportunities. If the emigration strategy would remain
the same, this would cause the average emigration rate to
decrease. However, the decreased angiogenesis causes the singular
emigration strategy to increase, which has an increasing effect on
the average emigration rate. Nevertheless, the combined effect of
these two is that the average emigration rate decreases. Eventually,
if the concentration of anti-angiogenic treatment is high enough
(e.g., approximately 14.5 in Fig. 6b) the singular angiogenesis strat-
egy is pushed to zero, after which an additional anti-angiogenic
treatment may not be beneficial enough for the patient. The treat-
ment effect on the average emigration rate and the singular emi-
gration strategy also abates, since the microenvironment is no
longer affected by the anti-angiogenic treatment when the angio-
genesis strategy is zero. For the same reason, the average emigra-
tion rate becomes equal to the singular emigration strategy. Unlike
the cytotoxic treatment, the anti-angiogenic treatment does not
necessarily lead to non-viability. The cancer population is viable
even with high doses of anti-angiogenic treatment, if there is suf-

ficient baseline resource inflow bR that keeps the population viable
even without angiogenesis (see Supplementary Section 4 for the

case where bR is insufficient).
In addition to treatments, the microenvironment is affected also

by other, more internal parameters, that cannot be easily altered
by external interventions. Such a parameter is, for example, the
maximum effect of angiogenesis (Amax) (see Supplementary
Fig. S8f). Effects of other parameters listed in Table 1 are investi-
gated in Supplementary information (Fig. S8).
3.2.2. Anti-angiogenic treatment reduces the need of cytotoxic
treatment

As noted in Section 3.2.1, adding enough cytotoxic treatment
leads to non-viability in the metapopulation, whereas the anti-
angiogenic treatment alone decreases the average population size
to some extent only. However, cytotoxic treatment has often sev-
ere side-effects and it is therefore preferable to use it at minimal
effective doses. We therefore investigated whether combining
these two treatments could compensate the downsides of the
monotherapies.

When cytotoxic treatment is increased, the population eventu-
ally becomes non-viable regardless of the angiogenesis (or emigra-
tion) strategy. Fig. 7 illustrates that the value of wc for which the
population becomes non-viable depends on the strategy of the
population. Strategy evolution keeps the population viable for lar-
ger values of wc compared with a situation in which strategies
9

would be fixed. If the strategy dynamics is fast enough, the popu-
lation quickly adapts to the added treatment, and the strategy of
the population will be close to the singular strategy corresponding
to the current treatment level. The minimal cytotoxic treatment
needed for non-viability is the value of wc for which the population
is not viable for any strategy, i.e., the value for which the singular
strategy collides with the viability boundary (the blue curve meets
the black area in Fig. 7a for wc � 4:26). The anti-angiogenic treat-
ment lowers the need for the cytotoxic treatment as the edge of
non-viability is reached with smaller wc (Fig. 7a vs. 7b). However,
as noted in Section 3.2.1, increasing the anti-angiogenic treatment
too much has not much benefit for the patient when already inter-
mediate levels of treatment have caused the angiogenesis strategy
to evolve close to zero. Thus, it is important to consider whether
the additional anti-angiogenic therapy is worth the negligible ben-
efit. An almost equal benefit could be reached with much lower
dose of angiogenic treatment. For example, the black curve in
Fig. 7c illustrates that anti-angiogenic treatment concentration of
6 requires the effect size of 1.64 of cytotoxic treatment for the pop-
ulation to be non-viable. With anti-angiogenic treatment concen-
tration of 3, the required effect size of cytotoxic treatment is
1.88, which is still less than half of the effect of cytotoxic treatment
needed without the anti-angiogenic treatment (4.26).

The positive treatment effects are counterbalanced by costs,
such as side-effects or treatment expenses money-wise. Even if
generally well tolerated with manageable side-effects (e.g., hyper-
tension) (Rajabi and Mousa, 2017), anti-angiogenic treatment may
also cause severe side-effects, such as bleeding complications and
gastrointestinal perforation (Elice and Rodeghiero, 2012; Saif
et al., 2007). At some point, the side-effects may become too severe
for the patient to tolerate and the treatment benefit is out-
weighted by the negative effects. Selected cost examples are pre-
sented in Fig. 7c, illustrating that non-viability with minimal costs
is obtained by combined therapy with moderate treatment levels.
3.3. Treatment resistance

Angiogenesis does not depend only on a single mechanism, and
cancer cells may bypass such anti-angiogenic treatment mecha-
nisms that inhibit only one target on the angiogenesis pathway
(Bergers and Hanahan, 2008; Khan and Bicknell, 2016). The initial
response to the anti-angiogenic treatment may be then followed
by treatment resistance and eventual relapse. Next, we consider
the dynamics of resistance strategy together with the angiogenesis
and emigration strategies. Especially, we investigate how the con-
centration of anti-angiogenic treatment affects the evolution of
treatment resistance.



Fig. 7. (a-b) The singular angiogenesis strategy as a function of the cytotoxic treatment (a) without anti-angiogenic treatment (b) with anti-angiogenic treatment
(concentration 3). The emigration strategy is expected to be on the corresponding singular strategy. Black region marks the non-viability. c) The minimal cytotoxic treatment
needed for non-viability (black line) when the angiogenesis and emigration strategies adapt to match the treatment. The red lines (solid and dashed) illustrate the cost of
treatment, e.g., in relation to treatment expenses or side-effects. The solid line: both treatments have an equal cost. The dashed line: the cytotoxic treatment has three times
the cost of the anti-angiogenic treatment. Other parameters are as in Table 1.
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3.3.1. Bistability scenario in which only radical variations may lead to
treatment resistance

Consider the virtual patient with default parameters under anti-
angiogenic treatment only. For small concentrations of anti-
angiogenic treatment (0–3.8 in Fig. 8a), there exists a single evolu-
tionarily attracting singular strategy, in which the resistance strat-
egy component is zero. At higher levels of treatment, there is an
additional attracting singular strategy with positive resistance, as
well as a saddle point between the two attractors. This saddle point
is a singular strategy, which from most directions is not evolution-
arily attracting. The stable manifold of the saddle point determines
for the two attractors their basins of attraction. They are areas in
the strategy space from which the strategies evolve either to the
singular strategy with a positive resistance or to the one with zero
resistance. As illustrated by Fig. 8e, the resistance strategy compo-
nent has a negative fitness gradient at zero if it is assumed that the
angiogenesis and emigration strategy components are at their joint
singular strategy corresponding to the current treatment (e.g., red
dot in Fig. 10a for anti-angiogenic treatment 7). Since zero is the
lower boundary for the resistance strategy, variants with a small
positive resistance strategy component cannot invade, and the
resistance strategy thus remains zero. However, as illustrated by
the region of positive fitness in Fig. 8e, some variants with multiple
radical variations could invade. One such invasion could then
result in dynamics towards the positive singular strategy even with
small variations (Fig. 8f). Fig. 8d suggests that around 3.8 is the
dosage that has the maximum effect without a high risk of resis-
tance. A higher treatment concentration would ideally lead to a
lower tumor sizes (Fig. 8d). However, in the case the treatment
10
resistance emerges, the tumor sizes increase above the level
achieved with the treatment concentration of 3.8. Even though
the model suggests that the resistance is not easily acquired for
the virtual patient in Fig. 8, the possibility is still there.
3.3.2. Even small variations may lead to treatment resistance
The situation depicted in Section 3.3.1 may become even more

risky when a combination of anti-angiogenic and cytotoxic treat-
ments is used (Fig. 9). The bistability observed for the virtual
patient in Fig. 8 is present only for a narrow range of treatment sce-
narios. For a wide range of treatment scenarios, the singular strat-
egy with zero resistance is evolutionarily repelling (Fig. 9c). The
resistance strategy component then has a positive selection gradi-
ent, which leads to the emergence of treatment resistance even
with small variations. Fig. 9b illustrates that increasing anti-
angiogenic treatment may cause the average cancer population
size to increase, due to the evolution of treatment resistance. Since
high enough cytotoxic treatment does lead to non-viability of the
cancer population, there may actually exist two different locally
optimal treatment strategies: One option involves moderate cyto-
toxic and anti-angiogenic treatment levels, which do not remove
the cancer population, but do not cause treatment resistance and
have less side effects. The other option has just enough cytotoxic
and anti-angiogenic treatment that the cancer population becomes
non-viable even with treatment resistance. Comparing Fig. 8d and
9b we observe that despite the higher risk of resistance, the aver-
age population size achieved with the combination treatment is
lower than that with the anti-angiogenic mono-therapy, even with
low dosages that avoid the emergence of the anti-angiogenic treat-



Fig. 8. Illustration of the singular strategies of the joint evolution of three strategy components: The a) resistance component, b) angiogenesis component and c) emigration
component with respect to the anti-angiogenic treatment concentration wa. The dashed line indicates the strategy components of the saddle point. d) The corresponding
average population sizes. Panels e) and f) illustrate the variant’s fitness landscape with respect to the variant’s resistance strategy component and angiogenesis strategy
component for two different resident strategies, e) ar � 0:043; er � 0:165 and qr ¼ 0 and f) ar ¼ er ¼ qr ¼ 0:1 (marked with a black dot in each panel), when wa ¼ 7. The
resident strategy in panel e) is the singular strategy with qr ¼ 0. In each panel, the variant’s emigration strategy is that of the resident, em ¼ er . Contour curves with different
fitness values (marked on the right side) are drawn in black. The black arrow points the direction of fitness gradient at the resident’s strategy. Note that the resistance strategy
component of the fitness gradient is positive in panel f). Here only anti-angiogenic mono-therapy is considered, thus wc ¼ 0. Other parameters are as in Table 1.
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ment resistance. Interestingly, despite the full treatment resistance
(qr ¼ 1), with the concentration of anti-angiogenic treatment
above 1.4, the average population size stays lower than the average
population size without the anti-angiogenic treatment. Thus, it
seems that a combination treatment is preferable, even if the resis-
tance to the anti-angiogenic treatment is obtained. However, as
noted already in the previous section, the burden of two treat-
ments might be intolerable for the patient.

In addition to treatments, the likelihood of resistance is also
affected by the underlying biological parameters because each
11
patient has their own unique biology which affects the cancer’s
conditions. So far we have investigated cancer development only
with default parameter values presented in Table 1. We observed
bistability with angiogenic monotherapy (Fig. 8). In addition to
increasing cytotoxic treatment (Fig. 9), the scenario may shift with
different parameters, such as by decreasing the resistance trade-off
factor (b) (see Fig. 10 a vs. b), so that resistance will have a positive
gradient from zero (Supplementary Fig. S9a). This will again lead
into resistance more easily and with smaller treatment dose (see
Supplementary Section 6). The treatment dosage is thus highly



Fig. 10. The sign of resistance fitness gradient with respect to the angiogenesis and
emigration strategies when the resistance strategy is set to zero and resistance
trade-off is set to a) b ¼ 0:5 or b) b ¼ 0:2. Black curves indicate the zero-contours of
angiogenesis and emigration fitness gradients with respect to each other. The
singular strategies of the joint evolution of these two are at the intersections of the
zero-contours (red dots). The concentration of anti-angiogenic treatment is set to 7
in panels a and b. Other parameters are as in Table 1.
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sensitive and patient-specific when trying to avoid treatment resis-
tance and simultaneously achieve sufficient treatment effect eras-
ing the tumors.

4. Discussion

We have introduced a comprehensive metapopulation model
for the cancer development considering three evolutionary strate-
gies of cancer cells. These strategies include the contribution to
angiogenesis, emigration and resistance to the anti-angiogenic
treatment. Although angiogenesis and anti-angiogenic treatments
have been modelled before (Nagy and Armbruster, 2012; Yonucu
et al., 2017), to our knowledge, this is the first model that considers
cancer microenvironment as a continuous-time metapopulation
with an infinite number of patches where migration takes place
through a dispersal pool. In addition to the anti-angiogenic ther-
apy, we have modelled the cytotoxic treatment and investigated
these two also as a combination therapy. The model provides
insights into the development of cancer behavior and how the
treatment interventions affect the outcome. It is shown that a pos-
itive angiogenesis contribution is often desirable for the cancer
cells (when benefits outweigh the costs), similarly to the real-
world observations where angiogenesis is required for tumor
growth and metastases (Folkman, 1986; Liotta et al., 1974). It is
also observed that the anti-angiogenic monotherapy does not typ-
ically eradicate the whole tumor. Eradication requires a combina-
tion with another treatment such as cytotoxic therapy (Alarcón
Fig. 9. a) The resistance strategy at the singular strategy of angiogenesis, emigration and
when the effect of cytotoxic treatment is set to 1.5. b) The corresponding average popula
with positive resistance component (highest resistance) with respect to anti-angiogenic a
zero resistance is (additionally) attracting. Non-white color in this area denotes bistabili
denotes non-viability. Other parameters are as in Table 1.
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et al., 2006; Lakka and Rao, 2008; Ribatti et al., 2019). The need
for the cytotoxic treatment is reduced when used in a combination
with the anti-angiogenic treatment. However, the side-effects and
other costs may accumulate to an unbearable level if the regimens
are chosen without careful consideration. In addition, the effect of
anti-angiogenic treatment is compromised by the emergence of
resistant variants. The model predicts that there is a patient-
specific treatment threshold after which the resistance becomes
resistance strategies with respect to the concentration of anti-angiogenic treatment
tion size. c) The resistance strategy in an evolutionarily attracting singular strategy
nd cytotoxic treatments. On the left side of the black line, the singular strategy with
ty. On the right side of the black line, the zero resistance is repelling. The black area
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profitable for the cancer cells. However, the positive treatment
resistance is not self-evident in all cases and individual biological
parameters determine how easily the resistance is acquired. Espe-
cially, the combination of anti-angiogenic and cytotoxic treatments
enables the anti-angiogenic treatment resistance with higher like-
lihood than for the anti-angiogenic monotherapy. However, the
combination treatment also results in better treatment effects,
compared to monotherapies, even with the treatment resistance.

We analyzed systematically the effects of various treatment
modalities as well as other biological parameters that affect the
underlying cancer ecosystem dynamics. The effects were investi-
gated using tools provided by adaptive dynamics (Brännström
et al., 2013; Diekmann, 2003; Geritz et al., 1998). We calculated
variant’s metapopulation fitness to determine which strategies
enable the variant’s invasion to the resident population. For exam-
ple, in the presence of anti-angiogenic treatment, a variant with
lower angiogenesis strategy may have higher fitness compared to
a resident that contributes more to the angiogenesis. In addition,
the fitness gradient was calculated to determine in which direction
the variant’s fitness increases the most, which is the most likely
direction of small variations. We assumed that all strategies are
equally likely to variate. For example, the resistance strategy has
a positive gradient in the setting of Fig. 8f, and this may lead into
increased treatment resistance and lower treatment effect. The sin-
gular strategies were determined by the points in which the fitness
gradients vanished. If attracting and invincible, the singular strate-
gies determined where the dynamics would evolve in the current
state of parameters. In addition, the average population sizes at
the singular strategies were calculated to investigate how the
tumor size is affected by changes in the cells’ phenotypes.

Individual differences between patients’ phenotypes and under-
lying biological parameters bring challenges to the modelling and
investigation of the treatment responses. Furthermore, the mecha-
nism of cancer development in itself is a complex process and, for
simplicity, we assumed only a single angiogenesis mechanism.
However, there exists multiple proangiogenic factors, e.g., VEGF
family, fibroblast growth factors (FGFs) and platelet derived
growth factors (PDGFs) (Khan and Bicknell, 2016). In future work,
it would be interesting to include multiple angiogenesis mecha-
nisms and the corresponding treatment options. In addition to
angiogenesis, cancer may initiate also an immune response, which
would be interesting addition to the model. This would also pro-
vide the possibility to include immunotherapy, which is an option
for combination therapy with anti-angiogenic treatment (Khan and
Kerbel, 2018; Lee et al., 2020). Another interesting option for future
work is to consider the spatial location of the patches, because the
travelled distance may affect the survival of emigrating cells, and
local growth may be more common than distant metastases.

As noted above, cells and organisms are complex and their
behavior is linked to many components and events in the microen-
vironment. This complicates the presentations of the ecosystem as
a mathematical model. To avoid an over-complicated model, we
had to make simplifications and assumptions (see Section 2). Espe-
cially, we omitted the endothelial cells and modelled only the
resource inflow, which is assumed to be directly proportional to
the number of endothelial cells. However, more endothelial cells
do not necessary mean more resources or easier access as tumor
vasculature tends to become distorted (Siemann, 2011). In the
future work, it would be interesting to include the endothelial cells
as an additional factor. In addition to resource inflow, changes in
the vasculature may also affect the flow of drugs. In the current
model, we assumed the treatment effect to be unaffected by fluc-
tuations in the amount or normality of the veins. However, this
is not the case in the actual system since there is evidence that
anti-angiogenic treatment normalizes the vasculature, which then
enables easier flow for drugs (Yonucu et al., 2017). In addition to
13
omitting endothelial cells, we also limited the number of cancer
cells in patches, as space limitations may hinder cell growth. This
was done also partially for technical reasons, because the number
of differential equations escalates when the maximum number of
cells (K) increases. As a consequence, the computing times would
also become infeasible. To prevent challenging and time-
consuming analyses, we also considered only a monomorphic pop-
ulation with a single variant. In reality, there may be multiple com-
peting cancer variants. However, this would dramatically increase
the number of possible states in the Markov chain.

In the present work, we included the mechanisms that we deem
to be the most prominent in the early cancer development. We
included the main components of angiogenesis, anti-angiogenic
treatment and the resistance to capture their principal effects.
We hope that the model will bring valuable insights into the cancer
development, angiogenesis and the anti-angiogenic treatment.
Especially, the evident difficulties and modest responses to the
anti-angiogenic treatments would benefit from additional knowl-
edge as the angiogenesis remains as an important target for cancer
treatment.
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