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Abstract

Motivation: The de Bruijn graph is one of the fundamental data structures for analysis of high throughput
sequencing data. In order to be applicable to population-scale studies, it is essential to build and store the
graph in a space- and time- efficient manner. In addition, due to the ever-changing nature of population
studies, it has become essential to update the graph after construction e.g. add and remove nodes and
edges. Although there has been substantial effort on making the construction and storage of the graph
efficient, there is a limited amount of work in building the graph in an efficient and mutable manner. Hence,
most space efficient data structures require complete reconstruction of the graph in order to add or remove
edges or nodes.
Results: In this paper we present DynamicBOSS, a succinct representation of the de Bruijn graph that
allows for an unlimited number of additions and deletions of nodes and edges. We compare our method
with other competing methods and demonstrate that DynamicBOSS is the only method that supports
both addition and deletion and is applicable to very large samples (e.g. greater than 15 billion k-mers).
Competing dynamic methods e.g., FDBG (Crawford et al., 2018) cannot be constructed on large scale
datasets, or cannot support both addition and deletion e.g., BiFrost (Holley and Melsted, 2019).
Availability: DynamicBOSS is publicly available at https://github.com/baharpan/dynboss.
Contact: baharpan@ufl.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The de Bruijn graph was introduced for assembling genomes from short
sequence reads by Pevzner et al. (2001) and since then has been widely-
adopted for this and other applications. Given a set of sequence reads of
a given individual and an integer k, we construct the de Bruijn graph by
creating a directed edge for each possible k-length subsequence (k-mer),
labeling the nodes of each directed edge with the longest proper prefix
and suffix of the respective k-mer, and lastly, gluing together all nodes

having the same label. This is the well-known constructive definition
of the de Bruijn graph. After construction of the graph, contiguous
sequences (contigs) are created by traversing the graph and outputting
the sequence(s) corresponding to the traversal. Although many de Bruijn
graph representations have been developed – including, Simpson et al.
(2009); Conway and Bromage (2011); Chikhi and Rizk (2013); Bowe
et al. (2012) – only a few of them are dynamic, meaning that they allow
for the addition or deletion of k-mers. Crawford et al. (2018), were the
first to present a compressed and fully dynamic data structure for storing
the de Bruijn graph. Yet, their method, referred to as FDBG, cannot be
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constructed for large datasets. Hence, existing representations are never
both highly-compressed and fully dynamic (e.g. allow for additions and
deletions). This is unsurprising since it is generally challenging to store
data in a manner that is both space-efficient and mutable.

In 2012, while the development of space efficient representations of de
Bruijn graphs was well under way, the so-called colored de Bruijn graph
was defined. It is described as an intuitive way to model, identify and
store the genetic variants of individuals of a given species. One can extend
the previous constructive definition of a de Bruijn graph to describe the
colored de Bruijn graph. Given n sets of sequence reads, R1, .., Rn, we
construct the colored de Bruijn graph by labelling each edge with one or
more colors, indicating in which set(s) of reads the k-mer occurs, i.e., an
edge corresponding to k-mer sk contains color ci if sk is in Ri. Since its
introduction, the use of the colored de Bruijn graph was expanded, and
they were constructed on increasingly larger, more heterogenous datasets.
Cortex, the original colored de Bruijn graph implementation due to Iqbal
et al. (2012), was space- and time-inefficient, which limited its use to
relatively small, heterogenous datasets.

In order to use colored de Bruijn graphs for finding and storing genetic
variants in more complex datasets, a more compact representation was
introduced by Muggli et al. (2017). This representation reduces space
by building a succinct representation of the “union de Bruijn graph”,
which is the de Bruijn graph constructed on all sets of sequence reads
(i.e., R1, .., Rn), and then stores the color information separately, as a
n by m matrix of bits, where m is the number of k-mers. This color
matrix, typically denoted as C, is defined as C[i, j] = 1 if k-mer j

is contained in Ri and C[i, j] = 0 otherwise. Hence, this allows the
matrix to be compressed and stored independently of the graph. Also
several other methods have been developed to further compress, store, and
manipulate the color matrix, including Rainbowfish (Almodaresi et al.,
2017), Mantis (Pandey et al., 2018), Bloom Filter Trie (BFT) (Holley
et al., 2016), and Bifrost (Holley and Melsted, 2019).

The analysis of sequencing data from multiple samples using a colored
de Bruijn graph added further pressure to develop dynamic data structures.
When a new sample arrives, it needs to be added to an existing colored de
Bruijn graph. Furthermore, in order to analyze a large biological dataset
in a systematic fashion, it is common to restrict interest to a portion of
the samples rather than the complete dataset – which would correspond
to removing some samples from a colored de Bruijn graph. For example,
several of the most recent papers including (Muggli et al., 2019; Holley
and Melsted, 2019) on the colored de Bruijn graph analyze GenomeTrakr
data, which are large datasets used for surveillance of antimicrobial
resistance pathogens. These datasets contain meta-data describing each
sample (dates, sample type, farming vs. clinical data). After constructing
the graph on the these data one important type of analysis would be to find
all pathogens within a geographical area and/or time period. In order to
accomplish this, samples (selected using the meta-data) would have to be
deleted from the graph.

The current approaches for building and storing the de Bruijn graph do
not have this capability as they are not highly-compressed and dynamic.
To address these needs, several methods (Mustafa et al., 2017, 2019;
Karasikov et al., 2019) were developed to store the color matrix (or graph
annotation) in a manner that is both compressed but also dynamic, meaning
it allows for rows and columns of the matrix to be added or deleted. Yet,
they do not tackle the problem of implementing a space-efficient, dynamic
de Bruijn graph. Hence, Mustafa et al. (2017) state that the construction
of a dynamic compressed color matrix is a “step towards implementing
a dynamic data structure for indexing large annotated sequence data sets
that supports fast query and update operations.” At the time of writing,
no established standard tool has filled this niche. BFT (Holley et al.,
2016), and Bifrost (Holley and Melsted, 2019) are two bloom filter-based

representations of succinct colored de Bruijn graph which support addition
of k-mers but are not fully dynamic since they cannot support deletion.

Our contributions. In this paper, we describe a space-efficient
dynamic data structure for building the de Bruijn graph in a manner that
is practical for large samples and allows for both addition and deletion
of k-mers. We refer to our method as DynamicBOSS and note that
DynamicBOSS does not provide a color matrix. In order to develop a
colored dynamic de Bruijn graph, DynamicBOSS will need to be combined
with one of the methods for representing the colored matrix in a succinct
and dynamic manner. We develop DynamicBOSS by bringing dynamism
to the (previously static) Burrows Wheeler transform (BWT) based de
Bruijn graph representation Bowe et al. (2012) by extending the recent
work by Prezza (2017) on dynamic succinct bit vector representations.

We compare DynamicBOSS with all other dynamic de Bruijn graph
methods namely, FDBG (Crawford et al., 2018), BFT (Holley et al., 2016),
and Bifrost (Holley and Melsted, 2019) as well as the static BOSS data
structure using E.coli and metagenome data. Although FDBG was more
efficient at performing addition and deletion, the size of the graph was
more than two times the size of DynamicBOSS and it took twice as
long to construct. Further, FDBG failed to build the graph on samples
with 55 million or more reads. The de Bruijn graph constructed by
BFT was more than six times the size of DynamicBOSS, and BFT no
longer supports addition (Holley, 2019). The most-recent method, Bifrost
required between 3 and 11 times more time to construct the de Bruijn
graph, and between 10 and 16 times more memory and up to 6 times
more space to store the graph. It required slightly less space (less than 1
bit / k-mer) to store the graph on small samples but the space increased
significantly with the data size, resulting in DynamicBOSS requiring 2
to 6 times less space on large samples. Moreover, Bifrost did have faster
addition time but it does not support deletion and the addition time scaled
non-linearly. In conclusion, we show that DynamicBOSS is the only full-
dynamic, space-efficient de Bruijn method that can be constructed on large
samples.

2 Preliminaries
In this section, we go over some of the basic terminology and definitions
that will be used throughout this paper.

Suffix arrays. The suffix array (Manber and Myers, 1993) SAX refers
to a succinct representation of the lexicographic ordering of all suffixes
of a string X. More specifically SAX is an array SA[1 . . . n] which
contains a permutation of the integers [1 . . . n] such thatX[SA[1] . . . n] �
X[SA[2] . . . n] � · · · � X[SA[n] . . . n]. Here, � denotes lexicographic
precedence. Hence, SA[j] = i if and only if X[i . . . n] is the jth suffix
of X in lexicographical order. The suffix array helps in quickly locating
all occurrences of a substring P within X. In order to accomplish this we
need to find all suffixes that start with P. Due to the lexicographical order
in SA, all such suffixes occur in an interval in SAX which is called suffix
array interval and is associated with a pair of integers [s, e] denoting the
first and last index in SAX, corresponding to the suffixes having P as a
prefix. Using X and SAX , s and e are efficiently found with binary search
for P.

Burrows Wheeler Transform (BWT) and FM-index. BWT (Burrows and
Wheeler, 1994) is a reversible permutation of the characters of a string,
used originally for compression. Here we give a constructive description
of BWT. Given a string X, we first add a $ to the end of X to keep track of
end of string. Now similar to the suffix array, if we sort all rotations of X
lexicographically, the last column of this sorted list is BWT of X, which
we denote by BWTX. More specifically, BWTX[i] = X[SAX[i]�1] when
SAX[i] is greater than one and BWTX[i] = $ when SAX[i] is equal to one.
This simply means, BWTX is the array of characters just to the left of the
suffixes in the suffix array SAX. Ferragina and Manzini (2005) introduced
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the FM-index and showed that BWT also can be used for indexing. FM-
index is an extension of BWTX with two data structures: (i) array CX such
that CX[a] stores the number of symbols in X that are lexicographically
lower than the symbol a, and (ii) a ranking data structure OccX on BWTX

such that OccX(a, i) keeps the number of occurrences of the symbol a in
BWTX[1, i]. Now knowing that the suffix array interval of a string S is
[s, e], we can calculate the interval [s0, e0] for the string aS as follows:
s0 = CX[a] + OccX(a, s � 1) and e0 = CX[a] + OccX(a, e) � 1.
In order to compute the occurrences of a substring P within the string
X, above calculation is iteratively performed |P| times and since each
operation requires constant time, s and e – first and last indexes of the
interval containing P–are found in O(|P|), independent of the size of X.

3 Dynamic BOSS
In this section, we introduce DynamicBOSS which is a compressed data
structure for the de Bruijn graph that supports the addition and deletion of
edges and nodes. We begin by describing how to construct and store the de
Bruijn graph using BWT and then show how it can be extended to support
dynamic operations.

3.1 Static BOSS
Given a de Bruijn graphG = (V,E), we refer to the label of an edgee 2 E

as the k-mer corresponding to it, and denote it as elabel(e). Similarly, we
refer to the label of a node v 2 V as the (k� 1)-mer corresponding to it,
and denote it as nlabel(v). First, we notice that one method to store G is
to simply store all edges (k-mers) in an array sorted in co-lexicographic
(colex) order by the nlabel of their ending nodes, where ties are broken
by their starting nodes. In order to traverse G from a given node, we can
find all incident nodes by looking at the k-th character and their position
in the array via binary search. Although, this simple representation fully
specifies G and allows for insertions and deletions of nodes and edges, it
requires O(k|E|)-space, which is prohibitively large.

Hence, we show how to transform this simple representation into one
that uses far less space, i.e., one bit vector L, one character array W, and one
integer array F. In this representation which we refer to as BOSS (Bowe
et al., 2012), L, W, and F is an equivalent representation to the previous
(simple) one but uses far less space since the first k � 2 characters of the
elabel are eliminated.

We note that we refer the node label of a node as the last character
of the nlabel, which is indirectly stored in F. Similarly, the edge label of
an edge is defined as the last character of elabel, which is stored in W.
Also, we refer to the edge index of an edge e as the position of its elabel
in BOSS-sorted order. Similarly, the node index of a node v is the position
of its nlabel in BOSS-sorted order.

3.2 From Static to Dynamic
Recently, many dynamic, compressed bit vectors have been proposed
(Mäkinen and Navarro, 2006; Grossi et al., 2013; Navarro and Nekrich,
2014; Klitzke and Nicholson, 2016; Cordova and Navarro, 2016; Álvarez
García et al., 2019). In our work, we replace L and W with the
compressed, dynamic bit vector implementations of Prezza (2017). With
these replacements, there exists an increase in the space and time
complexity to store and access the vectors. In particular, the time to access
an element of W and L is O(log |⌃| logn) and O(logn), respectively,
where n is the number of elements and |⌃| is the alphabet size.

3.3 Graph Operations
Below is a partial list of functions that our method and the original BOSS
data structure support. All functions use rank, select, and access on
W and L and access on F. We refer the reader to Bowe et al. (2012)
for detailed discussion of these functions. The complexity of all of the
operations on W is O(log |⌃| log |E|) and on L is O(log |E|), where |E|
is the number of edges and |⌃| is the alphabet size (Prezza, 2017), which

is equal to 5 in DynamicBOSS. Lastly, we note the access time of array F
is constant.
• index(e) returns the index i of the edge whose label is equal to e. The

value �1 is returned if this edge is not in the graph.
• index-node(u) returns the index i of the first edge of the node whose

label is equal to u. The value -1 is returned if this node is not in the
graph.

• edge(u) returns the index of the first outgoing edge of node u.
• node(e) returns the index of the source node of edge e.
• forward(e) returns the index of the first edge of the target node of the

edge e.
• backward(u) returns the index of the first incoming edge of node u.
• outdegree(u) returns the number of outgoing edges outgoing from

u.
• indegree(u) returns the number of incoming edges to u.

4 Dynamic Functions
Next, we explain the dynamic functions of DynamicBOSS by detail. As
previously mentioned, we support edge additions and removals, and node
additions and removals. For each of these operations, we need to update
the bit vector L, the array of flagged edge labels W, and the position array
F.

4.1 Utility Procedures

In this section, utility procedures are presented; these procedures are used
by the main dynamic operations add-edge and delete-edge.

4.1.1 The add-edge-to-node Procedure
The procedure add-edge-to-node adds an outgoing edge e with a
specified character c to an extant node u in the graph. As input, it takes the
index pos of the first outgoing edge of u, the character c, a boolean value
indicating if the target node v of the edge is already present in G, and the
index posIn of the first incoming edge to v if v is present. The procedure
consists of two parts; the first handles the addition of the outgoing edge to
node u, and the second ensures that the target node v exists and that the
minus flags are correctly set.

We begin by the first part of add-edge-to-node that adds the edge to
node u. Let y be the node label of u, that is, the last character of the label
of u, which is determined by F[edge(u)]. If W[pos] = $, then W[pos]
is assigned the value c and L,F are not modified. Otherwise, the position
at which c should be inserted is found by incrementing pos and checking
the values of W, L. When the position is found, pos is updated to store
the position at which to insert. Next, c is inserted to W at pos, and 1 is
inserted to L at pos or pos + 1, the latter case occurring if and only if
pos is the first edge of node u. After these insertions, the character y is
inserted into F at pos. Altogether, these operations add the edge to node
u. If c = $, the procedure terminates; otherwise, execution proceeds to
the second part.

The second part of add-edge-to-node considers the target node v

and ensures minus characters are set correctly, meaning that all incoming
edges of node v except the first one (in colex order) should have a minus in
W. If the node v does not exist, its only incoming edge will be e and hence
the character c and not c- is correct for e. However, if node v does exist,
then posIn is compared to pos. If pos  posIn, then W[posIn + 1] is
set to c-. Here, posIn is incremented by one since an edge has been added
preceding it. Otherwise, if pos > posIn, then W[pos] is set to c-.

If v needs to be added to the graph G, then the index nodeTarget
of where the node should be is computed by nodeTarget =

L.rank0(F [ic])+W.rankc(pos+1),where ic is the index of the first edge
with the last character of its node label equal to c. This node index is then
converted to an edge index by posTarget = L.select0(nodeTarget�1).
Finally, the character $, bit 0, and character c are inserted at position
posTarget to W, L, and F, respectively. Altogether, these insertions add
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node v, the target of edge e, with a dummy outgoing edge to the graph.
See Figure A.2 for the illustration of this procedure.

4.1.2 The add-dummy-chain procedure
Procedure add-dummy-chain adds a sequence of dummy edges to the
graph. As input, it takes a node label S[1, k � 1] and a boolean value
indicating whether the node with label S already exists in the graph.

At the end of the procedure, all k � 1 preceding dummy edges to
S, corresponding to labels $ $ $…$ S[1], $ $ $…S[1] S[2], …, $ S[1]
S[2]…S[k - 2] S[ k - 1], will be present in G, along with the required
dummy nodes. First, it is necessary to check if G contains the dummy
node $$ . . . $, which may be accomplished by checking if F[0] = $. If
not, the edge $$ . . . $ is added to G by prepending a $ character to both
W and F and prepending a 0 to L. At this point, the dummy node $$ . . . $
exists, with its first edge at index 0.

Next, the process iteratively, for each edge in the above list, checks if
the edge exists by consulting up to four entries of W and L from the current
position, and if the edge does exist, follows the edge to the first edge of
the next node using the forward operation. Once a node is encountered
for which the next outgoing edge does not exist, the add-edge-to-node
procedure is called to add the edge to the current node. Once the edge has
been added, the forward operation is used to traverse to the next node.

Finally, if the input parameter indicates that the node labeled by S

already exists in the graph, then prior to the addition of the last edge in
the list, the index of the first incoming edge to S is determined by the
sequence backward(index-node(S)). This information is then passed to
add-edge-to-node for the final call to add the last edge in the list above.
See Figure A.2 for the illustration of this procedure.
4.1.3 The delete-edge-from-node Procedure
The procedure delete-edge-from-node deletes an outgoing edge e from
an extant node u in the graph. As input, it takes the index pos of the
edge within u to be deleted, and the label S of the edge. The procedure is
composed of three parts; the first ensures that the target of the edge has an
incoming edge other than e, the second ensures that minus flags will be
correctly set upon deletion, and the third deletes the outgoing edge from
node u. Node u itself, however, is preserved; if e was the only outgoing
edge of u, it is replaced with a dummy outgoing edge.

First, the target node v of the edge is reached by traversing to
posTarget = forward(e) and then indegree and outdegree are checked.
If indegree(v) is equal to one and outdegree(v) is greater than zero, then
add-dummy-chain(S[2, k]) is called to ensure that v has an incoming
edge; after this call, v will temporarily have two incoming edges until
e is deleted; also, pos of e is recomputed with index after this call.
If indegree(v) = 1 and outdegree(v) = 0, the node v is deleted
from the graph; this is accomplished directly by removing the character
W[posTarget], the bit L[posTarget], and the character F[posTarget]

Next, we ensure that after removal of edge e at pos, the minus flags are
correctly set. If W[pos] = c- 2 ⌃-, no updates are necessary. Otherwise,
we check W to determine if the next occurrence after pos in W of c or
c- is an occurrence of c-. If so, this occurrence is replaced with character
c. The positions of these occurrences are computed using rank, select on
W. Finally, the edge is deleted by removing the character W[pos], the
bit L[pos], ensuring the node flags for u are correct, and removing the
character F[pos]. If e is the only outgoing edge of u, a dummy edge is
added to u and no change is made to F.
4.1.4 The delete-dummy-chain Procedure
The delete-dummy-chain procedure removes dummy edges and nodes
that are no longer needed in the graph. It takes as input the index pos of
the first dummy edge to remove and the label S of this edge.

The procedure works by calling delete-edge-from-node(pos, S)
which removes the edge with label S from the graph and deletes the target
node of this edge if it is isolated. Then, if outdegree(node(pos)) is
greater than zero, the procedure terminates. Otherwise, pos is reassigned

to backward(node(pos)), the next edge label is computed by $S[1, k�
1], and the process repeats. This continues until a dummy node with
outdegree greater than 0 after removal is encountered.We remark that a
dummy node may have only one incoming edge. Altogether this removes
all dummy nodes and edges that were only in the graph to support the
target of the input edge. Finally, the procedure checks if W [0] = 0 and
F [0] = $; that is, if the edge with label $$ . . . $ is present in the graph. If
it is, it means the dummy node with label $$ . . . $ has no outgoing edges.
In this case, we remove it directly from the graph by removal from W, L,
and F at 0.
4.2 Edge Addition

An edgek-mer ewith labelS is added to the graph by procedure add-edge
which takes as input the labelS of e. Pseudocode for add-edge is shown in
Alg. 1 in the Supplement. The add-edge procedure works as follows: the
existence and index of the source nodeue of the edge with labelS[1, k�1]

is determined by a call to the operation index-node. If index-node reports
that ue is absent from the graph, then ue is inserted, along with any
necessary dummy nodes and edges, by procedure add-dummy-chain,
which is described in §4.1.2. Therefore, by line 5 in the pseudocode, the
node ue is present in the graph and its index is stored in posSource.

Let node ue correspond to range of edge indices [fu, lu]. Then, by
considering W[fu], . . . ,W[lu], it is determined whether e already exists
in the graph; that is, whether any of these entries equalsS[k] orS[k]-. If the
edge is absent, then procedure add-edge-to-node is called, which updates
W, L, and F to add the character S[k] or S[k]- to W. This update adds
the edge e to the graph. The procedure add-edge-to-node is described
in detail in §4.1.1. Finally, add-edge-to-node requires knowledge of
whether the target node ve exists, and if so, the index of the first incoming
edge to ve. This knowledge is supplied to add-edge-to-node by calls to
index-node and backward.

4.3 Edge Deletion

An edge k-mer e with label S is deleted from the graph by procedure
delete-edge which takes as input the label S of e. Pseudocode for
delete-edge is shown in Alg. 2 in the Supplement. The delete-edge
procedure works as follows. First, existence of the edge is checked by a
call to index; if it exists, its position is stored in pos. Next, the outdegree is
computed of the source node u of the edge. This information will be useful
to decide if delete-dummy-chain must be called for incoming edges to
u. Next, the edge e is deleted by a call to delete-edge-from-node, which
removes the target node as well if it is incident with no other edges. Also,
delete-edge-from-node adds dummies to the target if it has outgoing
edges but no other incoming edges through a call to add-dummy-chain.
Finally, if the edge e was the only outgoing edge of u, we check for the
existence of an incoming dummy edge to u by a call to index. If such a
dummy edge does exist, we remove this edge, along with u itself and any
other dummy nodes and edges that are in the graph solely to support u, by
a call to delete-dummy-chain.

4.4 Node Changes

We revisit the definition of the de Bruijn graph and note that the nodes are
created and defined as the prefixes and suffixes of the edges. Hence, we
do not support the addition and deletion of isolated nodes in the graph and
instead, only add or delete a node in the process of addition or deletion of
its incident edges. More specifically, addition of a node u is accomplished
by a call to add-edge for any edge incident with u, and deletion of a node
u is accomplished by deleting every incident edge with u through calls to
delete-edge as needed.

4.5 Time Complexity

We observe that each procedure called by add-edge or delete-edge
requires at most O(k) calls to rank, select, access, insert, and remove
on the underlying data structures encoding W, L, and F. Since F is
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compressed as an array of length 5, it can be accessed and modified in
constant time. Since in our implementation we used the library of Prezza
(2017) and the alphabet size is constant, the time complexities of each
of the five above operations is bounded by O(log |E|), where |E| is
the number of edges. Thus, the overall time complexities of add-edge
and delete-edge are bounded by O (k log |E|). See Table A.3 in the
Supplement for an overview of the running time of these operations.

5 Results and Discussion
In this section, we compare the performance of DynamicBOSS to (static)
BOSS (Bowe et al., 2012) and the following dynamic de Bruijn graph
implementations: FDBG (Crawford et al., 2018), BFT (Holley et al., 2016),
and Bifrost (Holley and Melsted, 2019). Hence, we restrict interest to
dynamic implementations but note that there exists several space-efficient
(colored) de Bruijn graph implementations e.g., (Muggli et al., 2017;
Almodaresi et al., 2017; Pandey et al., 2018) and methods that compress
the color matrix (Mustafa et al., 2017, 2019; Karasikov et al., 2019). We
compared the time required to construct the graph, the size of the de Bruijn
graph in memory and stored on hard disk, and the time required to add
or delete a k-mer as well as the time required to query the k-mers. We
evaluated these measures on datasets of increasing size. The details of
the datasets are described below. We note all experiments were performed
on an Intel(R) Xeon(R) CPU E5-2650 v2 2.60 GHz server with 1 TB of
RAM, and both resident set size and user process time were reported by
the operating system.
5.1 Datasets

First, we evaluated the performance using a number of samples from the
shotgun metagenomics dataset generated by Noyes et al. (2016) (NCBI
SRA accession PRJNA292471). In particular, we used samples 1 and 92
that have 55,242,004 and 11,136,890 reads, respectively, which we refer to
as 55M and 11M for simplicity. In addition, we generated smaller samples
by randomly selecting 20,000, 200,000 and 2,000,000 sequence reads from
sample 92. We refer to these as 20K, 200K and 2M, respectively. Next,
we generated larger samples by concatenating samples until the desired
length was obtained. Namely, we concatenated samples 1, 2, and 3, which
consist of 55,242,004, 44,035,852, and 52,833,978 reads, respectively. We
refer to this as sample 150M. We then added samples 4, 5, 9, 22, 25, 33,
34 and 51 to sample 150M to generate the sample 600M.

Second, we evaluated the performance using samples of E.coli.
We used 28,428,648 paired-end reads generated from whole genome
sequencing of E.coli K-12 substr. MG1655 dataset (NCBI SRA accession
ERX002508). We refer to this as 28M-e. Next, we split this sample
to generate smaller datasets of sizes 20,000, 200,000, 2,000,000, and
14,000,000 reads, which we denote by 20K-e, 200K-e, 2M-e and 14M-e,
respectively.
5.2 Construction Time and Graph Sizes

We constructed the de Bruijn graph with k = 31 for all methods except
BFT, where we used k = 27 since BFT only accepts values that are
multiples of 9. Tables 1 and 2 demonstrate how the construction time and
final size of the data structures loaded to memory and stored on disk after
construction vary between DynamicBOSS and the competing methods on
metagenome and E.coli datasets, respectively. We did not filter any k-mers
so that all methods are compared with the same number of k-mers. We
note that FDBG was not able to construct the graph on datasets larger
than 11M on metagenome samples. The reason is that as a hash-based
method, it requires a prime value that is large enough with respect to the
size of the data, hence when the data gets very large, and assigning the
respective large prime is not trivial, this method fails due to the possibility
of collisions. NA is given in Table 1 for the entries that FDBG failed.

As shown in these tables, BOSS required the least amount of space
when stored on disk and had the most efficient construction. It required

less than 3 hours and 40 minutes to construct the graph on over 600M reads.
And each graph required less than 2.9 bits / k-mer. With the addition of
dynamic features, DynamicBOSS requires between 5.7 and 7.0 bits / k-
mer, giving an increase of approximately 5 bits / k-mer. Bifrost required
between 6.3 and 38.4 bits / k-mer. Interestingly, its size increased as the
sample size increased, e.g., the space is 6.3 bits / k-mer for the 20K sample
and 19.8 bits / k-mer for the 600M sample. Bifrost was smaller on only the
two smallest metagenome samples (20K and 200K) and on the smallest
E.coli sample (20K-e). BFT and FDBG had between 39.6 and 48.7, and
16.2 and 17.2 bits / k-mer. Therefore, DynamicBOSS required the least
amount of space to store the graph on samples with more than 200K reads,
and this space consistently decreased as the sample size increased.

In addition, Bifrost required between 3 and 11 times more time than
DynamicBOSS to construct the graph. For example, on 600M and 28M-e
samples, Bifrost required 40 hours 36 minutes and 1 hour 20 minutes,
and DynamicBOSS required less than 9.5 hours and 7 minutes. BFT had
comparable runtime with DynamicBOSS – it was slightly more efficient
for smaller samples (less than 55M reads) and DynamicBOSS was slightly
more efficient for the larger samples. FDBG was comparable to Bifrost but
as mentioned above, it was unable to construct the graphs on metagenome
samples with more than 11M reads.

Lastly, Memory in Tables 1 and 2 gives the size of the graphs when
loaded to RAM. As shown, DynamicBOSS required the least amount
of memory among all dynamic methods. This measure is important for
dynamic structures since updating the graph in all of the tools is memory
resident. FDBG required the second-least amount of memory but could not
be constructed on larger samples. The sizes of BFT and Bifrost graphs in
memory were up to 7 times and 16 times (respectively) larger than that of
DynamicBOSS. For instance, while the size of DynamicBOSS on 600M
and 28M-e was 12.7 GB and 187.0 MB, BFT used 67.3 GB and 1.3 GB,
and Bifrost used 138.2 GB and 2.6 GB respectively.

5.3 Deletion and Addition of k-mers

Next, we compared the time required by DynamicBOSS, Bifrost and
FDBG to add random k-mers to the de Bruijn graph. In theory, BFT is
capable of this but it is no longer supported or functional (Holley, 2019).
For this comparison, we randomly selected 4,847,680 k-mers from two
strains of salmonella (ERR044710 and ERR044711 from NCBI BioProject
PRJNA18384) and added them to the de Bruijn graphs constructed in
the previous section. For example, these k-mers were added to the
graphs constructed on 20K sample, 200K sample, 2M, and so forth. We
then calculated the mean time of the 4,847,680 additions across the 7
metagenome samples and the 6 E.coli samples. Figures 1a and 1b illustrate
these means. We note that the values on the mantissa of these plots show the
size of the original graph (before performing addition), e.g 20K to 600M
on metagenome samples, and 20K to 28M on E.coli, and number of added
k-mers to graphs in this experiment is constant and equal to 4,847,680.
Although FDBG and Bifrost have more efficient addition time, the addition
time of Bifrost increased dramatically as the size of the original graph
(before addition) grows. For instance while the average time per k-mer
addition on 2M graph was 1.38e-05 (s), this value increased to 9.48e-
04 (s) on 600M graph. Also, FDBG could only be evaluated on smaller
datasets since the graph could not be constructed for large samples (e.g >

11M metagenome reads)–see Section 5.2 for the discussion. Hence, the
addition time of FDBG on large graphs is unknown.

Lastly, we evaluated the time to delete and re-add k-mers from/to the
de Bruijn graph. Here, we compared our method to FDBG since it is the
only other method that supports deletion. Again, we deleted/added to the
de Bruijn graphs constructed in the previous section using the metagenome
and E. coli datasets. For each graph, we randomly selected 1,000,000 k-
mers from each of these de Bruijn graphs, first deleted and then re-added
them back to the graph. Figures 1c and 1d show the mean deletion and
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BOSS DynamicBOSS BFT FDBG Bifrost

Disk Memory Time Disk Memory Time Disk Memory Time Disk Memory Time Disk Memory Time

20K 2.9 0.5 MB 00:00:01 7.0 1.2 MB 00:00:01 48.7 16.5 MB 00:00:02 17.1 7.8 MB 00:00:05 6.3 19.0 MB 00:00:08

200K 2.8 4.7 MB 00:00:07 7.1 12.3 MB 00:00:22 46.4 92.0 MB 00:00:12 17.2 41.4 MB 00:00:59 6.4 120.2 MB 00:01:15

2M 2.7 43.3 MB 00:01:16 6.7 112.9 MB 00:03:31 45.6 835.5 MB 00:02:26 16.7 348.3 MB 00:11:47 7.3 1.8 GB 00:11:16

11M 2.6 197.6 MB 00:06:04 6.4 514.3 MB 00:17:16 44.0 834.5 MB 00:11:09 16.2 1.5 GB 01:27:28 10.0 7.6 GB 00:59:25

55M 2.6 579.0 MB 00:18:29 6.2 1.4 GB 00:53:12 42.0 9.0 GB 00:39:30 NA NA NA 13.8 16.2 GB 03:10:59

150M 2.6 1.5 GB 01:00:25 6.1 4.0 GB 02:44:50 42.6 23.3 GB 02:57:28 NA NA NA 14.9 65.6 GB 09:04:39

600M 2.5 5.0 GB 03:38:29 6.1 12.7 GB 09:21:17 39.6 67.3 GB 13:02:42 NA NA NA 19.8 138.2 GB 40:36:55
Table 1. Comparison of construction time (hh:mm:ss), size of the graphs in the memory (MB or GB) and disk (Bits/k-mer). The graphs are built on metagenome
samples of different sizes. 20K, 200K, 2M, 11M, 55M, 150M, and 600M are samples with 20,000, 200,000, 2,000,000, 11,136,890, 55,242,004, 152,111,834 and
589,340,896 reads and 1,353,272, 13,430,422, 126,032,942, 592,287,827, 1,778,630,301, 4,821,975,335 and 15,705,461,763 solid 31-mers respectively. N/A is
shown where FDBG could not build the graph. Our method is highlighted in bold.

BOSS DynamicBOSS BFT FDBG Bifrost

Disk Memory Time Disk Memory Time Disk Memory Time Disk Memory Time Disk Memory Time

20K-e 2.9 0.4 MB 00:00:01 7.3 1.2 MB 00:00:01 48.7 16.9 MB 00:00:02 17.0 7.5 MB 00:00:06 6.8 19.1 MB 00:00:10

200K-e 2.5 2.6 MB 00:00:05 6.0 6.8 MB 00:00:13 47.6 49.1 MB 00:00:05 16.1 23.7 MB 00:00:37 13.0 65.7 MB 00:00:55

2M-e 2.5 9.2 MB 00:00:16 5.8 21.8 MB 00:00:40 45.8 151.7 MB 00:00:25 15.4 67.7 MB 00:02:26 29.8 328.8 MB 00:04:45

14M-e 2.7 50.7 MB 00:01:31 5.7 115.2 MB 00:04:13 43.4 867.2 MB 00:02:48 15.3 309.3 MB 00:26:46 36.8 2.4 GB 00:40:31

28M-e 2.7 82.8 MB 00:03:00 5.7 187.0 MB 00:07:07 43.4 1.3 GB 00:05:12 15.3 498.2 MB 00:30:54 38.4 2.6 GB 01:20:23
Table 2. Comparison of construction time (hh:mm:ss), size of the graphs in the memory (MB or GB) and disk (Bits/k-mer). Graphs are built on E.coli samples of
different sizes. 20K, 200K, 2M, 14M and 28M are samples with 20,000, 200,000, 2,000,000, 14,000,000, and 28,428,648 E.coli reads and 1,310,799, 8,395,324,
28,913,955, 150,906,786, 243,947,156 solid k-mers respectively. Our method is highlighted in bold.

addition time on the metagenomic and E. coli datasets, respectively. Again,
FDBG had faster deletion time but it could only support building the small
graphs with < 55M reads. Hence, its dynamic operation time on large
graphs is unknown.

In summary, Bifrost has more efficient addition time than our method
but cannot support deletion and the addition time increased significantly
as the size of the graph increased, FDBG had more efficient addition and
deletion time but is only applicable to small samples.
5.4 Querying k-mers

Finally, we compared the time required by DynamicBOSS, BOSS, Bifrost,
BFT and FDBG to query k-mers. First, we selected 1,000,000 k-mers
from the set of available edges in the de Bruijn graphs constructed in
Section 5.2 uniformally at random without replacement and measure the
average time for querying them in the same graph. Next, we randomly
selected 4,847,680 k-mers from two strains of salmonella (ERR044710
and ERR044711 from NCBI BioProject PRJNA18384), and measure the
average time for querying them in the de Bruijn graphs. Figures 2a and
2c show these results in graphs built on metagenome and Figures 2b and
2d on E.coli samples respectively. We note that the values on the mantissa
of these plots show the size of the original graph, e.g 20K to 600M on
metagenome samples, and 20K to 28M on E.coli, and numbers of queried
k-mers in graphs in these experiments are constant and equal to 1,000,000
member k-mers and 4,847,680 random k-mers.

In summary, BFT has the most efficient querying time among all tools.
The next most efficient querying belongs to FDBG, which is unable to
construct and query on samples > 55M reads–see Section 5.2 for the
discussion. Hence, Figure 2a and 2c does not include the corresponding
data points. The query time of DynamicBOSS is slightly more than BOSS,
and finally even though Bifrost has efficient querying time for smaller
samples, its efficiency drops as the sample sizes grow and it has the least
efficient query time for the largest sample which is 600M.

6 Conclusion
A dynamic de Bruijn graph is attractive for both de Bruijn graphs and
colored de Bruijn graphs. It is standard practice in assemblers to remove
structures such as tips and bubbles caused by sequencing errors from the
graph. If the graph representation is static then it has to be rebuilt or a

separate data structure has to be used to track deleted edges and nodes.
Therefore, a dynamic de Bruijn graph would significantly streamline this
cleaning step. Being able to dynamically update the colored de Bruijn
graph is also extremely attractive because it enables a stored graph to
be updated as a set of sequence reads is added or removed from a
dataset without reconstruction, and allows analysis of a selected number
of samples. Yet, it is challenging to design data structures that are both
space-efficient and mutable. Here, we showed that we can take advantage
of recent advancements in dynamic data structures and build the de Bruijn
graph in a manner that is space-efficient and mutable. Our experimental
results showed that with a small increase in the space usage (approximately
5 bits / k-mer), we can achieve a fully dynamic data structure for the de
Bruijn graph. Combined with one of the several methods that only develop
the dynamic compressed color matrix, DynamicBOSS can be used to make
a succinct and fully colored de Bruijn graph. We leave this addition for
future work.
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Fig. 1: An Illustration of the average required time to add random k-mers to the de Bruijn graphs built on (a) metagenome and (b) E. coli samples, and
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Fig. 2: An Illustration of the average required time to query 1,000,000 random k-mers that were known to be contained in the de Bruijn graph, and to
query 4,847,680 random k-mers taken from the Salmonella genome. We show the results of the former experiment with extension member and the latter
experiment with extension random in these plots. These experiments were performed in de Bruijn graphs constructed on metagenome samples shown in
(a) and (c) and E.coli samples shown in (b) and (d), mentioned in Section 5.2. We note that FDBG could not build or query on samples with > 55M reads
and therefore, the corresponding data points are missing from (a) and (c).
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A.1 Supplement

A.1.1 Description and Illustration of BOSS Representation

In this section we show how to build and store the de Bruijn graph with one bit vector, one character array, and one integer array.� To accomplish this we
use BWT. We first pad the input so that each node has at least one incoming edge and one outgoing edge. Hence each node with no incoming edge is
shifted and prepended with $ signs to create the required incoming dummy edges (k� 1 each)–recall that k� 1 preceding incoming edges are needed to
retrieve the label of each node. For instance in Figure A.1 the dummy edges $$$C, $$CG and $CGT are added to make the k�1 = 3 preceding incoming
edges of the node CGT which did not have a real incoming edge. Note that after adding the required incoming dummy nodes and edges, the node $$...$
is always the first node in the colex order and exceptionally needs no incoming edges. Next, we add one succeeding dummy edge for each node that does
not have an outgoing edge by appending a $ to its label. For instance, in Figure A.1 the node GAT had no real outgoing edges hence we added GAT$.

We then sort the list of all elabel’s (dummy edges included) in colex-order by nlabel with all duplicate entries removed, i.e., the list of elabel’s is now
sorted by the first k� 1 characters. We refer to this ordering of the nodes/edges as BOSS-sorted.���Notice that the last column of the nlabel’s (second last
in the elabel’s) is sorted in alphabetical order. We refer to this vectoras F; thus, F[i] is the last character of the node label of node i. The vectorF is easily
compressed by employing an array of lengthfive that stores the position of the first occurrence�of each character in that column.�Next, with the goal of
not storing the first k� 2 characters of the elabel’s (since we only need the two last columns of elabels) we add some auxiliary information which enable
us to support rank and select. � We add a bit vector L which stores 0 at the position of the first outgoing edge of each node and 1 at the positionof every
other outgoing edge. � Next, we define a vector W as the last column of the sorted elabel’s with the addition that we add a minus sign to the character if
it is not the first incoming edge to its target node; otherwise, it remains unchanged. For instance in Figure A.1 we add minus to edges CGAT and TGAT
since they are the second and third incoming edges to the target node GAT. Hence, W is defined on the alphabet {$, A, C,G, T,A-, C-, G-, T -}.�
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Fig. A.1: (a) The de Bruijn graph for sequences CGTAGAT, CGTCGAT, CGTTGAT. Note that the dummy edges are $$$C, $$CG, $CGT and GAT$. (b)
All edges of the de Bruijn graph are sorted in colex order of the node labels (nlabel). The node index and the edge index are shown in pink and green
respectively on the left side and the edge label is shown on the right side of each edge. The first occurrence of each node label is shown in red. (c) The
BWT-representation of the de Bruijn graph. Vector F is an array of length five that stores the position (edge index) of the first occurrence of each node
label. Bit vector L stores 0 at the position of first outgoing edge of each node and 1 at the position of every other outgoing edge. W is the last column of
the sorted elabel’s with the addition that we add a minus sign to the character if it is not the first incoming edge to its target node. For instance we add
minus to edges CGAT and TGAT since they are the second and third incoming edges to the target node GAT.

A.1.2 Comparison of BOSS and DynamicBOSS

Table A.3 shows the time complexity of different functions in Non-dynamic BOSS and DynamicBOSS, where k is the k-mer size and E is the number
of the edges in the graph.

A.1.3 Pseudocode for Dynamic Functions

A.1.4 An illustration of add-edge procedure

We add an edge e with label S = ATGA to the graph G of Figure A.1 in Section 3 and show all steps of the algorithm. Note that here ue = ATG and
ve = TGA are the source node and the sink node of edge e respectively. First using the operation index-node (ue) the existence of the source node is
checked. Since ue is absent, it must be inserted to G along with any necessary dummy nodes and edges by procedure add-dummy-chain (ue). This
procedure starts with checking if the node $$$ is already in the graph. Since F[0] = $ or F[$] = 0 in our compressed representation of F, this node is
present in the graph and its posSource is 0. Hence iteratively for each edge $$$A, $$AT and $ATG it checks if the edge exists and if not, it adds the edge
to the corresponding source node by calling the procedure add-edge-to-node. We show the whole process step by step in Figure A.2 highlighting the
changes by the first and second step of procedure add-edge-to-node in red and grey respectively. Also, the updates on F are colored in blue. In Figure
A.2(1), we first check if $$$A exists or not. The range of source node $$$ is [0,0]. Note that this range is found as follows: [L.select0[0], L.select0[1]�1].
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Operation Non-dynamic BOSS DynamicBOSS
index(e) O(k) O(k log |E|)
index-node(u) O(k � 1) O((k � 1) log |E|)
edge(u) O(1) O(log |E|)
node(e) O(1) O(log |E|)
forward(e) O(1) O(log |E|)
backward(u) O(1) O(log |E|)
outdegree(u) O(1) O(log |E|)
indegree(u) O(1) O(log |E|)
add-edge N/A O(k log |E|)
delete-edge N/A O(k log |E|)

Table A.3. Comparison of the running time of operations of non-dynamic BWT-based representation of the de Bruijn graph (BOSS) and the dynamic version
presented in this paper. E denotes the number of edges and k denotes the k-mer value.

Algorithm 1 Add edge with label S to graph

1: procedure add-edge(S)
2: posSource = index-node (S[1, k � 1]) . Determine existence, index of source
3: if source does not exist then
4: posSource = add-dummy-chain (S[1, k � 1]) . Add source and requisite dummies
5: end if
6: if edge with character S[k] or S[k]- does not exist at node posSource then
7: posTarget = index-node (S[2, k]) . Determine existence, index of target
8: if target exists then
9: posIn = backward ( posTarget) . Get index of first incoming edge to target
10: end if
11: add-edge-to-node ( posSource, S[k], targetExists, posIn)
12: end if
13: end procedure

Algorithm 2 Delete edge with label S from graph

1: procedure delete-edge(S)
2: pos = index (S[1, k]) . Determine existence, index of edge
3: if edge exists then
4: posSource = node(pos)
5: out = outdegree(posSource)
6: delete-edge-from-node ( pos, S ) . Handles dummies and deletion of target node as necessary
7: if out = 1 then
8: pos = index($S[1, k � 1])

9: if dummy edge $S[1, k � 1] exists then
10: delete-dummy-chain (pos, $S[1, k � 1]) . Delete source and requisite dummies
11: end if
12: end if
13: end if
14: end procedure

W[0] 6= A or A� shows that the edge $$$A is absent and should be added to the graph. This is accomplished by calling add-edge-to-node (0, A, 0,
null). Note that 0 as the third input shows that the target node of this edge which is $$A is not present in the graph. The first step of add-edge-to-node
adds the edge $$$A to the node $$$. In order to do this, with comparing the edge label A with the edge label at posSource which is W[0] = C, the
position to insert the edge is finalized which in this case is position 0. Next, A is inserted at position 0 in W. L[0] remains unchanged since now $$$A

is the first outgoing edge of $$$, and a 1 is inserted at L[1] as the edge $$$C is no longer the first outgoing edge of $$$. Finally, the first occurrence
of every character after $ is incremented by one in F. Next the second part of add-edge-to-node is executed. Since the target node $$A is absent, we
find the nodeTarget as follows: nodeTarget = L.rank0(F[ic]) + W.rankc(pos + 1). With replacing F[ic] = 2 and pos = 0, nodeTarget = 1+1 =
2 and posTarget = L.select0(nodeTarget � 1) = 2 are the node index and the corresponding edge index of the target node. Finally the character $
and bit 0 are added to W and L at position 2 and the first occurrence of every character after A will get incremented by one in F – note that this step is
required since every node should have at least one outgoing edge. Next we need to add the edge $$AT to the graph. In Figure A.2(2) add-edge-to-node
(2, T, 0, null) is called and the edge label T and bit 0 are added at position 2 of W and L respectively, and F remains unchanged. Due to the absence of
the target node $AT, it should be added to the graph as well. This time nodeTarget = 12 + 1 = 13 and posTarget = 13. Hence the character $ and
bit 0 are added to W and L at position 13, and since the first position of occurrence of T is still at position 13, F remains unchanged. In Figure A.2(3),
add-edge-to-node (13, G, 0, null) is called to add the edge $ATG to the graph. Hence the character G and bit 0 are added to W and L at position 13 and F
is unchanged. This time nodeTarget = 8 + 4 = 12 and posTarget = 12. Hence the character $ and bit 0 are added to W and L at position 12. Note
that since posTarget < posSource, the updates of the first step (colored in red) are shifted to position 14. Finally the first occurrence of characters after
G (only T) is incremented by one in F. In Figure A.2(4) add-edge-to-node (12, A, 1, 13) is called. Note that the target node which is TGA is present
in the graph and is located at position 13. Now after adding the character A and bit 0 to W and L at position 12 and keeping F unchanged, the second
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Fig. A.2: The addition of edge e with label S = ATGA to the graph G of Figure A.1 which is built on sequences CGTAGAT, CGTCGAT, CGTTGAT.
Note that BOSS stores only three vectors F, L and W. Addition of edges $$$A, $$AT and $ATG and ATGA is shown in (1), (2), (3), and (4) respectively.
The changes made by the first and second step of procedure add-edge-to-node is highlighted in colors red and grey respectively.

step of add-edge-to-node is executed which this time takes care of the minuses. Since posTarget > posSource, we add a minus to the edge label of
posTarget, since it is not the first incoming edge to the node TGA anymore.


