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A B S T R A C T   

Microclimate varies greatly over short horizontal and vertical distances, and timescales. This multi-level het
erogeneity influences terrestrial biodiversity and ecosystem functions by determining the ambient environment 
where organisms live in. Fine-scale heterogeneity in microclimate temperatures is driven by local topography, 
land and water cover, snow, and soil characteristics. However, their relative influence over boreal and tundra 
biomes and in different seasons, has not been comprehensively quantified. Here, we aim to (1) quantify tem
perature variations measured at three heights: soil (-6 cm), near-surface (15 cm) and air (150 cm), and (2) 
determine the relative influence of the environmental variables in driving thermal variability. We measured 
temperature at 446 sites within seven focus areas covering large macroclimatic, topographic, and ecosystem 
gradients (tundra, mires, forests) of northern Europe. Our data, consisting of over 60 million temperature 
readings during the study period of 2019/11–2020/10, reveal substantial thermal variability within and across 
the focus areas. Near-surface temperatures in the tundra showed the greatest instantaneous differences within a 
given focus area (32.3 ◦C) while the corresponding differences for soil temperatures ranged from 10.0 ◦C (middle 
boreal forest) to 27.1 ◦C (tundra). Instantaneous differences in wintertime air temperatures were the largest in 
the tundra (up to 25.6◦C, median 4.2 ◦C), while in summer the differences were largest in the southern boreal 
forest (13.1◦C, median 4.8◦C). Statistical analyses indicate that monthly-aggregated temperature variations in 
boreal forests are closely linked to water bodies, wetlands, and canopy cover, whereas in the tundra, variation 
was linked to elevation, topographic solar radiation, and snow cover. The results provide new understanding on 
the magnitude of microclimate temperature variability and its seasonal drivers and will help to project local 
impacts of climate change on boreal forest and tundra ecosystems.   

1. Introduction 

Boreal forest and tundra biomes cover one third of Earth’s terrestrial 
surface and are experiencing rapid climatic warming with severe con
sequences (Post et al. 2009). These high-latitude biomes also play a key 
role in the global climate system, storing an estimated 50% of global soil 
carbon (McGuire et al., 2009; Virkkala et al., 2021). The warming trend 
is projected to continue during the upcoming decades with the most 
pronounced changes projected to occur during the winter season 
(Ruosteenoja et al. 2016, 2019; Bintanja and Andry, 2017). To track 
these changes and their impacts, climate change research heavily relies 
on coarse-gridded macroclimate data (Flato, 2011; Bedia et al., 2013; 
Lenoir et al., 2013; Gardner et al., 2019). However, local climate con
ditions can differ substantially from those represented by these 

macroclimatic temperature grids (e.g., Lembrechts et al., 2019; Haesen 
et al., 2021). Thus, recently there has been a renewed focus on micro
climate owing to its paramount importance in understanding how or
ganisms and ecosystems respond to climate change (Potter et al., 2013; 
De Frenne et al., 2021). 

The impact of macroclimate on ecosystems is filtered through 
physiographic, edaphic, and biotic characteristics of the landscape 
(Ashcroft and Gollan, 2013; Lenoir et al., 2017). These microclimatic 
drivers alter air mixing, heat transfer and budgets of short- and 
long-wave radiation, that potentially lead to contrasting wind, thermal, 
and humidity conditions within short horizontal and vertical distances 
(Barry and Blanken, 2016). Further, these conditions create microcli
mates where local temperatures can considerably differ from the mac
roclimate (Dobrowski, 2011; Graae et al., 2012; De Frenne et al., 2019). 

* Corresponding author at: Finnish Meteorological Institute, P.O. Box 503, Helsinki FI-00101, Finland. 
E-mail address: juha.aalto@fmi.fi (J. Aalto).  

Contents lists available at ScienceDirect 

Agricultural and Forest Meteorology 

journal homepage: www.elsevier.com/locate/agrformet 

https://doi.org/10.1016/j.agrformet.2022.109037 
Received 14 February 2022; Received in revised form 30 May 2022; Accepted 1 June 2022   

mailto:juha.aalto@fmi.fi
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2022.109037
https://doi.org/10.1016/j.agrformet.2022.109037
https://doi.org/10.1016/j.agrformet.2022.109037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2022.109037&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Agricultural and Forest Meteorology 323 (2022) 109037

2

In terrestrial biomes, microclimate influences species distributions, 
biodiversity, and ecosystem functions by determining ambient temper
atures for near-surface and soil organisms, and consequently, further 
influences productivity, decomposition, and carbon cycling (Greiser 
et al., 2018; Lembrechts et al., 2019; Niittynen et al., 2020; Zellweger 
et al., 2020; Seibold et at., 2021). Thus, understanding the magnitude of 
thermal differences in a landscape at a given time (i.e., thermal het
erogeneity; Scherrer and Körner, 2011; Lenoir et al., 2013), and the 
relative contributions of static landscape factors (e.g., topography) and 
dynamic factors (e.g., canopy closure and snow cover) driving thermal 
heterogeneity is needed for projecting how climate change shapes 
ecosystems. 

In boreal forests, canopy intercepts radiation (both incoming and 
outgoing), decelerates air flow, and affects evapotranspiration, thus 
creates microclimates where temperature variation is buffered 
compared to macroclimatic temperatures outside the canopy (Barry and 
Blanken, 2016; De Frenne et al., 2021). In contrast, microclimatic 
temperature variability may be accentuated compared to macroclimate 
in areas that are exposed to high radiation, sheltered from winds, and 
have dry soils. Vegetation drives microclimatic temperature variability 
also in the tundra (Aalto et al. 2013; Kemppinen et al. 2021). There, the 
role of local topography is expected to be especially strong due to its 
influence on fine-scale variation in snow accumulation, surface water 
flow, net radiation, and cold-air pooling under stable atmospheric con
ditions (Pepin et al., 2009; Daly et al., 2010; Aalto et al., 2017a; Niit
tynen et al., 2020). Local hydrology also influences microclimate 
temperatures due to the high specific heat capacity of water. This can 
lead to buffered temperatures in areas with high soil moisture and in 
areas near wetlands and water bodies (Yang et al., 2012; Ashcroft and 
Gollan, 2013; Słowińska et al. 2022.). 

In addition to various environmental drivers, microclimate temper
ature also depends on the height from the surface (Barry and Blanken, 
2016). In general, temperature variations are largest close to the surface, 
and decrease with height due to increased air mixing. Below ground, 
temperature variability is buffered compared to above soil surface 
temperatures and is controlled by soil heat flux. This, in turn, is driven 
by surface radiation balance, specific heat capacity of the soil (depen
dent on e.g., soil moisture), and seasonal snow cover that effectively 
insulates the ground from temperature fluctuations in the free air 
(Grundstein et al., 2005; Aalto et al., 2018; Fernández-Pascual and 
Correia-Álvarez, 2021). These vertical variations in microclimate tem
peratures are also relevant for different ecosystem functions. For 
example, soil temperatures are closely linked to e.g., soil respiration and 
nutrient cycling via controlling microbial activity and mycorrhiza as
sociations (Soudzilovskaia et al., 2015; Du et al., 2020). In turn, air 
temperatures close to the surface are especially relevant for animals 
living on the surface or in the litter, plant ecophysiology and meta
bolism, and decomposition (Körner and Hiltbrunner, 2018; Seibold 
et al., 2021). Air temperature measured 1–2 m above the soil surface 
represents conditions relevant for larger organisms and ecosystem-level 
processes, such as local productivity patterns (Potter et al., 2013). 
However, standardized weather stations and gridded climate datasets (e. 
g., Fick and Hijmans, 2017; Karger et al., 2017) often ignore the vertical 
temperature gradients and consequently misrepresent local climate 
conditions relevant for many organisms and ecosystem processes (Sug
gitt et al., 2011; Graae et al., 2012; De Frenne and Verheyen, 2016). 

The relative importance of microclimate temperature drivers can 
substantially differ across and within biomes (Barry and Blanken, 2016). 
However, in the past, most empirical microclimate studies have been 
conducted over single study settings with limited spatial extents (e.g., 
Pepin et al., 2009; Yang et al., 2012). Therefore, the understanding of 
the thermal characteristics across biomes and their contributing factors 
has remained limited. Here, we investigate microclimate temperature 
variation at various heights using a dense network of microclimate 
stations over a large geographical extent. More precisely, we aim to (1) 
quantify the temperature variability measured at three heights: soil (-6 

cm), near-surface (15 cm) and air (150 cm), and (2) examine the relative 
influence of the environmental variables driving spatio-temporal vari
ation of the temperature parameters. The study is based on a large 
network of miniature and low-cost microclimate stations installed at 
study sites (n = 446) within seven focus landscapes (hereafter focus 
areas) located in northern Europe. The study domain covers large gra
dients of macroclimate and elevation, and distinct ecosystems from both 
the boreal forest and tundra biomes. 

2. Material and methods 

2.1. Study domain and design 

The study domain extends across seven focus areas in Finland from 
hemiboreal forests to the oroarctic tundra and covers large gradients in 
macroclimate, elevation, and ecosystems (Fig. 1). Climate in Finland is 
highly influenced by the Polar Front as well as the North Atlantic Cur
rent which drive macroclimatic temperature and precipitation patterns. 
These are also influenced by the Scandes mountains in the west and the 
landmass of the Eurasian continent in the east (Tikkanen, 2005). Along 
the latitudinal gradient of ca. 60–69 N, mean annual air temperatures 
range from -2.2◦C to 7.1◦C (1991–2020 period, Jokinen et al., 2021). 
The elevational gradient of the study domain ranges from ca. 30 to 950 
meters above sea level with pronounced local and regional topograph
ical variation due to multiple past glaciations. Moreover, due to the 
glaciations and the relatively humid climate, lakes and mires are 
abundant in Finland (Tikkanen, 2005). In the northernmost parts of the 
study domain, near-surface permafrost is present in peatlands outside 
the focus areas (Aalto et al., 2017b). 

The selected focus areas are mainly situated in protected areas to 
minimize the influence of anthropogenic disturbance. Each focus area 
has 50–100 microclimate stations at which loggers were installed to 
measure soil and air temperature (see Table 1; Fig S1 and Section 2.3. for 
more details). The northernmost focus areas are in Kilpisjärvi, north- 
western Finland, around Mount Malla and the Malla nature reserve 
(hereafter, MAL) and Mount Ailakkavaara (AIL). Another focus area in 
northern Finland is located in the Värriö nature reserve (VAR) in Salla 
and Savukoski, in the north-east. All the three northernmost areas have 
measurement sites above and below the forest line, and they are char
acterized by the boreal forest - tundra ecotone differentiating them from 
the central and southern areas. In central Finland, two focus areas are 
located within and around the Pisa nature reserve (PIS) in Kuopio and 
within the Tiilikkajärvi national park (TII) in Rautavaara. PIS is char
acterized by boreal forests and varying topography whereas TII com
prises mainly mires. Another focus area characterized by mires is the 
Hyytiälä region (HYY) in southern Finland, where the stations are 
located within and nearby the Siikaneva nature reserve. The southern
most focus area is located within the Karkali nature reserve (KAR) and 
other nearby protected areas in Lohja, in the hemiboreal zone. 

To determine the measurement sites, we conducted a random strat
ification to pre-select a suite of candidate locations that maximally cover 
the main environmental gradients within the focus areas (Fig. S2). This 
was done separately for each focus area. The stratification was based on 
several variables e.g., total canopy cover, deciduous canopy cover, dis
tance to forest edge, elevation, potential annual incoming solar radia
tion, and a topographic wetness index (the SAGA wetness index), 
although the final selection of the variables varied depending on the 
distinct features of each area. First, we masked the areas outside the 
nature reservations and extracted the remaining pixel information on a 
systematic grid with a 10 m cell size. Next, we randomly selected 50% of 
the points and used this subset to reduce the multidimensional envi
ronmental space into its first three principal components. Then we took 
a sub-sample of 100 points that maximally and systematically covered 
the shrunk environmental space. We repeated these procedures 100 
times and used the selection frequency for each point as a weight in the 
final random point selection. This two-step selection process was also 
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necessary to be able to ascertain a minimum distance (100 m) between 
the selected points to avoid pseudoreplication. These steps used the 
eSample function from iSDM R package (Hattab and Lenoir 2017). Using 
such a protocol, we were able to detect (and select) the points that are 
unique in terms of their environmental conditions and thus likely 
valuable locations in the station network. Selected points were visually 
inspected by examining the environmental variables’ distributions. 
Final judgment of each preselected location was confirmed at the field. 

2.2. Weather station data 

Hourly weather station data for the study period of 2019/11/ 
01–2020/10/31 and long-term averaged climate data for the years 
1991–2020, was acquired from each focus area’s nearest automated 
weather station (AWS) operated by the Finnish Meteorological Institute 
(Fig. S3; Table S1). The data have undergone an operational quality 
control. 

Fig. 1. Study domain and design. Panel a represents the locations of the seven focus areas in relation to the mean annual air temperature in Finland (MAAT; 
1991–2020). The white borders mark boreal vegetation zones (in italics). White polygons represent water bodies over 10 km2. Northernmost focus areas (MAL, AIL, 
VAR) are in the boreal forest–tundra ecotone comprising both northern boreal forests and oroarctic tundra. Panel b represents an example of the sampling design in 
AIL with the colored points depicting annual potential incoming solar radiation (PISR) calculated from a digital elevation model. Panel c depicts the logger placement 
and measurement heights (T1=soil, T2=surface, T3=near-surface, T4=air) at the microclimate stations. T2 was only used to derive snow cover information (see 
Material and methods for details). Field photos from each focus area are presented in panel d. Focus area abbreviations are defined in the main text and in Table 1. 

Table 1 
Description of the seven focus areas. Mean annual air temperature data for 1991–2020 are from Jokinen et al. (2021), and automated weather station data (AWS; 
Table S1) were acquired for each focus area for the period of the microclimate measurements (2019/11/01-2020/10/31).   

Focus area  Measurement setting Mean air temperature (◦C)  

Name Center 
coordinate 

Sites 
(n) 

Logger Area 
(km2) 

Elevation 
(m) 

Ecosystem Annual 
1991-2020 

2019/11/ 
01–2020/10/31 

Northern 
Finland 

MAL: Mount Malla, Malla 
nature reserve 

69.071 N, 
20.698 E 

100 TMS-4 
HOBO 

23.8 482–934 Northern boreal 
forest - Tundra 

-1.4 -0.7 

AIL: Mount Ailakkavaara 68.991 N, 
21.015 E 

100 TMS-4 
HOBO 

24.0 509–933 Northern boreal 
forest - Tundra 

-1.4 -0.7 

VAR: Värriö nature reserve 67.736 N, 
29.596 E 

50 TMS-4 
HAXO-8 

22.7 262–475 Northern boreal 
forest - Tundra 

0.1 1.1 

Central 
Finland 

TII: Tiilikkajärvi national park 63.646 N, 
28.312 E 

50 TMS-4 
HAXO-8 

17.7 187–205 Middle boreal forest 2.9 4.7 

PIS: Pisa nature reserve 63.218 N, 
28.328 E 

50 TMS-4 
HAXO-8 

16.0 103–262 Southern boreal 
forest 

2.6 4.4 

Southern 
Finland 

HYY: Hyytiälä, Siikaneva nature 
reserve and nearby areas 

61.831 N, 
24.196 E 

50 TMS-4 
HAXO-8 

51.5 152–203 Southern boreal 
forest 

4.1 5.9 

KAR: Karkali nature reserve and 
surrounding protected areas 

60.248 N, 
23.830 E 

50 TMS-4 
HAXO-8 

47.5 32-99 Hemiboreal forest 6.0 7.9  
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2.3. Microclimate temperature data 

All microclimate stations were equipped with a Tomst TMS-4 logger 
(Wild et al., 2019) and either a LogTag HAXO-8 (LogTag North America 
Inc.) or Onset HOBO U23 Pro v2 logger (Onset Computer Corporation; 
with exceptions of Ailakkavaara and Malla study areas which both have 
100 TMS-4 loggers and 40 HAXO/HOBO loggers). The TMS-4 temper
ature sensors measure temperature at three heights (Fig. 1c): -6 cm for 
soil temperature (T1), 2 cm for surface temperature (T2), and 15 cm for 
near-surface temperature (T3) with a precision of 0.0625 ◦C and an 
accuracy of ± 0.5 ◦C. Noteworthy, in this study, T2 is used only for 
interpreting snow cover duration from the surface temperature values. 
Additionally, TMS-4 also measures soil moisture, which is used in this 
study as a predictor of microclimate temperature variation (see Sections 
2.5. and 2.7.). We measured air temperature at 150 cm (T4) by using 
HAXO-8 (precision of 0.1◦C; accuracy ±0.3◦C for ambient temperatures 
of 0◦C-50◦C and ±0.6◦C for ambient temperatures below 0◦C) and 
HOBO loggers (precision 0.04◦C; accuracy ±0.2◦C from 0 to 70◦C and 
±0.25 from -40 to 0◦C). These sensors were installed under white 
well-ventilated plastic radiation shields on the north side of either tree 
trunks or wooden poles to reduce exposure to direct solar radiation. Both 
sensors also measure air humidity, which was used only as a part of the 
data quality control in this study (see Section 2.4.). TMS-4 loggers were 
set to log at 15 min, HOBO loggers at 30-minute, and HAXO loggers at 2 
h intervals due to different memory capacities of the loggers. To keep the 
150 cm air temperature measurements comparable between the two 
logger types, we thinned the HOBO time series to the matching 2-h in
tervals of the HAXO loggers. The stations were installed in June-October 
2019. The study period is one year from 2019/11/01 to 2020/10/31 
which is fully covered in all the study areas. 

2.4. Data preprocessing and quality control 

All temperature time series were visually quality checked. If, for 
instance, a logger had fallen down or its radiation shield was detached, 
such time periods were identified, and the jeopardized measurements 
were removed. Additionally, four sources of error were detected and 
corrected: 1) sensors systematically recording too low or high temper
atures, 2) erroneous peaks over one or few consecutive measurements, 
3) HAXO and HOBO loggers skipping measurements but continuing to 
count the time after the gap from the last timestamp before the failure, 
thus disengaging the correct time and temperature, and 4) snow 
reaching the height of the HAXO and HOBO loggers (T4, 150 cm). We 
created the following automated procedures to correct these issues. The 
R code used for these steps can be found in the public focus area -specific 
Github repositories under user Poniitty (e.g., the raw data and processing 
code for VAR in https://github.com/poniitty/varrio_microclimate).  

(1) For each sensor of the TMS-4 logger, we calculated the mean 
temperature over the periods when the logger was stored in its 
original package under stable office conditions (no signs of 
considerable temporal variation in temperature record) and 
compared these means across the three sensors within each 
logger. We arranged the sensors based on these means and cor
rected the sensors recording the highest and lowest mean tem
peratures to match with the middle one. Then, we used these 
correction temperatures to correct for systematic deviations over 
the whole sensor-specific time series. These corrections were 
mostly very minor (<0.1◦C) but in some rare cases even as high as 
0.5 ◦C. Thus, the corrections were considered to greatly improve 
the reliability of the dataset.  

(2) To automatically detect erroneous peaks in the TMS-4 data, we 
iterated over all individual time series month by month and 
detected the logger within the same study area that best matched 
with the temporal pattern of the focal sensor (in terms of highest 
pairwise correlation and lowest root mean-squared error, RMSE). 

We then calculated moving averages and identified moments 
when the successive measurements showed a large rise or drop 
and when the two loggers showed suspicious differences based on 
the calculated statistics. By careful inspection, we set multiple 
criteria and thresholds for the differences to judge whether the 
peak in temperatures was a result of a natural event or an error. 
For example, an event was assessed unnatural or occur due to 
measurement error if two adjacent measurements (in 15-minute 
intervals) differed by more than 20◦C or if soil temperature was 
suddenly increased or decreased by more than 3◦C but returned 
right after the single-measurement peak back to the previous 
temperature. Erroneous peaks and their adjacent measurements 
were removed and replaced by linear interpolation while taking 
the measurements of the matching sensor into account as well.  

(3) To correct for non-matching timestamps in the HOBO and HAXO 
data (T4), we calculated a median time series over all other 
loggers within each study area to which the individual logger 
time series were compared to. We calculated running correlations 
and identified breakpoints when the reference time series and a 
focal logger time series started to deviate from each other. If a 
breakpoint was identified, we started to gradually shift the tem
perature measurements of the focal logger and moved the post- 
breaking point data to a period where it reached maximum cor
relation with the reference period. We repeated this procedure 
multiple times to find all potential breaking points and to trim the 
gap margins efficiently. The outcomes were visually inspected to 
see if further corrections were needed (see an example of a cor
rected time series in Fig. S4).  

(4) We identified periods when the HAXO/HOBO loggers were under 
snow by calculating variability and extremes of temperature and 
relative humidity from individual time series with a 5-days 
moving window. We selected multiple criteria (e.g., low tempo
ral variability, maximum temperatures <0.5◦C) to find the po
tential periods of snow coverage and if these conditions persisted 
for several consecutive days the measurements were removed 
from the dataset. After quality checks temperature data from 446 
study sites was used in the analyses but the number varies by 
month and measuring height (see details in Fig. S5). 

The deployed radiation shielding has an effect on the temperature 
readings as the shield itself is likely to affect measured temperatures, 
and consequently, the accuracy of the measurements (Maclean et al., 
2021). The effect is expected to be largest when direct sunlight is at its 
strongest (during solar noon and summer solstice) and wind speed is 
low. In the north where the solar angle is relatively low, early summer 
measurements can be affected by reflected short-wave radiation from 
the snow-covered surface. To mitigate these potential issues in our 
temperature data, we defined maximum temperatures (annual and 
summer) as the 95th percentiles of individual time series. In addition, T2 
measurements that represent surface temperatures (Fig. 1c) can be 
problematic since the proper installation height (+2 cm) is difficult to 
estimate in the field, particularly in areas with herbaceous vegetation 
and bryophytes. Therefore, we present the results of T1, T3 and T4 in the 
main text, and use T2 temperature data only to calculate periods of snow 
cover (see 2.5.). 

2.5. Soil moisture and snow cover 

We used monthly soil moisture as a predictor of monthly microcli
mate temperatures (see 2.7.). Mean monthly soil moisture was calcu
lated from the TMS-4 loggers. The loggers measure soil moisture in the 
upper 15 cm soil layer and the raw soil moisture count values were 
transformed to volumetric water content (VWC%) with a calibration 
function adopted from Wild et al. (2021). Soil moisture measurements 
were considered only when soil temperature of the same logger was 
above 1 ◦C. To impute soil moisture for the missing months (mainly in 
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winter), we used the value of the last month with sufficient soil moisture 
data. If this was not possible, we modeled the local soil moisture based 
on measurements at the focal site of other years (2019–2021) and all 
data from all other loggers within the study area by fitting a linear mixed 
effect model, in which we included the month and year as factor pre
dictors and the study site as a random factor. This model was then used 
for predicting the missing monthly values. 

Snow cover duration was also used for predicting monthly micro
climate temperatures (see Section 2.7.). It was determined from the 
surface temperatures (T2) of the TMS-4 loggers by counting the days 
when the maximum surface temperature stayed below 1◦C and the 
diurnal temperature range was below 10◦C calculated with a 10-day 
moving average. The outcome was visually checked, and the algo
rithm was considered to detect periods of snow cover well in general. We 
identified three wetland study sites in the TII study area where the top 
peat layer stayed so warm under the snow that the automatic snow cover 
detection failed. For these sites, we identified the snow-covered period 
visually from the temperature time series. Missing values in snow cover 
duration were imputed in a similar way to the soil moisture values with 
the following differences: a generalized linear mixed effect model was 
used with Poisson distribution and only year was included as a factor 
predictor. The exact method and code to calculate the snow cover 
duration are available at the study-area-specific Github repositories 
(https://github.com/poniitty?tab=repositories). 

2.6. Geospatial data 

We utilized a multitude of geospatial datasets to derive variables that 
represent the major environmental drivers hypothesized to affect 
microclimate temperatures in boreal and tundra biomes. We used 
airborne light detection and ranging (LiDAR) data, which was provided 
by the National Land Survey of Finland (https://www.maanmittauslait 
os.fi/en/maps-and-spatial-data/expert-users/product-descriptions/lase 
r-scanning-data). The LiDAR data was collected over summers 2016- 
2019. The point density is ~0.5p/m2, the standard error of the eleva
tion accuracy is at maximum 15 cm, and the standard error in horizontal 
accuracy 60 cm. We downloaded a canopy height model produced by 
the Finnish Forest Center at 1-m spatial resolution (https://www.me 
tsakeskus.fi/fi/avoin-metsa-ja-luontotieto/aineistot-paikkatieto-ohje 
lmille/paikkatietoaineistot). It is based on the same LiDAR datasets 
introduced above. We also downloaded and utilized the Finnish national 
Topographic database which contains e.g., all water bodies, rivers, and 
wetlands in vector format (https://www.maanmittauslaitos.fi/en/m 
aps-and-spatial-data/expert-users/product-descriptions/topographic- 
database). 

We constructed eight predictors that represent the main aspects of 
topography, solar radiation, vegetation, and land cover types that are 
known to affect microclimate temperature (e.g., Ashcroft and Gollan, 
2013; Aalto et al., 2017a; Greiser et al., 2018). Topographic predictors, i. 
e., elevation, potential incoming solar radiation (PISR), and topographic 
position index (TPI), represent the available energy and cold air pooling 
capacity. Vegetation effects were represented by canopy cover as high 
and dense vegetation shades the ground and slows down air movement. 
Wetland and water body proportions in the surroundings were included 
to represent their potential buffering effect on temperatures. Addition
ally, we included the mean soil moisture and snow cover duration 
calculated from the TMS-4 loggers as predictors. 

A Digital Terrain Model (DTM) was produced for each study area 
based on the LiDAR datasets using the grid_terrain function from the 
lidR R library (Roussel et al., 2020). The DTM represents elevation at 
2-m spatial resolution. These DTMs were then used to calculate potential 
incoming solar radiation (PISR) for the 15th day of each calendar month 
using the Potential Incoming Solar Radiation tool in the SAGA-GIS 
software (version 7.6.2; http://www.saga-gis.org/saga_tool_doc/7.6.2 
/ta_lighting_2.html). TPI describes the difference in elevation between 
a focal location and the mean surrounding elevation which we defined 

with a 100-m radius. TPI was calculated using the Topographic Position 
Index tool in SAGA-GIS (http://www.saga-gis.org/saga_tool_doc/7.6.2/ 
ta_morphometry_18.html). Canopy cover was calculated from the can
opy height model as a proportion of vegetation higher than two meters 
within a five-meter buffer around the focal location. We extracted still 
water bodies and wetland land cover polygons from the topographic 
database (scale 1:10 000), and then calculated the proportion of these 
land cover types using a 1000 m or 100 m buffer, respectively for each 
logger location. 

2.7. Statistical modeling of monthly microclimate temperatures 

We used multivariate statistical modeling to investigate environ
mental drivers of the monthly microclimate temperatures, as detailed 
below: 

2.7.1. Response variables 
We aggregated the quality-checked temperature time series to 

monthly means (Tavg), maximums (Tmax) and minimums (Tmin). We 
used the 95th percentile to calculate Tmax, as we expected this to dilute 
the potential effect of unrealistically high individual measurements 
caused by the radiation shield. The three measurement heights (i.e., T1, 
T3, T4), three summary statistics (Tavg, Tmax, Tmin), and 12 months 
led to a total of 108 response variables. 

2.7.2. Predictors 
We included the eight predictors (i.e., elevation, PISR, TPI, canopy 

cover, wetlands, waterbodies, mean soil moisture and snow cover 
duration) in the models to explain variation in the response variables. 
However, as the conditions of the seven focus areas contrast greatly, we 
used a slightly different set of predictors for each area to facilitate model 
realism. For example, in winter 2019–2020 there was no permanent 
snow cover in Southern Finland and thus the snow variable was omitted 
in the model of KAR. Snow cover was also omitted from monthly models 
for other areas when all study locations were snow free for the whole 
month. KAR, HYY, and TII show minimal variation in elevation 
(Table 1). From the initial model results, we noticed that these short 
elevational gradients resulted in unrealistic model estimates for eleva
tion, and thus, it was omitted from the models for these areas. 
Furthermore, the proportion of water bodies was not included in VAR, 
because this focus area has no lakes. 

2.7.3. Multivariate modeling 
We related the response variables to the predictors by fitting linear 

models separately for each month and focus area. We considered only 
linear terms of the eight predictors, because we did not expect strong 
nonlinear responses, and to avoid the risk of overfitting. After running a 
full model with all the relevant predictors included, we ran a step 
function to select the best model based on the AIC value with a both 
backward and forward mode of stepwise search. As a measure of vari
able importance, we compared the explanatory power (R2) of the final 
model to a model in which the focal predictor was randomly permuted 
with the vi function from vip R library (Greenwell and Boehmke, 2020). 
This function also determines the direction of the effect for each pre
dictor based on the sign of the t-statistic, which is analogous to the sign 
of the slope parameter in regression analysis. If the permuted predictor 
is important, the R2 will drop greatly leading to a high importance value. 
The overall explanatory power of the model is also reflected in the 
variable importance scores as the drop in R2 cannot be high if the R2 is 
low in the first place. This also gives less weight for poorly performed 
models when the results are compared or summarized. 
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3. Results 

3.1. Environmental gradients 

Our microclimate station network across the seven focus areas covers 
large environmental gradients (Fig. 2; Table S2) with e.g., elevation 
ranging from 32 to 934 meters and snow cover duration from 0 to 262 
days (KAR to AIL). In most areas, canopy cover ranges from 0 to 100%. 

3.2. Spatio-temporal variability in microclimate temperatures 

The data demonstrate pronounced spatio-temporal variations in the 
microclimate temperatures (Figs. 3; S6; Table 2). The intra-annual 
variation in near-surface (T3) and air temperatures (T4) over all sta
tions was large across the focus areas, for example 64.5◦C and 69.3◦C in 
MAL (tundra), and 61.3◦C and 54.7◦C in HYY (southern-boreal forest), 
respectively. These microclimate temperature variations often exceeded 
the variability measured by the adjacent AWS (Table 2). In general, the 
amplitude of intra-annual soil temperature (T1) variation was ca. 50% of 
the amplitude of T3 and T4 with the largest variation measured in 
tundra (ca. 42.1◦C; MAL) and the smallest variation in the middle boreal 
forest (ca. 22.3◦C; PIS). Spatial variation in the microclimate tempera
tures was pronounced both within and among focus areas as well as 
across seasons (Fig. 4). 

The results demonstrate large instantaneous, within-area thermal 
heterogeneity (Figs. 3; S6; Table 2). For T3, the maximum instantaneous 
difference across all loggers within each focus area ranged from 17.8 ◦C 
(KAR, median=3.3◦C) to 32.3◦C (MAL, 6.5◦C). In the tundra, the largest 

within-area differences occurred mainly during the snowmelt season 
(late spring–early summer). In the southern focus areas (HYY and KAR), 
the magnitude of the thermal heterogeneity in T3 remained fairly con
stant throughout the year. Thermal heterogeneity in T1 was markedly 
suppressed during the snow cover period, especially in the northern 
focus areas (difference ranging from 7.3◦C [MAL, median=5.1◦C] to 
12.4◦C [AIL, 6.9◦C]). The maximum instantaneous difference in T1 was 
largest in the tundra (27.1◦C [MAL, 5.9◦C] and 23.5◦C [AIL, 6.7◦C]) and 
smallest in the southern boreal zone (10.1◦C in PIS, 2.9◦C). Wintertime 
instantaneous differences in T4 were clearly largest in topographically 
heterogeneous tundra areas with the difference ranging from 17.5◦C 
(AIL, 3.0◦C) to 25.6◦C (MAL, 4.2◦C; Fig. S6; Table 2). In contrast, during 
summer, maximum thermal heterogeneity was similar among the tundra 
and boreal focus areas, but the median heterogeneity was highest in the 
southernmost focus areas (HYY and KAR). 

3.3. Environmental drivers of the temperature variability 

The performance of the monthly microclimate models was generally 
good but varied considerably across seasons and focus areas. The 
average model fit (R2) for T1 was 0.44 (minimum R2 was 0.00 and 
maximum 0.87), 0.50 (0.00–0.99) for T3, and 0.57 (0.00–0.99) for T4. 
On average, the Tmax models performed the best (0.53; 0.00–0.99), 
followed by Tavg (0.51; 0.05–0.96) and Tmin (0.49; 0.00–0.89). More 
detailed information about the R2 values is presented in Fig. S7 and 
Table S3. 

Statistical modeling indicated that the drivers of microclimate tem
peratures vary across months and focus areas (Fig. 5). Overall, canopy 

Fig. 2. Environmental gradients covered by the microclimate station network. The figure represents the variability in environmental conditions within the 
seven focus areas (see Table 1 for the abbreviations). Gray dots depict median values. These environmental variables were used as predictors of the monthly 
microclimate temperatures. 
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cover was identified as the most important variable in summer (May
–August) and elevation in winter and shoulder seasons (Septem
ber–April). In general, the relative importance of elevation and snow 
increased by latitude, whereas canopy cover had the largest influence in 
the southernmost focus areas. As expected, water-related variables were 
found to be important in study areas with extensive wetlands and lakes. 

The direction of the effect of canopy cover on temperatures was 
dependent on measurement height, response variable, and season 
(Tables S4–S6). For example, in winter, soil temperatures were 

consistently higher under closed canopies, whereas in summer the di
rection was reversed. In turn, T3 and T4 minimum temperatures were 
higher and maximum temperatures lower under canopies throughout 
the year, but for average temperatures the sign of the effect varied 
among seasons. Soil temperatures were consistently warmer under a 
thick snowpack (indicated by long snow cover duration), but during late 
spring, the sign of the effect turned opposite when slowly melting snow 
patches kept soil temperatures colder compared to the rest of the land
scape. Snow also had a strong effect on near-surface temperatures by 

Fig. 3. Spatio-temporal variability of soil and near-surface temperatures in the focus areas. The polygons represent hourly temperature variability over the 
microclimate stations (number of stations 50–100 per focus area, see Table 1) at two heights, soil temperature (T1) and near-surface temperature (T3), over the study 
period 2019/11/01–2020/10/31. In the sub-panels, red lines show the maximum instantaneous temperature difference within a given focus area (i.e., thermal 
heterogeneity, numerical results in Table 2). 

Table 2 
Intra-annual temperature range of microclimate temperatures and thermal heterogeneity over each focus area. Temperature range over all microclimate 
stations within a focus area was determined for three measurement heights (T1, T3, and T4 for soil, near-surface, and air temperatures, respectively) and adjacent 
automated weather stations (AWS). Instantaneous thermal heterogeneity depicts the maximum (median in brackets) within-area temperature difference at a given 
time.   

Temperature range (◦C) Instantaneous thermal heterogeneity (◦C)  

Intra-annual Annual January July 

Area T1 T3 T4 AWS T1 T3 T4 T1 T3 T4 T1 T3 T4 

MAL 42.1 64.5 69.3 57.2 27.1 (5.9) 32.3 (6.5) 25.6 (4.5) 7.3 (5.1) 17.5 (8.2) 25.6 (4.2) 20.13 (8.3) 16.6 (5.5) 11.0 (3.7) 
AIL 35.6 56.9 64.7 57.2 23.5 (6.7) 30.8 (6.4) 21.1 (4.1) 12.4 (6.9) 20.1 (10.0) 17.5 (3.0) 16.4 (9.3) 16.5 (4.0) 12.5 (3.7) 
VAR 27.6 49.3 66.0 54.1 17.8 (3.9) 28.2 (2.9) 22.8 (3.2) 8.2 (3.7) 7.7 (2.8) 22.8 (3.4) 14.0 (9.5) 16.3 (4.7) 12.8 (3.5) 
TII 29.1 60.8 61.8 53.6 18.0 (3.3) 22.2 (3.3) 16.3 (2.2) 3.8 (2.6) 21.3 (2.6) 9.4 (1.1) 14.2 (8.5) 13.7 (5.1) 10.0 (4.0) 
PIS 22.3 54.2 51.1 52.8 10.1 (2.9) 19.0 (3.1) 11.8 (2.2) 4.3 (2.7) 16.7 (2.6) 4.9 (1.5) 6.4 (4.4) 13.2 (4.3) 9.0 (3.5) 
HYY 26.1 61.3 54.7 45.4 11.5 (3.3) 20.7 (3.6) 16.7 (2.6) 3.4 (2.3) 12.8 (2.7) 5.6 (1.5) 7.9 (5.6) 15.4 (5.4) 13.1 (4.8) 
KAR 28.5 52.1 48.4 37.6 12.0 (3.3) 17.8 (3.3) 12.7 (2.4) 4.2 (3.2) 11.1 (3.6) 5.4 (1.6) 8.2 (4.8) 11.4 (3.7) 10.7 (4.6)  
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increasing Tmin and Tavg and decreasing Tmax. Elevation had, in 
general, a strong negative effect on temperatures, but especially mini
mum T4 temperatures showed strong contrasting effects throughout the 
year. 

4. Discussion 

4.1. Magnitude of thermal heterogeneity 

Our data revealed substantial spatio-temporal variations in micro
climate temperatures with distinct landscape and seasonal patterns. 
Overall, the largest variation in soil and air temperatures was observed 

in the tundra, where local variability in topography, snow cover, vege
tation, and soil moisture create a fine-scale mosaic of thermal conditions 
(Daly et al., 2010; Scherrer and Körner, 2011; Aalto et al., 2013; Niit
tynen et al., 2020). This high thermal variability was poorly represented 
by adjacent AWS that often indicated lower ranges for air temperatures 
compared to our measurements. Thus, these results provide support for 
the argument that weather stations insufficiently capture the range of 
thermal conditions over heterogeneous landscapes, which limits their 
usability in assessing local climate change impacts (Graae et al., 2012; 
Lembrechts et al., 2019). We also found that thermal heterogeneity 
within boreal and tundra landscapes varies markedly at monthly and 
shorter timescales, with the largest instantaneous differences often 

Fig. 4. Microclimate temperature 
variability over two example focus 
areas. Panel a depicts intra-annual near- 
surface temperature (T3) variation over 
the microclimate stations in middle 
boreal forest (TII) and boreal forest- 
tundra (VAR). In TII, the intra-annual 
range in T3 was larger in open measure
ment sites (nearly 40◦C), whereas in 
forested sites the variation was mostly 
below 30 ◦C. In VAR, the largest intra- 
annual range in T3 was found in open 
wetland areas (> 40 ◦C), while areas with 
least annual variation were located either 
in forests or in depressions between fells 
(< 20 ◦C). Canopy cover represents over 
2 m heigh trees. Panel b shows January 
and July temperature time series from 
example microclimate stations (I–IV in 
panel a). The smallest temperature vari
ations over both focus areas were found 
in forested sites (II and IV).   
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exceeding 30◦C near the ground (Fig. 3). This heterogeneity was 
particularly evident in the tundra in early summer during the time of 
partial snow melt over the landscape. Similar patterns, but in smaller 
magnitudes, were also detectable in soil temperatures. While the soil 
temperature heterogeneity during winter was relatively low, the 
near-surface heterogeneity remained high during winter over most focus 
areas. This is likely due to fine-scale variation in snow accumulation, 
which in the studied tundra systems is related to complex topography 
and in boreal forests to canopy interception (Hedstrom and Pomeroy, 
1998; Niittynen et al., 2020). As microclimate is typically not examined 
over different environments and large extents, these thermal differences 
have remained undetected (Aalto et al., 2013; Kemppinen et al., 2021). 
However, our comprehensive study design covering broad geographical 
and environmental gradients enabled us to quantify the magnitude of 
thermal heterogeneity and its drivers across distinct ecosystems and 
landscapes. 

4.2. Drivers of the microclimate temperatures 

Our results show that the main drivers of microclimate temperatures 
vary over landscapes and seasons. For example, in the northernmost 
focus areas in the oroarctic tundra, the elevational gradient clearly has 
the largest influence, especially on the above-surface temperatures via 
the atmospheric lapse rate. Also, the role of local topography is partic
ularly evident in the tundra, where it drives microclimate temperature 
variability by controlling surface net radiation and cold-air pooling (e.g., 
Daly et al., 2010; Dobrowski, 2011). In addition, local topography 
controls spatial snow patterns and soil moisture, which are among the 
key factors creating thermal heterogeneity close to the soil surface and 
controlling many ecosystem processes (Aalto et al., 2013; le Roux et al., 
2013; Niittynen et al., 2020). In our study design, local elevational 
differences diminish towards the southernmost focus areas, and conse
quently, the relative importance of other microclimate drivers increases. 

For example, our data reveal that canopies, water bodies, and wetlands 
can create larger maximum and average thermal heterogeneity in air 
temperatures in forests than observed in the tundra. Forest canopy is 
especially important in the southernmost focus areas where dense can
opies decrease the maximum, but increase the minimum temperatures, 
which leads to buffered thermal conditions compared to open areas. 
Importantly, our analyses show how the role of microclimatic drivers is 
dependent on their landscape structuring and amount of variability. For 
example, this suggest that in other tundra regions with less topograph
ical heterogeneity compared to our focus areas other factors such as 
vegetation or water bodies are likely to be more important drivers of 
microclimate temperature than e.g., elevation and local topographical 
gradients. 

Our data show that drivers of temperature variability are also 
dependent on the height from the surface (De Frenne et al., 2021; 
Maclean and Klinges, 2021). This is demonstrated by the effect of can
opy cover – a dense canopy buffers air and near-surface temperature 
variation whereas soil temperatures follow a distinct seasonal cycle 
where minimum, maximum, and mean temperatures are all consistently 
lower in forests in summer but higher in winter compared to open areas 
(in agreement with De Frenne et al., 2019). In our data, soil tempera
tures were decoupled from elevational gradients, and, on average, 
elevation had the greatest importance for air temperatures. This is 
especially evident in the tundra, where temperatures at 150 cm are less 
affected by heterogeneous surface conditions and are more dependent 
on meso- and macro-scale topographical gradients (Aalto et al., 2017a; 
Maclean et al., 2019). During the study period, temperature inversions 
in the lower atmosphere were so prevalent in our northernmost focus 
areas that even the monthly mean air temperatures positively correlated 
with elevation during some winter months. This is not evident in the 
near-surface temperatures recorded under snow. In general, soil tem
peratures had similar driver contributions in minimum, maximum and 
mean temperatures. Whereas, for near-surface and air temperatures, 

Fig. 5. Relative influence of the environmental drivers explaining monthly microclimate temperature variability. Stacked variable importance scores of the 
predictors in monthly temperature models per temperature variable (Tmin, Tavg, Tmax) for the three measurement heights (T1, T3, and T4) and for the seven study 
areas from north (MAL) to south (KAR). Response variables in the models were the monthly minimum (Tmin), average (Tavg) and maximum temperatures (Tmax). 
Height of the stacked bars also indicate the model fit i.e., a short bar means that the model explained only a little of the temperature variation. TPI = Topographic 
position index. 
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minimum and maximum temperatures often had contrasting variable 
importances and effects. This is probably because soil temperatures are 
less affected by short-term variability in weather and radiation condi
tions, and thus, minimums and maximums are more closely coupled in 
soil temperatures than in air (Ashcroft and Gollan, 2013). These 
height-dependent patterns that we found highlight the importance of 
considering vertical temperature gradients when analyzing microcli
matic heterogeneity in space and time. 

4.3. Methodological uncertainties 

Statistical modeling of microclimates can be challenging, as the same 
variables and model parameters proposed for one location and time may 
not be applicable for other areas and seasons. Temperature variation 
follows physical principles but the commonly used geospatial predictors 
are usually proxies for the underlying mechanisms (e.g., topographic 
position, proximity to water bodies and wetlands). The quality and 
representativeness of such predictors is crucial when interpreting the 
modeling results. Here, we aimed to evaluate the area-specific strength 
of the statistical links between the predictors and the microclimate 
temperatures rather than to produce accurate spatially explicit pre
dictions. Most of the statistical relationships were logical except for few 
individual results. For example, the models suggested that increasing 
wetland cover decreased the minimum and increased the maximum air 
temperatures in our data throughout the year, while in theory, a large 
water body should have the opposite effect, especially during the snow 
and ice-free season. However, in our data the wetland cover was nega
tively correlated with canopy cover in many of the focus areas (the 
smallest Spearman correlation coefficient was -0.71), which may 
confound the found effects. Furthermore, wetlands are typically located 
in topographic depressions, and thus, wetlands may be better proxies for 
cold air pooling potential than a topographic position index (TPI). 
Mechanistic microclimate models are increasingly developed and can 
solve some of these problems, but they are similarly dependent on the 
input data quality and can also be computationally demanding when 
applied over large extents at high spatial resolution (Maclean et al., 
2019). More research is needed to improve the quality of the geospatial 
data fed into statistical and mechanistic microclimate models. 

Measuring microclimate temperatures is prone to errors as the pro
cesses creating measurement errors are the same as those responsible for 
creating the thermal variation (e.g., incoming solar radiation, air mix
ing; Maclean et al., 2021). This is of particular concern for temperature 
measurements conducted above the ground surface and if the sensors 
are exposed to sunlight. Consequently, the sensors themselves can heat 
up, and the temperature recordings of ambient conditions can be sub
stantially overestimated. Radiation shielding around the sensors is 
commonly used to mitigate the issue, but the choice of shielding (e.g., 
material, structure) is not trivial (Maclean et al., 2021). In future studies, 
these measurement errors could be accounted for by, for instance, 
quantifying the possible errors across seasons (e.g., snow covered and 
bare ground), landscapes (contrasting expositions), and weather con
ditions. Solving such practical methodological challenges is especially 
timely as new microclimate networks are emerging (e.g., Greiser et al., 
2018; Lembrechts et al., 2020) to facilitate more accurate predictions of 
future microclimates and associated ecosystem impacts. 

4.4. Future microclimate temperatures and ecosystem implications 

Since the preindustrial time, the macroclimate has warmed 2.3◦C 
over the study domain with pronounced observed and predicted changes 
in thermal seasons, precipitation, and snow cover (Mikkonen et al., 
2015; Bintanja and Andry, 2017; Ruosteenoja et al., 2016, 2019; Luo
maranta et al., 2019). However, microclimates may not directly follow 
changes in macroclimate due to the differing dynamics of the environ
mental drivers and how they are structured over landscapes (e.g., 
Maclean et al., 2016; Aalto et al., 2018; De Frenne et al., 2019). For 

example, elevation gradients and local topography as static drivers will 
create thermal heterogeneity also in the future (Daly et al., 2010; 
Dobrowski, 2011). In turn, climate warming has already delayed lake 
freeze-up and advanced ice break-up (Newton and Mullan, 2021), which 
can affect microclimates of adjacent areas due to prolonged ice-free 
periods that sustain the energy exchange between lake and atmo
sphere (Brown and Duguay, 2010). Changes in wetlands’ water balance 
(due to drainage and restoration) influence their thermal properties, 
energy fluxes, and biogeophysical feedbacks that can lead to altered 
local temperature variability (Menberu et al., 2016; Laine et al., 2019; 
Fernández-Pascual and Correia-Álvarez, 2021; Słowińska et al., 2022). 

In the tundra, changes in snow cover and properties control temporal 
dynamics and magnitude of landscape level thermal heterogeneity, 
especially close to the soil surface (Aalto et al., 2018; Niittynen et al., 
2020). Shortening of the snow season could translate into earlier peaks 
in landscape thermal heterogeneity and a general shift towards more 
thermally homogeneous tundra landscapes. Changes in snow cover 
could also lead to alterations in e.g., permafrost conditions by enabling 
deeper seasonal thaw (Stieglitz et al., 2003). In addition, the expansion 
of shrub vegetation to tundra as a response to climate warming have 
been widely observed (e.g., Sturm et al., 2001; Tape et al., 2006). These 
changes in vegetation communities and their structure may have sig
nificant effects on tundra microclimates via e.g., trapping snow, 
incepting radiation, and altering biophysical feedbacks (Myers-Smith 
et al., 2011; Mekonnen et al., 2021). In both biomes, abiotic and biotic 
disturbances, such as windstorms, wildland fires, and pest outbreaks, 
can lead to changes in local temperatures due to their effect on e.g., 
vegetation structuring that in turn controls many of the microclimatic 
processes (Venäläinen et al., 2020; De Frenne et al., 2021). 

Microclimates and their changes have implications for the ecology 
and functioning of boreal and tundra environments due to the inherent 
linkages to the organisms’ performance and ecosystem processes 
(Maclean et al., 2016; Körner and Hiltbrunner, 2018; Bentz et al. 2019; 
Zellweger et al., 2020; Seibold et at., 2021). However, mostly due to a 
lack of observation data such links have been anticipated rather than 
directly detected (De Frenne and Verheyen, 2016). It is only with 
contemporary developments in data loggers and remote sensing (e.g., 
light detection-and-ranging, LiDAR) that extensive mapping of canopy 
structures and microclimates has become a reality (Lenoir et al., 2017; 
Zellweger et al., 2019; Leipe and Carey, 2021). Using microclimate data 
will allow more organism-centered approaches to determine species 
range boundaries and related climate change dynamics (Potter et al., 
2013; Bentz et al., 2019). For example, microclimate could be incor
porated into investigations of the temperature-driven leading and 
trailing edges, where species’ responses may be susceptible to the 
availability of suitable microclimate and associated microrefugia 
(Hylander et al., 2015; Keppel et al., 2015). Moreover, a landscape with 
various microclimates is also likely to transition slower to an alternate 
state, whereas a landscape with homogeneous microclimate may tran
sition due to minor temperature shifts in the macroclimate (Randin 
et al., 2009; Lenoir et al., 2013; Aalto et al., 2018). Therefore, thermally 
heterogeneous landscapes could be more resilient against climate 
changes and short-term climate extremes (e.g., drought), and recover 
faster and/or persist better in response to perturbations than their low 
resilience counterparts (Kühsel and Blüthgen, 2015). With further ex
pansions, our comprehensive study setting could also provide possibil
ities to analyze, model, and compare the effects of microclimate on 
ecosystem functioning of pristine and managed boreal forests. This is 
relevant, since different forest types and management practices can 
produce substantial near-ground microclimate variation (De Frenne and 
Verheyen, 2016; Greiser et al., 2018). 

5. Conclusions 

We showed remarkable multi-level microclimate temperature vari
ability over boreal forest and tundra biomes based on the data from 
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hundreds of microclimate stations. The data revealed high instantaneous 
thermal heterogeneity over the landscapes, with the largest differences 
found in the tundra during wintertime and in southern boreal forest 
during summer. Our results suggested that microclimate temperature 
variability in southern boreal forests is mostly driven by canopy cover 
and proximity of water covers. In the tundra, the microclimatic tem
perature variability is most strongly linked to the elevation gradient, 
variations in topographic solar radiation and snow cover. Here we have 
also showed that the relative importance and effects of microclimate 
drivers and landscape thermal heterogeneity vary seasonally. This calls 
for careful investigation of the temporal aspects in future microclimate 
studies. As microclimate temperatures are the most proximally related 
to organisms’ performance and various ecosystem functions, our new 
comprehensive data will be highly relevant in various ecosystem ap
plications aiming to understand and project the biome-wide responses to 
contemporary climate change. 

Data availability 

The raw microclimate data and code to preprocess these data are 
available in the study-area-specific Github repositories (https://github. 
com/poniitty?tab=repositories). The preprocessed data and code used 
in this study are available in a Github repository (https://github. 
com/poniitty/Boreal-Tundra_Microclimates) and a static version of 
this repository will be deposited and openly published in Zenodo upon 
acceptance for publishing. 
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funding from Nordenskiöld samfundet, Tiina and Antti Herlin founda
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