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ARTICLE OPEN

Heat stress reduces the contribution of diazotrophs to coral
holobiont nitrogen cycling
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Jean-Baptiste Raina 11, Anders Meibom 3,12 and Christian R. Voolstra 1,2
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Efficient nutrient cycling in the coral-algal symbiosis requires constant but limited nitrogen availability. Coral-associated
diazotrophs, i.e., prokaryotes capable of fixing dinitrogen, may thus support productivity in a stable coral-algal symbiosis but could
contribute to its breakdown when overstimulated. However, the effects of environmental conditions on diazotroph communities
and their interaction with other members of the coral holobiont remain poorly understood. Here we assessed the effects of heat
stress on diazotroph diversity and their contribution to holobiont nutrient cycling in the reef-building coral Stylophora pistillata from
the central Red Sea. In a stable symbiotic state, we found that nitrogen fixation by coral-associated diazotrophs constitutes a source
of nitrogen to the algal symbionts. Heat stress caused an increase in nitrogen fixation concomitant with a change in diazotroph
communities. Yet, this additional fixed nitrogen was not assimilated by the coral tissue or the algal symbionts. We conclude that
although diazotrophs may support coral holobiont functioning under low nitrogen availability, altered nutrient cycling during heat
stress abates the dependence of the coral host and its algal symbionts on diazotroph-derived nitrogen. Consequently, the role of
nitrogen fixation in the coral holobiont is strongly dependent on its nutritional status and varies dynamically with environmental
conditions.
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INTRODUCTION
The association with microbial symbionts is central to the ecological
success of reef-building corals in the oligotrophic tropical ocean
[1, 2]. The close metabolic coupling between heterotrophic corals
and their phototrophic algal symbionts supports their immense
productivity, has given rise to their rapid radiation, and has led to
the formation of coral reef ecosystems [3–7]. Consequently, the
destabilization of this symbiosis in times of anthropogenic environ-
mental change is posing a direct threat to the functioning of coral
holobionts, i.e., the ecological unit of corals and their associated
microorganisms, and the reefs they support [8–10]. In recent years,
ocean warming has repeatedly caused mass coral bleaching, the
breakdown of the coral-algal symbiosis, frequently followed by the
death of the coral host and subsequent ecosystem-wide reef
degradation [11, 12]. An in-depth understanding of the processes
underlying the functioning and destabilization of the coral-algal
symbiosis is thus required to predict or mitigate the effects of
climate change on coral reefs [13–16].
Efficient recycling of organic and inorganic carbon in the coral-

algal symbiosis depends on the nutrient-limited state of the algal

symbionts [17–19]. In a stable state of the symbiosis, low
bioavailable nitrogen availability limits algal growth and results
in the accumulation of photosynthates in algal cells [20, 21]. The
release of these excess nutrients, in turn, fuels the energy
metabolism of the coral host. Although low levels of nitrogen
assimilation are required to support the holobiont’s net produc-
tivity and growth [22], increases in the coral host’s catabolic
activity during heat stress or other environmental stressors may
increase nitrogen availability for the algal symbionts. Excess
nitrogen availability may destabilize nutrient recycling in the coral-
algal symbiosis resulting in a breakdown of coral holobiont
functioning and eventually host starvation [15, 23–26]. The
stability and functioning of the coral holobiont under changing
environmental conditions thus depend on its ability to maintain a
limited nitrogen availability for the algal symbionts [16, 25].
Importantly, nitrogen assimilation in the coral holobiont is not

limited to the coral host and its algal symbionts. In addition to
heterotrophic feeding and the uptake of nutrients from seawater,
most coral holobionts also show detectable rates of nitrogen
fixation, i.e., the prokaryotic conversion of atmospheric dinitrogen
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into bioavailable ammonium [27–29]. Diazotrophs, Bacteria, and
Archaea, capable of nitrogen fixation, are common coral
associates and show indications of host specificity [30–34]. As
the abundance and activity of diazotrophs are highly dynamic and
influenced by environmental change [35–39], nitrogen fixation
may either stabilize or destabilize coral holobiont functioning
depending on prevailing environmental conditions [25]. During
periods of low environmental nitrogen availability, nitrogen
fixation activity is positively correlated with coral holobiont
productivity and could fulfill up to 11% of the algal symbionts’
nitrogen requirement [38]. In this context, the stimulation of
nitrogen fixation rates by temperature stress or eutrophication has
been proposed to enhance the productivity and resilience of coral
holobionts during stress [40–42]. In addition, stimulated nitrogen
fixation and increased nitrogen to phosphorus ratios in the
holobiont have been reported during the breakdown of the coral-
algal symbiosis under elevated sugar concentrations [43]. The
importance of diazotrophs, thus, seems to depend on the fate of
fixed nitrogen in the coral holobiont and its effects on other
holobiont members [44]. However, our understanding of the
environmental drivers controlling nitrogen fixation and the
assimilation of diazotroph-derived nitrogen in the coral holobiont
remains largely speculative at this point.
Recent studies showed that increased metabolic energy

demands and the enhanced release of catabolic waste products
may severely alter coral holobiont nutrient cycling during heat
stress [15, 45]. We hypothesized that under such conditions,
stimulated nitrogen fixation activity would enhance nitrogen
availability for algal symbionts and thus contribute further to the
destabilization of the coral-algal symbiosis. To test this, here we
assessed the effects of heat stress on nitrogen fixation in the coral
Stylophora pistillata from the central Red Sea. Combining amplicon
sequencing, nutrient flux incubations, isotope labeling, and
NanoSIMS imaging, we aimed to assess how heat stress affects
diazotroph community structure, nitrogen fixation activity, and
the assimilation of diazotroph-derived nitrogen in the coral
holobiont before the onset of bleaching.

MATERIALS AND METHODS
Coral collection and experimental design
Five colonies of S. pistillata were collected at Abu Shosha reef (22°
18ʹ16.3ʺN; 39°02ʹ57.7ʺE) in the central Red Sea close to the Saudi Arabian
coast in September 2018. The colonies were collected at a water depth of
~5m, at least 10 m apart, and were immediately transported to the indoor
aquaria facilities of the Coastal and Marine Resources core laboratory (22°
18′20.5″N; 39°06′ 14.3″E) at the King Abdullah University of Science and
Technology (KAUST). The experiments for this study were conducted in
parallel to those detailed in Rädecker et al. [15] using fragments of the
same coral colonies and experimental setup. Coral colonies were
fragmented into individual branches of ~5 cm length and nubbins were
distributed over two 150 L aquaria per colony (5 colonies × 2 aquaria= 10
aquaria total). Each tank was filled with freshly collected seawater from
Abu Shosha reef (salinity= 40.1 ± 0.2; NH4

+= 0.48 ± 0.03 μM; NO3
−= 0.19

± 0.05 μM; PO4
3−= 0.03 ± 0.00 μM) with a daily water renewal rate of 25%,

to maintain stable water parameters inside the aquaria over the course of
the experiment (means ± SE for day 10 across aquaria and treatments:
salinity= 40.1 ± 0.2; NH4

+= 0.48 ± 0.03 μM; NO3
−= 0.19 ± 0.05 μM; PO4

3−

= 0.03 ± 0.00 μM). Seawater nutrient concentrations were measured in
three technical replicates per sample using a SA3000/5000 nutrient auto-
analyzer (Skalar Analytical B.V, Breda, The Netherlands) according to the
manufacturer’s instructions. Each aquarium was equipped with a
temperature controller (D-D The Aquarium Solution Ltd, Essex, UK), a
600-W heater (Schego, Offenbach, Germany), a current pump (Tunze,
Penzberg, Germany), and a Radion light system (Ecotech Marine, Inc.,
Bethlehem, PA, USA) to maintain aquaria at a stable temperature of 29.1 °C
and a light/dark regime mimicking in situ conditions of the collection site
and depth (mean daytime irradiation= 380 μmol quanta m−2 s−1, peak
daytime irradiation= 750 μmol quantam−2 s−1). No supplemental feeding
beyond naturally occurring seawater plankton was used in the experiment.

Following 7 days of acclimation, five of the aquaria (one per coral
colony) were gradually ramped up to a temperature of 32.9 °C (absolute
annual maximum at the collection site in 2017) over the course of 3 days,
while the remaining five aquaria were maintained at a constant 29.1 °C
(annual mean at the collection site in 2017) [46]. After 7 days at the
maximum temperature (i.e., on day 10 of the experiment), replicate
fragments from all colonies were sampled in both treatments for all
molecular and physiological analyses. For molecular analyses, one nubbin
per colony and treatment was immediately flash-frozen in liquid nitrogen
and stored at −80 °C until further processing. For physiological analyses,
one nubbin per colony and treatment was used for each of the
incubations, which were performed immediately after the collection.
Investigated response parameters included overall bacterial community
composition (16S rRNA gene amplicon sequencing), diazotroph commu-
nity composition (nifH amplicon sequencing), nitrogen fixation activity
(acetylene reduction assay), net assimilation of diazotroph-derived
nitrogen (15N2 isotope labeling+ bulk analysis), and partitioning of
diazotroph-derived nitrogen in the coral holobiont (NanoSIMS imaging
of 15N2 isotope assimilation). For details on individual response parameters,
see below.

DNA extraction, amplification, and sequencing
Individual coral fragments were placed into Ziploc bags, covered in 0.6 mL
of AP1 buffer (Qiagen, Hilden, Germany) and air-blasted to remove their
tissue from the coral skeleton using air pressure for 1 min. RNAse A
solution (6 µL from a 100mg/mL stock) was immediately added to the
retrieved tissue slurry in AP1 and 400 µL of the resulting slurry was directly
used for DNA extraction with the DNeasy Plant Mini Kit (Qiagen) according
to the manufacturer’s instructions. In parallel, 400 µL of AP1 buffer+ RNase
A were used for a no sample (null) DNA extraction to control for possible
kit/lab contaminants. The yield and quality of all extractions were assessed
using a Nanodrop 2000 (ThermoFischer, Waltham, MA, USA) [47].
For the characterization of the overall prokaryotic community composi-

tion, the hypervariable regions V5 and V6 of the 16S rRNA gene were
amplified using the primers 784F 5′-TCGTCGGCAGCGTCAGATGTGTATAA
GAGACAGAGGATTAGATACCCTGGTA-3′ and 1061R 5′-GTCTCGTGGGCTCG
GAGATGTGTATAAGAGACAGCRRCACGAGCTGACGAC-3′ (Illumina overhang
adaptor sequences are underlined) [47, 48]. PCRs were run in triplicate
using a reaction volume of 10 µL with 5 µL of Qiagen multiplex PCR master
mix, 10 ng of DNA template, and final primer concentrations of 0.5 µM for
each primer, respectively. PCR cycling conditions consisted of an initial
activation step at 95 °C for 15min, followed by 27 cycles of 94 °C for 30 s,
55 °C for 30 s, and 72 °C for 30 s, followed by a final extension step at 72 °C
for 10min. Successful amplification of all samples was confirmed by gel
electrophoresis before products of triplicate PCRs for each sample were
pooled. PCR products were subjected to an indexing PCR (8 cycles) using
the Nextera XT Index Kit v2 (Illumina, San Diego, USA) according to the
manufacturer’s instructions. Indexed samples were then cleaned and
normalized using the SequalPrep Normalization Plate Kit (Invitrogen,
Carlsbad, CA, USA), pooled at equimolar ratios, and verified on the Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Amplicon
libraries were sequenced at the KAUST Bioscience core laboratory on the
MiSeq platform (Illumina) using 2 × 301 bp overlapping paired-end reads
with 20% spiked-in phiX.
For the characterization of the diazotroph community composition, the

primers IGK3 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCIWTHTAY
GGIAARGGIGGIATHGGIAA-3′ and DVV 5′-GTCTCGTGGGCTCGGAGATGTGTA
TAAGAGACAGATIGCRAAICCICCRCAIACIACRTC-3′ (Illumina overhang adap-
tor sequences are underlined) were used to amplify a region of the nifH
gene due to their broad taxonomic range and high specificity as discussed
in Gaby and Buckley [49]. PCRs were run in triplicate using a reaction
volume of 10 µL with 5 µL of Qiagen multiplex PCR master mix, 10 ng of
DNA template, and final concentrations of 1.2 µM for each primer,
respectively. PCR cycling conditions consisted of an initial activation step
at 95 °C for 15min, followed by 40 cycles of 95 °C for 45 s, 57 °C for 45 s,
and 72 °C for 60 s, followed by a final extension step at 72 °C for 10min.
Successful amplification of all samples was confirmed by gel electrophor-
esis before products of triplicate PCRs for each sample were pooled and
purified using Agencourt AMPure beads (Agencourt Bioscience Corpora-
tion, Beverly, MA, USA). Purified PCR products were subjected to an
indexing PCR (8 cycles) using the Nextera XT Index Kit v2 (Illumina, San
Diego, CA, USA) according to the manufacturer’s instructions. Indexed
samples were then cleaned and normalized using the SequalPrep
Normalization Plate Kit (Invitrogen), pooled at equimolar ratios and
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verified on the Agilent 2100 Bioanalyzer (Agilent Technologies). Amplicon
libraries were sequenced at the KAUST Bioscience core laboratory on the
MiSeq platform (Illumina) using 2 × 301 bp overlapping paired-end reads
with 20% spiked-in phiX.

Sequence processing and analysis
For the 16S rRNA gene-based characterization of the prokaryotic
community composition, demultiplexed sequence reads (~54,000 per
sample on average) were processed in “DADA2” v.1.18.0 [50] running in “R”
v.4.0.3 [51]. Following removal of primer sequences in “DADA2,” reads were
quality filtered with a maximum expected error (max EE) of 2, poor quality
read ends were trimmed (truncQ= 2), and forward and reverse reads were
truncated at 240 and 160 bp, respectively. The error rates were estimated
based on all samples and used for inference of true sequence variants.
Following the merging of paired reads and removal of chimeras, amplicon
sequence variants (ASVs) were classified against the SILVA database
version 138 [52] and all non-bacterial ASVs, as well as those with more than
1% relative abundance in negative extractions, were removed from the
dataset in “phyloseq” v.1.34.0 [53]. This yielded an average of ~35,000
retained reads per sample distributed over 1,797 ASVs. The effect of the
temperature treatment on the bacterial community composition was
assessed at the ASV level. For this, the dataset was cleaned from sparsely
distributed ASVs using “pime” v.0.1.0 with a prevalence threshold of 40%
(~23,000 reads per sample after filtering) and communities were compared
using analysis of similarities (ANOSIM) with Bray–Curtis dissimilarities
calculated from relative abundances of ASVs as implemented in “vegan”
2.5-7 [54, 55]. Differential abundance of bacterial taxa between tempera-
ture treatments was assessed using linear discriminant analysis effect size
(LEfSe) as implemented in the “microbial” R package v.0.0.19 [56].
For the nifH-based characterization of the diazotroph community

composition, primers were removed from demultiplexed sequence reads
(~202,000 per sample) with “Cutadapt” v.2.10 [57]. Using “DADA2” v.1.18.0
[50] running in “R” v.4.0.3 [51], reads were quality filtered with a max EE of
2, poor quality read ends were trimmed (truncQ= 2), and forward and
reverse reads were truncated at 220 and 160 bp, respectively. The error
rates were estimated based on all samples and used for inference of true
sequence variants. Following the merging of paired reads and removal of
chimeras, ASVs were translated to the protein level with FrameBot v.1.2.0
using the included nifH reference file [58]. Translated sequences were
assigned to nifH gene clusters following Meunier et al. [59], using a
consensus assignment based on three criteria adapted after Angel et al.
[60]: first, sequences were aligned in “MAFFT” v7.475 [61] and analyzed
using a Classification and Regression Tree model following Frank et al. [62].
Second, an Evolutionary Placement Algorithm tree [63] was constructed
using the corresponding RaxML implementation and sequences, and were
placed on the reference tree after alignment against a reference dataset
containing all nifH gene clusters, as implemented in the NifMAP pipeline
[60]. Third, sequences were queried against the curated nifH gene
database provided by the Zehr lab (https://wwwzehr.pmc.ucsc.edu/
nifH_Database_Public) for gene clustering as well as taxonomic assign-
ment. Based on this approach, ASVs assigned to nifH paralogs not involved
in nitrogen fixation (clusters IV&V) as well as all ASVs with more than 1%
relative abundance in negative extraction were excluded from the dataset
in “phyloseq” v.1.34.0 [53]. This yielded an average of ~65,000 retained
reads per sample (93,000–186,000 reads including nifH paralogs)
distributed over 238 ASVs (876 ASVs including nifH paralogs). The effect
of the temperature treatment on the diazotroph community composition
was assessed at the ASV level. To do this, the dataset was cleaned from
sparsely distributed ASVs using “pime” v.0.1.0 with a prevalence threshold
of 60% (~42,000 reads per sample after filtering) and communities were
compared using ANOSIM with Bray–Curtis dissimilarities calculated from
relative abundances of ASVs as implemented in “vegan” 2.5-7 [46, 47].
Differential abundance of diazotroph taxa between temperature treat-
ments was assessed using LEfSe as implemented in the “microbial” R
package v.0.0.19 [56].

Acetylene reduction assays
Nitrogen fixation rates of coral holobionts were quantified indirectly using
the acetylene (C2H2) reduction assay [64]. For this, corals were transferred into
1 L glass incubation chambers (Weck, Wehr-Öflingen, Germany) and
submerged in filtered seawater (0.22 µm) to a final volume of 720mL. After
this, 80mL of C2H2-saturated seawater (continuously bubbled with C2H2 for
30min prior to incubations) was added and the chambers were sealed gas-
tight with a modified glass lid containing a syringe injection port. Ten percent

(20mL) of the gas headspace was replaced with pure acetylene. Incubation
chambers were transferred into temperature-regulated water baths
equipped with magnetic stirrers and Radion lights (Ecotech Marine, Inc.) to
maintain temperature and light conditions identical to treatment and aquaria
conditions. At the beginning and after 24 h of incubation, 2.5ml gas samples
were collected from the chamber headspace with a gas-tight syringe
equipped with a push-pull valve (Trajan, Ringwood, Australia) and transferred
into vacuum blood collection tubes for subsequent analysis. Ethylene (C2H4)
concentrations in the gas samples were determined using gas chromato-
graphy with a helium pulsed discharge detector (Agilent 7890B GC system
with HP-Plot/Q column; lower detection limit for C2H4: 0.3 p.p.m.). Rates of
C2H4 evolution during the incubations were calculated based on changes in
C2H4 concentrations in the chamber taking into account the temperature-
dependent solubility of C2H4 in seawater [65] as well as background fluxes of
seawater controls without corals to account for possible planktonic
background C2H4 production (ca. an order of magnitude lower than in coral
incubations) [65]. C2H4 evolution rates were converted to their equivalent
nitrogen fixation rates using the theoretical conversion factor of 4 and
normalized to the surface area of coral fragments [66]. Importantly, the
choice of the correct conversion factor is widely debated and may depend
on the species and environmental context, as such absolute rates should be
interpreted with caution [67]. For rate normalization, surface areas of coral
fragments were estimated by 3D computer modeling [68]. Forty to 50 photos
were taken of the coral fragments from all angles. The Autodesk Photo-to-3D
cloud service (Autodesk, Mill Valley, CA, USA) was used to generate 3D
models, which were used for surface area analysis with ReCap Photo v.4.2.0.2
(Autodesk).

Isotope labeling and bulk isotope analysis
To quantify the assimilation of microbially fixed nitrogen in the coral
holobiont, an isotope labeling approach with 15N2 isotope-enriched
seawater was adapted after the dissolution technique outlined in Wilson
et al. [69]. First, filtered seawater (0.22 µm) was degassed by constant
stirring at low pressure (<200 mbar) for 30 min and degassed seawater
was transferred into 1 L borosilicate bottles with gas-tight rubber septa. To
allow for higher 15N2 concentrations during incubations without depleting
oxygen (O2) levels, bottles were injected with 25 mL of a gas mixture
containing 80% 15N2 (98 atom%, Cambridge Isotope Laboratories,
Tewksbury, MA, USA) and 20% O2 using a gas-tight syringe equipped
with a push-pull valve (Trajan). Bottles were vigorously shaken until the
bubble volume remained stable and the bottles were stored under
constant agitation at 4 °C overnight. 15N2-enriched seawater and freshly
filtered seawater (0.22 µm) were mixed at equal parts for the final
incubations. Notably, this approach did not compensate for the reduction
of pCO2 during the degassing. As such, we cannot rule out that alterations
in seawater carbonate chemistry (albeit consistent across all treatments)
may have had minor effects on coral physiology during the incubations.
For the isotope labeling, corals were incubated in bubble-free, sealed 1 L
glass chambers (Weck) with gas-tight glass lids. Incubation chambers were
transferred into temperature-regulated water baths equipped with
magnetic stirrers and Radion lights (Ecotech Marine, Inc.) to maintain
temperature and light conditions identical to treatment and aquaria
conditions. After 24 h, the seawater in the incubations was replaced with
equal parts of 15N2-enriched seawater and freshly filtered seawater (0.22
µm), and the chambers were sealed again for another 24 h of incubation.
After a total of 48 h, incubations were terminated and corals were
sampled for isotope analysis. The tip of coral fragments (~0.5 cm) was
removed using a clipper and processed for NanoSIMS analyses as outlined
below. The remaining fragment was transferred into a ziplock bag,
covered in 2 mL of deionized water, and its tissue was removed from the
coral skeleton using air pressure. The resulting tissue slurry was freeze-
dried and homogenized subsamples were transferred into tin capsules for
bulk N isotope analysis. Total nitrogen content, as well as 15N/14N ratios,
were measured using an elemental analyzer (Thermo Flash EA 1112)
coupled to a stable isotope mass spectrometer (IRMS, DELTA V
Advantage). Notably, we did not quantify concentrations of 15N2 in the
incubation water. Hence, 15N/14N ratios do not allow for absolute
quantification of nitrogen assimilation rates in the present study.
However, as all corals were incubated in the same incubation water with
identical 15N2 concentrations, levels of 15N enrichments provide a direct
reflection of relative nitrogen assimilation rates in these corals. For this,
levels of 15N enrichment were expressed using the delta (δ) notation in
units per mil of stable isotope ratios calculated as: δ15N (‰)=
(15N/14Nlabeled sample/

15N/14Nunlabeled sample− 1) × 1,000.
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NanoSIMS imaging
Following 15N2 incubations, tips of coral fragments were immediately
transferred into a fixative solution (1.25% glutaraldehyde and 0.5%
paraformaldehyde in 0.1 M phosphate buffer) at 4 °C for 24 h. Fixed
samples were washed once in phosphate-buffered saline (1×), decalcified
in 0.1 M ethylenediaminetetraacetic acid (exchanged daily) for 2 weeks
after which the tissue was dissected into a strip of two to three individual
polyps. The tissue was dehydrated in a series of increasing ethanol
concentrations (50%, 70%, 90%, and 100%), transferred to acetone, and
gradually infiltrated with increasing concentrations of SPURR resin (25%,
50%, 75%, and 100%). Subsequently, tissues were embedded in SPURR
resin and cut into 170 nm sections using an Ultracut E microtome (Leica
Microsystems, Wetzlar, Germany) and mounted on pulse-discharge silicon
wafers. Wafers with sample sections were gold-coated (ca. 15 nm) and
analyzed with the NanoSIMS 50 ion probe [70] at the Center for
Microscopy, Characterization, and Analysis at the University of Western
Australia. Surfaces of samples were bombarded with a 16 keV primary Cs+

beam focused to a spot size of about 100 nm with a current of ~2 pA.
Secondary molecular ions 12C12C−, 12C13C−, 12C14N−, and 12C15N− were
simultaneously collected in electron multipliers at a mass resolution (M/
ΔM) of about 8,000. Images for all targeted secondary molecular ions were
collected by rastering the primary beam across the sample with a dwell
time of 9 ms per pixel; six planes were recorded for each area. Charge
compensation was not necessary. Although samples from all coral colonies
were analyzed on the NanoSIMS, only data and images from the colony
with the highest 15N enrichment level in its tissue (including both control
and heat stress conditions) are shown here. For this colony, at least 25
images across the polyp tissue (30 μm raster with 256 × 256 pixels) were
collected from both treatments, respectively. To avoid any biases between
samples due to differences in analyzed tissue areas within the polyp, only
images containing both host tissue and algal symbiont cells were included
in the analysis. Following this criterion, 15 images from the control as well
as the heat treatment were used for the comparison of 15N/14N ratios,
respectively. Images were processed with the ImageJ plugin OpenMIMS
(National Resource for Imaging Mass Spectrometry, https://github.com/
BWHCNI/OpenMIMS/wiki). After drift correction, the individual planes were
summed and the 12C14N− maps were used to draw two regions of interest
(ROI) per image containing either all host gastrodermis or all algal
symbionts cells and the δ15N of each ROI was calculated as outlined above.

Statistical analyses of nitrogen fixation activity and
assimilation rates
All statistical analyses were performed in “R” v.4.0.3 [51]. Differences in
nitrogen fixation rates (C2H2 reduction), as well as

15N2 assimilation (IRMS),
were analyzed in a paired design based on colony replicates using a sign
test. The relationship between nitrogen fixation rates and 15N2 assimilation

was assessed via a correlation analysis using Pearson’s product–moment
correlation coefficient. NanoSIMS measurements of δ15N in the host and
symbiont tissue/cells were analyzed using a two-way analysis of variance
using holobiont compartment and treatment as explanatory variables.

RESULTS AND DISCUSSION
Diazotroph community composition varies with temperature
To assess the role of diazotrophs in the early response of the coral
holobiont to heat stress, we sampled the colonies of S. pistillata on
day 10 of the experiment (7 days at a maximum temperature of
32.9 °C). At this time point, corals from heat stress and control
treatments maintained a healthy appearance, similar levels of
algal symbiont densities, and showed no visual signs of bleaching
(for an extended discussion of processes and timeframes of
bleaching during the experiment, please refer to Rädecker et al.
[15]). The early heat-stress response did not affect overall bacterial
community composition (ANOSIM, p= 0.145; Fig. S1). Members of
the order Oceanospirillales, which are prevalent in healthy corals
and S. pistillata in particular [48, 71, 72], represented the largest
component of the coral microbiomes from both treatments (~20%
of 16S rRNA sequences).
In contrast to the stable overall bacterial microbiome composi-

tion, nifH sequencing revealed that heat stress caused a distinct
shift in the community composition of diazotrophs (ANOSIM, p=
0.049). This shift was not driven by the loss or the recruitment of
novel taxa but rather by variations in the relative abundance of
taxa already present in the holobiont (Fig. 1A, B). The diazotroph
community was largely dominated by the orders Alteromonadales
and Chroococcales accounting for 65% and 27% of nifH sequences
in colonies from the ambient control, respectively. Heat stress,
however, caused a significant decline in the relative abundance of
Chroococcales (LEfSe, χ2= 3.94, p= 0.047) accompanied by the
proportional (albeit not significant) increase of Alteromonadales in
the diazotroph community (LEfSe, χ2= 2.46, p= 0.117) (Fig. 1B).
Importantly, Chroococcales were previously identified as endo-
symbionts in the epithelium of the Caribbean coral Montastrea
cavernosa [73] and have been proposed to be an important source
of fixed nitrogen for algal symbionts in these corals [74].
Consequently, the observed shifts in diazotroph community
composition could directly affect nitrogen availability for other
holobiont members during heat stress.
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Algal symbionts assimilate diazotroph-derived nitrogen in a
stable coral holobiont
Using the acetylene reduction technique, we estimated daily
nitrogen fixation rates in S. pistillata holobionts. Under ambient
control conditions (i.e., 29.1 °C), coral holobionts showed detect-
able rates of nitrogen fixation around 1.0 ± 0.8 nmol N2 cm

−2

day−1 in line with rates previously reported for corals from this
region (Fig. 2A) [31, 75, 76]. Further, 15N2 isotope labeling resulted
in enriched δ15N values in the soft tissue of coral holobionts
(mean ± SE= 16.0 ± 4.7‰), which positively correlated with nitro-
gen fixation rates across coral colonies (Pearson’s correlation, r=
0.99, p= 0.002, Fig. 2B, C). Although these nitrogen fixation rates
may be relatively low compared to other nutrient sources, they are
a non-negligible component of the overall nutrient cycling in the
nitrogen-limited S. pistillata holobiont.

To identify which holobiont partner(s) assimilated diazotroph-
derived nitrogen in the coral holobiont, we used NanoSIMS
imaging to trace the incorporation of the 15N2 isotope marker in
the coral colony with the highest nitrogen fixation activity
(Fig. 3A–D). Overall, the algal symbionts showed significantly
higher levels of 15N enrichment than the coral host tissue (118.7 ±
9.4‰ (symbionts), 9.5 ± 1.6‰ (host); Tukey’s honestly significant
difference (HSD), p < 0.001, Fig. 3F). These observations are
consistent with previous reports for S. pistillata from the Great
Barrier Reef and show that a large fraction of diazotroph-derived
nitrogen is eventually assimilated by the algal symbionts [33]. In
addition, NanoSIMS images revealed the presence of small 15N
enrichment hotspots in the host epithelium that displayed two
distinct morphologies: oval compartments/cells 2–3 µm in length
and clusters of smaller circular and rod-shaped compartments/
cells with 1–3 µm in length (Fig. 3B, C). Although the NanoSIMS
images do not allow us to elucidate the identity of these hotspots,
their shape and location are broadly consistent with previous
reports of the presence of endosymbiotic bacteria in the coral
holobiont [73, 77–79]. Specifically, the larger oval hotspots
resemble observations of Chroococcales in the epithelium of M.
cavernosa, whereas the rod-shaped clusters resemble previously
described bacterial aggregates in the coral tissue in their structure
and localization [73, 77–79]. It is thus plausible that the observed
epithelial 15N hotspots represent endosymbiotic diazotrophs in
the tissue of S. pistillata. However, if these 15N hotspots are indeed
diazotrophs, they are not situated near the algal symbionts that
are the primary sink of diazotroph-derived nitrogen. In many other
phototroph–diazotroph symbioses, diazotrophs predominantly
release fixed nitrogen via the passive diffusion of ammonium
[80]. Although the ways of nitrogen release by coral-associated
diazotrophs are currently unknown, it is plausible that passive
ammonium release and/or the catabolic breakdown of diazo-
trophs during host digestion may contribute to the inorganic
nitrogen pool in the holobiont. If this is the case in S. pistillata, the
uneven partitioning of diazotroph-derived nitrogen between the
coral host and its algal symbionts likely reflects the respective
metabolic demands of symbiotic partners for external nitrogen
sources. In this scenario, the nitrogen-limited state of algal
symbionts might support strong concentration gradients in the
host tissue, which would enable efficient assimilation of exogen-
ous nitrogen (derived from either diazotrophs or from the
surrounding seawater) [81]. In a stable holobiont state, diazo-
trophs thus provide a nitrogen source to support algal symbiont
growth and allow for net productivity of the coral holobiont
(Fig. 4A).

Reduced assimilation of fixed nitrogen by algal symbionts
despite increased nitrogen fixation activity during heat stress
On day 10 of the experiment, heat stress caused a 74% increase in
nitrogen fixation rates (indirectly quantified as acetylene reduc-
tion) compared to coral holobiont rates from ambient control
conditions (sign test, z= 2.24, p= 0.025, Fig. 2A). Similar increases
in coral-associated nitrogen fixation during heat stress have been
previously reported for other coral species [40, 41], suggesting
that the here reported processes are unlikely restricted to the S.
pistillata holobiont, but may be a common feature of coral-
associated diazotroph communities. 15N2 isotope labeling in this
study revealed that the additional fixed nitrogen was not
assimilated in the soft tissue of the holobiont, in which 15N
enrichment decreased by 30% compared to ambient controls
(sign test, z= 2.24, p= 0.025, Fig. 2B). NanoSIMS analysis
corroborated this observation, revealing that the 15N enrichment
remained stable in the host tissue (Tukey’s HSD, p= 0.976) but
declined by 53% in the algal symbionts compared to ambient
controls (Tukey’s HSD, p < 0.001, Fig. 3E, F). Furthermore, we did
not detect any epithelial 15N enrichment hotspots in corals
exposed to heat stress, suggesting lower abundances of
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diazotrophs and/or lower nitrogen fixation activity. The overall
increase in nitrogen fixation activity in the coral holobiont during
heat stress (Fig. 2A), hence, was likely not driven by endosymbiotic
diazotrophs in the coral tissue and did not result in increased
assimilation of diazotroph-derived nitrogen by the algal symbionts
in the present study (Fig. 3F).
Importantly, the dependence of algal symbionts on diazotroph-

derived nitrogen is a function of their nutritional status. In this
context, Rädecker et al. [15] recently showed (using the same coral
colonies and experimental design) that heat stress shifted these
coral holobionts from a state of nitrogen limitation towards a state
of carbon limitation. Specifically, energy starvation caused by heat
stress promoted the catabolic generation of inorganic nutrients
(including ammonium) in the coral tissue, thereby promoting the
proliferation of algal symbionts (Fig. S2). This ammonium released
by the host catabolism was not isotopically enriched and therefore
diluted diazotroph-derived nitrogen in the inorganic nutrient pool.
Overall, the reduced 15N enrichment observed here suggests that
heat stress reduces the relative contribution of diazotroph-derived
nitrogen to the coral holobiont nitrogen pool (Fig. 4B). In this
scenario, altered nutrient cycling may help explain the absence of
epithelial 15N enrichment hotspots during heat stress. Low
photosynthate and high ammonium availability in the coral tissue
likely suppress the nitrogen fixation activity of endosymbiotic
diazotrophs and may give a competitive advantage to other
microbes better adapted to exploit the altered nutrient regime
during heat stress [82–84].
It is important to consider that the bulk isotope and NanoSIMS

analyses only quantify the assimilation of anabolically incorpo-
rated 15N into the coral and symbiont cells. As such, the
assimilation of diazotroph-derived nitrogen in other holobiont

compartments (i.e., the coral skeleton and the surface mucus
layer) is not accounted for in our analyses. Indeed, a study by
Moynihan et al. [34] recently suggested that endolithic microbes
in the coral skeleton were the main source and sink of diazotroph-
derived nitrogen in the closely related Pocillopora acuta holobiont.
Further, El-Khaled et al. [85] showed that moderate increases in
inorganic nutrient concentrations may stimulate nitrogen fixation
rates in Red Sea corals. In this context, the observed net release of
ammonium and phosphate by the coral host during heat stress
would directly affect nutrient availability in other compartments of
the coral holobiont such as the skeleton (Fig. S2 [15]). It is thus
plausible that the increase in nitrogen fixation activity described
here was predominantly driven by an increase in the activity of
endolithic microbes associated with the holobiont. While some
studies suggested that endolithic microbial communities may
eventually release some of their nutrients to the coral tissue
[34, 42, 86, 87], our results clearly show that diazotroph-derived
nitrogen (regardless of its origin within the holobiont) is an
insignificant source of nitrogen for the coral-algal symbiosis
during heat stress. As such, the increase in stimulated nitrogen
fixation may primarily be absorbed within the endolithic commu-
nity itself, thereby supporting the frequently documented rapid
proliferation of endolithic microbes during heat stress [86, 88, 89].
Further, nitrogen fixation rates correlate with denitrification
activities in some Red Sea corals [75]. Although we did not
quantify denitrification rates in the present study, increases in the
abundance and or activity of denitrifying microbes may have
contributed to the removal of diazotroph-derived nitrogen from
the coral holobiont during heat stress. Taken together, we
conclude that the excess availability and release of ammonium
through host catabolic processes, combined with increased
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microbial utilization of fixed nitrogen, likely reduce the relative
contribution of diazotroph-derived nitrogen to holobiont nitrogen
cycling during heat stress.

The functional importance of diazotrophs in the coral
holobiont
Nitrogen fixation rates in coral holobionts are highly variable—
they can differ between host species, locations, and fluctuate
depending on local environmental conditions
[34, 37, 38, 41, 42, 82, 87, 90]. Indeed, the molecular, physiological,
and ultrastructural characterization of nitrogen fixation presented
here paints a complex picture of the role of diazotrophs in coral
holobiont functioning. Our results suggest that endosymbiotic
diazotrophs in the coral epithelium actively fix nitrogen in the
coral holobiont. The characterization of tissue-associated diazo-
troph communities suggests that the observed 15N hotspots may
resemble individual endosymbiotic diazotrophs of the order
Chroococcales and bacterial aggregates potentially including
diazotrophs of the order Alteromonadales. Further, the disap-
pearance of these 15N hotspots during heat stress coincided with
a decline in Chroococcales nifH relative sequence abundance and
the reduced 15N assimilation in algal symbiont cells. Taken
together, our findings indicate that endosymbiotic diazotrophs
in the coral tissue, especially Chroococcales, represent an
important source of nitrogen for algal symbionts under
nitrogen-limited conditions. Hence, the association with diazo-
trophs may supplement holobiont nutrition and enable net
productivity under oligotrophic conditions [38]. However, this
beneficial role of diazotrophs is likely limited to a narrow window
of environmental conditions in which algal symbionts are strongly
nitrogen-limited. Environmental conditions that reduce the
demand for nitrogen in the coral holobiont (e.g., heat stress in
the present study), may hence undermine the beneficial role of
diazotrophs in holobiont functioning. This dynamic dependence

on diazotroph-derived nitrogen in the coral holobiont is directly
reflected in the variable diazotroph community assemblage, their
activity, and the fate of diazotroph-derived nitrogen in the coral
holobiont and may indirectly facilitate holobiont acclimatization
and adaptation to changing levels of nutrient availability. In other
words, this study suggests that the nutritional status of the coral
holobiont determines the structure and activity of associated
diazotroph communities and not vice versa. As such, diazotrophs
may support coral holobiont functioning under nitrogen-limited
conditions. However, anthropogenic impacts such as eutrophica-
tion and ocean warming likely reduce the benefits of hosting
diazotrophs in the coral holobiont.

DATA AVAILABILITY
All raw sequencing data have been deposited under BioProject ID
PRJNA741490 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA741490). Further, ASV
abundance tables (16S rRNA and nifH gene amplicons) as well as physiological and
NanoSIMS data have been deposited at Zenodo.org and are freely available at
https://doi.org/10.5281/zenodo.5552980.
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