
https://helda.helsinki.fi

Cross-Model Conjunctive Queries over Relation and

Tree-structured Data

Chen, Yuxing

Springer

2022-04-08

Chen , Y , Uotila , V , Lu , J , Liu , Z H & Das , S 2022 , Cross-Model Conjunctive Queries

over Relation and Tree-structured Data . in Database Systems for Advanced Applications.

DASFAA 2022. . Lecture Notes in Computer Science , vol. 13245 , Springer , Cham ,

International Conference on Database Systems for Advanced Applications , Hyderabad ,

India , 11/04/2022 . https://doi.org/10.1007/978-3-031-00123-9_2

http://hdl.handle.net/10138/345969

https://doi.org/10.1007/978-3-031-00123-9_2

unspecified

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Cross-Model Conjunctive Queries over Relation
and Tree-structured Data

Yuxing Chen1, Valter Uotila1, Jiaheng Lu1, Zhen Hua Liu2, and Souripriya
Das2

1 University of Helsinki
{yuxing.chen,valter.uotila,jiaheng.lu}@helsinki.fi

2 Oracle
{zhen.liu,souripriya.das}@oracle.com

Abstract. Conjunctive queries are the most basic and central class of
database queries. With the continued growth of demands to manage and
process the massive volume of different types of data, there is little re-
search to study the conjunctive queries between relation and tree data.
In this paper, we study of Cross-Model Conjunctive Queries (CMCQs)
over relation and tree-structured data (XML and JSON). To efficiently
process CMCQs with bounded intermediate results, we first encode tree
nodes with position information. With tree node original label values
and encoded position values, it allows our proposed algorithm CMJoin
to join relations and tree data simultaneously, avoiding massive interme-
diate results. CMJoin achieves worst-case optimality in terms of the total
result of label values and encoded position values. Experimental results
demonstrate the efficiency and scalability of the proposed techniques to
answer a CMCQ in terms of running time and intermediate result size.

Keywords: Cross-model join · Worst-case optimal · Relation and tree
data.

1 Introduction

Conjunctive queries are the most fundamental and widely used database queries
[2]. They correspond to project-select-join queries in the relational algebra.
They also correspond to non-recursive datalog rules [7]

R0(u0)← R1(u1) ∧R2(u2) ∧ . . . ∧Rn(un), (1)

where Ri is a relation name of the underlying database, R0 is the output relation,
and each argument ui is a list of |ui| variables, where |ui| is the arity of the
corresponding relation. The same variable can occur multiple times in one or
more argument lists.

It turns out that traditional database engines are not optimal to answer
conjunctive queries, as all pair-join engines may produce unnecessary interme-
diate results on many join queries [26]. For example, consider a typical triangle
conjunctive query R0(a, b, c) ← R1(a, b) ∧ R2(b, c) ∧ R3(a, c), where the size of

2 Yuxing Chen, Valter Uotila, Jiaheng Lu, Zhen Hua Liu, and Souripriya Das

R0(x,y,z)

⇐⇒

x

y z
∧R1(x,y,z)

Child(x,y)∧
Descendant(x,z)

R0(x,y,z)

∧R1(x,y,z)

(a) A CMCQ

x1

y1 z1

y2 z2

x1 y1 z1
x1 y2 z1
x2 y1 z1

(b) Instances

R0(x,y,z)

x1 y1 z1

(c) Result

Fig. 1: An example of a CMCQ.

input relations |R1|= |R2| =|R3| = N . The worst-case size bound of the out-

put table |R0| yields O(N
3
2). But any pairwise relational algebra plan takes at

least Ω(N2), which is asymptotically worse than the optimal engines. To solve
this problem, recent algorithms (e.g. NPRR [26], LeapFrog [31], Joen [8]) were
discovered to achieve the optimal asymptotic bound for conjunctive queries.

Conjunctive queries over trees have recently attracted attention [13], as trees
are a clean abstraction of HTML, XML, JSON, and LDAP. The tree structures
in conjunctive queries are represented using node label relations and axis rela-
tions such as Child and Descendant. For example, the XPath query A[B]//C is
equivalent to the conjunctive query:

R(z)← Label(x, “A”) ∧ Child(x, y) ∧ Label(y, “B”)

∧Descendant(x, z) ∧ Label(z, “C”).
(2)

Conjunctive queries with trees have been studied extensively. For example,
see [13] on their complexity, [3] on their expressive power, and [4,13] on the
satisfiability problem. While conjunctive queries with relations or trees have
been studied separately in the literature, hybrid conjunctive queries have gained
less attention.

This paper embarks on the study of a Cross-Model Conjunctive Query (CMCQ)
over both relations and trees. Figure 1 depicts a CMCQ. CMCQs emerge in mod-
ern data management and analysis, which often demands a hybrid evaluation
with data organized in different formats and models, e.g. data lake [16], multi-
model databases [22], polystores [9], and computational linguistics [32].

The number of applications that we have hinted at above motivates the study
of CMCQs, and the main contributions of this paper are as follows:

1. This paper embarks on the study of the cross-model conjunctive query (CMCQ)
and formally defines the problem of CMCQ processing, which integrates both
relational conjunctive query and tree conjunctive pattern together.

2. We propose CMJoin-algorithm to process relations and encoded tree data
efficiently. CMJoin produces worst-case optimal join result in terms of the
label values as well as the encoded information values. In some cases, CMJoin
is worst-case optimal join in the absence of encoded information.

3. Experiments on real-life and benchmark datasets show the effectiveness and
efficiency of the algorithm in terms of running time and intermediate result
size.

Cross-Model Conjunctive Queries over Relation and Tree-structured Data 3

R0(ra,rb,rc)

R1(ra,rb) ./ R2(ra,rc) ./

Descendant(ta, tb) ./ Descendant(ta, tc) ./

Label(ta,ra) ./ Label(tb,rb) ./ Label(tc,rc)

(a) Conjunctive query form

R0(a,b,c) ./ R1(a,b) ./ R2(a,c)

a

b c

(b) Simplified expression

Fig. 2: Complete and simplified expressions of CMCQ

The remainder of the paper is organized as follows. In Section 2 we provide
preliminaries of approaches. We then extend the worst-case optimal algorithm
for CMCQs in Section 3. We evaluate our approaches empirically in Section 4.
We review related works in Section 5. Section 6 concludes the paper.

2 Preliminary

Cross-model conjunctive query Let R be a database schema andR1, . . . , Rn
be relation names in R. A rule-based conjunctive query over R is an expression
of the form R0(u0) ← R1(u1) ∧ R2(u2) ∧ . . . ∧ Rn(un), where n ≥ 0, R0 is a
relation not in R. Let u0, u1, . . . , un be free tuples, i.e. they may be either vari-
ables or constants. Each variable occurring in u0 must also occur at least once
in u1, . . . , un.

Let T be a tree pattern with two binary axis relations: Child and Descendant.
The axis relations Child and Descendant are defined in the normal way [13].
In general, a cross-model conjunctive query contains three components: (i) the
relational expression τ1 := ∃r1, . . . , rk : R1(u1) ∧ R2(u2) ∧ . . . ∧ Rn(un), where
r1, . . . , rk are all the variables in the relations R1, . . . , Rn; (ii) the tree expression
τ2 := ∃t1, . . . , tk : Child(v1) ∧ . . . ∧Descendant(vn), where t1, . . . , tk are all the
node variables occurring in vi, for i ≥ 1 and each vi is a binary tuple (ti1 , ti2); and
(iii) the cross-model label expression τ3 := ∃r1, . . . , rk, t1, . . . , tk : label1(ti1 , rj1)∧
. . .∧labeln(tin , rjn), where Σ denotes a labeling alphabet. Given any node t ∈ T ,
label(t, s) means that the label of the node t is s ∈ Σ. The label relations bridge
the expressions of relations and trees by the equivalence between the label values
of the tree nodes and the values of relations.

By combining the three components together, we define a cross-model con-
junctive query with the calculus of form {e1, . . . , em | τ1 ∧ τ2 ∧ τ3}, where the
variables e1, . . . , em are the return elements which occur at least once in rela-
tions. Figure 2a shows an example of a cross-model conjunctive query, which
includes two relations and one tree pattern. For the purpose of expression sim-
plicity, we do not explicitly distinguish between the variable of trees (e.g. ta)
and that of relations (e.g. ra), but simply write them with one symbol (i.e. a) if
label(ta, ra) holds. We omit the label relation when it is clear from the context.
Figure 2b shows a simplified representation of a query.

4 Yuxing Chen, Valter Uotila, Jiaheng Lu, Zhen Hua Liu, and Souripriya Das

Revisiting relational size bound We review the size bound for the rela-
tional model, which Asterias, Grohe, and Marx (AGM) [2] developed. The AGM
bound is computed with linear programming (LP). Formally, given a relational
schema R, for every table R ∈ R let AR be the set of attributes of R and
A = ∪RAR. Then the worst-case size bound is precisely the optimal solution for
the following LP:

maximize ΣA
r xr

subject to ΣAR
r xr ≤ 1 for all R ∈ R,

0 ≤ xr ≤ 1 for all r ∈ A.

(3)

Let ρ denote the optimal solution of the above LP. Then the size bound of the
query is Nρ, where N denotes the maximal size of each table. The AGM bound
can be proved as a special case of the discrete version of the well-known Loomis-
Whitney inequality [20] in geometry. Interested readers may refer to the details
of the proof in [2]. We present these results informally and refer the readers to
Ngo et al. [27] for a complete survey.

For example, we consider a typical triangle conjunctive query R0(a, b, c) ←
R1(a, b)∧R2(b, c)∧R3(a, c) that we introduced in Section 1. Then the three LP
inequalities corresponding to three relations include xa+xb ≤ 1, xb+xc ≤ 1, and
xa + xc ≤ 1. Therefore, the maximal value of xa + xb + xc is 3/2, meaning that

the size bound is O(N
3
2). Interestingly, the similar case for CMCQ in Figure 3,

the query Q = a[b]/c ./ R(b, c) has also the size bound O(N
3
2).

3 Approach

In this section, we tackle the challenges in designing a worst-case optimal algo-
rithm for CMCQs over relational and tree data. We briefly review the existing
relational worst-case optimal join algorithms. We represent these results infor-
mally and refer the readers to Ngo et al. [27] for a complete survey. The first
algorithm to have a running time matching these worst-case size bounds is the
NPRR algorithm [26]. An important property in NPRR is to estimate the in-
termediate join size and avoid to produce the case which is larger than the
worst-case bound. In fact, for any join query, its execution time can be upper
bounded by the AGM [2]. Interestingly, LeapFrog [31] and Joen [8] completely
abandon the “query plan” and propose to deal with one attribute at a time with
multiple relations at the same time.

3.1 Tree and relational data representation

To answer a tree pattern query, a positional representation of occurrences of
tree elements and string values in the tree database are widely used, which ex-
tends the classic inverted index data structure in information retrieval. There
existed two common ways to encode an instance tree, i.e. Dewey encoding [23]
and containment encoding [6]. These decodings are necessary as they allow us

Cross-Model Conjunctive Queries over Relation and Tree-structured Data 5

R0(ra,rb,rc)

a

b c
./R1(rb,rc)

(a) Tree query Q

rb rc
b0 c0
b0 c1
b1 c0
b1 c1

(b) Table DR1

a0

p0

b0

p1

b1

p2

b2

p3

b3

p4

c0

p5

c1

p6

c2

p7

c3

p8

(c) Encode Tree DT

Fig. 3: A CMCQ (a) and its table instance (b) and tree instance (c).

to partially join tree patterns to avoid undesired intermediate result. After en-
coding, each attribute j in the query node can be represented as a node table
in form of tj(rj , pj), where rj and pj are the label value and position value,
respectively. Check an example from a encoded tree instance in Figure 3c. The
position value can be added in O(N) by one scan of the original tree. Note that
we use Dewey coding in our implementation but the following algorithm is not
limited to such representation. Any representation scheme which captures the
structure of trees such as a region encoding [6] and an extended Dewey encoding
[23] can all be applied in the algorithm.

All the data in relational are label data, and all relation tables and node
tables will be expressed by the Trie index structure, which is commonly applied
in the relational worst-case optimal algorithms (e.g. [1,31]). The Trie structure
can be accomplished using standard data structures (notably, balanced trees
with O(log n) look-up time or nested hashed tables with O(1) look-up time).

3.2 Challenges

In our context, tree data and twig pattern matching do make situation more
complex. Firstly, directly materializing tree pattern matching may yield asymp-
totically more intermediate results. If we ignore the pattern, we may loose some
bound constraints. Secondly, since tree data are representing both label and
position values, position value joining may require more computation cost for
pattern matching while we do not need position values in our final result.

Example 1. Recall that a triangle relational join queryQ=R1(ra, rb) ./ R2(ra, rc)

./ R3(rb, rc) has size bound O(N
3
2). Figure 3 depicts an example of a CMCQ

Q with the table R1(rb, rc) and twig query a[b]/c to return result R0(ra, rb, rc),

which also has size bound O(N
3
2) since the PC paths a/b and a/c are equivalent

to the constraints xa + xb ≤ 1 and xa + xc ≤ 1, respectively. Figure 3b and
Figure 3c show the instance table DR1 and the encoded tree DT . The number
of label values in the result R0(ra, rb, rc) is only 4 rows which is O(N). On the
other hand, the result size of only the tree pattern is 16 rows which is O(N2),
where N is a table size or a node size for each attribute. The final result with
the position values is also O(N2). Here, O(N2) is from the matching result of
the position values of the attributes tb and tc.

6 Yuxing Chen, Valter Uotila, Jiaheng Lu, Zhen Hua Liu, and Souripriya Das

EmptyHeaded [1] applied the existing worst-case optimal algorithms to pro-
cess the graph edge pattern matching. We may also attempt to solve relation-
tree joins by representing the trees as relations with the node-position and the
node-label tables and then reformulating the cross-model conjunctive query as
a relational conjunctive query. However, as Example 1 illustrated, such method
can not guarantee the worst-case optimality as extra computation is required for
position value matching in a tree.

3.3 Cross-model join (CMJoin) algorithm

In this part, we discuss the algorithm to process both relational and tree data.
As the position values are excluded in the result set while being required for
the tree pattern matching, our algorithm carefully deals with it during the join.
We propose an efficient cross-model join algorithm called CMJoin (cross-model
join). In certain cases it guarantees the runtime optimality. We discover the join
result size under three scenarios: with all node position values, with only branch
node position value, and without position value.

Lemma 1. Given relational tables R and pattern queries T , let Sr, Sp, and S′
p

be the sets of all relation attributes, all position attributes, and only branch node
position attributes, respectively. Then it holds that

ρ1(Sr ∪ Sp) ≥ ρ2(Sr ∪ S′
p) ≥ ρ3(Sr). (4)

Proof. Q(Sr) is the projection result from Q(Sr ∪ S′
p) by removing all position

values, and Q(Sr∪S′
p) is the projection result from Q(Sr∪Sp) by removing non-

branch position values. Therefore, the result size holds ρ1(Sr ∪ Sp) ≥ ρ2(Sr ∪
S′
p) ≥ ρ3(Sr).

Example 2. Recall the CMCQ Q in Figure 3a, which is Q=R1(rb, rc) ./ a[b]/c.
Nodes a, b, c in the tree pattern can be represented as node tables (ra, pa),
(rb, pb), and (rc, pc), respectively. So we have Q(Sr∪Sp) = R(ra, rb, rc, pa, pb, pc),
Q(Sr ∪ S′

p) = R(ra, rb, rc, pa), and Q(Sr) = R(ra, rb, rc). By the LP constraint

bound for the relations and PC-paths, we achieve O(N2), O(N
3
2), and O(N

3
2)

for the size bounds ρ1(Sr ∪ Sp), ρ2(Sr ∪ S′
p), and ρ3(Sr), respectively.

We elaborate CMJoin algorithm 1 more in the following. In the case of
ρ1(Sr ∪ Sp)=ρ3(Sr), CMJoin executes a generic relational worst-case optimal
join algorithm [1,8] as the extra position values do not affect the worst-case final
result. In other cases, CMJoin computes the path result of the tree pattern first.
In this case, we project out all position values of a non-branch node for the query
tree pattern. Then, we keep the position values of the only branch node so that
we still can match the whole part of the tree pattern.

Theorem 1. Assume we have relations R and pattern queries T . If either

(1) ρ1(Sr ∪ Sp) ≤ ρ3(Sr) or

Cross-Model Conjunctive Queries over Relation and Tree-structured Data 7

Algorithm 1: CMJoin

Input: Relational tables R, pattern queries T
1 R′ ← ∅ // Tree intermediate result

2 if ρ1(Sr ∪ Sp) ≤ ρ3(Sr) then // Theorem 1 condition (1)

3 foreach N ∈ T do
4 R′ ←R′ ∪ CN (rN , pN) // Nodes as tables

5 else
6 P ← T .getPaths()
7 foreach P ∈ P do
8 RP (Sr ∪ Sp)← path result of P // Paths as tables

9 R′
P (Sr ∪ S′

p)← project out non-branch position values of RP (Sr ∪ Sp)
10 R′ ←R′ ∪ {R′

P (Sr ∪ S′
p)}

11 Q(Sr ∪ S′
p)← generic join(R∪R′)

12 Q(Sr)← project out all position values Q(Sr ∪ S′
p)

Output: Join results Q(Sr)

(2) (i) ρ1(Sr ∪ S′
p) ≤ ρ3(Sr) and (ii) for each path P in T let S′′

r and S′′
p be the

set of label and position attributes for P so that ρ4(S′′
r ∪ S′′

p) ≤ ρ3(Sr).

Then, CMJoin is worst-case optimal to ρ3(Sr).

Proof. (1) Since the join result of the only label value ρ3(Sr) is the projection
of ρ1(Sr ∪Sp), we can compute Q(Sr ∪Sp) first, then project out all the position
value in linear of O(Nρ1(Sr∪Sp)). Since ρ1(Sr ∪ Sp) ≤ ρ3(Sr), we can estimate
that the result size is limited by O(Nρ3(Sr)).

(2) ρ1(S′′
r ∪S′′

p) ≤ ρ3(Sr) means that each path result with label and position
values are under worst-case result of ρ3(Sr). We may first compute the path
result and then project out all the non-branch position values. The inequality
ρ2(r, p′) ≤ ρ3(r) means that the join result containing all branch position values
has a worst-case result size which is still under ρ3(Sr). Then by considering those
position values as relational attribute values and by a generic relation join [26,1],
CMJoin is worst-case optimal to ρ3(Sr).

Example 3. Recall the CMCQ query Q = R1(rb, rc) ./ a[b]/c in Figure 3a. Since
ρ1(Sr∪Sp) > ρ3(r), directly computing all label and position values may generate
asymptotically bigger result (O(N2) in this case). So we can compute path results
of a/b and a/c, which are (ra, pa, rb, pb) and (ra, pa, rc, pc) and in O(N). Then
we obtain only branch node results (ra, pa, rb) and (ra, pa, rc). By joining these
project-out result with relation R1 by a generic worst-case optimal algorithm,
we can guarantee the size bound is O(N

3
2).

4 Evaluation

In this section, we experimentally evaluate the performance of the proposed
algorithms and CMJoin with four real-life and benchmark data sets. We com-

8 Yuxing Chen, Valter Uotila, Jiaheng Lu, Zhen Hua Liu, and Souripriya Das

Table 1: Intermediate result size (106) and running time (S) for queries. “/”
and “-” indicate “timeout” (≥ 10 mins) and “out of memory”. We measure the
intermediate size by accumulating all intermediate and final join results.

Intermediate result size(106) Running time (second)
Query PG SJ VJ EH CMJoin PG SJ VJ EH CMJoin
Q1 7.87x 2.60x 2.00x 1.68x 0.15 18.02x 1.39x 1.51x 1.66x 3.22
Q2 / - 3.75x 4.83x 0.08 / - 4.52x 129x 1.96
Q3 86.0x 62.6x 3.63x 4.61x 0.08 21.3x 4.27x 1.99x 4.28x 3.06
Q4 / 1.96x 1.75x 1.64x 0.24 / 2.34x 2.63x 1.82x 3.55
Q5 / - 1.86x 1.77x 0.22 / - 4.75x 39.8x 3.11
Q6 / 2.24x 2.00x 1.85x 0.21 / 6.10x 3.30x 2.89x 3.00
Q7 133x 106x - 35.1x 0.29 4.82x 9.05x - 7.18x 8.36
Q8 350x 279.8x - / 0.11 4.36x 5.61x - / 13.8
Q9 8.87x 8.34x - 2.01x 4.62 1.12x 2.13x - 1.48x 35.0
Q10 110x 440x 4.86x / 0.07 2.91x 12.7x 1.22x / 5.62
Q11 110x 440x 4.86x / 0.07 2.11x 10.5x 0.88x / 6.84
Q12 110x 440x 4.86x / 0.07 2.68x 9.99x 1.06x / 7.25
Q13 1.04x 1.22x 1.22x 1.07x 43.2 1.37x 4.81x 4.79x 1.31x 34.2
Q14 19.7x 2.56x 2.56x 3.90x 0.39 2.04x 3.82x 3.79x 2.14x 2.73
Q15 14.2x 1.85x 1.85x 17.0x 0.54 1.68x 3.53x 3.54x 2.01x 2.87
Q16 1.24x 1.24x 6.81x 2.15x 0.37 2.88x 1.32x 1.96x 1.02x 12.9
Q17 1.59x 7.84x 2.28x 1.31x 0.32 7.03x 3.58x 3.38x 2.10x 5.08
Q18 1.59x 7.13x 1.59x 1.64x 0.32 14.1x 5.21x 5.02x 2.06x 2.98
Q19 / 5.47x 6.62x 1.77x 0.45 / 1.41x 1.94x 0.89x 14.7
Q20 7.80x 25.1x 7.30x 4.19x 0.10 12.1x 6.77x 6.39x 3.17x 3.37
Q21 12.0x 36.1x 18.4x 14.7x 0.10 14.6x 8.82x 8.75x 10.9x 2.89
Q22 1.00x 18.5x 18.5x 0.96x 0.57 1.16x 5.22x 4.31x 2.35x 12.7
Q23 18.5x 18.5x 18.5x 1.61x 0.57 1.92x 2.17x 1.83x 1.02x 15.8
Q24 14.3x 3.02x 4.02x 0.96x 0.57 >9kx >11kx >12kx 0.18x 0.01
AVG 5.46x 5.90x 1.92x 1.90x 2.24 4.37x 5.34x 3.33x 3.46x 8.54

prehensively evaluate CMJoin against state-of-the-art systems and algorithms
concerning efficiency, scalability, and intermediate cost.

4.1 Evaluation setup

Datasets and query design Table 2 provides the statistics of datasets and
designed CMCQs. These diverse datasets differ from each other in terms of the
tree structure, data skewness, data size, and data model varieties. Accordingly,
we designed 24 CMCQs to evaluate the efficiency, scalability, and cost perfor-
mance of the CMJoin in various real-world scenarios.

Comparison systems and algorithms CMJoin is compared with two
types of state-of-the-art cross-model solutions. The first solution is to use one
query to retrieve a result without changing the nature of models [25,34]. We
implemented queries in PostgreSQL (PG), that supports cross-model joins. This
enables the usage of the PG ’s default query optimizer.

The second solution is to encode and retrieve tree nodes in a relational engine
[5,29,35,1]. We implemented two algorithms, i.e. structure join (SJ) (pattern
matching first, then matching the between values) and value join (VJ) (label
value matching first, then matching the position values). Also, we compared to
a worst-case optimal relational engine called EmptyHeaded (EH) [1].

Cross-Model Conjunctive Queries over Relation and Tree-structured Data 9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

0

20

40

60

80

R
u
n
n
in

g
ti

m
e

(s
)

PG SJ VJ EH CMJoin

Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24

0

20

40

60

80

Fig. 4: Efficiency: runtime performance for all queries by PG, SJ , V J , EH, and
CMJoin. The performance time of more than 80s is cut for better presentation.

Experiment Setting We conducted all experiments on a 64-bit Windows
machine with a 4-core Intel i7-4790 CPU at 3.6GHz, 16GB RAM, and 500GB
HDD. We implemented all solutions, including CMJoin and the compared al-
gorithms, in memory processing by Python 3. We measured the computation
time of joining as the main metric excluding the time used for compilation, data
loading, index presorting, and representation/index creation for all the systems
and algorithms. We employed the Dewey encoding [23] in all experiments. The
join order of attributes is greedily chosen based on the frequency of attributes.
We measured the intermediate cost metric by accumulating all intermediate and
final join results. For PG we accumulated all sub-query intermediate results.
We repeated five experiments excluding the lowest and the highest measure and
calculated the average of the results. Between each measurement of queries we
wiped caches and re-loaded the data to avoid intermediate results.

Efficiency Figure 4 shows the evaluation of the efficiency. In general, CMJoin
is 3.33-13.43 times faster in average than other solutions as shown in Table 1.
These numbers are conservative as we exclude the “out of memory” (OOM) and
“time out” (TO) results from the average calculation. Algorithms SJ, VJ, and
EH perform relatively better compared to PG in the majority of the cases as
they encoded the tree data into relation-like formats, making it faster to retrieve
the tree nodes and match twig patterns.

Specifically in queries Q1-Q6, CMJoin, SJ, VJ, and EH perform better than
PG, as the original tree is deeply recursive in the TreeBank dataset [32], and
designed tree pattern queries are complex. So, it is costly to retrieve results
directly from the original tree by PG. Instead, CMJoin, SJ, and VJ use encoded
structural information to excel in retrieving nodes and matching tree patterns
in such cases. In Q2 and Q5, EH performs worse. The reason is that it seeks
for a better instance bound by joining partial tables and sub-twigs first and
then aggregates the result. However, the separated joins yield more intermediate
result in such cases in this dataset. In Q1 and Q4, which deal with a single
table, SJ and VJ perform relatively close as no table joining occurs in these

10 Yuxing Chen, Valter Uotila, Jiaheng Lu, Zhen Hua Liu, and Souripriya Das

cases. However, in Q2-Q3 and Q5-Q6, SJ performs worse as joining two tables
first leads to huge intermediate results in this dataset.

In contrast to the above, SJ outperforms VJ in Q7-Q9. The reason is that
in the Xmark dataset [30], the tree data are flat and with less matching results
in twig queries. The data in tables are also less skew. Therefore, SJ operates
table joins and twig matching separately yielding relatively low results. Instead,
VJ considers tree pattern matching later yielding too many intermediate results
(see details of Q7 in Figure 5 and Figure 6) when joining label values between
two models with non-uniform data. PG, which implements queries in a similar
way of SJ, performs satisfactorily as well. The above comparisons show that
compared solutions, which can achieve superiority only in some cases, and can
not adapt well to dataset dynamics.

Queries Q10-Q12 have more complex tree pattern nodes involved. In these
cases VJ filters more values and produces less intermediate results. Thus it
outperforms SJ (∼10x) and PG (∼2x). For queries Q10-Q12 EH also yields
huge intermediate results with more connections in attributes. The comparison
between Q7-Q9 and Q10-Q12 indicates that the solutions can not adapt well to
query dynamics.

Considering queriesQ13-Q15 andQ22-Q24, PG performs relatively well since
it involves only JSON and relational data. PG performs well in JSON retrieving
because JSON documents have a simple structure. In Q14-Q15 most of the
solutions perform reasonably well when the result size is small but SJ, and
VJ still suffer from a large result size in Q13. With only JSON data, SJ and
VJ perform similarly, as they both treat a simple JSON tree as one relation.
In contrast in Q16-Q21, it involves XML, JSON and relational data from the
UniBench dataset [34]. CMJoin, SJ, VJ, and EH perform better than PG. This
is again because employing the encoding technique in trees accelerates node
retrieval and matching tree patterns. Also, CMJoin, SJ, VJ, and EH are able to
treat all the data models together instead of achieving results separately from
each model by queries in PG.

Though compared systems and algorithms possess their advantages of pro-
cessing and matching data, they straightforwardly join without bounding inter-
mediate results, thus achieving sub-optimal performance during joining. CMJoin
is the clear winner against other solutions, as it can wisely join between models
and between data to avoid unnecessary quadratic intermediate results.

Scalability Figure 5 shows the scalability evaluation. In most queries, CMJoin
performs flatter scaling as data size increases because CMJoin is designed to
control the unnecessary intermediate output.

As discussed, CMJoin, SJ, VJ, and EH outperform PG in most of the queries,
as the encoding method of the algorithms speeds up the twig pattern matching
especially when the documents or queries are complex. However, PG scales better
when involving simpler documents (e.g. in Q15 and Q23) or simpler queries (e.g.
in Q7). Comparing to processing XML tree pattern queries, PG processes JSON
data more efficiently.

Cross-Model Conjunctive Queries over Relation and Tree-structured Data 11

5% 50% 100%

0

5

10

15

20

R
u
n
n
in

g
ti

m
e

(s
)

Q1
PG SJ VJ EH CMJoin

5% 50% 100%

0

50

100
Q2

5% 50% 100%

0

20

40

60

Q5

5% 50% 100%

0

5

10

15

20
Q6

5% 50% 100%

0

50

100

150

200
Q7

5% 50% 100%

0

20

40

60

80
Q11

5% 50% 100%

0

50

100

150

Q13

5% 50% 100%

0

5

10

Q15

5% 50% 100%

0

20

40

Q16

5% 50% 100%

0

20

40

Q19

5% 50% 100%

0

20

40

Q20

5% 50% 100%

0

10

20

30

40
Q23

58.03494.41 tooom252.58
to

oom 123.79 to to oom to

to to to to

Fig. 5: Scalability: runtime performance of PG, SJ, VJ, EH, and CMJoin. The
x-axis is the percentage of data size. “oom” and “to” stand for “out of memory”
error and “timeout” (≥ 10 mins), respectively.

Interestingly in Q2, SJ and PG join two relational tables separately from
twig matching, generating quadratic intermediate results, thus leading to the
OOM and TO, respectively. In Q7 VJ joins tables with node values without
considering tree pattern structural matching and outputs an unwanted non-
linear increase of intermediate results, thus leading to OOM in larger data size.
Likewise evaluating EH between Q2 and Q7, it can not adapt well with different
datasets. Performing differently in diverse datasets between SJ/PG and VJ/EH
indicates that they can not smartly adapt to dataset dynamics. While increasing
twig queries in Q11 compared to Q7, VJ filters more results and thus decreases
the join cost and time in Q11. The comparison between SJ/EH and VJ shows
dramatically different performance in the same dataset with different queries
that indicates they can not smartly adapt to query dynamics.

In Q11, both CMJoin and VJ perform efficiently as they can filter out most
of the values at the beginning. In this case, CMJoin runs slightly slower than VJ,
which is reasonable as CMJoin maintains a tree structure whereas VJ keeps only
tuple results. Overall, CMJoin judiciously joins between models and controls
unwanted massive intermediate results. The evaluation shows that it performs
efficiently and stably in dynamical datasets, with various queries and it also
scales well.

Cost analysis Table 1 presents the intermediate result sizes showing that
CMJoin outputs 5.46x, 5.90x, 1.92x, and 1.90x less intermediate results on av-
erage than PG, SJ, VJ, and EH, respectively. Figure 6 depicts more detailed
intermediate results for each joining step. In general, CMJoin generates less in-
termediate results due to its designed algorithmic process, worst-case optimality,
as well as join order selections. In contrast, PG, SJ, and VJ can easily yield too
many (often quadratic) intermediate results during joining in different datasets
or queries. This is because they have no technique to avoid undesired massive
intermediate results.

12 Yuxing Chen, Valter Uotila, Jiaheng Lu, Zhen Hua Liu, and Souripriya Das

0

0.2

0.4

0.6

0.8

1
·106

In
te

rm
ed

ia
te

re
su

lt
si

ze

Q1

0

0.2

0.4

0.6

0.8

1
·106 Q3

JS1 JS2 JS3 JS4 JS5 JS6 JS7

0

2

4

·105 Q4

0

2

4

·106 Q7

0

0.2

0.4

0.6

0.8

1
·106 Q8

0

2

4

·107 Q9

0

0.2

0.4

0.6

0.8

1
·106Q10

0

0.2

0.4

0.6

0.8

1
·108Q13

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1
·107Q14

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1
·106Q16

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1
·106Q17

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1
·106Q18

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1
·106Q19

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1
·106Q20

P
G S
J

V
J

E
H

C
M

0

0.2

0.4

0.6

0.8

1
·106Q21

P
G S
J

V
J

E
H

C
M

0

2

4

·106Q24

Fig. 6: Cost: intermediate result size. CM: CMJoin. JS: Joining step.

PG and SJ suffer when the twig matching becomes complex in datasets
(e.g. Q3 and Q10), while VJ suffers in the opposite case of simpler twig pat-
tern matching (e.g. Q7 and Q16). More specifically in Q3, PG and SJ output
significant intermediate results by joining of two relational tables. In turn, VJ
controls intermediate results utilizing the values of common attributes and tags
between two models. On the other hand, in Q7, Q9, and Q16 VJ does not con-
sider structural matching at first yielding unnecessary quadratic intermediate
results. The above two-side examples indicate that solutions considering only
one model at a time or joining values first without twig matching produce an
undesired significant intermediate result.

EH suffers when the queries and attributes are more connected that leads to
larger intermediate results during join procedures. The reason is that EH seeks a
better instance bound so that it follows the query plan based on the GHD decom-
position [1]. Our proposed method, CMJoin, by wisely joining between models,
avoids an unnecessary massive intermediate output from un-joined attributes.
Summary We summarize evaluations of CMJoin as follows:

1. Extensive experiments on diverse datasets and queries show that averagely
CMJoin achieves up to 13.43x faster runtime performance and produces up
to 5.46x less intermediate results compared to other solutions.

2. With skew data CMJoin avoids undesired huge intermediate results by wisely
joining data between models. With uniform data CMJoin filters out more
values by joining one attribute at a time between all models.

3. With more tables, twigs, or common attributes involved CMJoin seems to
perform more efficiently and scale better.

5 Related work

Worst-case size bounds and optimal algorithms Recently, Grohe and
Marx [15] and Atserias, Grohe, and Marx [2] estimated size bounds for conjunc-
tive joins using the fractional edge cover. That allows us to compute the worst-
case size bound by linear programming. Based on this worst-case bound, several

Cross-Model Conjunctive Queries over Relation and Tree-structured Data 13

worst-case optimal algorithms have been proposed (e.g. NPRR [26], LeapFrog
[31], Joen [8]). Ngo et al. [26] constructed the first algorithm whose running
time is worst-case optimal for all natural join queries. Veldhuizen [31] proposed
an optimal algorithm called LeapFrog which is efficient in practice to implement.
Ciucanu et al. [8] proposed an optimal algorithm Joen which joins each attribute
at a time via an improved tree representation. Besides, there exist research works
on applying functional dependencies (FDs) for size bound estimation. The ini-
tiated study with FDs is from Gottlob, Lee, Valiant, and Valiant (GLVV) [14],
which introduces an upper bound called GLVV-bound based on a solution of
a linear program on polymatroids. The follow-up study by Gogacz et al. [11]
provided a precise characterization of the worst-case bound with information
theoretic entropy. Khamis et al. [19] provided a worst-case optimal algorithm
for any query where the GLVV-bound is tight. See an excellent survey on the
development of worst-case bound theory [27].
Multi-model data management As more businesses realized that data,
in all forms and sizes, are critical to make the best possible decisions, we see
a continuing growth of demands to manage and process massive volumes of
different types of data [21]. The data are represented in various models and
formats: structured, semi-structured, and unstructured. A traditional database
typically handles only one data model. It is promising to develop a multi-model
database to manage and process multiple data models against a single unified
backend while meeting the increasing requirements for scalability and perfor-
mance [21,24]. Yet, it is challenging to process and optimize cross-model queries.

Previous work applied naive or no optimizations on (relational and tree)
CMCQs. There exist two kinds of solutions. The first is to use one query to
retrieve the result from the system without changing the nature of the model
[25,34]. The second is to encode and retrieve the tree data into a relational engine
[1,5,29,35]. Even though the second solution accelerates twig matching, they
both may suffer from generating large, unnecessary intermediate results. These
solutions or optimizations did not consider cross-model worst-case optimality.
Some advances are already in development to process graph patterns [28,17,1].
In contrast to previous work, this paper initiates the study on the worst-case
bound for cross-model conjunctive queries with both relation and tree structure
data.
Join order In this paper, we do not focus on more complex query plan
optimization. A better query plan [12,10] may lead to a better bound for some
instances [1] by combining the worst-case optimal algorithm and non-cyclic join
optimal algorithm (i.e. Yannakakis [33]). We leave this as the future work to
continue optimizing CMCQs.

6 Conclusion and future work

In this paper, we studied the problems to find the worst-case size bound and op-
timal algorithm for cross-model conjunctive queries with relation and tree struc-
tured data. We provide the optimized algorithm, i.e. CMJoin, to compute the

14 Yuxing Chen, Valter Uotila, Jiaheng Lu, Zhen Hua Liu, and Souripriya Das

T
a
b

le
2:

D
ataset

sta
tistics

a
n

d
d

esig
n
ed

q
u

eries
(m

=
1
0
6,
k
=

1
0
3).

D
a
t
a
s
e
t

S
t
a
t
is

t
ic

s
Q

u
e
r
y

R
e
la

t
io

n
a
l
t
a
b
le

X
M

L
o
r

J
S
O

N
p
a
t
h

q
u
e
r
y

L
P

#
R

e
s
u
lt

D
1
:T

r
e
e
B
a
n
k
[3

2
]

(
L
in

g
u
is
t
ic

d
a
t
a
)

Z
ip

fia
n

T
a
b
le

s
:
1
m

r
o
w
s

X
M

L
:
2
.4

m
n
o
d
e
s

Q
1

R
1
(
N
P
,V

P
)

S
[N

P
]/

V
P
/
/
P
P
[IN

]/
/
N
N
P

N
3

7
.6

k

Q
2

R
1
(
N
P
,V

P
)

R
2
(
N
P
,P

P
)

N
3

4
.6

k

Q
3

R
1
(
N
P
,V

P
)

R
3
(
N
P
,N

N
P
)

N
3

<
0
.1

k

Q
4

R
1
(
N
P
,V

P
)

S
[N

P
]/

V
P
/
/
P
P
[IN

]/
/
N
N
P

S
/
V
P
/
P
P
/
IN

N
3

1
.4

k

Q
5

R
1
(
N
P
,V

P
)

R
2
(
N
P
,P

P
)

N
2

0
.8

k

Q
6

R
1
(
N
P
,V

P
)

R
3
(
N
P
,N

N
P
)

N
3

<
0
.1

k

D
2
:X

m
a
r
k
[3

0
]

(
A
u
c
t
io

n
d
a
t
a
)

N
o
r
m

a
l

T
a
b
le

s
:
1
m

r
o
w
s

X
M

L
:
1
.6

m
n
o
d
e
s

Q
7

R
1
(
in

c
a
t
e
g
o
r
y
,q

u
a
n
t
it
y
,e

m
a
il)

R
2
(
it
e
m

,in
c
a
t
e
g
o
r
y
,e

m
a
il)

R
3
(
it
e
m

,q
u
a
n
t
it
y
,e

m
a
il)

T
7
=

It
e
m

[in
c
a
t
e
g
o
r
y
]/

q
u
a
n
t
it
y

N
2

9
1
k

Q
8

T
8
=

It
e
m

[in
c
a
t
e
g
o
r
y
][lo

c
a
lt
io

n
][q

u
a
n
t
it
y
]/

/
e
m

a
il

N
3

0
.4

k

Q
9

T
9
=

It
e
m

[lo
c
a
t
io

n
]/

/
e
m

a
il

N
3

2
.4

m

Q
1
0

T
7
,
T
8

N
3

0
.7

k

Q
1
1

T
7
,
T
9

N
3

0
.7

k

Q
1
2

T
7
,
T
8
,
T
9

N
3

0
.7

k

D
3
:U

n
iB

e
n
c
h
[3

4
]

(
E
-c

o
m

m
e
r
c
e
)

U
n
ifo

r
m

T
a
b
le

s
:
1
m

r
o
w
s

J
S
O

N
:
2
m

-4
m

n
o
d
e
s

Q
1
3

R
1
(
a
s
in

,p
r
o
d
u
c
t
ID

,o
r
d
e
r
ID

)

R
2
(
p
e
r
s
o
n
ID

,la
s
t
n
a
m

e
)

R
3
(
p
r
o
d
u
c
t
ID

,p
r
o
d
u
c
t

in
fo

)

$
.[o

r
d
e
r
ID

,p
e
r
s
o
n
ID

]
N

3
3
7
.0

m

Q
1
4

$
.[o

r
d
e
r
ID

,p
e
r
s
o
n
ID

,o
r
d
e
r
lin

e
[p

r
o
d
u
c
t
ID

]]
N

3
<

0
.1

k

Q
1
5

$
.[p

e
r
s
o
n
ID

,o
r
d
e
r
lin

e
[p

r
o
d
u
c
t
ID

,
a
s
in

]]
N

3
0
.1

k

D
3
:U

n
iB

e
n
c
h
[3

4
]

(
E
-c

o
m

m
e
r
c
e
)

U
n
ifo

r
m

T
a
b
le

s
:
1
m

r
o
w
s

J
S
O

N
:
4
m

n
o
d
e
s

X
M

L
:
1
.4

m
n
o
d
e
s

Q
1
6

R
1
(
a
s
in

,o
r
d
e
r
ID

)
R
2
(
p
e
r
s
o
n
ID

,la
s
t
n
a
m

e
)

$
.[o

r
d
e
r
ID

,p
e
r
s
o
n
ID

,o
r
d
e
r
lin

e
[a

s
in

]]

O
r
d
e
r
L
in

e
[a

s
in

]/
p
r
ic

e
N

3
1
.1

k

Q
1
7

T
1
7
=

In
v
o
ic

e
[o

r
d
e
r
ID

]/
o
r
d
e
r
lin

e
[a

s
in

]/
p
r
ic

e
N

3
<

0
.1

k

Q
1
8

T
1
8
=

In
v
o
ic

e
[o

r
d
e
r
ID

]/
/
a
s
in

N
3

<
0
.1

k

Q
1
9

o
r
d
e
r
lin

e
/
a
s
in

,
o
r
d
e
r
lin

e
/
p
r
ic

e
N

3
1
.1

k

Q
2
0

In
v
o
ic

e
(
I)

/
o
r
d
e
r
ID

,
I/

o
r
d
e
r
lin

e
(
O

)
/
a
s
in

,
I/

O
/
p
r
ic

e
N

3
<

0
.1

k

Q
2
1

T
1
7
,
T
1
8

N
3

<
0
.1

k

D
4
:M

IM
IC

-I
I
I[1

8
]

(
C
lin

ic
a
l
d
a
t
a
)

U
n
ifo

r
m

T
a
b
le

s
:0

.5
-1

0
m

r
o
w
s

J
S
O

N
:
1
0
m

n
o
d
e
s

Q
2
2

R
1
(
R
o
w
ID

,IC
U
s
t
a
y
ID

,It
e
m

ID
,C

G
ID

)
,

R
2
(
R
o
w
ID

,S
u
b
je

c
t
ID

,IC
U
s
t
a
y
ID

,It
e
m

ID
)

T
2
2
=

$
.[R

o
w
ID

,S
u
b
je

c
t
ID

,H
A
D

M
ID

]
N

<
0
.1

k

Q
2
3

R
1
,R

3
(
S
u
b
je

c
t
ID

,It
e
m

ID
)

T
2
2

N
32

<
0
.1

k

Q
2
4

R
1
,R

2
,R

4
(
R
o
w
ID

,S
u
b
je

c
t
ID

,H
A
D

M
ID

)
T
2
2
,
T
2
3
=

$
.[R

o
w
ID

,IC
U
s
t
a
y
ID

,It
e
m

ID
,C

G
ID

],

T
2
4
=

$
.[R

o
w
ID

,S
u
b
je

c
t
ID

,H
A
D

M
ID

,IC
U
s
t
a
y
ID

,It
e
m

ID
,C

G
ID

]

N
<

0
.1

k

Cross-Model Conjunctive Queries over Relation and Tree-structured Data 15

worst-case bound and the worst-case optimal algorithm for cross-model joins.
Our experimental results demonstrate the superiority of proposal algorithms
against state-of-the-art systems and algorithms in terms of efficiency, scalability,
and intermediate cost. Exciting follow-ups will focus on adding graph struc-
tured data into our problem setting and designing a more general cross-model
algorithm involving three data models, i.e. relation, tree and graph.

7 Acknowledgment

This paper is partially supported by Finnish Academy Project 310321 and Oracle
ERO gift funding.

References

1. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: Emptyheaded: A relational engine for
graph processing. In: SIGMOD Conference. pp. 431–446. ACM (2016)

2. Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins.
In: FOCS. pp. 739–748. IEEE Computer Society (2008)

3. Benedikt, M., Fan, W., Kuper, G.: Structural properties of xpath fragments. The-
oretical Computer Science 336(1), 3 – 31 (2005), database Theory

4. Björklund, H., Martens, W., Schwentick, T.: Conjunctive query containment over
trees. In: Proceedings of the 11th International Conference on Database Program-
ming Languages. DBPL’07 (2007)

5. Bousalem, Z., Cherti, I.: Xmap: A novel approach to store and retrieve XML
document in relational databases. JSW 10(12), 1389–1401 (2015)

6. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: SIGMOD Conference. pp. 310–321. ACM (2002)

7. Chaudhuri, S., Vardi, M.Y.: On the equivalence of recursive and nonrecursive dat-
alog programs. In: PODS. pp. 55–66. ACM Press (1992)

8. Ciucanu, R., Olteanu, D.: Worst-case optimal join at a time. Tech. rep., Technical
report, Oxford (2015)

9. Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe, B., Kepner, J.,
Madden, S., Maier, D., Mattson, T., Zdonik, S.B.: The bigdawg polystore system.
SIGMOD Record 44(2), 11–16 (2015)

10. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decomposi-
tions: Hard and easy cases. In: PODS. pp. 17–32. ACM (2018)

11. Gogacz, T., Toruńczyk, S.: Entropy bounds for conjunctive queries with functional
dependencies. arXiv preprint arXiv:1512.01808 (2015)

12. Gottlob, G., Grohe, M., Musliu, N., Samer, M., Scarcello, F.: Hypertree decom-
positions: Structure, algorithms, and applications. In: International Workshop on
Graph-Theoretic Concepts in Computer Science. pp. 1–15. Springer (2005)

13. Gottlob, G., Koch, C., Schulz, K.U.: Conjunctive queries over trees. J. ACM 53(2),
238–272 (2006)

14. Gottlob, G., Lee, S.T., Valiant, G., Valiant, P.: Size and treewidth bounds for
conjunctive queries. J. ACM 59(3), 16:1–16:35 (2012)

15. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans. Al-
gorithms 11(1) (Aug 2014). https://doi.org/10.1145/2636918, https://doi.org/
10.1145/2636918

https://doi.org/10.1145/2636918
https://doi.org/10.1145/2636918
https://doi.org/10.1145/2636918

16 Yuxing Chen, Valter Uotila, Jiaheng Lu, Zhen Hua Liu, and Souripriya Das

16. Hai, R., Geisler, S., Quix, C.: Constance: An intelligent data lake system. In:
SIGMOD Conference. pp. 2097–2100. ACM (2016)

17. Hogan, A., Riveros, C., Rojas, C., Soto, A.: A worst-case optimal join algorithm
for SPARQL. In: ISWC (1). Lecture Notes in Computer Science, vol. 11778, pp.
258–275. Springer (2019)

18. Johnson, A.E., Pollard, T.J., Shen, L., Li-wei, H.L., Feng, M., Ghassemi, M.,
Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: Mimic-iii, a freely accessible
critical care database. Scientific data 3, 160035 (2016)

19. Khamis, M.A., Ngo, H.Q., Suciu, D.: Computing join queries with functional de-
pendencies. In: PODS. pp. 327–342. ACM (2016)

20. Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality.
Bulletin of the American Mathematical Society 55(10), 961–962 (1949)

21. Lu, J., Holubová, I.: Multi-model data management: What’s new and what’s next?
In: EDBT. pp. 602–605. OpenProceedings.org (2017)

22. Lu, J., Holubová, I.: Multi-model databases: A new journey to handle the variety
of data. ACM Comput. Surv. 52(3), 55:1–55:38 (Jun 2019)

23. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From region encoding to extended dewey:
On efficient processing of XML twig pattern matching. In: VLDB. pp. 193–204.
ACM (2005)

24. Lu, J., Liu, Z.H., Xu, P., Zhang, C.: UDBMS: road to unification for multi-model
data management. CoRR abs/1612.08050 (2016)

25. Nassiri, H., Machkour, M., Hachimi, M.: One query to retrieve XML and relational
data. In: FNC/MobiSPC. Procedia Computer Science, vol. 134, pp. 340–345. El-
sevier (2018)

26. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms. J.
ACM 65(3), 16:1–16:40 (Mar 2018)

27. Ngo, H.Q., Ré, C., Rudra, A.: Skew strikes back: new developments in the theory
of join algorithms. SIGMOD Record 42(4), 5–16 (2013)

28. Nguyen, D.T., Aref, M., Bravenboer, M., Kollias, G., Ngo, H.Q., Ré, C.,
Rudra, A.: Join processing for graph patterns: An old dog with new tricks. In:
GRADES@SIGMOD/PODS. pp. 2:1–2:8. ACM (2015)

29. Qtaish, A., Ahmad, K.: Xancestor: An efficient mapping approach for storing
and querying XML documents in relational database using path-based technique.
Knowl.-Based Syst. 114, 167–192 (2016)

30. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
Xmark: A benchmark for XML data management. In: VLDB. pp. 974–985. Morgan
Kaufmann (2002)

31. Veldhuizen, T.L.: Leapfrog triejoin: A simple, worst-case optimal join algorithm.
arXiv preprint arXiv:1210.0481 (2012)

32. Xue, N., Xia, F., Chiou, F.D., Palmer, M.: The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural language engineering 11(2), 207–
238 (2005)

33. Yannakakis, M.: Algorithms for acyclic database schemes. In: VLDB. pp. 82–94.
IEEE Computer Society (1981)

34. Zhang, C., Lu, J., Xu, P., Chen, Y.: Unibench: A benchmark for multi-model
database management systems. In: Technology Conference on Performance Eval-
uation and Benchmarking. pp. 7–23. Springer (2018)

35. Zhu, H., Yu, H., Fan, G., Sun, H.: Mini-xml: An efficient mapping approach between
XML and relational database. In: ICIS. pp. 839–843. IEEE Computer Society
(2017)

