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ABSTRACT

In Federated learning (FL) systems, a centralized entity
(server), instead of access to the training data, has access
to model parameter updates computed by each participant
independently and based solely on their samples. Unfortu-
nately, FL is susceptible to model poisoning attacks, in which
malicious or malfunctioning entities share polluted updates
that can compromise the model’s accuracy. In this study, we
propose FedClean, an FL mechanism that is robust to model
poisoning attacks. The accuracy of the models trained with
the assistance of FedClean is close to the one where malicious
entities do not participate.

Index Terms— Federated learning, model poisoning, ac-
tive learning, reputation

1. INTRODUCTION

Federated learning (FL) is a machine learning (ML) technique
for training models across multiple entities without requiring
the exchange of locally stored data but only the exchange of
parameters [1, 2]. FL is vunerable to model poisoning by ad-
versaries that contribute poisoned parameters [3]. The major-
ity of existing defense mechanisms against parameter poison-
ing are based either on the assumption that the data samples
generated on every agent follow the same distribution [4] or
on update aggregation techniques that focus on the similarity
of updates with each other [5, 6].

In this work we propose FedClean, a defense mechanism
for FL systems against poisoning attacks that is based on
the principles of active learning [7]. It contains a reputation
mechanism, which keeps track of each agent’s credibility and
assists in selecting trustworthy agents for model training, and
a update quality control mechanism that detects malicious
updates. We depict the performance of FedClean against four
attacks , and compare with four benchmarks (FedAvg without
malicious agents [1], RSA [6], Krum [8], and Coomed [9]).
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2. PROBLEM STATEMENT

We consider an FL model M that is described by a vector
of parameters WM ∈ RN and is trained for T rounds of
length τ time slots via a training dataset, D, which is dis-
tributed and privately stored among a set of K agents A (i.e.,
D = D1 ∪D2 ∪ . . .∪DK). The dimensionality of the param-
eter space, N , depends on the type of the model (e.g., neu-
ral networks). The parameter vector WM is obtained by dis-
tributed training and aggregation over the updates provided by
selected agents. At each round t, a random subset of agents,
At ⊂ A, is chosen by the server for synchronous aggrega-
tion [1] for a period of τ slots. Every agent i ∈ At, mini-
mizes the empirical loss using a loss function L over its own
data shard Dt→t+τ

i that is stored privately and generated be-
tween t and t + τ , by starting from the global weight vector
W t

M and running an algorithm such as stochastic gradient de-
cent (SGD) [10] for τ slots. At the end of its run, each agent
i obtains a local weight vector W t+τ

Mi
using only her privately

stored data samples and a mutually agreed loss function L,
computes its local update

δt+τi = W t+τ
Mi
−W t

M (1)

and sends it to the server. To obtain the global weight vec-
tor W t+τ

M for the next round, any aggregation mechanism
can be used over the collected parameter updates ∆t+τ ={
δt+τi

}
i∈At . One of the most commonly used aggregation

mechanisms is weighted averaging based aggregation:

W t+τ
M = W t

M +
∑
i∈At

δt+τi Γi(t) (2)

= W t
M +

∑
i∈At

(
W t+τ

Mi
−W t

M
)

Γi(t), (3)

where
∑

Γi(t) = 1. The quality of M depends on WM
that depends on agents’ updates during the training period.
Assuming that a subset of P agents submit poisonous updates
∆t
P ⊂ ∆t, the server can only observe each δti ∈ ∆t and

decide whether to accept it or not. Although the server cannot



control the quality of each individual update, it can control the
subset of the selected agents on each training iteration t, At,
and the way the submitted updates will be aggregated, Γi(t).

FedClean incorporates a reputation-based sampling strat-
egy to select agents on each round and a classifier hosted in
an oracle to detect poisonous updates.

3. FEDCLEAN DESIGN

FedClean protects the iterative training of an FL model, M,
from poisonous updates ∆t

P ⊂ ∆t using an agent reputation
model, γ, and a hypersphere model H assisted by an Ora-
cle O. The ideal scenario for FedClean is to filter out any
poisonous updates before being included in model training.
However, it is difficult to design a solution which can filter
out poisonous updates with 100% accuracy. So, FedClean
introduces a two-layer defense mechanism to address model
poisoning attacks in FL.

Reputation based Sampling Strategy: In order to deter-
mine a random subset of agents At ⊂ A that will contribute
on the next training round, we use two factors: (i) agents’ rep-
utation score, and (ii) an inclusion bias. We use a Bayesian
framework [11, 12] to determine the probability of agent i
to make an honest contribution in a given round and use a
beta distribution Beta(αi, βi) to determine this probability.
If there is no prior information about agent i, αi = βi = 1
which means that the distribution is uniform. The reputation
of agent i, γi, is γi = αi/(αi + βi). Whenever an agent, i, is
sampled δi is examined byH and if the update is included for
training, αi increases by 1, and so i’s reputation, otherwise βj
increases by 1, and i’s reputation decreases.

Basing agent sampling entirely on reputation score has
two pitfalls: (i) some agents who were chosen in initial train-
ing rounds and made honest contribution will be sampled
more frequently, leaving many agents unexplored, and (ii)
some agents may wrongly be penalized by the hypershapere
classifier, or some agents may send malicious updates in
given round, but may want to contribute honestly in future
rounds for rewards. To tackle these pitfalls, we introduce an
inclusion bias bi(t) for agent i at round t, which is calculated
as follows

bi(t) = bi(t− 1) + 1 if i /∈ At or 0 if i ∈ At (4)

and increases the chances of non recently selected agents.
We combine the reputation model and the inclusion bias

to propose an agent selection mechanism in which the proba-
bility of agent i to be selected at round t is:

P [i ∈ At] = χ
γi∑
i∈A γi

+ (1− χ)
bi∑

i∈A(bi)
, (5)

where χ ∈ [0, 1] is a trade-off factor. In essence, reputation-
based agent sampling mechanism tries to sample agents often
who are likely to make honest contribution, while being in-
clusive to agents with low reputation.

Peer Truth Serum aided Hypersphere based Update
Selection: H is modeled as a hypersphere-based anomaly de-
tection approach equipped with an active learning strategy to
adjust an anomaly threshold similarly to support vector do-
main description (SVDD) [13]. The goal of the SVDD is to
find a concise description of the normal updates such that ma-
licious data can be easily identified. In the underlying one-
class scenario, this translates to finding a minimal enclosing
hypersphere of center Hc and radius HR that contains the
honest training updates.

fH(δi) = ||δi −Hc||2 −HR2 (6)

the boundary of the hypersphere is described by the set {δ :
fH(δi) = 0 ∩ δi ∈ ∆}. That is, the parameters of fH are
to be chosen such that fH(δi) ≤ 0 for honest updates and
fH(δi) > 0 for poisonous updates. Using fH, the server is
able to classify agent updates, {δt+Ti }i∈At , into honest and
polluted and update of their reputation accordingly. In the
examined setting, all the updates are unlabeled, since we do
not have information whether they are honest or poisonous.
We use a random sampling strategy to sample some of these
unlabeled updates to receive their labels from an Oracle O
in such way that having labeled information on those updates
provide significantly high accuracy for the global modelM.
After receiving labels fromO, centerHc and radiusHR of the
hypersphere are determined from the following optimization
problem (as adopted by [14]):

min
Hc,HR,µ,ξ

H2
R − κµ+ ηu

n∑
i=1

ξi + ηl

n+m∑
j=n+1

ξj

s.t. ∀ni=1 : ||φ(δj)−Hc||2 ≤ H2
R + ξi

∀n+mj=n : yj
(
H2
R − ||φ(δj)−Hc||2

)
≤ −µ+ ξj

∀ni=1 : ξi ≥ 0, and ∀n+mj=n+1 : ξj ≥ 0
(7)

where µ is a margin, κ, ηu, and ηl are trade-off parameters
which balance margin-maximization and the impact of unla-
beled and labeled updates respectively, n is number of un-
labeled updates, m is number of labeled updates, and yj is
the label given by Oracle as in Equation 8. The additional
slack variables ξi are bound to labeled examples and allow
for point-wise relaxations of margin violations by labeled ex-
ample.

yj =

{
+1, if Oracle O considers δ benign
−1, if Oracle O considers δ malicious

(8)

HypersphereH decides which updates should be included on
order to update global modelM. If the update δi lies within
hypersphere, δ is included to updateM, and agent i’s reputa-
tion increases as per reputation update mechanism. Similarly,
if the update δi lies outside the hypersphere, δ is excluded to
updateM, and agent i’s reputation decreases reputation up-
date mechanism. Before describing the calculation of W t+τ

M



given W t
M and ∆t+τ we need to highlight that the submitted

updates {δt+τi } are high dimensional and non-linear in nature.
For example, the deep neural network model we use on Fash-
ionMNIST (fMNIST) dataset for evaluation purpose has total
3,382,346 parameters across different layers. The employed
hypersphere based approach does not work in such high di-
mensions. For that, we flatten all these parameters into one
row vector, and use a two-layer deep-forward auto-encoder
function φ in order to retrieve its corresponding (compressed)
representation in lower dimension, i.e. φ(δi). We pick the
size of the compressed vector to be 10,000. Given the sub-
mitted updates, FedClean integrates a classifier that processes
these updates and determines if they should be considered in
the calculation of W t+τ

M .
Additionally, FedClean employs a second sampling strat-

egy which objective is to select a number of unlabeled data
points (or updates) to query Oracle O about it under the bud-
get B (lesser the amount of queries is, better it is), such that
having information regarding labels of these data points will
provide significant boost to the accuracy (See Equation 8).
This strategy samples updates lying either in previously unex-
plored region, or in uncertain and unexplored region preferred
sampling strategy.

Formulation of Oracle: Oracle O randomly selects a
subset of S agents in each iteration from the set of the agents
that have not been selected for training. Each of these S
agents, receives the same input as any agent in At, calculates
her update δt+τSi

and sends it to the server. So, by the end of
each iteration, the server receives two sets of updates: ∆t+τ

and ∆t+τ
S while ∆t+τ includes a subset ∆t+τ

P of poisonous
updates. The goal of the oracle is to use ∆t+τ

S to detect ∆t+τ
P

in ∆t+τ . It is worth noting that since the S are not selected
based on their reputation but uniformly at random (i.e., each
of them has a probability of 1 over K − S to be selected),
∆t+τ
S is not considered in the updated of the model but only

for the detection of the poisonous updates as discussed below.
The server, after receiving ∆t+τ and ∆t+τ

S calculates the
cosine similarity of every update in ∆t+τ every update in
∆t+τ
S . If the similarity between an update in ∆t+τ and an up-

date in ∆t+τ
S is less than 0.5 the update in ∆t+τ is marked. If

one update is marked by the majority of the updates in ∆t+τ
S ,

it is considered as poisonous and it is not included in the cal-
culation of the new weights, as described in Equation 8.

Each of the S agents submits the produced update in the
same way as the agents in At and gets paid a default token
for their effort. If the test accuracy of the global model does
not degrade after including those updates in training, they get
an additional token. This ensures that the best strategy for
a rational agent is to calculate their model update in non-
malicious manner as proven by the authors of [15]. This ap-
proach is also known as peer truth serum. Since the member
of Oracle set is always selected randomly, an attacker can not
influence selection of the S agents.

Considering that the data each agent stores do not follow
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Fig. 1. Federated averaging under Sign-flipping (SF), same-
value (SV), additive Gaussian noise (AGN), and gradient-
ascent (GA) attacks without any defense mechanism.

the same distribution it is possible for the cosine similarity be-
tween two updates to be low even if both of them are benign.
For that S needs to be high enough. As depicted by the exper-
iments in Section 4, the higher the number of S the faster the
accuracy of the trained model converges to the highest possi-
ble value.

Given the honest contributions {δt+τi } we need the
weights assigned to agents, {Γi(t)} to calulate W t+τ

M as
shown in equation 3. We use a variant of Federated Averaging
(FedAvg) [1] for weight aggregation Γi(t) = γi/

∑
k∈At

H
γk,

where AtH are the agents whose contributions were selected
byH to updateM.

Convergence of Reputation-based FedAvg. As the un-
derlying requirements for convergence of reputation-based
FedAvg (i.e. FedClean) are the same as ones for FedAvg [1]
which has been shown to be convergent, we claim that this
aggregation mechanism also leads to the model convergence.

4. PERFORMANCE EVALUATION

We evaluate the robustness of FedClean against four attacks
from malicious agents and compare them with four bench-
mark algorithms on a GeForce GTX 1080 Ti GPU computer.
We use the fMNIST dataset, which has 60k training sam-
ples and 10k testing samples. We use a 3-layer Convolutional
Neural Network (CNN) with dropout as the model architec-
ture. With centralized training, this model achieves 91.7%
accuracy on fMNIST. We experiment with two values for the
number of the agents in two scenarios. In the first scenario
we consider K = 10, T = 50. Here, we select all agents for
training in each training round. In the second scenario, we
consider K = 100, T = 100. Here, we use reputation-based
agent sampling mechanism (Equation 5) to select 10 agents
in each iteration for training. In both scenarios, we train the
model until we reach an accuracy of 91% or reach T epochs.
In both scenarios we examine two cases of malicious agents,
one where they are 20% of the agents (i.e., P = 0.2K) and
one where they are 40% (i.e., P = 0.4K). For the oracle we
employ five agents on every iteration (i.e., S = 5), so in the
first scenario we have 15 agents in total since all the agents
are considered on every iteration while in the second scenario
S = 0.05K.
Impact of Reputation. As described by Equation 5, the prob-
ability of an agent to be selected on a round depends on her
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Fig. 2. Cost of resilience (i.e., accuracy under no attack).
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Fig. 3. Sign-flipping attack.
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Fig. 4. Same value attack.
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Fig. 5. Additive Gaussian noise attack.
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Fig. 6. Gradient ascent attack.

Fig. 7. Accuracy under SF, SV, AGN, and GA attacks.

serviceableness in the previous rounds and an inclusion bias
factor.

Robustness of FedClean. Figure 1 shows that FedAvg (line
labeled with ”W/O” for the case of not being under an at-
tack) is vulnerable and needs a defense mechanism. Figure 2
shows that FedClean shows overhead of defense when P = 0.
Next we assess how FedClean can make FedAvg more robust
against four attacks adopted from [6, 16].

1) Sign-flipping attack (SF). Malicious agents flip the
sign of their contribution and enlargen the magnitude. As
demonstrated in Figure 3, for K = 100, FedClean performs
marginally better than RSA, and slightly worse than Coomed
and much better than Krum.

2) Same Value Attack (SV). Malicious agents perform
same-value attacks by setting their updates as c1, where
1 is an all-one vector and c is a constant which is set to
100. As demonstrated in Figure 4, FedClean performs
marginally better than RSA and Coomed, and significantly
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Fig. 8. Accuracy of FedClean with different sampling strate-
gies under sign-flipping attacks.
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Fig. 9. FedClean Performance with different level of Oracle’s
budget.

better than Krum.

3) Additive Gaussian Noise Attack (AGA). Malicious
agents calculate {δt+τi } as expected but add Gaussian Noise
N (0, 100) before sending it to the server. As demonstrated in
Figure 5, FedClean, RSA, and Coomed are close to FedAvg,
and outperform Krum in both settings. FedClean performs
marginally better than RSA, significantly better than Krum,
and slightly worse than Coomed.

4) Gradient Ascent Attack (GA). Malicious agents run
gradient ascent, instead of gradient descent during local
training [16]. As demonstrated in Figure 6, FedClean per-
forms marginally better than Coomed, significantly better
than Krum, and slightly worse than RSA.

The Impact of the Oracle in FedClean’s Performance. Fig-
ure 9 depicts the performance gain caused when Oracle pro-
vides label for 20%, 40%, 60% of the total sampled updates
in the given iteration. With the budget being 40%, which we
used in all the experiments unless stated differently, the ac-
curacy of FedClean is close to other benchmarks and signifi-
cantly higher than Krum and FedAvg (under attack). Higher
is the fraction of the updates being examined by Oracle, faster
is the model convergence to the maximum accuracy.

5. CONCLUSION

In this work, we propose FedClean, a mechanism for defend-
ing FL server against model poisoning attacks. The server’s
defense functionality is enhanced by (i) a reputation mech-
anism that keeps track of the credibility of each agent and
assists on selecting trustworthy agents on each round to train
the model, and (ii) a peer truth serum-based quality control
mechanism that categorizes the contributed updates into hon-
est and malicious.
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