
https://helda.helsinki.fi

Syotti : scalable bait design for DNA enrichment

Alanko, Jarno N.

2022-06-24

Alanko , J N , Slizovskiy , I B , Lokshtanov , D , Gagie , T , Noyes , N R & Boucher , C 2022 ,

' Syotti : scalable bait design for DNA enrichment ' , Bioinformatics , vol. 38 , no. SUPPL 1 ,

pp. 177-184 . https://doi.org/10.1093/bioinformatics/btac226

http://hdl.handle.net/10138/345967

https://doi.org/10.1093/bioinformatics/btac226

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Syotti: scalable bait design for DNA enrichment

Jarno N. Alanko1,2,*, Ilya B. Slizovskiy3, Daniel Lokshtanov4 , Travis Gagie2,

Noelle R. Noyes3 and Christina Boucher5

1Department of Computer Science, University of Helsinki, Helsinki, Finland, 2Faculty of Computer Science, Dalhousie University,

Halifax, Canada, 3Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA, 4Department of

Computer Science, University of California, Santa Barbara, CA, USA and 5Department of Computer and Information Science and

Engineering, University of Florida, Gainesville, FL, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Bait enrichment is a protocol that is becoming increasingly ubiquitous as it has been shown to success-
fully amplify regions of interest in metagenomic samples. In this method, a set of synthetic probes (‘baits’) are
designed, manufactured and applied to fragmented metagenomic DNA. The probes bind to the fragmented DNA
and any unbound DNA is rinsed away, leaving the bound fragments to be amplified for sequencing. Metsky et al.
demonstrated that bait-enrichment is capable of detecting a large number of human viral pathogens within metage-
nomic samples.

Results: We formalize the problem of designing baits by defining the Minimum Bait Cover problem, show that the
problem is NP-hard even under very restrictive assumptions, and design an efficient heuristic that takes advantage
of succinct data structures. We refer to our method as Syotti. The running time of Syotti shows linear scaling in prac-
tice, running at least an order of magnitude faster than state-of-the-art methods, including the method of Metsky
et al. At the same time, our method produces bait sets that are smaller than the ones produced by the competing
methods, while also leaving fewer positions uncovered. Lastly, we show that Syotti requires only 25 min to design
baits for a dataset comprised of 3 billion nucleotides from 1000 related bacterial substrains, whereas the method of
Metsky et al. shows clearly super-linear running time and fails to process even a subset of 17% of the data in 72 h.

Availability and implementation: https://github.com/jnalanko/syotti.

Contact: alanko.jarno@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Our understanding of microbial species has evolved at an impressive
rate, but it is estimated that 99% of micro-oganisms cannot live out-
side their natural environments, and thus, cannot be cultured and
sequenced (Palkova, 2004). This created a significant roadblock in
studying such species. In the mid-2000s, metagenomic shotgun
sequencing became widely available, which enabled the sequencing
of all of the DNA within non-cultured samples—whether a swab of
a person’s mouth or a soil sample. This enabled the large-scale study
of micro-organisms, and thus greatly expanded our knowledge in
this field. However, many scientific questions focus on specific
sequences such as antimicrobial resistance (AMR) genes (Noyes
et al., 2017), or human viral strains and substrains (Deng et al.,
2020). To address these questions, most of the sequence reads in a
metagenomic dataset are irrelevant, and are typically eliminated
from further consideration. Moreover, the percentage of such reads
can be quite high; for instance in agricultural samples, 90–95% of
reads are often eliminated because they are not of interest to the re-
search question (Guitor et al., 2019; Noyes et al., 2017; Rubiola
et al., 2020). Furthermore, using shotgun metagenomics in these
scenarios not only leads to undue monetary expense but also greatly
lowers the sensitivity of detection. For example, Lee et al. (2017)

demonstrated that out of 31 viral strains identified, 11 were uniden-
tified via traditional sequencing, and Noyes et al. (2017) reported
that 1441 AMR genes within agricultural samples were undetected
by standard metagenomic sequencing.

One way to address these issues is to move beyond sequencing
the entire microbial population within a sample, and rather to select
the sequences of interest for targeted sequencing. This can be accom-
plished through targeted enrichment, which uses biotinylated cDNA
bait molecules to target-specific regions from DNA libraries for
sequencing. More specifically, baits (short synthetically created
single-stranded cDNA molecules) bind to their DNA targets and are
then captured within the sample using a magnet. Non-captured, un-
bound DNA fragments (i.e. non-targeted DNA) are then rinsed
away. Thus, only bound—i.e. targeted—DNA is sequenced.
Although non-targeted DNA is not completely eliminated from
sequencing, it is greatly reduced. One of the first, and arguably the
most critical steps within this process requires solving a computa-
tional problem: for a given set of target DNA sequences (e.g. set of
genes or viral strains) and a specified bait length k, identify a set of
baits such that there exists at least one bait in that set that binds to
each position of every sequence in the database.

Initially one could expect that baits could be computationally
designed by finding all unique k-length subsequences (k-mers) in the

VC The Author(s) 2022. Published by Oxford University Press. i177

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38, 2022, i177–i184

https://doi.org/10.1093/bioinformatics/btac226

ISCB/ISMB 2022

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i177/6617487 by N

ational Library of H
ealth Sciences user on 07 July 2022

https://github.com/jnalanko/syotti
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac226#supplementary-data
https://academic.oup.com/

targeted DNA. This solution however is not feasible as the number
of k-mers grows rapidly with increasing dataset size. Thus, two key
challenges need to be addressed for effective bait design. First, the
number of baits must be minimized, as the cost of targeted enrich-
ment is proportional to the size of the bait set and there is an upper
limit set by the bait manufacturer. For example, Agilent
Technologies Inc. sets a limit of �220 000 baits, implying that larger
bait sets can be manufactured but would need to be split into mul-
tiple sets—thus, increasing the cost and labor of purchasing and
processing multiple bait sets per sample. Second, the baits do not
bind exactly to a single DNA sequence identical to that bait, but will
bind to any subsequence with some allowed number of mismatches
between the bait and target DNA sequence (typically, over 70% of
positions must match). For this reason, computationally designing
effective bait sets is a challenging problem, which to the best of our
knowledge, has not been formally defined or considered from an al-
gorithmic perspective. Although there are a number of methods for
designing baits—including MrBait (Chafin et al., 2018), CATCH
(Metsky et al., 2019) and BaitFisher (Mayer et al., 2016)—most
methods are unable to scale or provide reasonable output to even
moderate-sized sets of genomes.

We formalize this problem, which we call The Minimum Bait
Cover Problem, and show it is NP-hard even for extremely restrict-
ive versions of the problem. For example, the problem remains in-
tractable even for an alphabet of size four (i.e. A, T, C, G), a single
reference genome, a bait length that is logarithmic in the length of
the reference genome, and Hamming distance of zero. In light of
these hardness results, we provide an efficient heuristic based on the
FM-index and demonstrate that it is capable of scaling to large sets
of sequences. We refer to our method as Syotti (Finnish word for
‘Bait’, with the letter ö replaced with the letter o) and compare it to
all competing methods on three datasets: (i) MEGARes, which is a
database of AMR genes, (ii) a set of genomes corresponding to sub-
strains of Salmonella enterica subsp. enterica, Escherichia coli,
Enterococcus spp. and Campylobacter jejuni and (iii) a set of viral
genomes. We determined that Syotti is the only method capable of
scaling to the second and third datasets. MrBait was able to process
all datasets, but was over 20 times slower and produced over 40
times more baits than Syotti, making it unreasonable in practice.
CATCH failed to process both the second and third dataset in 72 h,
and even failed to process prefixes of length 17% and 5% respect-
ively in the same time limit. The curve of the running time of
CATCH indicates that it would take at least 20 days to process the
viral dataset, and probably much longer.

Lastly, we evaluated the coverage of the genomes with respect to
the bait sets using our implementation of the evaluation method pro-
vided with CATCH (Metsky et al., 2019). On the smallest dataset
(MEGARes), both Syotti and CATCH covered 100.0% of the nu-
cleotide positions at least once, but MrBait covered only 96.4%. On
the largest subset of bacteria genomes that all tools were able to run,
Syotti produced 158 thousand baits, CATCH produced 241 thou-
sand and MrBait over 1 million; hence, the bait set of MrBait was
too large to be deemed of any practical use. Lastly, we considered
the full set of viral genomes and compared the baits of Syotti against
the published and publicly available bait sets of size 250k, 350k and
700k published with CATCH. The coverage of the CATCH bait sets
were 84.1%, 90.6% and 97.5%, respectively. The coverage of
Syotti was 99.5%, with the remaining 0.5% being due to unknown
N-characters in the data.

2 Related work

Given this is relatively a new computational problem, there are few
methods for bait design, which we now summarize. CATCH was
released by Metsky et al. (2019). The algorithm first generates a set
of candidate baits by sliding a window of length L with a stride of s
over the input sequences. Duplicate and near-duplicate candidates
may be filtered out by using a locality sensitive hash function (LSH).
The software offers two different options for the LSH: one based on
Hamming distance, and other using the Minimizer hashing. Next,

the candidate baits are mapped to the target sequences using a seed-
and-extend approach.

A tunable hybridization model is used to determine whether a
bait matches to the mapped position. The user can tune the model
with the following three ways: (i) allow a given number of mis-
matches to be tolerated; (ii) require that there be an exact match of a
given length; and (iii) define that a bait hybridizes to the target if at
least one of its substrings of a given length hybridizes to the target.
After all sequences are mapped and the hybridization verified
according to the specified model, CATCH filters redundant candi-
date baits. This is done by reducing the problem into an instance of
the classical SET COVER problem. The input to the SET COVER instance
is a family of subsets of positions in the input sequences. The SET

COVER instance is solved using a greedy heuristic. If the bait design
algorithm of CATCH is applied across diverse taxa, it may result in
over-representation of the more diverse taxa in the bait set. To ad-
dress this issue, the user can specify a different weight for each
taxon. CATCH then runs a constrained non-linear optimization al-
gorithm using a truncated Newton algorithm, enforcing the con-
straints with the barrier method. The aim is to optimize different
hybridization parameters for each taxon that minimize a weighted
loss-function, penalizing less stringent hybridization models.

BaitFisher (Mayer et al., 2016) is another method for bait design.
It takes as input a multiple alignment of the target sequences, and
then clusters the input sequences according to Hamming distance,
and constructs a consensus sequence for each cluster. The consensus
sequence is constructed to minimize the maximum Hamming dis-
tance to all sequences in the cluster. It is computed with either an ex-
haustive brute force method, or approximated via a greedy heuristic.
BaitFisher constructs a provisional bait set by tiling the consensus
sequences with baits. The bait set is post-processed by a helper pro-
gram called BaitFilter to remove possible issues such as baits binding
to multiple regions.

MrBait (Chafin et al., 2018) designs baits by first detecting and
filtering suitable target regions depending on use specification, and
then tiling target regions with baits. As a postprocessing step, baits
may be filtered to remove redundancy, by computing pairwise align-
ments of the baits and finding a maximal independent set of baits.

Other tools for bait design include AnthOligo (Jayaraman et al.,
2020), MetCap (Kushwaha et al., 2015) and BaitsTools (Campana,
2018). We do not consider these tools because former two are only
offered through a web-interface, and BaitsTools uses a similar tiling
method to MrBait.

3 The minimum bait cover problem
3.1 Preliminaries

We define a string S as a finite sequence of characters S ¼ S½1 . . . n�
over an alphabet R ¼ fc1; . . . ; crg. We denote the length of a string
S by jSj, and the empty string by e. We denote by S½1 . . . i� the i-th
prefix of S, and by S½i . . . n� the i-th suffix of S. Given two strings S
and T, we say that S is lexicographically smaller than T if either S is
a prefix of T or there exists an index i � 1 such that S½1 . . . i� ¼
T½1 . . . i� and S½iþ 1� occurs before T½iþ 1� in R. We denote this as
S � T. Next, we define the Hamming distance between S and T
(which have the same length) as the number of positions where S
and T mismatch, namely dðS;TÞ :¼ jfi : S½i� 6¼ T½i�gj. Lastly, we de-
note S�T for the string concatenation of S and T. Given a set of
strings, S ¼ fS1; ::Smg, we denote the total length

P
S2S jSj of all

strings in S by kSk.
For a string S and integer ‘ � jSj we denote by preðS; ‘Þ the pre-

fix S½1; . . . ; ‘� of S of length ‘. Similarly, we denote by sufðS; ‘Þ the
suffix S½‘� ‘þ 1; . . . ; ‘� of S of length ‘.

3.2 Hardness results

We fix the length of the bait sequences to a constant L. We say a
string X covers a position i � jYj in a string Y if there exists a j such
that i� jXj < j � i and X ¼ Y½j; jþ 1; . . . jþ jXj � 1�. More gener-
ally, X distance h-covers (we will just say h-covers) position i in Y if
there exists a j such that i� jXj < j � i and dðX;Y½j; jþ
1; . . . jþ jXj � 1�Þ � h. Observe that X covers i if and only if X

i178 J.N.Alanko et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i177/6617487 by N

ational Library of H
ealth Sciences user on 07 July 2022

0-covers i. A set T of strings h-cover a string S if, for every position i
in S there exists a string T 2 T that h-covers i. A set T of strings
h-cover a set S of strings if every string S 2 S is h-covered by T . We
are now ready to define the main problem considered in this article,
namely MINIMUM BAIT COVER.

Minimum Bait Cover
Input: Here the input consists of two integer parameters

h � 0 and L>0 and a set S of n strings
S ¼ fS1; . . . ; Sng over a finite alphabet R.

Question: What is the smallest possible set T of strings,
each of length exactly L, such that S is h-covered
by T .

In the closely related String Cover problem input is a single string
S and a parameter L>0. The task is to find a minimum size set T of
strings, each of length exactly L, such that S is h-covered by T .
Comparing the two problem definitions it is easy to see that String
Cover is precisely equal to the special case of Minimum Bait Cover
when n¼1 and h¼0. Cole et al. (2005) proved that String Cover is
NP-hard even for L¼2. This immediately leads for the following
hardness result for Minimum Bait Cover.

PROPOSITION 3.1 (Cole et al., 2005) (a) String Cover is NP-hard even for

L¼ 2. (b) Minimum Bait Cover is NP-hard, even for n¼ 1, h¼ 0 and

L¼ 2.

Proposition 3.1 effectively rules out any hope of a polynomial
time algorithm, or an efficient (Fixed Parameter Tractable or
Slicewise Polynomial) parameterized algorithm with parameters n, h
and L. At the same time the instances of String Cover constructed in
the reduction of Cole et al. (2005) are strings over a large alphabet
jRj. Since we are primarily interested in instances of Minimum Bait
Cover with jRj ¼ 4, this might leave some hope that for small alpha-
bets one can still obtain efficient parameterized algorithms. We now
show that (almost) all of the hardness from Proposition 3.1 is
retained even when jRj is constant.

THEOREM 3.2 (a) For every k � 2, String Cover is NP-hard with jRj ¼ k

and L ¼ Oðlog jSjÞ. (b) For every k � 2, Minimum Bait Cover is NP-

hard, even for jRj ¼ k; S ¼ fSg, h¼ 0 and L ¼ Oðlog jSjÞ.

Theorem 3.2 shows that unless P ¼ NP there cannot exist an al-
gorithm for Minimum Bait Cover with running time
2OðLÞkSkgðjRj;n;hÞ for any function g of constant parameters jRj; n and
h. We refer the reader to Chapter 1 of Downey and Fellows (2012)
for a more thorough discussion fixed parameterized complexity,
W[1]-hardness and NP-hardness. This effectively rules out parame-
terized algorithms that exploit any of the most natural parameters
one could expect to be small in relevant input instances. We remark
that part (a) of Theorem 3.2 resolves in the affirmative a conjecture
of Cole et al. (2005) that String Cover remains NP-hard even with a
constant size alphabet.

PROOF OF THEOREM 3.2 We only prove (a), since (b) follows from (a) to-

gether with the fact that String Cover is the special case of MINIMUM BAIT

COVER with h¼ 0 and n¼ 1. Fix an integer k � 2. We give a reduction

from String Cover with L¼ 2 and unbounded alphabet size (i.e.

jRj � jSj) to String Cover with alphabet Rk ¼ f0; . . . ;k� 1g of size

exactly k.

We now describe the construction. Given as input an instance
ðR; S;L ¼ 2Þ of String Cover the reduction algorithm sets Rk ¼
f0; . . . ; k� 1g; ‘ to be the smallest integer above b100 log 2ðjRjÞc
that is divisible by 3, and L0 ¼ 2‘. The algorithm then computes a
set of strings fSa : a 2 Rg by using Claim 3.3.

CLAIM 3.3 There exists an algorithm that given as input a set R, runs in

time polynomial in jRj, and outputs a set fSa : a 2 Rg of strings over

the alphabet Rk, all of length L0 ¼ 2‘, that satisfy the following

properties:

1. For distinct characters a;b 2 R we have preðSa; ‘=3Þ 6¼ preðSb; ‘=3Þ,
2. for distinct characters a; b 2 R we have sufðSa; ‘=3Þ 6¼ sufðSb; ‘=3Þ,
3. for every pair of characters a;b 2 R (including the case when a

¼ b) and every r � ‘=3 we have that preðSa; rÞ 6¼ sufðSb; rÞ.

PROOF. Let us first observe that the total number of strings in ðRkÞ‘ is

Hð2 log 2k100 log 2 jRjÞ ¼ HðjRj100 log 2kÞ and therefore upper bounded by a

polynomial in jRj. The algorithm initializes a list of strings L to contain

all strings in ðRkÞ‘. The algorithm then removes from L all strings T such

that there exists some r � ‘=3 such that preðT; rÞ 6¼ sufðT; rÞ. For every

r � ‘=3, the number of strings T 2 ðRkÞ‘ such that the prefix of T of

length r is equal to the suffix of T of length r is at most k
2‘
3 (because fixing

the 2‘
3 first characters uniquely determines the remaining ‘

3 characters).

Thus, the total number of strings removed from the list in this initial

cleaning step is at most ‘ 	 k2‘
3 .

The algorithm then iterates over the characters a 2 R one by one.
When considering the character a the algorithm picks an arbitrary
string still on the list L, calls it Sa, and removes it from the list L. It
then goes over all strings on the list L and removes all strings T such
that preðT; ‘=3Þ ¼ preðSa; ‘=3Þ, or sufðT; ‘=3Þ ¼ sufðSa; ‘=3Þ, or
there exists an r � ‘=3 such that preðT; rÞ ¼ sufðSa; rÞ or
sufðT; rÞ ¼ preðSa; rÞ.

There are at most k
2‘
3 strings T such that preðT; ‘=3Þ ¼

preðSa; ‘=3Þ (since ‘
3 of the characters of S are uniquely determined

by preðSa; ‘=3Þ). Similarly, there are at most k
2‘
3 strings T such that

sufðT; ‘=3Þ ¼ sufðSa; ‘=3Þ, and at most ‘ 	 k2‘
3 strings T such that

there exists an r � ‘=3 such that preðT; rÞ ¼ sufðSa; rÞ or
sufðT; rÞ ¼ preðSa; rÞ. Therefore, in each iteration (i.e. after selecting
one string Sa) the algorithm removes at most 4‘ 	 k2‘

3 strings from L
There are jRj � 2

‘
100 iterations of the algorithm in total. Thus, in

each iteration of the algorithm there are at least k‘ � 4jRj‘k2
3‘ � k‘

2
strings from L to choose the next string Sa from. Thus, the algorithm
successfully selects a string Sa 2 L for every character a 2 R.

Finally, we can have the right idea argue that the set of strings
fSa : a 2 Rg satisfy properties 1, 2 and 3. Suppose for distinct char-
acters a, b we have that preðSa; ‘=3Þ ¼ preðSb; ‘=3Þ or
sufðSa; ‘=3Þ ¼ sufðSb; ‘=3Þ, or there exists an r � ‘=3 such that
preðSa; rÞ ¼ sufðSb; rÞ or sufðSa; rÞ ¼ preðSb; rÞ. Without loss of gen-
erality Sa was selected before Sb, and then Sb would have been
removed from L in the cleaning step immediately after Sa was
selected. This contradicts that Sb was selected from the list L.
Further, suppose that there exists an r � ‘=3 such that preðSa; rÞ ¼
sufðSa; rÞ for some string Sa. But then Sa would have been removed
in the initial cleaning step, again contradicting that Sa was selected
from L. This completes the proof of the claim.

The reduction algorithm now constructs the string S0 from S by
replacing every character a 2 R with the corresponding string Sa.
The reduction algorithm outputs the instance ðR0; S0;L0Þ. This con-
cludes the construction. We claim that for every integer t, there
exists a set T of t strings of length L¼2 that cover S if and only if
there exists a set T 0 of t strings of length L0 that cover S0.

We begin by proving the forward direction of the above claim. Let
T be a set of t strings of length L that cover S. We define
T 0 ¼ fSaSb : ab 2 T g. Clearly jT 0j ¼ t. To see that T 0 covers S0 con-
sider an arbitrary position p0 in the string S0 and let p ¼ dp0‘ e. Since T
covers p there is a string ab 2 T that covers p in S. But then SaSb 2 T 0
covers all positions f‘ 	 p� ‘þ 1; ‘ 	 p� ‘þ 2; ‘ 	 pg in S0. However
p0 2 f‘ 	 p� ‘þ 1; ‘ 	 p� ‘þ 2; ‘ 	 pg and therefore T 0 covers p0. Since
p0 was an arbitrarily chosen position we conclude that T 0 covers S0.

We now prove the reverse direction: if there exists a set T 0 of t
strings of length L0 that cover S0 then there exists a set T of t strings
of length L¼2 that cover S. Without loss of generality, every string
T 2 T 0 is a substring of S0 of length 2‘ (otherwise T 0 n fTg also cov-
ers S0). Thus T ¼ sufðSa; iÞ � Sb � preðSc; ‘� iÞ for some i 2
f1; . . . ; ‘g and a; b; c 2 R. Note that if i ¼ ‘ then T ¼ SaSb for
a; b 2 R. Next we prove a claim about strings on this form.

Scalable bait design i179

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i177/6617487 by N

ational Library of H
ealth Sciences user on 07 July 2022

CLAIM 3.4 If sufðSa; iÞ � Sb � preðSc; ‘� iÞ ¼ suf � ðSa0 ; i
0Þ � Sb0 �

preðSc0 ; ‘� i0Þ then i ¼ i0 and b¼ b. Furthermore, if i � ‘=2 then a ¼ a0,

otherwise c ¼ c0.

PROOF Suppose that sufðSa; iÞ � Sb � preðSc; ‘� iÞ ¼ sufðSa0 ; i
0ÞSb0

preðSc0 ; ‘� i0Þ, and assume for contradiction that i 6¼ i0. Without loss
of generality we have i < i0.

We have that: sufðSa0 ; i
0 � iÞ ¼ preðSb; i

0 � iÞ; sufðSb;
‘� i0 þ iÞ ¼ preðSb0 ; ‘� i0 þ iÞ, and sufðSb0 ; i

0 � iÞ ¼ preðSc; i� iÞ.
Furthermore we have that jsufðSa0 ; i

0 � iÞ j þ jsufðSb; ‘� i0 þ iÞ
j þ jsufðSb0 ; i

0 � iÞj ¼ ‘þ i0 � i � ‘. Thus, at least one of
sufðSa0 ; i

0 � iÞ; sufðSb; ‘� i0 þ iÞ, or sufðSb0 ; i
0 � iÞ has length at least

‘=3. However, either one of sufðSa0 ; i
0 � iÞ; sufðSb; ‘� i0 þ iÞ, or

sufðSb0 ; i
0 � iÞ having length at least ‘=3 contradicts Property 3 of the

set fSa : a 2 Rg of strings. We conclude that i ¼ i0. But then
sufðSa; iÞ ¼ sufðSa0 ; iÞ; Sb ¼ Sb0 and preðSc; ‘� iÞ ¼ preðSc0 ; ‘� iÞ.
Property 1 implies that b ¼ b0. If i � ‘=2 then Property 2 implies
that a ¼ a0. If i < ‘=2 then ‘� i � ‘=3 and therefore Property 1
implies that c ¼ c0.

For every string T 2 T 0 we have that T ¼ sufðSa; iÞ � Sb �
preðSc; ‘� iÞ for some i 2 f1; . . . ; ‘g and a; b; c 2 R. By Claim 3.4 i
and b are uniquely determined by T. If i � n=2 then by Claim 3.4 a
is also uniquely determined by T. In this case we add ab to the set T .
If i < ‘=2 then by Claim 3.4 c is also uniquely determined by T. In
that case we add bc to the set T . In either case we add precisely one
string of length 2 to T for each T 2 T 0. Thus jT j � jT 0j and it
remains to prove that T covers S.

Consider an arbitrary position p of S and let
abcde ¼ S½p� 2; p� 1; p; pþ 1;pþ 2�. Let p0 ¼ p‘� b‘2c, and let
T 2 T 0 be such that T ¼ S½x; xþ 1; . . . ;xþ L0 � 1� where
p0 2 fx;xþ 1; . . . ; xþ L0 � 1g. We have the following cases:

1. T ¼ sufðSa; iÞ � Sb � preðSc; ‘� iÞ, where ‘� i � ‘=2, or

2. T ¼ sufðSb; iÞ � Sc � preðSd ; ‘� iÞ, where i 2 1; . . . ; ‘, or

3. T ¼ sufðSc; iÞ � Sd � preðSe; ‘� iÞ, where i � ‘=2.

In the first case bc 2 T and S½p� 1;p� ¼ bc, in the second case
bc 2 T and S½p� 1; p� ¼ bc or cd 2 T and S½p; pþ 1� ¼ cd, while in
the third case cd 2 T and S½p;pþ 1� ¼ cd. In either case the position
p is covered by T , and so S is covered by T .

We remark that in the argument above, if p 2 f1;2; jSj � 1; jSjg
then some of a, b, d, e are not properly defined. However this only
restricts which of the cases 1, 2 and 3 may apply, one of them must
still apply (for characters from a, b, c, d, e that are well defined).
This concludes the proof.

3.3 The Syotti algorithm

Our algorithm requires an index that can search for substrings in the
input sequences S1; . . . ; Sn and report the locations of the exact
matches. For this purpose, we use the combination of an FM-index
(Ferragina and Manzini, 2005) and a generalized suffix array GSA
(the suffix array of a set of strings (Shi, 1996)). Given a substring x,
the FM-index is able to compute an interval ½‘; r� such that the entries
GSA½‘�; . . . ;GSA½r� give all starting positions of x in S1; . . . ; Sn. That
is, the entries of GSA in the interval are pairs (t, p) such that
St½p::pþ jxj � 1� ¼ x. We refer the interested reader to Mäkinen
et al. (2015) for a detailed exposition of the techniques involved.

First, we construct the aforementioned data structures from the
input sequences. The data structures are easily derived from the suf-
fix array of the concatenation S1$S2$. . . $Sn#, where $ is a separator
character and # is an end sentinel. There exists there exists several
linear-time construction algorithms (Puglisi et al., 2007). In practice,
we use the Divsufsort algorithm of Yuta Mori (https://github.com/y-
256/libdivsufsort). Next, we initialize the set of bait sequences to an
empty set, and initialize a bit vector for each sequence, of the same
length as that sequence. The bit vector signifies which positions are
covered by the bait sequences. Then, we perform a linear scan of
each sequence, checking the bit vector at each position. When we
come across a position that is not yet marked as covered, we add the
substring of length L starting from that position into the set of bait

sequences and update the bit vectors for all positions covered by the
new bait. More specifically, we search for positions in all the
sequences to which the new bait has Hamming distance less than or
equal to h. This search is done with a seed-and-extend heuristic
based on the exact matching index as follows. For each seed k-mer x
in the new bait sequence B, we find all occurrences of x in our input
sequences. For each occurrence of x we consider the L-length se-
quence B0 that contains x in the same position as in B. If the
Hamming distance of BandB0 is at most h, we update the bit vector;
otherwise, we move onto the next occurrence of x. After processing
all seeds of B, we repeat the process for the reverse complement of
B. Pseudocode is given in the Supplementary Material.

4 Experiments

We implemented Syotti in the Cþþ programming language. We use
the Divsufsort and SDSL libraries (Gog et al., 2014) for the con-
struction of the FM-index and the generalized suffix array required
by the Syotti algorithm. The implementation of Syotti is publicly
available at https://github.com/jnalanko/syotti.

We compare the performance of CATCH, MrBait, and Syotti on
three datasets: (i) MEGARES, which is a database containing 7868
AMR genes of total length 8 106 325 bp, publicly available at the
MEGARes website: https://megares.meglab.org/download. (ii)
VIRAL, which is a set of 422 568 viral genomes from CATCH
(Metsky et al., 2019), of total length 1 257 789 768 bp, publicly avail-
able at: https://github.com/broadinstitute/catch. (iii) BACTERIA,
which is a custom (described in the Supplementary Material) set of
1000 bacterial genomes representing four foodborne pathogens con-
taining 98 984 sequences of total length 3 040 260 476 bp.

As advised by the bait manufacturer Agilent, we set the bait
length to 120 and tolerated 40 mismatches. The seed length in Syotti
was set to 20. We ran CATCH, MrBait, and Syotti on these datasets
on a server with two Intel Xeon Gold 5122 CPUs at 3.60 GHz for
total of 8 physical cores and up to 16 threads with hyperthreading,
503 GB of available memory and a 3TB NVMe SSD for storage.
The time is measured in wall-clock seconds. The experiments do not
include BaitFisher because it requires a multiple sequence alignment
of all the input sequences as input, but our sequences do not all align
well to each other. Feeding multiple alignments computed with
Clustal Omega (Sievers and Higgins, 2014) to BaitFisher produced
extremely poor baits sets that had more nucleotides than the original
sequences.

CATCH was run with the command line options -pl 120 -m 40
-l 120 -ps 60. CATCH also has a number of optional flags for
tuning the behavior of the tool. We experimented with the options -
cluster-and-design-separately 0.15 and -cluster-
from-fragments 10 000, but did not see significant improvement
on the results or the run time. We did not experiment with the op-
tion -filter-with-lsh-minhash, which might in retrospect
have had significant impact on the running time. In any case, exten-
sive tuning in the parameter space of CATCH is outside of the scope
of this work.

MrBait was run with the options -A 120 -s tile¼0. MrBait
also offers post-processing filtering using all-pairs global alignment
from the external tool VSEARCH (Rognes et al., 2016). This was
feasible only for MEGARES because the time complexity of all-pairs
alignment is quadratic. Syotti was run with options -L 120 -d 40
-r -t 16 -g 20.

We restricted all methods to using 72 h of time, and the available
503 GB of memory, and 3 TB of disk space. None of the methods
exceeded the memory and disk limits before being terminated by the
72 h time limit. We analyzed the coverage of the produced bait sets
by mapping the baits to the reference sequences using the seed-and-
extend method with seed length 20, tolerating up to 40 mismatches.
This is a similar method of analysis as the one used in the coverage
analyzer of CATCH. We did not use the CATCH analyzer because
it did not scale to our larger datasets. More specifically, it ran for
more than 48 h on VIRAL, with memory usage increasing steadily
up to 270 GB during the time. Based on the information printed by
the program, we extrapolated that it might take more than 2 weeks

i180 J.N.Alanko et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i177/6617487 by N

ational Library of H
ealth Sciences user on 07 July 2022

https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac226#supplementary-data
https://github.com/jnalanko/syotti
https://megares.meglab.org/download
https://github.com/broadinstitute/catch
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac226#supplementary-data

to finish, and the memory usage would overflow the capacity of the
machine before the end. To verify the comparability of our analyzer
and the CATCH analyzer, we ran both analyzers on the first 10 000
baits of CATCH on MEGARes. Since the CATCH analyzer does
not consider reverse complement matches, for the comparison we
disabled reverse-complemented matching from our analyzer. Our
analyzer reported 77.4% coverage, whereas the analyzer of CATCH
reported 82.9%. The discrepancy is explained by how in our setup,
the CATCH analyzer is likely regress to a randomized seed approach
with a seed length of 10. Indeed, increasing the seed length to 10
increased our reported coverage to 84.6%, with the rest of the dif-
ference attributable to randomization. All analysis in this article was
done consistently using our analyzer.

4.1 Results on antimicrobial resistance genes
We ran all methods on exponentially increasing subsets of the
MEGARes database that consists of 7868 AMR genes. The subsets
were generated by shuffling the input sequences, and taking the first
1,2,4,8,. . . sequences. All methods were capable of being run on the
complete dataset (i.e. 7868 AMR genes) within the given time and
space limits. The memory, running time, and number of baits is
given in Table 1. The scaling of the time usage is plotted in Figure 1.

Even though the worst case running time of Syotti is at least
quadratic in the length of the input, the running time behaved ap-
proximately linearly. MrBait also behaved approximately linearly,
but up to 40 times slower than Syotti. On the other hand, CATCH
showed an upward-bending growth curve, which we speculate is
due to having to update the profitability scores of candidate baits
after every iteration, resulting in a quadratic time complexity in
practice as well as in the worst case.

The size of bait sets of CATCH and Syotti had negligible differ-
ence, with the bait set of Syotti being consistently slightly smaller.
MrBait produced two to three times larger bait sets than the other
two. The memory usage of Syotti was the smallest of the three, how-
ever, the memory usage for all methods was <2 GB. The slope of
the memory of MrBait was smaller than Syotti, which indicates that

the memory of Syotti would grow past MrBait if the dataset size was
still increased. We believe that MrBait’s good memory scaling is due
to its use of a disk-based SQLite database.

Lastly, we evaluated the coverage of the baits. We note that the
most optimal solution has a coverage value of 1, indicating sufficient
likelihood of bait binding, but without redundancy (i.e. inefficiency)
in the bait set. This is important for two reasons: first, multiple baits
for the same position could create bait-bait interference during the
binding process; and second, each bait is relatively costly, with a
fixed upper limit on the total number of baits that can be manufac-
tured. Coverage was analyzed by mapping the baits to the reference
sequences with a seed-and-extend approach with a seed length of
20. The coverage of a position is defined as the number of mapped
baits spanning that position with at most 40 mismatches. Figure 2
shows the mean coverage in each sequence of the database. Both
Syotti and CATCH covered 100.0% of the nucleotide positions at
least once, but MrBait covered only 96.4%. The bait set designed by
MrBait was extremely inefficient, with many positions being cov-
ered by hundreds of baits (Fig. 2). The coverage efficiencies for
CATCH and Syotti were comparable, with a slight advantage for
Syotti (Fig. 2). Filtering the MrBait baits with VSEARCH and add-
ing the command line parameters -f pw¼0.9,0.9 to MrBait,
resulted in 22 230 baits with coverage 95.9%, but the run time
increased drastically from 2 min 19 s to 4 h 22 min 36 s.

4.2 Results on bacterial strains and substrains
The aim of our second experiment was to study the scalability of the
methods on pangenomes of clinically relevant bacterial species.
Lacking a standard reference database of this type, we built our own,
incorporating available sequences from foodborne pathogens
S.enterica, C.jejuni, E.coli and Enterococcus faecalis. The purpose of
the dataset is to cover as much of the known sequence diversity of these
species as possible. The data were carefully selected and filtered to be
suitable for the downstream application of foodborne pathogen detec-
tion. The full details of the process of compiling the dataset are avail-
able in the Supplementary Material. We note that this database and

Table 1. MEGARES

Syotti CATCH MrBait

Input length

(base pairs)

Time (mm:ss) Memory (MB) Baits (count) Time (mm:ss) Memory (MB) Baits (count) Time (mm:ss) Memory (MB) Baits (count)

125 271 00:00 6 820 00:01 78 824 00:02 72 987

254 294 00:00 8 1372 00:04 104 1392 00:04 73 1981

508 459 00:00 11 2604 00:09 158 2635 00:09 76 3983

1 032 802 00:00 20 4633 00:28 260 4742 00:19 80 8093

2 090 517 00:00 35 7901 01:30 423 8121 00:37 88 16 374

4 187 569 00:01 67 13 099 05:37 735 13 489 01:12 101 32 764

8 106 325 00:03 125 20 976 19:13 1250 21 771 02:19 128 63 428

Note: Running time (Time), peak memory usage (Memory) and number of baits (Baits) for increasingly larger subsets of sequences from MEGARES (without

VSEARCH filtering). The seconds are rounded down. Rows where all tools ran in <1 s have been removed. The full table is in the Supplementary Material.

Fig. 1. Time scaling on all three datasets

Scalable bait design i181

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i177/6617487 by N

ational Library of H
ealth Sciences user on 07 July 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac226#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac226#supplementary-data

bait set from Syotti will be used in follow-up studies that aim to amp-
lify these bacteria genomes in samples taken from food production
facilities in order to test for foodborne pathogens.

To measure the scalability of the methods, we ran them on subsets
of the data containing 1,2,4,8,16 . . . 65,536 sequences, as well as the
full dataset consisting of all 98 984 sequences. The results are shown in
Table 2. Syotti and MrBait were able to process all inputs, but
CATCH hit the 72 hour time limit on inputs larger than 255 million
base pairs.

All three tools produced bait sets of similar size for the smaller
prefixes. But as the length of the prefix increased, the bait sets pro-
duced by Syotti became significantly smaller than those produced by
the other two tools. On the largest prefix that all tools were able to
run, Syotti produced 189 thousand baits, CATCH 303 thousand
and MrBait 2117 thousand. This showcases the ability of Syotti to
deal with multiple bacterial pangenomes at once. On the full data-
set, Syotti produced 367 thousand baits, whereas MrBait produced
25 million. Given the 220 000 limit provided by Agilent, two bait
kits could be manufactured to include all our bait sequences, but
over 113 bait kits would have to be manufactured for MrBait (which
would cost more than 1 million USD for a single sample), making
this bait set highly impractical.

The running times and memory usage of the tools showed similar
trends to the first experiment on AMR sequences. Syotti is consist-
ently the fastest by an order of magnitude. MrBait was eventually
the most efficient in terms of peak memory, thanks to its SQLite
database on disk, but it pays a large price for the disk-based ap-
proach in the form of a significantly slower running time.

We observe that very good trade-offs between coverage and num-
ber of baits are available by halting the greedy algorithm of Syotti

before it reaches 100% coverage. Figure 3 shows the coverage as a
function of the number of baits selected. For example, taking just the
first 200k baits out of 367k already results in 98.8% coverage, whereas
taking a random subset of 200k baits of the full set resulted in only
62.7% coverage. If long gaps in coverage are undesirable, we can add
baits manually to patch the long gaps. For example, if we halt the
greedy algorithm at 200k baits and then switch to filling the gaps such
that the maximum gap length is 50 bp, we obtain a set of 275k baits
with 99.6% coverage and with no gap longer than 50. Figure 3 shows
the coverage plot for the 200k bait set after gap filling.

4.3 Results on viral strains and substrains
For our final experiment, we downloaded the set of human viral
pangenomes published in the Github repository of CATCH in 2018.
We studied scaling of the tools by shuffling the list of files and ran
the tools on prefixes containing 1;2; 4; 8;16; . . . ; 512 files, as well as
the whole dataset of 608 files. The results are shown in Table 3.

Syotti was again the fastest tool by an order of magnitude, pro-
ducing 227k baits on the full dataset. MrBait again showed slow but
approximately linear scaling, but the bait set was 40 times larger
than the one produced by Syotti. Surprisingly, CATCH itself was
unable to process prefixes longer than 1% of the full dataset within
the time limit of 72 h. However, the Github page of CATCH con-
tains pre-designed bait sets with 250k, 350k and 700k baits of
length 75 for the dataset. The sets were designed by the authors of
CATCH by running the tool separately for each species, and pooling
the baits together with different parameters, optimizing the com-
bined bait sets in the process.

To show CATCH in the best possible light, we compared the
baits of Syotti against the published and optimized bait sets of

Table 2. BACTERIA

Syotti CATCH MrBait

Input length

(base pairs)

Time

(hh:mm:ss)

Memory

(MB)

Baits

(count)

Time

(hh:mm:ss)

Memory

(MB)

Baits

(count)

Time

(hh:mm:ss)

Memory

(MB)

Baits

(count)

1 592 0441 00:00:08 237 72 035 00:29:32 4096 90 182 00:04:48 195 132 408

30 786 116 00:00:14 454 96 595 01:00:27 7575 134 112 00:10:00 316 256 041

62 502 135 00:00:27 917 123 541 02:26:56 14 234 181 825 00:18:44 572 519 838

125 063 199 00:00:52 1831 157 818 08:43:14 24 269 240 747 00:38:48 1076 1 040 174

254 576 853 00:01:45 3723 188 813 41:23:20 45 002 303 051 01:20:03 2071 2 117 436

505 422 833 00:03:31 7387 223 931 > 72 h NA NA 02:39:03 4056 4 203 752

1 003 934 029 00:07:11 14 673 267 890 NA NA NA 05:18:28 7980 8 349 888

2 018 459 352 00:15:50 29 496 324 797 NA NA NA 10:30:37 15 697 16 788 084

3 040 260 476 00:24:52 44 425 366 761 NA NA NA 16:13:43 23 615 25 286 576

Note: Running time (Time), peak memory usage (Memory) and number of baits (baits) for increasingly larger subsets of sequences from the BACTERIA data-

set. ‘NA’ signifies that the dataset surpassed 72 h of running time. Rows where all tools took <30 min have been removed to save space. The full data table is in

the Supplementary Material.

Fig. 2. Average sequence coverage on the MEGARES dataset with all three methods (left) and with just CATCH and Syotti (right). The sequences are in the order of the

MEGARes database. The coverage plot with all tools after filtering MrBait baits with VSEARCH is provided within the supplementary material.

i182 J.N.Alanko et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i177/6617487 by N

ational Library of H
ealth Sciences user on 07 July 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac226#supplementary-data

CATCH. We used Syotti to generate baits of length 75, matching
the bait length of the published data sets. The pooling method used
with CATCH uses different values for the mismatch tolerance for
different species to optimize the coverage. As Syotti does not support
a varying mismatch tolerance, the tolerance of Syotti was set to 5,
which is the maximum value in the parameters selected in
Supplementary Table S1 of the manuscript of CATCH (Metsky
et al., 2019). With these settings, Syotti generated 684k baits.

We analyzed the coverage of the bait sets allowing up to 5 mis-
matches. Coverage of the CATCH bait sets of size 250k, 350k
and 700k were 84.1%, 90.6% and 97.5% respectively. The

coverage of Syotti was 99.5%, with the remaining 0.5% being
due to unknown N-characters in the data. The coverage plots of
the bait set with 684k baits versus the CATCH bait sets are in
Figure 4. Compared to the 700k baits of CATCH, Syotti had
mostly lower coverage than CATCH (i.e. higher efficiency), ex-
cept for one notable stretch of the input which finished with 60-
fold coverage, where CATCH was able to keep the coverage to
only 10-fold. This stretch represents the 59 686 rotavirus A
strains in the database. Taking the first 250k baits generated by
Syotti results in a coverage of 96.5%.

Table 4 provides a summary of all results described in Section 4.

Fig. 3. Left: Fraction of nucleotides covered by Syotti as the algorithm progresses on the full BACTERIA dataset. Right: average coverage of the reference sequences in

BACTERIA after taking the first 200k baits produced by Syotti and filling gaps to maximum length 50. The dashed line shows coverage 1.0

Fig. 4. Coverage of the 684k baits generated by Syotti for the VIRAL dataset, versus and the published bait sets of sizes 250k, 350k and 700k from CATCH. The dashed line

shows coverage 1.0

Table 3. VIRAL

Syotti CATCH MrBait

Input length

(base pairs)

Time

(hh:mm:ss)

Memory

(MB)

Baits

(count)

Time

(hh:mm:ss)

Memory

(MB)

Baits

(count)

Time

(hh:mm:ss)

Memory

(MB)

Baits

(count)

26 238 00:00:00 5 148 00:00:00 55 164 00:00:01 71 218

9 672 491 00:00:03 145 1103 01:19:09 2878 1065 00:02:43 130 67 054

66 970 374 00:00:37 1011 1640 > 72 h NA NA 00:18:59 577 522 683

911 29 015 00:00:55 1370 6016 NA NA NA 00:25:36 705 680 298

93 144 457 00:00:56 1400 6959 NA NA NA 00:28:41 734 696 193

103 290 818 00:01:00 1549 11 737 NA NA NA 00:32:01 799 773 385

155 140 833 00:01:28 2321 28 543 NA NA NA 00:45:40 1154 1 160 119

230 198 416 00:04:04 3424 60 539 NA NA NA 01:09:07 1549 1 557 350

564 924 375 00:07:45 8350 103 401 NA NA NA 02:45:21 3975 4 139 176

1 040 580 227 00:12:39 15 391 174 742 NA NA NA 05:14:59 7164 7 757 360

1 257 789 768 00:16:41 18 613 226 751 NA NA NA 06:24:44 8519 9 225 038

Note: Running time (Time), peak memory usage (Memory) and number of baits (count) for increasingly larger subsets of sequences from the VIRAL dataset.

‘NA’ signifies that the dataset surpassed 72 h of running time.

Scalable bait design i183

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i177/6617487 by N

ational Library of H
ealth Sciences user on 07 July 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac226#supplementary-data

5 Conclusion

In this article, we provide a formulation of designing baits and dem-
onstrate that the problem is NP-hard even for deceptively simple
instances, and provide a heuristic that works efficiently in practice.
While both Syotti and CATCH use a kind of greedy heuristic, the
heuristic of Syotti is designed to be much more efficiently implement-
able. However, we mention that CATCH was designed such that
large datasets should be separated by strain or substrain into smaller
datasets, have the baits designed on each smaller dataset, and then
combined into a bait set for the complete dataset. This appears to
work well if the input sequences are shorted (such as viral sequences)
and the data can be separated into small subsets but does not work
so well for whole bacterial genomes or datasets such that cannot be
separated into small subsets by strain information. Our bacterial
genomes is an example of this, as there are only four bacterial species
that cannot easily be further separated. We conclude by suggesting
some areas that warrant future work. First, a more sophisticated
binding model than the Hamming distance could be plugged into the
heuristic. Second, while our results rule out any reasonable fixed par-
ameter tractable algorithms, there is potential that the problem
admits an approximation algorithm. However, we conjecture that
the problem remains hard even for a constant approximation. Third,
other artifacts of the laboratory process are left for consideration,
including considering the GC-content of the baits; designing baits in
a manner that avoids contaminants; and designing baits to avoid
bait-to-bait binding. Bait manufacturers currently perform some
quality control measures related to GC-content, but bait design algo-
rithms such as MrBait, CATCH and Syotti do not incorporate these
considerations. Despite this, baits designed by Syotti and competing
algorithms have been successfully used to capture and enrich viral
and bacterial targets from real-world samples (Metsky et al., 2019;
Noyes et al., 2017). Lastly, computationally designing baits in a man-
ner that models and controls off-target binding is worth
consideration.

Acknowledgements

The authors thank Hayden Metsky for feedback on the manuscript.

Funding

This work has been supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC) Discovery (RGPIN-07185-

2020), National Institutes of Health National Institute of Allergy and

Infectious Diseases (NIH NIAID) (R01HG011392), National Science

Foundation Smart and Connected Health Integrative Projects (NSF SCH

INT) (2013998), National Science Foundation Early-concept Grants for

Exploratory Research (NSF EAGER) (2118251), Agencia Nacional de

Investigación y Desarrollo (ANID) Basal Funds (FB0001), U.S-Israel

Binational Science Foundation (BSF) award 2018302, National Science

Foundation (NSF) award CCF-2008838 and Academy of Finland projects

336092 and 351145.

Conflict of Interest: none declared.

References

Campana,M.G. (2018) Baitstools: software for hybridization capture bait de-

sign. Mol. Ecol. Resour.,18, 356–361.

Chafin,T.K. et al. (2018) MrBait: universal identification and design of

targeted-enrichment capture probes. Bioinformatics, 34, 4293–4296.

Cole,R. et al. (2005) The complexity of the minimum k-Cover problem. J.

Autom. Lang. Comb., 10, 641–653.

Deng,X. et al. (2020) Metagenomic sequencing with spiked primer enrichment

for viral diagnostics and genomic surveillance. Nat. Microbiol.,5, 443–454.

Downey,R.G. and Fellows,M.R. (2012) Parameterized Complexity. Springer,

New York, NY.

Ferragina P., Manzini G. (2005) Indexing compressed text. J. ACM, 52,

552–581.

Gog,S. et al. (2014) From theory to practice: plug and play with succinct data

structures. In: International Symposium on Experimental Algorithms (SEA)

2014, pp.326–337.

Guitor,A.K. et al. (2019) Capturing the resistome: a targeted capture method

to reveal antibiotic resistance determinants in metagenomes. Antimicrob.

Agents Chemother., 64. e01324–19.

Jayaraman,P. et al. (2020) Antholigo: automating the design of oligonucleoti-

des for capture/enrichment technologies. Bioinformatics, 36, 4353–4356.

Kushwaha,S.K. et al. (2015) MetCap: a bioinformatics probe design pipeline

for large-scale targeted metagenomics. BMC Bioinformatics, 16, 1–11.

Lee,J.S. et al. (2017) Targeted enrichment for pathogen detection and charac-

terization in three felid species. J. Clin. Microbiol.,55, 1658–1670.

Mäkinen,V. et al. (2015) Genome-Scale Algorithm Design: Biological

Sequence Analysis in the Era of High-Throughput Sequencing. Cambridge

University Press, Cambridge, United Kingdom.

Mayer,C. et al. (2016) BaitFisher: a software package for multispecies target

DNA enrichment probe design. Mol. Biol. Evol.,33, 1875–1886.

Metsky,H.C. et al. (2019) Capturing sequence diversity in metagenomes

with comprehensive and scalable probe design. Nat. Biotechnol.,37,

160–168.

Noyes,N.R. et al. (2017) Enrichment allows identification of diverse, rare ele-

ments in metagenomic resistome-virulome sequencing. Microbiome, 5, 142.

Palkova,Z. (2004) Multicellular microorganisms: laboratory versus nature.

EMBO Rep., 5, 470–476.

Puglisi,S.J. et al. (2007) A taxonomy of suffix array construction algorithms.

ACM Comput. Surv.,39, 4–es.

Rognes,T. et al. (2016) VSEARCH: a versatile open source tool for metage-

nomics. PeerJ, 4, e2584.

Rubiola,S. et al. (2020) Detection of antimicrobial resistance genes in the milk

production environment: impact of host dna and sequencing depth. Front.

Microbiol.,11, 1983.

Shi,F. (1996) Suffix arrays for multiple strings: a method for on-line multiple

string searches. In Jaffar, J. and Yap, R.H.C. (eds.) Concurrency and

Parallelism, Programming, Networking, and Security: Second Asian

Computing Science Conference, ASIAN ’96, Singapore, December 2-5,

1996, Proceedings, Volume 1179 of Lecture Notes in Computer Science.

Springer, pp. 11–22.

Sievers F., Higgins D.G. (2014) Clustal omega. Curr. Protoc. Bioinformatics,

48, 3–13.

Table 4. Summary of the main results on the full datasets.

MEGARES BACTERIA VIRAL

Syotti CATCH MrBait Syotti CATCH MrBait Syotti CATCH MrBait

Coverage 100% 100% 96.4% 100% * 100% 100% * **

Number of baits 20 976 21 771 63 428 366 761 * 25 286 576 226 751 * 9 225 038

Time 3 s 19 min 13 s 2 min 19 s 24 min 52 s >72 h 16 h 13 min 43 s 16 min 41 s >72 h 6 h 24 min 44 s

Memory 125 MB 1250 MB 128 MB 44 425 MB * 23 615 MB 18 613 MB * 8519 MB

Note: VSEARCH filtering on MrBait on MEGARES brings the bait count down to 22 230 baits with coverage 95.9%, with a total run time of 4 h 22 min 36 s

(the filtering was infeasible on the other two datasets due to the large number of baits from MrBait). (*) Unavailable due to CATCH not finishing in 72 h.

(**) Unavailable due to the coverage analysis taking more than 72 h of running time due to the large number of baits and a large number of matches.

i184 J.N.Alanko et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i177/6617487 by N

ational Library of H
ealth Sciences user on 07 July 2022

