
https://helda.helsinki.fi

þÿ�N�o�d�e� �c�o�-�a�c�t�i�v�a�t�i�o�n�s� �a�s� �a� �m�e�a�n�s� �o�f� �e�r�r�o�r� �d�e�t�e�c�t�i�o�n ��T�o�w�a�r�d�s

fault-tolerant neural networks

Myllyaho, Lalli

2022-09

Myllyaho , L , Nurminen , J K & Mikkonen , T 2022 , ' Node co-activations as a means of

þÿ�e�r�r�o�r� �d�e�t�e�c�t�i�o�n ��T�o�w�a�r�d�s� �f�a�u�l�t�-�t�o�l�e�r�a�n�t� �n�e�u�r�a�l� �n�e�t�w�o�r�k�s� �'� �,� �A�r�r�a�y� �,� �v�o�l�.� �1�5� �.� �h�t�t�p�s�:�/�/�d�o�i�.�o�r�g�/�1�0�.�1�0�1�6�/�j�.�a�r�r�a�y�.�2�0�2�2�.�1�0�0�2�0�1

http://hdl.handle.net/10138/345966

https://doi.org/10.1016/j.array.2022.100201

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Array 15 (2022) 100201

A
2

Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/locate/array

Node co-activations as a means of error detection—Towards fault-tolerant
neural networks
Lalli Myllyaho a,∗, Jukka K. Nurminen a, Tommi Mikkonen b

a University of Helsinki, Finland
b University of Jyväskylä, Finland

A R T I C L E I N F O

Keywords:
Machine learning
Fault tolerance
Neural networks
Error detection
Concept drift
Dependability

A B S T R A C T

Context: Machine learning has proved an efficient tool, but the systems need tools to mitigate risks during
runtime. One approach is fault tolerance: detecting and handling errors before they cause harm.
Objective: This paper investigates whether rare co-activations – pairs of usually segregated nodes activating
together – are indicative of problems in neural networks (NN). These could be used to detect concept drift
and flagging untrustworthy predictions.
Method: We trained four NNs. For each, we studied how often each pair of nodes activates together. In a
separate test set, we counted how many rare co-activations occurred with each input, and grouped the inputs
based on whether its classification was correct, incorrect, or whether its class was absent during training.
Results: Rare co-activations are much more common in inputs from a class that was absent during training.
Incorrectly classified inputs averaged a larger number of rare co-activations than correctly classified inputs,
but the difference was smaller.
Conclusions: As rare co-activations are more common in unprecedented inputs, they show potential for
detecting concept drift. There is also some potential in detecting single inputs from untrained classes. The small
difference between correctly and incorrectly predicted inputs is less promising and needs further research.
1. Introduction

Machine learning (ML) models are statistical approximations, whim-
sical and capricious in nature, and often made for environments that
evolve over time. In such approximations, a 99% accurate model –
something that is practically always correct – is wrong 1% of the time.
What should be done if that 1% happens and causes errors in your
system? Are there ways to mitigate the risk and prepare a software
system for the inevitable ‘‘bad days’’ of your model? The trustworthi-
ness of ML systems has been improved, for example, by establishing
patterns for fault tolerance, but tools for measuring whether a model’s
results are and remain trustworthy can still be improved [1]. Further-
more, such detection should ideally not only be an afterthought, but
detection should occur in real time while the model is running. During
computation runs, one approach to mitigating the risk and making the
system more fault-tolerant could be monitoring the model’s own inner
structure.

The inner structure of a neural network – a currently common ML
technique – is sometimes compared to the structure of biological neural
circuitry (e.g. Abiodun et al. [2]). Like biological neural circuitry and
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neurons, neural networks in computing consist of layers of intercon-
nected nodes. These nodes are tiny computational units that receive
an input, and either activate and pass on an output to the following
nodes or remain dormant with an output of 0, having no effect on the
computations made by the following nodes. We know from previous
research on neural networks that after network training, specific groups
of nodes tend to be responsible for specific outcomes and thus often
activate concurrently [3]. For example, in an image recognition model,
certain groups of nodes can be expected to activate when the image of
a dog is shown, while at least a partially different group should activate
for the image of a cat. Activations have been studied in the context of
testing neural networks (e.g. [3–6]), but use in mitigating risks during
runtime has been scarce [1].

However, what if the activating nodes are suddenly ones that usu-
ally do not activate together and thus do not belong to a same group
(cf. Fig. 1)? Can something be inferred from this? Do these rare co-
activations within a neural network indicate that the computation
result is incorrect or that the input has never been seen before? If so,
could rare co-activations be used to detect errors in neural networks,
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Fig. 1. Illustration of activation patterns in a simple neural network. Colouring
indicates an activated node. Mutated activation pattern on the far right. Picture of
the dog courtesy of Helen Lopez https://www.pexels.com/photo/short-coated-tan-dog-
2253275/. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

prevent them from propagating and causing failures, and, thus, increase
the fault tolerance of ML systems to mitigate inherent risks?

To test our hypotheses, we train four neural networks. For every
node in a neural network, we calculate how often each node activates
concurrently with every other node using the training data: i.e. how
probable it is that two nodes activate concurrently. This way, we obtain
a metric of which nodes often contribute together to the network output
and thus belong to one or more of the same groups. Using a separate
test data set, we count the number of rare co-activations happening
within the neural network for each input and mark down whether the
network’s output was correct, incorrect, or if the input belonged to
a class that was not present in the training set. Once the tests have
been run, we determine whether the number of rare co-activations
differ statistically between the following scenarios: (1) test cases for
which the output was correct, (2) cases where the output was incorrect,
and (3) cases where the network was not trained for the input. Based
on our data, we then estimate how well rare co-activations would fit
in mitigating three specific major risks that are often present in ML
systems: drift in incoming data, single inputs the model cannot handle,
and inaccurate predictions [1].

Large numbers of rare co-activations indicate problems in predic-
tions. Rare co-activations are, on average, much more common in
inputs from untrained classes than in inputs the model has been trained
for. Thus, rare co-activations show good potential in detecting drift
in incoming data: should the average number of rare co-activations
increase, drift is most likely imminent. However, inputs from trained
classes contained outliers with a high occurrence number of rare co-
activations as well, and some untrained inputs have a low number
of occurrences. Thus, detecting inputs that the model cannot handle
and preventing them from being used further down in the system is
more problematic. Considering the difference in the average number
of occurrences, it may be possible to find systems and contexts where
using it is feasible, but the system should be able to deal with some
false positives and negatives. Additionally, rare co-activations tended
to be more common in incorrectly predicted inputs than in correctly
predicted ones, but the difference was both smaller and statistically
less significant. Thus, detecting single inaccurate predictions may not
be feasible based on the number of occurrences alone, but the approach
should at least be fine-tuned to find the most indicative co-activations.

This paper is organized as follows: Section 2 describes key concepts
f system dependability, fault tolerance, and neural networks, along
ith previous work on activation patterns in neural networks and their
tilization in testing and monitoring the networks. Section 3 introduces
he novel concepts in detail and describes our goals and research
uestions. Section 4 describes our experimental set-up, how data was
2

Fig. 2. A simple neural network, more precisely, a multi-layer perceptron.

collected and the methods of analysis. Results can be found in Section 5.
Section 6 discusses the results, while Section 7 discusses the study
validity. Section 8 concludes the paper.

2. Background

2.1. Dependability and fault tolerance

The dependability of a system means its trustworthiness [7]. De-
pendability is usually assessed by evaluating a system’s reliability,
availability, and maintainability. Essentially, a dependable system – at
the very least – delivers correct service consistently, does not suffer
from long periods of downtime, and is easily corrected and altered.

System dependability is threatened by failures, errors, and faults [8].
Failures are deviations from a desired service. They are caused by
propagating errors made by the system, i.e. incorrect functioning of
the system. Errors are caused by faults that are defects in system
components (software or hardware), activated by given inputs in a
given state.

Fault tolerance is one tool for diminishing these threats [8]. Fault
tolerance aims for a system design that can prevent occurring errors
from propagating in the system and causing failures by detecting the
error and handling it before further damage is done. The need for fault
tolerance in ML systems has lately been recognized more [1]. This is in
no small part due to the nature of the ML models themselves. According
to Myllyaho et al. [1], the problems in ML systems often originate from
inaccuracies that the models hold, along with their proneness to so-
called concept drift. That is, an ML model is trained and, ideally, it can
generalize what it has learned to all data that are similar to the training
data. However, the generalization rarely, if ever, is successful enough
to reach a 100% prediction accuracy in new data in the first place, and
the model rarely is able to handle data that are vastly different from
the training data. Thus, ML systems can be seen as inherently faulty
because of their approximate nature [9], and an initially adequate
system can erode and become faulty over time [10]. To add insult to
injury, erroneous behaviour is often difficult to detect [1], which is why
we focus on the detection phase of fault tolerance in this paper.

Research on fault tolerance in ML systems has mainly focused on
various input and output observers and model redundancy [1]. This
means that, for example, changes in inputs and outputs can be moni-
tored, unacceptable values are handled differently, and the system may
contain multiple models that handle inputs with some orchestration.
The inner workings and structures of the models, however, are rarely
utilized in error detection to achieve fault tolerance.

2.2. Neural networks

The structure of neural networks consists of node layers [11] (see
Fig. 2). The previous layer is connected to the next one. That is, when
a node receives an input, it either activates and passes on an output to

https://www.pexels.com/photo/short-coated-tan-dog-2253275/
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the next layer of nodes or remains dormant and, in practice, outputs 0,
thus having no effect on the following computations.

The technique responsible for the activation is an activation func-
tion [12]. A rectified linear unit (ReLU) is a commonly used activation
function. ReLU very closely follows the philosophy of either activating
or remaining dormant. Mathematically ReLU is usually formulated as
𝑓 (𝑥) = max(0, 𝑥). In practice, this means that if the input a node receives
is negative or 0, it actually does not have an effect on the following
computations, but if the inputs are very strong, the effect the node has
on the following layer is also strong. According to Sharma et al. [12],
ReLU has proved to be very effective and is one of the most used
activation functions today.

2.3. Related work

In neural networks, various groups of nodes tend to take responsi-
bility of different outcomes [4]. In their work, Tian et al. showed that
different groups of nodes in a neural network for autonomous driving
tended to activate based on whether the neural network proposed
turning to the left or to the right. Xie et al. [5] also suggest that
transforming a test input too much will lead to a deformed activation
pattern and a wrong result, suggesting that the mutated pattern is
related to the incorrect result.

The activations have been used in research concerning the testing
of neural networks (e.g. [3–6]). Usually this means finding nodes that
have not activated during testing or exploring improved methodologies
for creating test cases to find such nodes. This is rooted in the idea that
so-called ‘‘neuron coverage’’ is related to code and statement coverage
in traditional software: if the neuron has not activated during testing,
the effect of that neuron is not known [3].

However, activation-related error detection measures have not been
used widely and consistently in practice to achieve fault tolerance [1].
That is, activations have been monitored to initially test the model
prior to deployment but not to continuously validate the system during
runtime. The idea has raised some interest in practitioners, but how
the activations should actually be monitored to detect errors and what
conclusions should be made based on them has remained unclear [1].
Numerous attempts have also not been made on the research side,
as we are aware of only one paper attempting to build fault toler-
ance by specifically utilizing activation monitors. In their work, Cheng
et al. [13] form a pattern from the activations of the penultimate layer
for each class. If the model prediction differentiates too much from
the previously established pattern, the output is flagged as potentially
erroneous. This shows promise in detecting some misclassifications.
However, they only focus on the penultimate layer and a certain
subset of the nodes they consider to be the core nodes affecting the
outputs. Thus, they do not entertain the idea of how activations in
the earlier layers or outside the core set behave. Also, the focus is
on immediate error detection, and how the activations behave across
various scenarios (i.e. whether the output was correct, incorrect, or
something the model was not trained for) is not addressed. Thus, which
types of failures the activation monitors are effective against remains
uncertain, as does whether they could also be utilized when monitoring
concept drift.

3. Concepts and goals

In this section, we introduce the concept of rare co-activations, a
ovel approach to estimate the typicality of activation patterns in a
eural network. Our goal is to show that correctly predicted inputs dif-
er from problematic inputs with regards to rare co-activations within
he network. Thus, atypical activation patterns would indicate untrust-
orthy predictions. If this is the case, monitoring rare co-activations
ould show potential in error detection in neural networks.

First, we describe the concept of rare co-activations in detail in
ection 3.1. Then, we discuss the motivation of our research goal and
resent our research questions in Section 3.2.
3

3.1. Co-activation rate & Rare co-activations

As described in Section 2, nodes in neural networks either activate
or remain dormant, and these activations form patterns responsible
for certain outputs. If two nodes belong to one or more of the same
patterns, they could be expected to activate together a fair share of the
time.

To estimate whether two nodes do not belong to any of these
patterns, we present the idea of co-activation rate: how likely is it that
node 𝑚 activates when node 𝑛 activates. More specifically, for every
node 𝑛 in a neural network, we calculate its co-activation rate with
node 𝑚 in a set of inputs 𝐼 as

𝑟𝑎𝑡𝑒(𝑛, 𝑚) =

𝐼
∑

𝑖=1
𝑛𝑖 ∩ 𝑚𝑖

𝐼
∑

𝑖=1
𝑛𝑖

,

where 𝑟𝑎𝑡𝑒(𝑛, 𝑚) is the co-activation rate of node 𝑛 with node 𝑚, and
𝑛𝑖, 𝑚𝑖 = 1 if nodes 𝑛 and 𝑚 activate with input 𝑖 and otherwise 𝑛𝑖, 𝑚𝑖 = 0.

Algorithmically, the co-activation rates for a set of inputs 𝐼 can be
calculated with Algorithm 1. Using the algorithm, we will end up with
a two-dimensional array rates, from which the co-activation rates for
nodes 𝑛 and 𝑚 can be found as, in fact, rates[𝑛][𝑚] = 𝑟𝑎𝑡𝑒(𝑛, 𝑚). The time
complexity of Algorithm 1 is 𝑂(𝑖𝑛2), where 𝑖 is the number of inputs in
𝐼 , and 𝑛 is the number of nodes in a neural network 𝑁𝑁 .

Algorithm 1 Co-activationRates(𝑖𝑛𝑝𝑢𝑡𝑠, 𝑁𝑁)
inputs: Set of inputs in which the co-activation rates are calculated
NN : Neural network for which the co-activation rates are calculated
1: rates = [][]: an array in which to store the co-activation rates
2: for all 𝑖 in 𝑖𝑛𝑝𝑢𝑡𝑠 do
3: for all node 𝑛 in 𝑁𝑁 do
4: if 𝑛 activates with 𝑖 then
5: for all node 𝑚 in 𝑁𝑁 do
6: if 𝑚 activates with 𝑖 then
7: rates[𝑛][𝑚] += 1
8: end if
9: end for

10: end if
11: end for
12: end for
13: for all node 𝑛 in 𝑁𝑁 do
14: for all node 𝑚 in 𝑁𝑁 do
15: rates[𝑛][𝑚] = rates[𝑛][𝑚] / rates[𝑛][𝑛]
16: end for
17: end for
18: return 𝑟𝑎𝑡𝑒𝑠

To produce meaningful results, the set of inputs used to calculate the
co-activation rates should be chosen appropriately. The approach we
chose was to calculate the co-activation rates after the networks were
trained and use the same training set that was used to train them. In this
way, the co-activation rates should represent the activation patterns of
the input classes that the network should be able to generalize to. Thus,
co-activation rates describe the inner workings of the neural networks
in cases where the network can reasonably be expected to handle
correctly, whereas cases that have no representation in the training set
may not produce good results.

The activation pattern we study in this paper is derived from co-
activation rate: a rare co-activation occurs when two nodes with a low
co-activation rate activate within a neural network during a prediction.
Thus, a rare co-activation is an indication of such computations that
normally do not occur during a prediction. The more these rare co-
activations occur, the more disjointed the activation pattern is from
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Table 1
Models used to test hypotheses.

Model Filtered class Number of
outputs

Accuracy in test set
without the filtered class

CNN-ankle boot 9 (ankle boot) 10 91.8%
CNN-ankle boot9 9 9 91.7%
CNN-shirt 6 (shirt) 10 95.6%
MLP-ankle boot 9 10 88.4%

activation patterns that have occurred within the network before, and
more atypical it is. In this study, we are looking into the connection be-
tween the problematic predictions and the number of rare co-activation
occurring when the prediction is made.

3.2. Research goal and questions

The goal of our research is to show that atypical activation patterns
indicate untrustworthy predictions. To build dependable systems, a
general need currently exists for fault tolerance in ML systems. How-
ever, approaches utilizing node activations to detect errors in neural
networks have not been extensively studied regardless of their role
in the computation process. The reasoning we have here is that by
showing that activation patterns – rare co-activations in our case –
behave differently in correct and problematic predictions, we can argue
that observing the activation pattern has potential in error detection.

In this paper, we study activations in the context of a classification
problem, where certain classes are excluded from the training set but
remain present in the separate test set. More specifically, we explore
how activation patterns behave in the following scenarios:

1. Test cases for which the output is correct;
2. Test cases for which the output is incorrect despite its class being

present in the training set;
3. Test cases where the input does not belong to any class in the

training set.

Based on this, we aim to assess whether the activation patterns we
tudy can be used to improve fault tolerance, especially by detecting
rroneous outputs, problematic inputs, and potential concept drift.
enceforth, we will address cases in the scenarios as correctly predicted

inputs, incorrectly predicted inputs, and untrained inputs, respectively.
The pattern we study is rare co-activations introduced above in

ection 3.1. As the activations tend to form patterns [4], it makes
sense that nodes in shared groups often activate together. If often
activating together implies being in one or more of the same patterns,
it may not be unreasonable to think that the disjointed and atypical
patter manifested in rare co-activations implies a broken pattern and
an untrustworthy prediction. Thus, we try and show whether there is
a utilizable connection between rare co-activations and untrustworthy
predictions. More specifically, we aim to answer the following research
questions:

• RQ1: Does the number of rare co-activations statistically differ in
the above scenarios?

• RQ2: Can rare co-activations be used to detect erroneous be-
haviour when building fault-tolerant ML systems, and how?

The aim of RQ1 is to explore whether the idea is valid in the first
lace. Only a statistically significant difference in the number of rare
o-activations allows us to argue that our approach has any potential
n building fault-tolerant ML systems. If the distributions between cases
here the neural network made a correct prediction and cases where

he prediction was wrong or the input never appeared in the training
et are not statistically different, we cannot claim that any meaningful
onclusions can be drawn from the number of rare co-activations.
4

As for RQ2, if the distributions actually differ in the various sce-
narios, we aim to detect what types of misbehaviour [1] could be
addressed by abusing the rare co-activations. Differences in the number
of rare co-activations in and of itself does not mean that the result is
useful in error detection and fault tolerance as is. Also, as not every
form of fault tolerance is suitable for every type of misbehaviour [1],
we must consider how the results could link the approach to known
misbehaviour types. In this case, the potential to tackle some forms of
misbehaviour must be deduced from how the rare co-activations man-
ifest in various scenarios. Specifically, we consider three misbehaviour
types that pose a major risk to some systems and that we believe could
potentially reveal themselves in the rare co-activations: untrustworthy
predictions, inputs that could be problematic for the network, and drift
in the incoming data [1].

4. Experimental set-up

In this section, we describe how the experiments were conducted.
First, Section 4.1 describes the neural networks from which we gath-
red the data about the rare co-activations, along with how the net-
orks differ from each other and why. Then, in Section 4.2, we describe
hat kind of data about rare co-activations in those networks was
athered and how. Finally, in Section 4.3 we describe how the data
as analysed to draw conclusions and to ensure statistical significance
f our findings. This combination of data triangulation [14] across
etworks and statistical rigour [15] raises confidence in our findings.

.1. Neural networks

To test the approach, four neural networks were built. The net-
orks are intended to represent mundane neural networks in which
e observe how the rare co-activations behave in the three different

cenarios considered (correctly predicted, incorrectly predicted and
ntrained inputs, see Section 3.2). The differences between networks
ere designed to catch differences often present in neural networks

see descriptions below) and add data triangulation [14]. A general
escription of the models is presented in Table 1.

All networks were trained using the Fashion-MNIST [16] data set.
ashion-MNIST consists of 28 × 28 size greyscale images depicting
ieces of clothing.1 The training set and test set for Fashion-MNIST
ontain 60 000 and 10 000 images, respectively, both divided into 10
venly sized classes. The classes are – in order of labels from 0 to 9 –
-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag,
nd Ankle boot. The networks were trained for 15 epochs using Keras2

achine learning library. To make the results easier to reproduce, a
ixed random seed (3) was chosen with a throw of a d20 die.

To mimic Scenario 3 from Section 3.2 (a class of inputs was missing
rom the training set, but appears after training), one class was excluded
rom the training set, similarly to Ackerman et al. [17]. This way, in
he testing phase with a separate test data set, we have both inputs
hat belong to classes the network was trained to recognize, along with
nputs that the neural network should not have extensive knowledge
f. Thus, the excluded class represents situations where all inputs do
ot resemble the data that the neural network was trained with.

The networks achieved an accuracy ranging from 88.4% to 95.6%
see Table 1) in the test set, excluding the filtered out class. Omitting
he filtered out class when measuring the accuracy gives a better
stimate of how well the neural networks perform in tasks they should
now. This, in our opinion, better estimates the model’s ability to learn
he data set than by including the class it was not trained with in the
irst place. We note that the used networks are not fine-tuned to the

1 Examples of Fashion-MNIST can be found at: https://github.com/
alandoresearch/fashion-mnist.

2 https://keras.io/.

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://keras.io/
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Fig. 3. A simple convolutional neural network. In the convolutional layers, every part of the input goes through a convolution, on which the activation is applied, after which
the strongest activations of every small area are gathered by a pooling layer. Convolutional layers are followed by fully connected layers.
maximum nor have they been pushed to their limits through training
time. This decision is twofold. First, even though it were possible to
push a neural network to basically label every input in Fashion-MNIST
correctly (e.g. Kayed et al. in [18]), this would leave us with very
little data to address mislabelled classes present in the training data
(Scenario 2 in 3.2). This, in turn, would risk statistical significance
and our ability to meet the research goals we have set. Second, real-
life ML models may not reach such high levels of accuracy in their
respective data sets (e.g. in [19]). Thus, not pushing the models to their
limit makes them more on par with their industrial counterparts, rep-
resenting them better. With these two reasons combined, our networks
are, in a sense, intentionally broken, but also ‘‘good enough’’. In other
words, they handle most cases correctly, showing some strength in their
behaviour, and yet, make some errors in order to leave us with enough
data to answer our research questions. This clearly poses some threats
to the validity of the study, which are addressed in Section 7.

Next, we go through all models in more detail.
CNN-ankle boot: As the name suggests, CNN-ankle boot is a convo-

lutional neural network [20] (cf. Fig. 3). The ‘‘ankle boot’’ in the name
refers to the class (9, Ankle boot) that is filtered out from the training
set for this neural network. The output node for the specific class is still
present in the network, even if it is filtered out in the training phase.

The structure of CNN-ankle boot begins with three convolutional
layers. The convolutional layers consist of 3 × 3 -sized filters with a
stride length of 1 and the same padding. The three convolutional layers
have 32, 64, and 128 filters, respectively. Each convolutional layer is
accompanied with a batch normalization layer [21], ReLU activation,
and a 2 × 2 -sized max pooling layer [22].

The convolutional layers are followed by two fully connected layers.
The fully connected layers also utilize ReLU activation, and consist of
64 and 128 neurons, respectively. Finally, the output layer consists of
10 neurons, utilizing the Softmax activation function [12].

CNN-ankle boot9: CNN-ankle boot9 shares most features with
CNN-ankle boot except for the number of nodes on the output layer.
The filtered class is the same, along with the hidden layers in the neural
network. The difference is that the output layer has no reserved output
node for the filtered class. This naturally results in only having nine
nodes on the output layer.

The reasoning behind this is that they represent two different sit-
uations in training a neural network. In the case of CNN-ankle boot9,
the imaginary developers are unaware that ankle boots exist and do
not reserve an output node for it. With CNN-ankle boot, however, the
developers know ankle boots exist, they just do not have enough data
for them, and they are left underrepresented in the training set. This
adds variety to the results, as CNN-ankle boot9 works ‘‘as intended’’
by the imaginary developers, and begins receiving unexpected data,
whereas CNN-ankle boot is left broken by the training data and begins
receiving appropriate data only after the training is complete.

CNN-shirt: CNN-shirt is structurally identical to CNN-ankle boot.
The difference is that the class filtered out from the training set is class
6 (Shirt) instead of class 9 (Ankle boot). The purpose of this is to assess
whether the phenomena we find are independent from the filtered class
or not. Shirt was chosen, as it is evidently different from ankle boots,
whereas, for example, sneakers may not be.

MLP-ankle boot: MLP-ankle boot is–as the name suggests–a mul-
5

tilayer perceptron [23] (cf. Fig. 2 in Section 2). That is, all the hidden
layers in the neural network are fully connected layers, utilizing ReLU
activation and batch normalization. There are two hidden layers with
64 and 128 nodes, respectively, 10 output nodes, and the filtered class
is Ankle boot.

The reasoning behind the inclusion of MLP-ankle boot is twofold.
First, including models with different topology provides additional
information whether the results are dependent on certain technologies
or not. Second, MLP-ankle boot is a smaller network than the other
neural networks. This should give us implications of the effect size that
the size of the network has on the phenomena.

4.2. Data collection

Data were collected with an experimental set-up utilizing Keras and
NumPy.3 First, the networks were trained using a training set, from
which one class was entirely excluded. Next, co-activation rates for
each node in each neural network were calculated using Algorithm 1,
introduced in Section 3.1, and the same data that were used for training
the network, still excluding one class. Finally, the number of rare co-
activations was computed and saved for each input in a separate test
data set that included all the classes.

Additional details were considered before calculating the
co-activation rates, e.g. when should a node be counted as activated. An
apparent choice would be when the node outputs a non-zero number,
as that is de facto how a ReLU activation function works. However,
a node could output a very small number 𝛿 > 0 that has no actual
effect on the outcome of the computations. It is less obvious if such
activations are actually meaningful regarding the outcome. To assess
this, we calculate the co-activation rates using three thresholds that
are counted as an activation: 0 and two model-specific thresholds,
namely, a threshold that is smaller than 90% of that network’s non-
zero activations in the training set and one that is smaller than 99% of
the non-zero activations. Henceforth, we will address these thresholds
as activation thresholds.

Furthermore, it is not obvious which output should be counted in
the convolutional parts of the CNNs. Activation functions are applied
first in the CNNs, after which the strongest activations close to each
other are gathered by the pooling layer, while the weakest are filtered
out. Thus, there are two consecutive parts that have the outputs of the
activation function as their values. We chose to use the outputs of the
pooling layer, as they are the ones actually affecting the computations
of the following layers.

After the co-activation rates for every neural network were calcu-
lated, the number of rare co-activations was counted and saved using
Algorithm 2. First, for each input in the Fashion-MNIST test set, we
mark down which of the three scenarios the input represents: is the
input predicted correctly, incorrectly, or is it untrained (cf. Section 3.2).
Next, the number of rare co-activations in the neural network 𝑁𝑁 with
that input are counted and saved. This way, we obtain three types of
data points that, as a whole, represent the three scenarios. Finally, in
practice, the data are saved to a .CSV file.

On lines 14–23 of Algorithm 2, we attempt to capture the elusive
keyword rare. As we do not know how the rarity behaves in various net-
works, it is entirely possible that, for example, the rare co-activations

3 https://numpy.org/.

https://numpy.org/
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Algorithm 2 CountCo-activations(𝑖𝑛𝑝𝑢𝑡𝑠, 𝑁𝑁 , 𝑟𝑎𝑡𝑒𝑠)
inputs: A set of inputs and their corresponding outputs for which the
number of rare co-activations in NN are counted
NN : Neural network in which the co-activations are monitored
rates: Co-activation rates for NN
1: rareCoActivations = [][]: an array to store the number of rare co-

activations for each input, along with information on whether the
input was predicted correctly, incorrectly, or if it belongs to the
untrained class

2: for all 𝑖 in 𝑖𝑛𝑝𝑢𝑡𝑠 do
3: if 𝑖 belongs to the untrained class then
4: rareCoActivations[i][0] = ’untrained’
5: else if 𝑖 predicted correctly by 𝑁𝑁 then
6: rareCoActivations[i][0] = ’correct’
7: else
8: rareCoActivations[i][0] = ’incorrect’
9: end if
0: for all node 𝑛 in 𝑁𝑁 do
1: if 𝑛 activates with 𝑖 then
2: for all node 𝑚 in 𝑁𝑁 do

13: if 𝑚 activates with 𝑖 then
4: if 𝑟𝑎𝑡𝑒𝑠[𝑛][𝑚] < 0.05 then

15: rareCoActivations[𝑖][1] += 1
16: if 𝑟𝑎𝑡𝑒𝑠[𝑛][𝑚] < 0.01 then
17: rareCoActivations[𝑖][2] += 1
18: if 𝑟𝑎𝑡𝑒𝑠[𝑛][𝑚] < 0.001 then
19: rareCoActivations[𝑖][3] += 1
20: end if
21: end if
22: end if
23: end if
24: end for
25: end if
6: end for
7: end for
8: return rareCoActivations

in larger networks are absolutely rarer than in a smaller one. There
is, figuratively speaking, more room for the activation patterns to be
mostly or completely segregated, whereas the patterns may have to
share a larger portion of their nodes in the smaller networks. Thus, we
do not settle for one arbitrary threshold for rarity, but instead introduce
a few to gain more information on the rarity in various networks.
Henceforth, we address these thresholds as rarity thresholds.

4.3. Data analysis

Data analysis is based on statistical tests. To answer RQ1 (do the
three scenarios differ in terms of rare co-activations), we assessed
whether or not the data points in various groups actually originated
from different distributions. That is, we are not only interested in
whether our samples are different from each other, but we also want to
generalize the results to the entire populations from which the samples
originate. Using a statistical test, we can determine how certain we can
be that not only the samples are different, but the populations behind
them as well. Only after this do descriptive statistics, such as the mean,
minimum, and maximum, hold strong relevance when comparing the
groups. Once the difference is set by tests designed to do just that, these
descriptive statistics reveal the nature of the difference.

We use the Kruskal–Wallis test [15] to determine that populations
are, in fact, different. The Kruskal–Wallis test is an extension of the
Mann–Whitney U test for samples that have more than two groups. As
such, it is a non-parametric test that does not presume that samples are
6

normally distributed. The outcome 𝑝 of the Kruskal–Wallis test should
Table 2
Results of Kruskal–Wallis tests for CNN-ankle boot.

Activation
threshold

Rarity threshold Kruskal–Wallis (p)

0 <5% 0.0
<1% 0.0
<0.1% 0.0

0.0156* <5% 0.0
<1% 0.0
<0.1% 0.0

0.112** <5% 0.0
<1% 0.0
<0.1% 0.0

*Activation threshold < 99% of activations.
**Activation threshold < 90% of activations.

e interpreted so, that with 1 − 𝑝% of certainty, at least two of the
opulations from which the samples originate from are different. We
se the common 𝑝 < 0.05 for the significance level. Thus, when the test
uggests that, with more than 95% certainty, at least two groups come
rom different distributions, we accept that this is actually the case.
o assess which groups are different when the Kruskal–Wallis test is
ignificant, we use Dunn’s test [24] with Bonferroni correction.

Once the Kruskal–Wallis test finds a significant difference between
he groups and Dunn’s test has identified which groups are different, we
ompare the descriptive statics of those groups. This way, we acquire
nowledge on the nature of the difference: Are rare co-activations more
ommon in certain scenarios? Is there a lot of overlap? Based on these
tatistics, along with information on which groups actually differ from
ach other, we assess the potential usefulness in the context of fault
olerance. As descriptive statistics we use mean, median, maximum,
nd minimum, and – when feasible – cross-tabulation.

All statistics were gathered using SPSS.4

. Results

In this section, we examine our results obtained using the experi-
ental set-up. The results are presented for every neural network in

heir own subsection. In turn, for every network, the results are pre-
ented for each activation threshold and each rarity threshold, starting
rom the lowest one. (see Section 4.2 for more details). Only statistically

significant results are presented in detail.

5.1. CNN-ankle boot

As presented in Table 2, at least two groups in CNN-ankle boot are
statistically different (𝑝 < 0.05) from each other for each threshold.
Thus, we can make meaningful interpretations about the rare co-
activations between the groups with each threshold. Now, we examine
the pairwise comparisons of groups for each activation threshold and
rarity threshold.

Activation threshold 0: For activation threshold 0, rare
co-activations are more common in incorrectly predicted and un-
trained inputs than in correctly predicted ones. The average numbers of
occurrences are higher and the differences are statistically significant.

Every pairwise comparison between groups is statistically signif-
icant (𝑝 < 0.05) (Table 3). Thus, we can confidently say that in
CNN-ankle boot, co-activations that occurred between nodes with a co-
activation rate of less than 5%, 1%, or 0.1% in the training set, manifest
differently when the prediction is correct, incorrect, or with unknown
inputs. Next, we present the descriptive statistics of the groups to
compare how the groups differentiate. The comparison is made for each
rarity threshold, as they all hold significance.

4 https://www.ibm.com/analytics/spss-statistics-software.

https://www.ibm.com/analytics/spss-statistics-software
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Table 3
Results of pairwise comparisons between groups for CNN-ankle boot
with activation threshold 0.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0 <5% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

<1% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

<0.1% correct–incorrect 0.001
correct–untrained 0.0
incorrect–untrained 0.0

Table 4
Descriptive statistics for different groups in CNN-ankle boot with activation threshold
0.

Correct Incorrect Untrained

N 8265 735 1000

Rarity < 5%
Mean 39026.32 40490.21 115802.51
Median 9380 13811 85318
Max 739477 688498 494998
Min 3 25 524

Rarity < 1%
Mean 2088.31 2813.61 9445.02
Median 16 40 985.5
Max 202251 212147 96923
Min 0 0 0

Rarity < 0.1%
Mean 61.34 128.01 366.59
Median 0 0 0
Max 30022 39403 19564
Min 0 0 0

Considering the mean and median (Table 4), the number of rare co-
ctivations are – on average – slightly more common when the model
rediction is incorrect and much more common when the input is from
he class that was filtered out of the training set. The relative difference
n mean even rises when lowering the rarity threshold, despite the
umber decreasing and the median in every scenario falling down to
. The result is similar when comparing the minimum number.

However, the highest number of rare co-activations occurred when
he model was correct. This applies for the highest rarity threshold, but
he number remains relatively high with the lower thresholds as well,
ven if the highest maximum number is in the incorrectly predicted
nes. This suggests that even correct outputs have outliers with large
umbers of rare co-activations.
Activation threshold 0.0156: Next, we raise the activation thresh-

old to 0.0156. Rare co-activations are more common in incorrectly
predicted and untrained inputs than in correctly predicted ones. The
average numbers of occurrences are higher and the differences are
statistically significant. The chosen threshold is smaller than 99% of
all non-zero activations that occurred in CNN-ankle boot in the training
set.

As we can see from Table 5, every pairwise comparison suggests a
difference in distribution (𝑝 < 0.05). Below, we present the descriptive
tatistics for every rarity threshold.

The descriptive statistics remain somewhat consistent despite the
aise in activation threshold (Table 6). Rare co-activations in incorrect
redictions are slightly more common on average and at minimum, and
uch more common in the untrained class. Despite this, the maximum
umber of occurrences in correctly predicted inputs is larger than in
ther scenarios with the highest rarity threshold and remains in line
ith the other scenarios with the lower thresholds as well. Median and
inimum numbers fall down to 0 in all three scenarios when the rarity
7

hreshold is lowered.
Table 5
Results of pairwise comparisons between groups for CNN-ankle boot
with activation threshold 0.0156.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0.0156* <5% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

<1% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

<0.1% correct–incorrect 0.001
correct–untrained 0.0
incorrect–untrained 0.0

*Activation threshold < 99% of activations.

Table 6
Descriptive statistics for different groups in CNN-ankle boot with activation threshold
0.0156.

Correct Incorrect Untrained

Rarity < 5%
Mean 39735.17 40869.48 117150.13
Median 9629 13646 86450.5
Max 744755 692816 507542
Min 2 21 671

Rarity < 1%
Mean 2141.24 2899.36 9744.11
Median 736 1646 15452.5
Max 389505 407002 214447
Min 0 0 12

Rarity < 0.1%
Mean 62.64 132.6 360.68
Median 0 0 0
Max 31614 38045 19756
Min 0 0 0

Table 7
Results of pairwise comparisons between groups for CNN-ankle boot
with activation threshold 0.112.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0.112** <5% correct–incorrect 0.001
correct–untrained 0.0
incorrect–untrained 0.0

<1% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

<0.1% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

**Activation threshold < 90% of activations.

Activation threshold 0.112: Next, we raise the activation thresh-
old to 0.112, which is smaller than 90% of non-zero activations occur-
ring in the neural network with the training set. Rare co-activations
are more common in incorrectly predicted and untrained inputs than
in correctly predicted ones. The average numbers of occurrences are
higher and the differences are statistically significant.

The pairwise comparisons of the scenarios (Table 7) are statistically
significant (𝑝 < 0.05) with every rarity threshold. Below, we present the
descriptive statistics for every rarity threshold.

Based on the mean and median, rare co-activations are slightly more
common in incorrectly predicted inputs for activation threshold 0.112
and much more common in the non-trained inputs (Table 8). Also, the
minimum number of occurrences was highest in the untrained inputs
and second highest in the incorrectly predicted inputs. However, the
maximum number of occurrences was highest in the correctly predicted
inputs in all but one rarity threshold. Overall, this follows the basic

narrative of the lower activation thresholds.
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Table 8
Descriptive statistics for different groups in CNN-ankle boot with activation threshold
0.112.

Correct Incorrect Untrained

Rarity < 5%
Mean 45173.06 46055.6 126369.11
Median 11978 16338 91225.5
Max 793519 770479 575951
Min 25 108 1269

Rarity < 1%
Mean 2450.87 3126.73 10423.61
Median 33 70 1695.5
Max 223204 240410 92044
Min 0 0 0

Rarity < 0.1%
Mean 74.47 179.18 359.5
Median 0 0 0
Max 37735 36194 20938
Min 0 0 0

Table 9
Results of the Kruskal–Wallis tests for CNN-ankle boot9.

Activation
threshold

Rarity threshold Kruskal–Wallis (p)

0 <5% 0.0
<1% 0.0
<0.1% 0.0

0.015* <5% 0.0
<1% 0.0
<0.1% 0.0

0.114** <5% 0.0
<1% 0.0
<0.1% 0.0

*Activation threshold < 99% of activations.
**Activation threshold < 90% of activations.

Table 10
Results of pairwise comparisons between groups for CNN-ankle boot9
with activation threshold 0.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0 <5% correct–incorrect 0.002
correct–untrained 0.0
incorrect–untrained 0.0

<1% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

<0.1% correct–incorrect 0.012
correct–untrained 0.0
incorrect–untrained 0.0

5.2. CNN-ankle boot9

In this subsection, we go through the results for the model CNN-
ankle boot9 in a similar manner. This model is otherwise similar to and
similarly trained as CNN-ankle boot, but does not have an output node
for the class that was filtered out of the training set. See Section 4.1 for

ore details.
As we can see from Table 9, for each activation threshold and

arity threshold, at least two groups representing the three scenarios
re statistically different (𝑝 < 0.05) from each other. Thus, we can make
eaningful interpretations about the rare co-activations between the

roups with each threshold. Next, we present the pairwise comparisons
nd descriptive statistics of the groups for each activation and rarity
hreshold.
Activation threshold 0: For activation threshold 0, rare

o-activations are more common in incorrectly predicted and un-
rained inputs than in correctly predicted ones. The average numbers of
8

ccurrences are higher and the differences are statistically significant.
Table 11
Descriptive statistics for different groups in CNN-ankle boot9 with activation threshold
0.

Correct Incorrect Untrained

N 8256 744 1000

Rarity < 5%
Mean 26220.5 28798.58 77398.41
Median 4546.5 7165 49562.5
Max 566458 391499 384479
Min 2 11 334

Rarity < 1%
Mean 1672.11 2151.78 7923.46
Median 6 15 608.5
Max 179581 139666 82259
Min 0 0 0

Rarity < 0.1%
Mean 63.46 111.02 152.59
Median 0 0 0
Max 46778 27016 13429
Min 0 0 0

Table 12
Results of pairwise comparisons between groups for CNN-ankle boot9
with activation threshold 0.015.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0.015* <5% correct–incorrect 0.009
correct–untrained 0.0
incorrect–untrained 0.0

<1% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

<0.1% correct–incorrect 0.055
correct–untrained 0.0
incorrect–untrained 0.0

*Activation threshold < 99% of activations.

From Table 10, we can see that each pairwise comparison is statis-
ically significant (𝑝 < 0.05) with activation threshold 0. This suggests
hat the distribution of each group is different from one another, and
omparisons between the groups can be made. Below, we present the
escriptive statistics for each rarity threshold.

The descriptive statistics for rarity threshold seems to follow the
rend in the previous model (Table 11). On average, the untrained
nputs have a much larger number of rare co-activations than the other
wo scenarios, and rare co-activations in incorrectly predicted ones are
lightly more numerous than in the correctly predicted ones. The same
oes for the minimum number of occurrences, before it falls down to 0
n all scenarios.

However, the maximum number of occurrences is slightly different
han with the previous network. Unlike in the previous neural network,
here correctly and incorrectly predicted inputs were quite close to
ach other with almost every threshold, here, the correctly predicted
nputs have a much larger maximum number of occurrences than either
f the other two scenarios. Again, this provides more evidence that rare
o-activations may occur in high numbers in some cases, even if the
etwork’s prediction is correct.
Activation threshold 0.015: For activation threshold 0.015, rare

o-activations are more common in incorrectly predicted and untrained
nputs than in correctly predicted ones. The average numbers of oc-
urrences are higher and the differences are statistically significant for
xcept one.

The pairwise comparison of scenarios in CNN-ankle boot9 with the
aised activation threshold of 0.015 can be found in Table 12. The
ctivation threshold is smaller than 99% of the non-zero activations
n CNN-ankle boot9 with the training set. The most noticeable differ-
nces to the previous results is that with the rarity threshold < 0.1%,
the differences between correctly and incorrectly predicted inputs do
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Table 13
Descriptive statistics for different groups in CNN-ankle boot9 with activation threshold
0.015.

Correct Incorrect Untrained

Rarity < 5%
Mean 27138.41 29470.76 79336.79
Median 4935.5 7195.5 51817.5
Max 575003 408198 398884
Min 2 22 298

Rarity < 1%
Mean 1743.35 2244.95 8142.28
Median 7 18 710
Max 183790 144246 83236
Min 0 0 0

Rarity < 0.1%
Mean 63.72 113.42 149.35
Median 0 0 0
Max 47122 27704 13581
Min 0 0 0

Table 14
Results of pairwise comparisons between groups for CNN-ankle boot9
with activation threshold 0.114.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0.114** <5% correct–incorrect 0.061
correct–untrained 0.0
incorrect–untrained 0.0

<1% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

<0.1% correct–incorrect 0.0
correct–untrained 0.0
incorrect–untrained 0.0

**Activation threshold < 90% of activations.

not reach statistical significance (𝑝 < 0.05). Thus, we cannot make
strong statements concerning the differences between correctly and
incorrectly predicted inputs with that rarity threshold. However, we
will present the descriptive statistics for that rarity threshold as well,
because the difference between the untrained inputs and the other
scenarios are statistically significant.

The descriptive statistics in CNN-ankle boot9 with activation thresh-
old 0.015 (Table 13) follow the trend set by the earlier results. Again,
on average, rare co-activations are much more common in untrained
inputs and slightly more common in incorrectly predicted inputs than
in correctly predicted ones. The same goes for the minimum number of
occurrences. Again, the highest maximum number of occurrences can
be found in correctly predicted inputs.

With the rarity threshold < 0.1%, we must remember that the
difference between correctly and incorrectly predicted inputs is not
statistically significant. Thus, strong claims relating to the differences
should be avoided. We would, however, like to point out that the mean
number of occurrences in incorrectly predicted inputs is still higher
than in correctly predicted inputs, which does follow the trend set by
the higher rarity thresholds.

Activation threshold 0.114: For activation threshold 0.114, rare
co-activations are more common in incorrectly predicted and untrained
inputs than in correctly predicted ones. The average numbers of oc-
currences are higher and the differences are statistically significant for
except one.

A pairwise comparison with activation threshold 0.114 is given in
Table 14. The activation threshold is smaller than 90% of the non-
zero activation in CNN-ankle boot9 with the training set. As can be
seen, with the rarity threshold < 5%, correctly and incorrectly predicted
inputs do not differ from each other to a degree that is statistically
significant, although just barely. Every other comparison is statistically
significant (𝑝 < 0.05).
9

c

Table 15
Descriptive statistics for different groups in CNN-ankle boot9 with activation threshold
0.114.

Correct Incorrect Untrained

Rarity < 5%
Mean 37741.43 40090.38 105518.56
Median 10466.5 14023 73586.5
Max 706157 529095 531651
Min 20 49 521

Rarity < 1%
Mean 2289.14 3040.85 9884.75
Median 26 60.5 1373.5
Max 204396 160685 93372
Min 0 0 0

Rarity < 0.1%
Mean 71.58 121.05 210.67
Median 0 0 0
Max 43674 27700 13628
Min 0 0 0

Table 16
Results of the Kruskal–Wallis tests for CNN-shirt.

Activation
threshold

Rarity threshold Kruskal–Wallis (p)

0 <5% 0.002
<1% 0.005
<0.1% < 0.001

0.018* <5% 0.009
<1% 0.016
<0.1% < 0.001

0.154** <5% 0.236
<1% 0.14
<0.1% < 0.001

*Activation threshold < 99% of activations.
**Activation threshold < 90% of activations.

With rarity threshold < 5%, the difference between correctly and
ncorrectly predicted inputs is not statistically significant and the differ-
nce is relatively small. Thus, again, strong claims should be avoided,
ut it may be noteworthy that the numbers are somewhat similar than
n the previous results with significant differences.

On average, rare co-activations are much more common in un-
rained inputs than in the other two scenarios (Table 15) and slightly
ore common in incorrectly predicted inputs than in correctly pre-
icted inputs. Also, the minimum number of occurrences is larger in
ntrained inputs than in the other two, until it falls down to 0 with the
ower rarity thresholds. The maximum number of occurrences is ever so
lightly larger in untrained inputs than in incorrectly predicted inputs,
ut clearly lower than in correctly predicted inputs with the highest
arity threshold, but falls far behind with the lower ones.

.3. CNN-shirt

In this subsection, we go through the results for the CNN-shirt model
n a similar manner. CNN-shirt is otherwise similar to and similarly
rained as CNN-ankle boot, but the class that was filtered out of the
raining set was class 6 (Shirt) instead of class 9 (Ankle boot). See
ection 4.1 for more details.

As we can see from Table 16, every rarity threshold reaches sta-
istical significance (𝑝 < 0.05) for activation thresholds 0 and 0.018.
his means that at least two of the three groups are statistically from a
ifferent distribution and some meaningful interpretations about the
ifferences in the occurrences of rare co-activations can be made.
owever, for activation threshold 0.154, only rarity threshold < 0.1%

eaches statistical significance. Thus, we only present results of pair-
ise comparisons for groups and descriptive statistics for that rarity

hreshold, and disregard the higher rarity thresholds.
Activation threshold 0: For activation threshold 0, rare

o-activations are more common in untrained inputs than in correctly
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Table 17
Results of pairwise comparisons between groups for CNN-shirt with
activation threshold 0.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0 <5% correct–incorrect 1
correct–untrained 0.038
incorrect–untrained 0.002

<1% correct–incorrect 0.507
correct–untrained 0.015
incorrect–untrained 0.012

<0.1% correct–incorrect 1
correct–untrained 0.034
incorrect–untrained 0.0

Table 18
Descriptive statistics for different groups in CNN-shirt with activation threshold 0.

Correct Incorrect Untrained

N 8609 391 1000

Rarity < 5%
Mean 38167.45 33424.39 42830.75
Median 11702 11950 15505.5
Max 695969 548909 701704
Min 3 150 82

Rarity < 1%
Mean 2481.47 2910.51 3370.17
Median 45 35 67.5
Max 206947 155831 212366
Min 0 0 0

Rarity < 0.1%
Mean 64.96 221.68 107.7
Median 0 0 0
Max 34808 30814 26338
Min 0 0 0

predicted inputs. The descriptive statistics show higher averages and
the differences are statistically significant. Rare co-activations are
arguably more common in incorrectly predicted inputs than in correctly
predicted ones as well according to the descriptive statistics but the
differences are not statistically significant.

For activation threshold 0, untrained inputs differ statistically (𝑝 <
0.05) from the other two scenarios with every rarity threshold
(Table 17). However, the pairwise comparisons between correctly and
incorrectly predicted inputs do not reach statistical significance with
any rarity threshold, nor are they close to reaching it. Therefore, we
do not compare their descriptive statistics below, but focus on their
differences compared with the untrained inputs.

With activation threshold 0, rare co-activations are, on average,
more common in untrained inputs than in the other two scenarios,
except for rarity threshold < 0.1%, where they are more common in
ncorrectly predicted inputs (Table 18). Apart for the exception, both
ean and median are larger than in the counterparts. Contrasting with

he previous networks, here, the maximum number of occurrences is
lso higher in the untrained inputs than in the other two with the
arity thresholds < 5% and < 1%. The minimum number of occurrences,
owever, is higher in the incorrectly predicted inputs than in the
ntrained inputs.
Activation threshold 0.018: For activation threshold 0.018, rare

o-activations are more common in untrained inputs than in correctly
redicted inputs. The descriptive statistics show higher averages and
he differences are statistically significant. Rare co-activations are ar-
uably more common in incorrectly predicted inputs than in correctly
redicted ones as well according to the descriptive statistics but the
ifferences are not statistically significant.

Results of the pairwise comparison with activation threshold 0.018
an be found in Table 19. As with the previous activation threshold,
he difference between correctly and incorrectly predicted inputs is not
10

tatistically significant (𝑝 < 0.05) or even close to it. Also, with rarity p
Table 19
Results of pairwise comparisons between groups for CNN-shirt with
activation threshold 0.018.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0.018* <5% correct–incorrect 1
correct–untrained 0.008
incorrect–untrained 0.105

<1% correct–incorrect 0.639
correct–untrained 0.036
incorrect–untrained 0.039

<0.1% correct–incorrect 1
correct–untrained 0.001
incorrect–untrained 0.026

*Activation threshold < 99% of activations.

Table 20
Descriptive statistics for different groups in CNN-shirt with activation threshold 0.018.

Correct Incorrect* Untrained

Rarity < 5%
Mean 39685.32 35074.7 44127.99
Median 12684 12568 16815.5
Max 710863 549917 704391
Min 1 147 68

Rarity < 1%
Mean 2530.51 2958.25 3529.03
Median 52 38 77.5
Max 213036 154045 219452
Min 0 0 0

Rarity < 0.1%
Mean 70.07 221.27 121.64
Median 0 0 0
Max 37402 31610 27732
Min 0 0 0

*Incorrectly predicted inputs do not differ statistically from either of the other two
scenarios.

threshold < 5%, the difference between incorrectly predicted inputs
and untrained inputs is not statistically significant. As with previous
cases, only scenarios with statistically significant differences should be
compared with high confidence. The activation threshold is smaller
than 99% of the non-zero activations in CNN-shirt with the training
set.

With all rarity thresholds, untrained inputs have, on average, more
rare co-activations than the correctly predicted ones (Table 20). Both
mean and median are higher for the untrained inputs. Also, the min-
imum number of occurrences is larger in untrained inputs, when it is
not 0 for both. The maximum numbers of occurrences are very close to
each other with the higher rarity thresholds but larger with the lowest
threshold.

Incorrectly predicted inputs do not differ statistically from either
correctly predicted or untrained inputs with rarity threshold < 5% but
do differ from the untrained ones with the lower thresholds. Perhaps
interestingly, rare co-activations are, on average and at maximum,
more common in untrained inputs with rarity threshold < 5%, but, just
like with the previous activation threshold, less common with rarity
threshold < 0.1%.

Activation threshold 0.154: For activation threshold 0.154, rare
co-activations are more common in untrained inputs than in correctly
predicted inputs. The descriptive statistics show higher averages but
the differences are statistically significant only with the lowest rarity
threshold. Rare co-activations are arguably more common in incor-
rectly predicted inputs than in correctly predicted ones as well accord-
ing to the descriptive statistics but the differences are not statistically
significant.

With activation threshold 0.154, only rarity threshold < 0.1%
eached statistical significance between any two groups. Thus, we only

resent the pairwise comparisons of that rarity threshold (Table 21).
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Table 21
Results of pairwise comparisons between groups for CNN-shirt with
activation threshold 0.154.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0.154** <0.1% correct–incorrect 1

correct–untrained 0.0
incorrect–untrained 0.026

**Activation threshold < 90% of activations.

Table 22
Descriptive statistics for different groups in CNN-shirt with activation
threshold 0.154 and rarity threshold < 0.1%.

Correct Incorrect Untrained

Mean 78.13 229.97 146.77
Median 0 0 0
Max 39924 32371 32224
Min 0 0 0

Table 23
Results of Kruskal–Wallis tests for MLP-ankle boot.

Activation
threshold

Rarity threshold Kruskal–Wallis (p)

0 <5% <0.001
<1% 1
<0.1% 1

0.0339* <5% <0.001
<1% 1
<0.1% 1

0.34** <5% <0.014
<1% 1
<0.1% 1

*Activation threshold < 99% of activations.
**Activation threshold < 90% of activations.

The difference between untrained inputs and the other two scenarios
is statistically significant (𝑝 < 0.05). Conversely, correctly and incor-
ectly predicted inputs do not differ from each other to a statistically
ignificant degree. Thus, we only compare the untrained inputs with
he other two.

The descriptive statistics with rarity threshold 𝑝 < 0.1% can be
found in Table 22. Rare co-activations are, on average, more common
in untrained inputs than in correctly predicted ones. Conversely, un-
trained inputs average a smaller number of occurrences than incorrectly
predicted inputs. The maximum number of occurrences is smaller in
untrained inputs than in the other two, with correctly predicted inputs
having the largest number. The median and minimum number of
occurrences is 0 in every scenario.

5.4. MLP-ankle boot

In this subsection, we present the results for the MLP-ankle boot
model in a similar manner. MLP-ankle boot is unlike the other models,
as it is a multi-layered perceptron instead of a CNN and contains much
fewer nodes than the other models. See Section 4.1 for more details.

Results of the Kruskal–Wallis tests for each activation threshold in
LP-ankle boot can be found in Table 23. The test reaches statistical

ignificance (𝑝 < 0.05) with each activation threshold, but only with
arity threshold < 5%. Thus, we only perform the pairwise and descrip-
ive statistics comparisons with this rarity threshold as only with those
hresholds the groups are meaningfully different with regards to the
umber of rare co-activations.
Activation threshold 0: For activation threshold 0, rare

o-activations are more common in untrained inputs than in cor-
ectly predicted inputs. The descriptive statistics show higher averages
ut the differences are statistically significant only with the high-
st rarity threshold. Rare co-activations are arguably more common
11

a

Table 24
Results of pairwise comparisons between groups for MLP-ankle boot with
activation threshold 0.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0 <5% correct–incorrect 0.119

correct–untrained 0.0
incorrect–untrained 0.029

Table 25
Cross-tabulation for different groups and number of rare co-activations
in MLP-ankle boot with activation threshold 0 and rarity threshold <
5%.

N Correct Incorrect Untrained

0 7829 1013 958
1 131 27 42

Table 26
Results of pairwise comparisons between groups for MLP-ankle boot with
activation threshold 0.0339.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0.0339* <5% correct–incorrect 0.063

correct–untrained 0.0
incorrect–untrained 0.084

*Activation threshold < 99% of activations.

n incorrectly predicted inputs than in correctly predicted ones as
ell according to the descriptive statistics but the differences are not

tatistically significant.
Results of the pairwise comparisons with activation threshold 0 can

e found in Table 24. The difference between untrained inputs and the
ther two scenarios is statistically significant (𝑝 < 0.05). However, the
ifference between correctly and incorrectly predicted inputs does not
each statistical significance. Thus, we only compare untrained inputs
ith the other two.

As each input in MLP-ankle boot resulted in either 0 or 1 rare
o-activations with activation threshold 0 and rarity threshold < 5%,

for clarity, we present the results as a cross-tabulation instead of
descriptive statistics (Table 25). On average, rare co-activations are
more common in untrained inputs than in the other two scenarios.
Correctly predicted inputs are approximately eight times as common
as untrained inputs but correctly predicted inputs where a rare co-
activation occurred are only three times as common as untrained inputs
where one occurred. There is almost an equal number of untrained
inputs and incorrectly predicted inputs but nearly double the number
of untrained inputs where a rare co-activation occurred. However, rare
co-activations are overall not very common in any scenario.

Activation threshold 0.0339: For activation threshold 0.0339,
are co-activations are more common in untrained inputs than in
orrectly predicted inputs. The descriptive statistics show higher av-
rages but the differences are statistically significant only with the
ighest rarity threshold. Rare co-activations are arguably more com-
on in incorrectly predicted inputs than in correctly predicted ones as
ell according to the descriptive statistics but the differences are not

tatistically significant.
Results of the pairwise comparisons with activation threshold

.0339 can be found in Table 26. The only statistically significant
ifference (𝑝 < 0.05) is measured between untrained inputs and
orrectly predicted inputs. Incorrectly predicted ones do not differ from
ither of the other two scenarios to a statistically significant degree.
hus, we will only compare the correctly predicted inputs with the
ntrained ones. The used activation threshold is < 99% of non-zero

ctivations in MLP-ankle boot with the training set.



Array 15 (2022) 100201L. Myllyaho et al.
Table 27
Cross-tabulation for different groups and number of rare co-activations
in MLP-ankle boot with activation threshold 0.0339 and rarity threshold
< 5%.

N Correct Incorrect* Untrained

0 7842 1014 962
1 118 26 38

*Incorrectly predicted inputs do not statistically differ from either of the
other two scenarios.

Table 28
Results of pairwise comparisons between groups for MLP-ankle boot with
activation threshold 0.34.

Activation
threshold

Rarity
threshold

Dunn-Bonferroni (p)

0.34** <5% correct–incorrect 0.177

correct–untrained 0.131
incorrect–untrained 0.010

** Activation threshold < 90% of activations.

Table 29
Descriptive statistics for different groups in MLP-ankle boot with
activation threshold 0.34 and rarity threshold < 5%.

Correct* Incorrect Untrained

N 7960 1040 1000
Mean 0.36 0.3 0.37
Median 0 0 0
Max 9 6 6
Min 0 0 0

*Correctly predicted inputs do not differ statistically from either of the
other two scenarios.

As each input in MLP-ankle boot resulted in either 0 or 1 rare co-
activations with activation threshold 0 and rarity threshold < 5%, for
clarity, we present the results as a cross-tabulation instead of descrip-
tive statistics (Table 27). Again, rare co-activations are, on average,
more common in untrained inputs than in correctly predicted inputs.
Correctly predicted inputs are approximately eight times more common
than untrained ones. Yet, in inputs where rare co-activations occurred,
correctly predicted inputs are only ca. four times as common. Overall,
rare co-activations are not very common. Activation threshold 0.34:
For activation threshold 0.34, rare co-activations are only arguably
more common in untrained inputs than in correctly predicted inputs.
The descriptive statistics show higher averages but the differences are
not statistically significant. As for the differences between incorrectly
predicted inputs and correctly predicted ones, the differences are not
statistically significant, nor are the descriptive statistics higher.

Results of the pairwise comparison for activation threshold 0.34
can be found in Table 28. The only difference that reaches statistical
significance (𝑝 < 0.05) is between untrained and incorrectly predicted
inputs. Correctly predicted inputs do not differ from either of the other
two scenarios to a statistically significant degree. We therefore only
compare the untrained and incorrectly predicted inputs. The activation
threshold is smaller than 90% of the non-zero activations in MLP-ankle
boot with the training set.

On average, rare co-activations are more common in untrained
inputs than in incorrectly predicted ones (Table 29). However, rare co-
activations are uncommon overall. The median and minimum number
of occurrences for both scenarios is 0. The maximum number for both
is 6, which is, arguably, not that large either.

6. Discussion

In this section, we discuss the results and what they mean for our
research questions. In Section 6.1, we present the trends in differences
between the scenarios in the neural networks. In Section 6.2, we
12
Fig. 4. Boxplot figure of the number of rare co-activations per input in CNN-ankle
boot with activation threshold 0 and rarity threshold < 5%.

discuss what the differences mean for the usage of rare co-activations
in error detection to achieve fault tolerance in systems utilizing neural
networks.

6.1. Differences between scenarios (RQ1)

The three scenarios (correctly predicted, incorrectly predicted, and
untrained inputs, presented in Section 3.2), differ in the occurrences
of rare co-activations. For every model, at least some of the chosen
combinations of activation and rarity thresholds produced statistically
significant differences between the distributions of rare co-activations
in the scenarios. This assures that rare co-activations as a concept is
something to look into further.

Considering our viewpoint, we are most interested in how correctly
predicted inputs differ from incorrectly predicted and untrained ones.
Overall, rare co-activations are more common in untrained inputs than
correctly predicted ones and they may be slightly more common in
incorrectly predicted ones as well (for example, cf. Fig. 4). Both of these
views are elaborated below.

Rare co-activations are, on average, more common in untrained
inputs than in correctly predicted ones. This is the most consistent
result we obtained across all models. In the vast majority of tests, the
difference between the distributions of these two scenarios is statis-
tically significant, and not once do correctly predicted inputs have a
higher mean value of occurrences. The median can be 0 for both, but
it is never higher for correctly predicted inputs. Thus, a larger number
of rare co-activations is related to never-seen-before inputs.

Rare co-activations seem to be slightly more common in incorrectly
predicted inputs than in correctly predicted ones, but this result is not
as strong as the previous one. The biggest reason for downplaying
the result is that the difference between the two scenarios is less
frequently statistically significant. However, in support of this claim
rare co-activations are more common in incorrectly predicted inputs in
every statistically significant case. Also, rare co-activations tend to be
slightly more common in cases where the difference is not statistically
significant, even though this is not a given. As such, some evidence
supports this idea, but making very strong claims for it would be
ill-advised.

A few factors concerning the incorrectly predicted inputs worth
considering in further studies are the amount of data and how the
co-activation rates are computed. As the difference in the descriptive
statistics tends to be relatively small between correctly and incorrectly
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predicted inputs, the sample of incorrectly predicted inputs may just
be too small to show that the difference is statistically significant. For
example, there are only 391 inputs that CNN-shirt predicted incor-
rectly. The other issue is that the co-activation rates were computed
using the entire training set, excluding the class that we had decided
to filter out for that model. This, of course, results in a situation where
the co-activation rates are computed not only with the inputs that
the model predicts correctly but also with those that are predicted
incorrectly. This could, in a sense, mean that the co-activation rates
are, perhaps idealistically, computed based on what the model should
know, instead of what it does know. This, in turn, may result in raising
the co-activation rate of some nodes that actually contribute in the
model predicting the input incorrectly and thus making this harmful
co-activation acceptable from the viewpoint of rare co-activation.

One thing to note is that even though rare co-activations are, on
average, least common in correctly predicted inputs, this does not mean
that they are necessarily absent. In fact, correctly predicted inputs can
have outliers with very large numbers of occurrences (cf. Fig. 4), and
the maximum number of occurrences may be as high or even higher
than in the other two scenarios. Conversely, the minimum number of
occurrences tends to be the lowest in correctly predicted inputs, when
it is not 0 for all three scenarios.

Regarding the goals we set for the different models in Section 4.1,
hanging the class that was filtered out in the training set makes little
ifference with regards to the main results. When changing the filtered
lass from ’ankle boot’ to ‘shirt’, rare co-activations remain at a higher
evel in the untrained inputs than in the correctly predicted ones,
lthough by a smaller margin. An exception to this is the highest acti-
ation threshold, which, combined with the rarity thresholds 5% and
%, does not show statistically significant differences in the scenarios.
owever, lowering the rarity threshold to 0.1% yields statistically sig-
ificant results, and the rare co-activations remain higher in untrained
nputs.

The largest difference between CNN-ankle boot and CNN-shirt is
hat correctly and incorrectly predicted inputs do not differ in CNN-
hirt to a degree that is statistically significant with our sample. Es-
ecially with lower rarity thresholds, rare co-activations tend to be
lightly more common in incorrectly predicted ones, but making any
tronger claims on the matter is not possible with our sample. As
iscussed above, the statistical insignificance in this case may be due to
ur smallish sample size of incorrectly predicted inputs in CNN-shirt.

Changing the overall structure of the network from a large CNN to
small MLP does not change the overall trend of the results but has a

reat effect on the number of occurrences. Rare co-activations are still
ost common in untrained inputs, with the comparison of correctly

nd incorrectly predicted inputs falling short of statistical significance.
ne large difference compared with the other networks is that rare
o-activations occurred far less overall in MLP-ankle boot. With the
wo lowest activation thresholds, the maximum number of occurrences
er input was 1, with 0 being far more common in every scenario.
ccurrences were more common in untrained inputs than in correctly
r incorrectly predicted inputs. The results were not much different
ith the highest activation threshold either.

Another thing to note in the MLP is that, while the rarity threshold
n CNN-shirt had to be lowered to find statistical significance with a
igh activation threshold, in MLP-ankle boot, only the highest rarity
hreshold produced statistically significant results for each activation
hreshold. This occurred because there simply were not enough rare
o-activations below the lower thresholds, meaning that most nodes in
he small network tend to activate together at least sometimes. This
uggests that the larger networks have more room for the activation
atterns to grow partially or even completely separate, whereas, per-
aps unsurprisingly, the nodes in the smaller MLP need to contribute
ore to each computation.

Whether the untrained input has an output node or not does not
13

eem to make a difference in the results: the results are quite similar
between CNN-ankle boot and CNN-ankle boot9. The numbers tend to
be slightly smaller for CNN-ankle boot9, but the differences between
the scenarios are similarly significant, along with the trends in the
descriptive statistics.

6.2. Discussion of the implications for error detection and fault tolerance
(RQ2)

When considering the usefulness of rare co-activations in error
detection to achieve fault tolerance, the types of misbehaviour to be
targeted with it must be considered. As discussed in Section 3.2, we
consider whether drift in input data can be detected by utilizing the rare
co-activations, whether a single input can be detected as something the
network is not trained to handle, and whether an incorrect prediction
can be detected. Below, we discuss how the rare co-activations would
fit these tasks based on our results.

As to detecting drift in incoming data over a period of time, rare co-
activations show great promise. For every used network, we found more
than one combination of activation and rarity thresholds for which the
average number of rare co-activations was largest for untrained inputs
and the difference was statistically significant. Not only that, but the
difference was often quite large, especially for larger networks, and
it was not dependent on the input class that was excluded from the
training phase. Based on this, drift in incoming data could be monitored
by monitoring the number of rare co-activations: if the numbers per
input grow, it could indicate drift.

Detecting untrained inputs on a level of a single input is not so
straightforward. While rare co-activations are, on average, more com-
mon in untrained inputs, other scenarios do have outliers that can
be as high or even higher than the maximum number of occurrences
in untrained inputs (cf. Fig. 4). Thus, the approach is prone to false
positives, where inputs that the network should be able to handle
are flagged as inputs that the network is not trained for. Finding a
higher threshold for how many rare co-activations must occur before
the input is flagged would decrease the number of false positives, but
would introduce more false negatives, where untrained inputs would
not be flagged. The smaller MLP presents a special case of this, as
rare co-activations are very uncommon overall, and the number of
false negatives would be very large. This does not necessarily mean
that rare co-activations cannot be used to flag single inputs, but it
would probably necessitate work for finding appropriate thresholds for
activation, rarity, and the number of occurrences, so that the result
number of false positives and false negatives is tolerable — and an
application which allows some of them.

Detecting incorrectly predicted inputs is less likely to be relevant
based on our data. The differences between correctly and incorrectly
predicted inputs are so small that they are not statistically significant
in every network with our sample. Additionally, even if the differences
were significant, they tend to be so small that it is arguable whether
they are relevant when used to achieve fault tolerance. In other words,
finding an appropriate number to be used as a threshold for flagging
the result becomes very difficult and the usefulness of detecting single
incorrect predictions suffers.

Usefulness could improved with regards to the approaches discussed
here. In this paper, we have treated the rare co-activation as equals.
However, we do not exactly know that this is the case, which could
be suggested by the outliers where the networks predict correctly
despite a large number of rare co-activations. As such, certain kinds
of rare co-activations may possibly be more indicative of incorrect
predictions or untrained inputs. Detecting these co-activations could
enable improving the usefulness of rare co-activations for detecting
untrained or incorrectly predicted inputs even on the single-input level.
Potential approaches for future research could include comparing rare
co-activations that happen across layers to those that happen within a
layer, rare co-activations that occur early in the model to those that

happen in later layers, rare co-activations that occur in convolutional



Array 15 (2022) 100201L. Myllyaho et al.

a
t

7

T
i

t
f
h
t
b
u
d
c
w
r
b

t
d
e
m
s
t
q
t
o
v
p
s
c
s
t

a
p
i
i
d
e
a
t
o
n
i
c
t
a
w
d

o
a
s
r
i
o
t
t
f
h

b
t
s

m
v
W
w
n
e
a
m
p
c
t
e
f
g
l

a
r
t
B
b
w
n

8

r
c
a
h
a
r
c
s
a
c
p
t

i
o
a
d
i
w
a
o
n

n
m
b
i
f
t
w
p
T
o
i

u
d

layers of a CNN to those that happen in the fully connected layers, and
– as coRate(𝑛, 𝑚) is not necessarily equal to coRate(𝑚, 𝑛) – whether co-
ctivations that are rare both ways would be more indicative than those
hat are rare in only one way.

. Validity

We base our validity discussion on the work of Shadish et al. [25].
hus, validity is considered through statistical conclusion validity,

nternal validity, construct validity, and external validity.
Statistical conclusion validity means the validity of the statistical

ests and claims made based on them. In our work, we have taken the
ollowing measures to ensure the validity of our statistical claims. We
ave chosen the tests so that we do not violate the assumptions the
ests make of the data. The Kruskal–Wallis test was chosen specifically
ecause it does not assume the data to be normally distributed, and we
sed a Dunn-Bonferroni post hoc test to see which scenarios actually
iffer from each other. The level for determining significance was
hosen beforehand, all data were gathered in one go, and the tests
ere run only after all the data were gathered to avoid tinkering the

esults to our liking by, for example, adjusting the significance level or
y gathering additional data that would reach that level.

However, the choice of significance level is the most apparent threat
o statistical conclusion validity. The tests for statistical significance
o not, strictly speaking, show that a phenomenon exists or does not
xist. What they do show, is, considering the size of the samples and
agnitude of difference between them, the probability that the two

amples come from equally distributed populations. Considering this,
he significance level of 𝑝 < 0.05 is, although common and customary,
uite conservative: it means that there must be more than 95% cer-
ainty before we declare something to be ‘‘different enough’’. Absence
f evidence is not necessarily evidence of absence, especially when 𝑝 is
ery close to the chosen level. For this reason, especially for incorrectly
redicted inputs, we have noted trends that are quite consistent but not
tatistically significant in a toned-down manner, hinting at results that
ould be found in, for example, a larger sample. Coincidentally, the
ample size of incorrectly predicted inputs is another thing we consider
o be a threat to statistical conclusion validity, especially in the CNNs.

Internal validity means the validity of causality: do the treatment
nd the outcome actually reflect the causality between them? In our pa-
er, this would mean whether or not the number of rare co-activations
s actually a valid indication of an incorrect prediction or an untrained
nput. The answer seems to be twofold. According to statistical tests and
escriptive statistics, larger numbers of rare co-activations occurring
specially in untrained inputs are both significant and, we would
rgue, relevant. As such, rare co-activations are in some relation to
he phenomena we are studying. However, the large maximum number
f rare co-activations in correctly predicted inputs suggests that the
umber of rare co-activations should not be treated as an absolute
ndication of an incorrect prediction or an untrained input. Thus, there
ould be more fine-tuned details that are even more indicative of these
roubled inputs, as discussed at the end of Section 6.2. Also, we try to
void making too strong claims of the usefulness of rare co-activations
ith regards to promoting fault tolerance when the statistical results
o not imply strong enough leverage to do so (see Section 6.2).

Construct validity means the validity of conceptualization and the-
retical generalization, i.e., whether the concepts are properly defined
nd understood. This type is difficult to assess, as the novelty of this
tudy are the constructs we must deal with. Concepts of co-activation
ate and rare co-activations are something we define here, and what
mplications they may have is something we aim to understand. In
ther words, gaining a better understanding is our goal. As such, on
he one hand, we have full understanding of the concepts, as we are
he ones who defined them here. On the other hand, we are only just
inding out how they behave in certain situations, and the results we
14

ave is all the understanding we have gained of the phenomenon. We i
elieve we have produced believable and meaningful results, but fine-
uning our ideas could produce even better results, which, arguably,
uggests that we do not have full understanding of the concepts — yet.

External validity refers to the generalizability of the results. To
ake the results more generalizable, we used multiple networks with

arious structures and different classes excluded from the training set.
e believe we have answered the most imminent questions of what
ould happen to the results should the setting be altered. The networks
ot achieving extremely high accuracy could be seen as a threat to
xternal validity. However, industrial ML models do not necessarily
chieve high accuracy either. For example, De Clercq et al. tested
ultiple ML approaches to predict biogas production in an industrial
lant, and the best model achieved an accuracy of 87% [26]. Thus, we
onsider the accuracies of our networks believable and do not believe
his threat to be fatal to our results. Having said that, it would be inter-
sting to see whether correctly and incorrectly predicted inputs differed
rom each other more in a network with extremely high accuracy, but
aining statistical relevance in that situation would probably require a
arger data set.

As to the data set used, the choice of using Fashion-MNIST is
nother threat to generalizability. Fashion-MNIST is widely used in
esearch literature, and many consider it to be somewhat challenging
o ML models. However, it is by no means an industrial data set.
ecause of the wide use of Fashion-MNIST, we do not believe this to
e a fatal threat to our results, but we do believe that generalizability
ould benefit from the approach being applied in an actual industrial
etwork, trained with industrial data.

. Conclusions

We have presented a study that defines the concept of co-activation
ate, investigates how rare co-activations manifest in correctly or in-
orrectly predicted inputs a neural network has been trained to handle
nd inputs it has not been trained for, and, based on the previous note,
ow the rare co-activations could be used in runtime risk mitigation
s a tool to detect errors and promote fault tolerance. To produce the
esults, we first trained multiple different neural networks, after which
o-activation rates were computed for each node. Using a separate test
et and the co-activation rates, we counted how many times rare co-
ctivations occurred for every input, and then labelled the input as a
orrectly or incorrectly predicted one if it belonged to a class that was
resent in the training set or an untrained input if it belonged to a class
hat was excluded from the training set.

Rare co-activations are more common in untrained inputs than in
nputs that the network was trained to handle, and especially the
nes that the network predicted correctly. Thus, monitoring rare co-
ctivations over time could be used to monitor drift in the incoming
ata. If the number of rare co-activations per input rises, the share of
nputs the network was not trained for also rises. However, detecting
hether a single input is something the network is trained to handle is
bit trickier. This is mostly because the trained inputs, including the

nes the network predicts correctly, also include few inputs with large
umbers of rare co-activations.

The difference between correctly and incorrectly predicted inputs is
ot so clear. There is a tendency that rare co-activations occur slightly
ore often in incorrectly predicted inputs but the difference tends to

e smaller than when comparing with untrained inputs. Thus, detecting
ncorrect predictions based solely on rare co-activations may not be
easible with this approach. However, as the number of occurrences
ends to be slightly higher in incorrectly predicted inputs, trying to find
hich kind of rare co-activations are the most indicative of incorrect
rediction could be a worthwhile research question for the future.
his could mean, for example, studying whether rare co-activations
n earlier or later layers or rare co-activations across layers is more
ndicative.

Additionally, the results would benefit from more empirical follow-
p studies. Even if Fashion-MNIST is widely used, it is not an industrial
ata set. An actual industrial setting would provide an even stronger
ndication of the usefulness of the results we have found.
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