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Abstract1

We analyze data from passive and active seismic experiments con-2

ducted in the Adventdalen valley of Svalbard, Norwegian Arctic. Our3

objective is to characterize the ambient wavefield of the region and to4

investigate permafrost dynamics through estimates of seismic velocity5

variations. We are motivated by a need for early geophysical detec-6

tion of potentially dangerous changes to permafrost stability. We draw7

upon several data sources to constrain various aspects of seismic wave8

propagation in the Adventdalen. We use f − k analysis of five years9

of continuous data from the SPITS array to demonstrate that ambi-10

ent seismic noise on Svalbard consists of continuously-present body11

waves and intermittent surface waves appearing at regular intervals.12

A change in wavefield direction accompanies the sudden onset of sur-13

face waves, when the average temperature rises above the freezing14

point, suggesting a cryogenic origin. This hypothesis is supported fur-15

ther by our analysis of records from a temporary broadband network,16

which indicates that the background is dominated by icequakes. Syn-17

thetic Green’s functions calculated from a 3-D velocity model matched18

well with empirical Green’s functions constructed from the recorded19

ambient seismic noise. We use a shallow shear wave velocity model,20

obtained from active seismic measurements, to estimate the maximum21

depth of Rayleigh wave sensitivity to changes in shear velocity to be22

in the 50 to 100 meters range. We extract seasonal variations in seis-23

mic velocities from ambient noise cross-correlation functions computed24
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over three years of SPITS data. We attribute relative velocity varia-25

tions to changes in the ice content of the shallow (2-4 meter depth)26

permafrost, which is sensitive to seasonal temperature changes. A27

linear decreasing trend in seismic velocity is observed over the years,28

most likely due to permafrost warming.29

Keywords— Permafrost , environmental seismology, ambient seismic30

noise, seismic velocity change, icequakes, climate change, Arctic, f − k anal-31

ysis, shear wave active seismic experiment32

Introduction33

Warming of permafrost in polar territories is a major concern associated34

with the overall change of the global climate system, especially because of35

its potential for greenhouse gases emission (Anisimov, 2007; Schaefer et al.,36

2014). Monitoring its dynamic properties is thus essential. Permafrost is37

thermally defined as ground that remains at or below 0◦C for at least two38

consecutive years (Williams and Smith, 1989). The top of the permafrost,39

called the active layer, is subject to summer thawing and winter freezing.40

Below, the permafrost shows seasonal subzero temperature variations down41

to the depth of zero annual amplitude (e.g., Isaksen et al., 2007). Pore-42

space of permafrost can be filled with a variable proportion of gas, ice and43

water, depending on several factors such as temperature, pore size and shape,44

nature of the water, salinity and stress state (e.g., Timur, 1968; Zimmerman45
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and Michael, 1986; Stemland et al., 2020).46

Seismic monitoring is one of the most suitable methods for detecting47

changes in permafrost dynamic properties, as seismic velocities are partic-48

ularly sensitive to the ice content of the ground, that increase for example49

when water in the pore medium is freezing (e.g., Timur, 1968; Zimmerman50

and Michael, 1986; LeBlanc et al., 2004; Dou and Ajo-Franklin, 2014; Dou51

et al., 2016; Stemland et al., 2020). As temperature decreases below 0◦C,52

interstitial water freezes, first within larger pore spaces, then within smaller53

ones, resulting in a gradual increase in seismic velocities (Timur, 1968; Zim-54

merman and Michael, 1986; LeBlanc et al., 2004). This phenomenon has55

been observed in the active layer by several studies analyzing seasonal veloc-56

ity change based on ambient seismic noise monitoring (James et al., 2017,57

2019; Kula et al., 2018; Köhler and Weidle, 2019) and repeated active seismic58

experiments (Stemland et al., 2020). In addition, velocity contrasts associ-59

ated with unfrozen interstitial water were detected below the active layer, in60

particular through P- and S- wave seismic tomography (LeBlanc et al., 2004)61

and active surface wave surveys (Dou and Ajo-Franklin, 2014). For example,62

the laboratory analysis from Zimmerman and Michael (1986) indicated an63

increase of P- and S- wave velocity of more than 10% in some permafrost64

sediment core samples due to ice saturation increase between -5◦C and -15◦C.65

In this paper, we investigate changes in the properties of permafrost re-66

lated to seasonal temperature changes. We estimate seismic velocity varia-67

tions using three years of ambient seismic noise recorded on Svalbard, Nor-68
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way (Fig. 1). The Svalbard archipelago is located in the Arctic Ocean on the69

northwestern margin of the Barents Sea shelf (e.g., Bungum et al., 1991). The70

area exhibits regular seismic activity comprising tectonic and glacial events71

(e.g., Köhler et al., 2012; Pirli et al., 2013). Our research concentrates on the72

Adventdalen valley close to the town of Longyearbyen, located on Spitsbergen73

island. The geological and tectonic characteristics of Adventdalen were stud-74

ied in detail, in particular in association with the carbon capture and storage75

(CCS) research carried out by the Longyearbyen CO
2

Lab of the University76

Centre in Svalbard (UNIS; Braathen et al., 2012; Senger et al., 2014; Olaussen77

et al., 2019). Drill cores at the location of the CO
2

Lab indicated 60-70 m78

of Holocene gravel and sand followed by a succession of sandstones, silts and79

shales comprising the Cretaceous formations of the Adventalen group overly-80

ing a sandstone unit targeted as a potential CO2 reservoir at ∼670 m depth.81

Microseismic monitoring at the CO
2

Lab was described in Oye et al. (2010,82

2013), Kühn et al. (2014) and Harris et al. (2017).83

Permafrost on Spitsbergen is overlain by a seasonally unfrozen active layer84

of about 0.8 to ∼2 m thickness, and underlies at least 90% of the land sur-85

face not covered by glaciers (Humlum et al., 2003; Christiansen et al., 2010;86

Westermann et al., 2010). The total permafrost thickness was estimated to87

be 120-160 m at the CO
2

Lab (Braathen et al., 2012) and 220 m within the88

Janssonhaugen temperature borehole (JB in Fig. 1; Isaksen et al., 2001).89

Permafrost warming on Svalbard was already detected and will likely con-90

tinue over the next century (Isaksen et al., 2007; Seneviratne et al., 2016).91
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Thus, seismic monitoring of permafrost resilience or vulnerability, respec-92

tively, is both vital and crucial.93

The analysis of Green’s functions (or cross-correlation functions, CCFs)94

constructed from the ambient wavefield through seismic interferometry (e.g.,95

Shapiro and Campillo, 2004; Snieder, 2004; Hadziioannou et al., 2009) has96

become a standard tool in seismology for imaging (e.g., Shapiro et al., 2005;97

Roux et al., 2011; Lehujeur et al., 2018) and monitoring temporal changes98

in seismic velocity (e.g., Snieder et al., 2002; Sens-Schönfelder and Wegler,99

2006; Brenguier et al., 2008; Hillers et al., 2015). Techniques measuring in-100

terstation noise correlation functions allow to track variations in propagation101

characteristics over time and distance scales governed by the coherent parts102

of the ambient wavefield.103

We processed seismic data from passive and active monitoring systems104

(Fig. 1): a permanent small-aperture array (SPITS), a local temporary net-105

work (SEISVAL) and an active S-wave seismic experiment at the CO
2

Lab.106

The results of the active seismic experiment allowed improved estimates of107

the shallow velocity structure of Adventdalen and served for event location108

and Rayleigh wave sensitivity analysis. SPITS and SEISVAL seismic record-109

ings were both used to characterize the ambient wavefield. SEISVAL CCFs110

were compared with synthetics computed through a large-scale 3D velocity111

model of the Adventdalen to improve our interpretation of scattered wave112

propagation in the valley. From the SPITS CCFs, we estimated long-term113

seasonal velocity variations in the permafrost.114
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Seismic monitoring networks in Adventdalen115

Permanent seismic array: SPITS116

The SPITS array (Fig. 1) is located about 10 km south-east of Longyear-117

byen on an outcrop of the Helvetiafjellet geological formation, consisting of118

sandstone, shale, coal and conglomerate. It was installed by NORSAR in119

1992 (Mykkeltveit et al., 1992) for seismic monitoring of the archipelago120

and the Arctic, and is today part of the Comprehensive Nuclear-Test-Ban121

Treaty (CTBT) international monitoring system (Schweitzer et al., 2021).122

This permanent installation currently consists of 9 broadband stations ar-123

ranged on two concentric circles with 500 m and 1 km diameter, respectively124

(Guralp CMG-3TB, 100 s-50 Hz, connected to CMG-DM24 digitizers; Pirli,125

2003). Stations record data continuously at 80 Hz on 3 components, except126

for three 1-component stations (SPA1, SPA2 and SPA3; Fig. 1). The sen-127

sors are installed at 6 m depth to be shielded from noise produced by wind128

and anthropogenic activities. The data are automatically and manually pro-129

cessed by NORSAR for earthquake bulletins (NORSAR, 1971) distributed130

to national and international data centres.131

Temporary broadband network: SEISVAL132

The SEISVAL temporary network (Fig. 1) consisted of 12 stations deployed133

in Adventdalen during summer 2014 (May to September). Six of the sensors134

were CMG 40 instruments (Guralp, 60 s-50 Hz), the remaining six were135
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Noemax seismometers (Agecodagis, 20 s-50 Hz). The sampling frequency of136

the Taurus digitizers was set to 100 Hz. Most of the stations were installed137

on large blocks of rock, in some cases requiring an additional cement base to138

enhance leveling, in particular for the Noemax sensors. Two stations (STN07139

and STN08) were installed on existing concrete bases and one (STN12) inside140

a cabin. Each sensor was protected with a plastic box insulated with rock141

wool and sealed to the rock with cement. Most of the stations acquired142

data during the whole installation period; however, station STN04 stopped143

recording in mid-June, station STN08 from mid-July to mid-August, and144

station STN10 did not record data except for a very short period. From145

spectrograms, it was evident that STN01 was malfunctioning at least during146

the last period of the deployment.147

Active seismic experiment148

S-wave reflection and vibroseis downhole experiments149

To build a 1-D velocity model of the shallow subsurface, vibroseis S-wave150

reflection and downhole experiments were conducted in September 2012 (Oye151

et al., 2013).152

For the S-wave reflection experiment, a 100 m long profile was acquired153

on a gravel road in the Longyearbyen CO
2

Lab area (see CO
2

Lab marker154

on Fig. 1 and P2 seismic line on Fig. S1). The S-wave source consisted of155

an electro-dynamically driven linear shaker (ELVIS micro-vibrator) mounted156
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below a wheelbarrow frame (Polom, 2006; Polom et al., 2010, 2011) utiliz-157

ing the Vibroseis method (Crawford et al., 1960). The shaking orientation158

was perpendicular to the acquisition line to generate horizontally polarized159

S-waves (SH). The signals were recorded by 48 horizontal geophones (SH-160

mode, SM6-H 10 Hz) mounted every 2 m on a land-streamer. Data were pre-161

processed using the VISTA 10.028 seismic data processing software (GEDCO162

Inc., Calgary, CA). The shallowest ten metres of the profiles were affected by163

the presence of the road inducing an artificial velocity layer and thus, were164

removed from the analysis. Fig. 2a depicts a sequence of 2-fold stacked raw165

records from P2, acquired on the main road. FX-deconvolution was applied166

to reduce wind noise before finite-difference time migration using smoothed167

stacking velocities. S-wave interval velocities derived from the stacking veloc-168

ities are presented together with the depth-converted final section in Fig. 2b.169

The results indicated low S-wave velocities of about ∼200 m/s in the upper170

50 m, increasing to ∼450 m/s at 75 m depth. Due to the limited acquisition171

line spread of 95 m and wind noise affecting the raw data, the precision of172

velocity calculation decreased at greater depth and could not be interpreted.173

A complementary S-wave vibroseis downhole experiment was carried out174

around observation well Dh3 (Fig. S1b). Dh3 was equipped with a string175

of five 3-component geophones located between 94 and 294 m depth with176

50 m spacing. The string was connected to a Geometrics GEODE automatic177

recording system used for continuous passive seismic monitoring (Kühn et al.,178

2014). The ELVIS micro-vibrator was employed again to generate SH and SV179
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polarised shear waves at shot points around the well (S1 to S11 on Fig. S1).180

Data processing included adjusting the source timing, a static shift, a vibro-181

seis correlation (Crawford et al., 1960), bandpass filtering between 20 and182

85 Hz, and normalising the traces. The processed data are presented in the183

supplementary material (Fig. S2). Results were similar for both SV and184

SH source configurations. P-wave arrivals could be identified on the vertical185

components down to the 194 m depth level. Since the S-wave onset was186

visible only at 94 m depth, the S-wave arrival was determined by waveform187

matching on the other geophones. Accordingly, P- and S-wave velocities were188

well resolved down to 194 m depth. The average P-wave velocity from the189

surface to 94 m depth was 1800 m/s (505 m/s for the S-wave velocity) and190

3571 m/s between 94 and 194 m depth (1726 m/s for the S-wave velocity).191

Velocity model building192

To construct a near-surface 1-D velocity model, results from both the reflec-193

tion and vibroseis downhole experiments were integrated (Fig. S3a,b). For194

the S-wave model, velocities from the reflection experiment from the surface195

to 75 m depth were combined with the velocities extracted from the vibroseis196

downhole survey for depths between 94 and 194 m. Velocities were linearly197

interpolated between 75 and 94 m depth. However, the S-wave velocities198

in the uppermost part of the velocity model may still be overestimated due199

to the presence of a gravel road. The P-wave velocity model was less well200

constrained and a value of 1500 m/s was assumed at the surface following201
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Bælum et al. (2012). The velocity at 75 m depth was derived from the S-wave202

velocity employing a Vp/Vs ratio of 1.7. For the depth range between 94203

and 194 m, the P-wave velocity model was based on the downhole experiment204

results (Figs. S2, S3b).205

Within the scope of the Longyearbyen CO
2

Lab project, active seismic206

experiments were conducted to assess the potential for CO2 sequestration207

and to develop a 3-D reservoir model for the Adventdalen valley (Bælum208

et al., 2012; Braathen et al., 2012; Senger et al., 2014). From these mea-209

surements, recorded by snow streamer in winter conditions, only P-waves210

velocities were available focusing on the bedrock succession, especially the211

proposed reservoir layer. The main feature of the reservoir model was strata212

dipping towards the southwest by 1-3◦, such that the proposed reservoir layer,213

situated at 670-970 m depth below the CO
2

Lab, outcropped 15-20 km to214

the northeast (Bergh et al., 1997; Braathen et al., 2012). From this model, a215

3-D raytracing model was constructed (see Fig. 7 in Lubrano Lavadera et al.,216

2018). We employed this model for the computation of synthetic Green’s217

functions to resolve potential 3-D effects, for example caused by topography218

(section Modelling cross-correlation functions). The near-surface 1-D veloc-219

ity model was extended to larger depths by merging it with a profile from220

the 3-D raytracing model extracted at the CO
2

Lab location (Fig. S3c,d).221

We used this composite 1-D velocity model as described in the following sec-222

tions to locate the microseismic events recorded on the temporary broadband223

network (section Local microseismicity and icequakes) and to analyze the in-224
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fluence of S-wave velocities on the Rayleigh-wave velocity (section Rayleigh225

wave sensitivity).226

Characterisation of the ambient wavefield227

Local microseismicity and icequakes228

This section assesses the contribution of microseimicity and icequake activity229

to the ambient wavefield in Adventdalen. In particular, we investigated the230

benefit of installing the SEISVAL temporary network to enhance the detec-231

tion capacity for local events. Because of the small aperture of the SPITS ar-232

ray, only the central station (SPA0) was included in the analysis. The event233

detection was carried out manually, by visually screening 30-minute-long234

signals recorded at all stations and components between May and Septem-235

ber 2014. It resulted in the selection of about 1000 potential seismic event236

records. In a second step, regional events reported by the NORSAR reviewed237

bulletin (magnitude ≥ 2.0) or unsupervised GBF (Generalized Beamforming)238

bulletin (NORSAR, 1971) were rejected, leaving 250 potential local events.239

Three event types were observed: (1) short-duration signals characterized240

by distinct P- and S-wave arrivals associated with local events (Fig. 3 a,b), (2)241

longer-duration signals distinguished by two distinct phases with a temporal242

separation on the order of 10 s associated with regional events not reported243

in the previous catalogues (Fig. 3c), and (3) long-duration signals (> 100 s244

or more) associated with source processes that were more difficult to identify245
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and were therefore classified as noise. The first two categories of events246

were located employing the 1-D velocity model extended to larger depths247

(Fig. S2c,d) and a grid-search. They appeared to occur mainly in two areas248

to the southeast and north of the network, co-located with a coal mine and249

glaciers (Fig. 1). Using waveform cross-correlation, events were classified into250

clusters, among which the events to the southeast and north represent two251

well-correlated families. However, the P-wave arrivals of the events located252

to the southeast in the vicinity of the mine contained more energy at higher253

frequencies (≤10 Hz; Fig. S4). We noted further that the events located close254

to the mine were distributed randomly in time, whereas the events located255

in the north occurred within 15 days in July 2014.256

Previous studies of icequakes in Svalbard (e.g., Köhler et al., 2012, 2015)257

observed a wide variety of seismic signals associated with glaciers. Therefore,258

while the events to the north can be interpreted as icequakes, we cannot259

conclusively determine if the seismicity to the southeast represents mining-260

induced events or icequakes.261

Spectral and f −k analyses of the ambient seismic noise262

In order to characterize the spectral content of the ambient seismic wave-263

field, we analyzed data recorded by the SPITS array from 2007 to 2014 in264

the frequency range between 0.1 and 40 Hz. In a first step, probabilistic265

power spectral density functions (PPSDs, McNamara et al., 2009) were com-266

puted to establish ambient seismic noise baselines: long-term yearly base-267
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lines to characterize ambient noise conditions and short-term weekly as well268

as monthly baselines to determine changing station performance and noise269

characteristics (Fig. S5). At frequencies below 0.2 Hz and above 5 Hz, the270

ambient seismic noise was close to the new low noise model (Petersen, 1993).271

The maximum energy was present at about 0.2-0.3 Hz, corresponding to the272

secondary microseism. A stable source of noise was also recovered at 0.5-273

4 Hz. In addition, seasonal changes occurred in the noise level. At high274

frequencies (> 2 Hz), the level of noise was higher in summer than in winter,275

which can be explained by the increase in icequake activity due to ice melting276

(Köhler et al., 2015). On the contrary, low frequency noise was stronger in277

winter, most likely due to the dynamic weather conditions similar to those278

described for Norway (Demuth et al., 2016) or to the strong noise source in279

the northern Atlantic Ocean dominating during winter (Stehly et al., 2006).280

To better characterize the direction in which ambient seismic noise prop-281

agates across the array, a frequency-wavenumber (f − k) technique (Kværna282

and Ringdahl, 1986; Krim and Viberg, 1996; Rost and Thomas, 2002) was283

applied in the frequency bands 0.5-2 Hz, 1.5-4.5 Hz, 3-9 Hz and 6-18 Hz.284

Lower frequencies were omitted due to the small aperture of the SPITS ar-285

ray and correspondingly limited resolution. The time resolution of the sliding286

window analysis was adjusted to capture high frequency transients of both287

tectonic and cryogenic origin as well as background noise around 1 Hz. For288

each time window, the following wave-field attributes were recorded: the ab-289

solute horizontal slowness, the direction of propagation, the coherency of the290
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wavefield via the multi-trace semblance coefficient (Neidell and Taner, 1971)291

and the beam power.292

The overall output of the analysis windows was summarized with his-293

tograms for individual wavefield parameters. To resolve diurnal changes, the294

summary histograms were computed for 3-hour intervals representing the295

f − k results from ∼ 3600 time windows (lowest frequency band) to ∼ 108,296

000 time windows (highest frequency band).297

Figure 4 shows histograms of absolute horizontal slowness values binned298

in 0.02 s/km and within 3-hour time windows. For all frequency ranges,299

the histograms peaked at typical P- and S-wave slownesses of crust and300

upper mantle. This pattern was a temporally stable feature throughout the301

years with recurring short-lived interruptions during early summer months302

when surface wave propagation velocities became dominant. In order to303

investigate this annual pattern, we filtered the analysis results keeping only304

time windows showing slownesses in the range from 0.33 s/km to 1 s/km.305

In Fig. 5, we show the resulting backazimuth distributions of the seasonally306

dominating surface wavefield (see Fig. S6 for the summer period of 2011). We307

observed an abrupt change of the backazimuth pattern of the surface wave308

field in the first days of June. Coinciding with the average air temperature309

rising above the freezing point, the histograms show strong arrivals at several310

backazimuths in both northern and southern directions, the most pronounced311

being N140◦E–N160◦E. The directional source concentration persisted for a312

few weeks. After disappearing for two weeks at the end of the summer,313
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two other activity bursts from southeastern directions were detected. This314

behaviour was visible for all studied years (2010-2013; Fig. 5).315

We attribute this consistent seasonal pattern to cryogenic glacier-related316

seismicity typically being active during summertime, probably due to the317

effect of increasing temperature promoting cracks within the glacier body and318

allowing for basal gliding due to melt water accumulating at its base. Köhler319

et al. (2015) reported the occurrence of such concentrated seismicity in the320

frequency band from 1 to 8 Hz for a large number of glaciers in Svalbard. In321

particular, during summers and autumns within the years 2007 to 2013, daily322

icequake activity was recorded at Kongsfjorden (to the NNW) and Hornsund323

(to the S). Also the analysis of microseismicity in this study features event324

locations correlated with glaciers around Adventdalen.325

Ambient seismic noise cross-correlation326

Cross-correlation functions computation327

Data processing was performed using a Python code developed for dense328

array noise-correlation studies (Boué et al., 2013; Boué et al., 2014). Daily329

cross-correlation functions (CCFs) were computed separately for the SEIS-330

VAL network and the SPITS array.331

The SEISVAL network consisted of two different types of sensors, thus the332

instrument response had to be homogenised first. Since the Guralp CMG40333

instrument response features the wider spectrum, the data recorded by these334
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sensors were corrected to the Noemax Agecodagis instruments instead. Be-335

cause of the different number of components of the SPITS sensors, the anal-336

ysis of these data focused only on pairs of vertical component.337

Data were bandpass-filtered between 0.01 and 30 Hz for SPITS and be-338

tween 0.03 and 40 Hz for SEISVAL. Daily records were split into 6-hour339

segments for SPITS and into 2-hour segments for SEISVAL. The mean and340

the trend of the time series were removed. A data segment was rejected if its341

elevated relative energy content suggested contamination with an earthquake342

or icequake signal. Spectral whitening was applied to the segments (50 s to343

20 s for SPITS, 25 s to 30 Hz for SEISVAL), followed by time domain clip-344

ping at 3.5-times the standard deviation of the amplitude distribution in each345

time window.346

Example normalised daily CCFs are plotted in Fig. 6 for the frequency347

range of 0.5-2 Hz for the whole year 2011 for SPITS and for days-of-year 127348

to 255 of 2014 for SEISVAL. The abscissa denotes lag time and the ordinate349

calendar time. The stack over all days is presented at the top of the panels.350

Compared to the SEISVAL CCFs, the shorter interstation distances at351

the SPITS array led to higher signal-to-noise ratios and shorter travel times352

of the main Rayleigh wave arrival around 0 s lag time, and the correlation353

coda exhibited stable arrivals that were used for velocity change monitoring.354

The symmetry of the SPITS CCFs tended to vary seasonally, resulting from355

variations in the noise source directions (Stehly et al., 2006) as illustrated in356

the previous section.357
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The CCFs reconstructed between STN02 and STN06 on the north side358

of Adventdalen contained a signal at positive lag times, while the CCFs359

between STN07 and STN09 on the south side of Adventdalen featured an360

arrival at negative lag times. STN06 and STN07 were located to the south-361

east, whereas STN02 and STN09 were located to the northwest (Fig. 1). The362

observed asymmetries seem to be a general feature for northwest-southweast363

oriented travel paths along the northern and southern edge of the Advent-364

dalen valley, suggesting that at least in the analyzed frequency bands, noise365

sources were spatially heterogeneous and clustered towards the northwest366

(compare to Fig. 1 in Stehly et al., 2006). For CCF stacks corresponding367

to travel paths across the valley, the signals were more symmetric compared368

to the travel paths along the valley. This strongly suggests a predominant369

energy flux along the valley, which can be explained by the skewed noise370

source distribution in combination with the topography forming a guide for371

wave propagation.372

Modelling cross-correlation functions373

To better understand the cross-correlation function properties, we modelled374

wave propagation in Adventdalen. For a diffuse equipartitioned noise field,375

the nine cross-correlations between pairs of seismograph components are em-376

pirical estimates of the corresponding Green’s functions (Lobkis and Weaver,377

2001; Snieder, 2004; Tsai, 2010).378

We employed the 3-D velocity model described in section Velocity model379
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building, combined with a topographic model of the region. The compu-380

tational domain consisted of a volume of 10 × 15 × 3 km3 covering the381

locations of the temporary broadband network stations and the CO
2

Lab,382

with a 3 km margin on all sides to reduce boundary effects. Calculations,383

carried out using 1,024 processors of a supercomputer, were accurate to 9 Hz.384

Given the minimum shear wave speed of 660 m/s in the 3-D velocity model,385

this required a grid spacing of 9 m leading to about 6.2 × 108 grid points386

and a time step of 0.0012 s/sample for simulation times of 7.5 s. Compu-387

tations were carried out using the SW4 4th-order accurate finite difference388

code for seismic wave propagation (Sjögreen and Petersson, 2012; Petersson389

and Sjögreen, 2015; Petersson and Sjögreen, 2017). We took a reciprocal390

approach to the calculations (Eisner and Clayton, 2001), placing a source at391

each station location in turn, while recording at the remaining stations. This392

entailed three forward runs of the elastic finite-difference model at each of the393

station locations applying a force in each of the three cartesian directions,394

recording the 6-component strain tensor at each of the other eleven stations.395

Fig. 7 compares the modelled Green’s functions with the cross-correlation396

function stacks for sensor pairs situated on the south side of Adventdalen by397

taking the derivative of the latter. For the signals at negative time lags, the398

agreement between measured and modelled Green’s functions was remarkable399

providing an independent validation of the 3-D velocity model. A similarly400

good match could be observed for sensor pairs along the north side of Ad-401

ventdalen for positive lag times and for most of the short travel paths across402
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the valley, i.e. for sensor pairs STN06-STN07, STN02-STN09, and STN05-403

STN08. For the remaining station pairs, especially for the longer propagation404

paths across the valley, the agreement was less good. A polarisation analysis405

of the modelled seismograms confirmed the propagating waves as Rayleigh406

waves.407

Seismic velocity variation monitoring408

Rayleigh wave sensitivity409

We analyzed the sensitivity of Rayleigh waves at depth to changes in shear410

wave velocity following Boore and Nafi Toksöz (1969). To this end, we com-411

puted derivatives of fundamental Rayleigh wave phase and group velocity412

curves for a large frequency band (0.2 to 20 Hz) in response to changes in413

S-wave velocity within 100 individual layers of increasing thickness up to the414

model depth of 1200 m (Fig. 8).415

As velocity model, we used the extended 1-D S-wave velocity (Fig. S3c).416

P-wave and density variations were not considered because the sensitivity417

of surface wave velocity to P-wave velocity and density variations are small418

compared to shear wave velocity changes (Boore and Nafi Toksöz, 1969). Do-419

mains in the frequency-depth plot for which an increase in shear wave velocity420

leads to an increase in Rayleigh wave velocities are shown in blue, whereas421

an anti-correlated response is indicated in red. White regions show neutral422

response. For this shear wave velocity model, sensitivities of Rayleigh wave423
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phase and group velocities are strongest within the uppermost 100 m. Down424

to depths of approximately 80 m, where the shear wave velocity increased425

abruptly, a change of 1 m/s in shear wave velocity caused a change of up426

to 0.2 m/s in Rayleigh wave velocity (for both phase and group velocities),427

corresponding to a fractional change of 20 %.428

Velocity changes in permafrost at SPITS429

We investigated three years of data for evidence of velocity changes in the430

subsurface using CCFs computed from all vertical components included in431

the SPITS array. Prior to the analysis, we removed sporadic low-quality432

correlations from the three-year gathers. Relative travel time changes (dt/t)433

were estimated in the coda of the CCFs to infer a potential relative velocity434

variation (dv/v = −dt/t; e.g., Snieder et al., 2002; Brenguier et al., 2008;435

Hadziioannou et al., 2009; Hillers et al., 2015). This analysis is typically436

performed using the time-domain stretching method (Sens-Schönfelder and437

Wegler, 2006) or the spectral doublet method (Poupinet et al., 1984), also438

known as the moving window cross-spectral method (MWCS). Both methods439

were tested and gave similar results. We continue showing the results from440

the doublet method.441

For each station pair, a reference cross-correlation function (RCCF) was442

constructed using the stack of all daily CCFs over the study period. Sub-443

sequently, a ±10 days moving-average stack of daily CCFs was compared444

to this RCCF. The MWCS method was applied to the coda of the CCFs445
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at negative and positive lag times between 8 and 20 s. This window starts446

sufficiently late in the coda after the arrival of the direct surface wave to447

minimise the influence of ballistic components or azimuthal variations in the448

distribution of noise sources (Colombi et al., 2014). The final dv/v estimate449

was obtained by averaging over all station pairs. We investigated different450

frequency bands but focus here on the results obtained in the 0.5 to 2 Hz451

range (Fig. 9). The f − k analysis shows higher plane wave energy arriving452

at higher frequencies compared to the body wave components or the relative453

surface wave energy in this frequency range (Fig. 4). However, the cleaner454

dv/v measurements are obtained in the target range 0.5-2 Hz, which reflects455

the comparatively higher coherency of the reconstructed coda waves at these456

longer periods.457

Strong seasonal variations in seismic velocity were resolved with a maxi-458

mum amplitude of about ± 0.08%, in addition to a linearly decreasing trend459

(Fig. 9). An anti-correlation between changes in seismic velocity and temper-460

atures measured between 0.5 and 15 m depth in a nearby borehole (Isaksen461

et al., 2001, 2007) is clearly visible. Once the temperatures increased, seismic462

velocities decreased and vice-versa. This anti-correlation was particularly in463

phase with temperature variations at 2-4 m depth (Fig. 9b).464

In the JB borehole close to the SPITS array (Fig. 1), the permafrost and465

active layer thicknesses are 220 m and 1.5-1.7 m, respectively (Isaksen et al.,466

2007). Below the active layer and down to ∼10 m depth, the permafrost467

experiences seasonal temperature fluctuations below the freezing point (Fig.468
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9; Isaksen et al., 2007). These seasonal temperature changes influence the469

ice content of the ground, which significantly affects its seismic properties, in470

particular the shear modulus (e.g., Timur, 1968; Zimmerman and Michael,471

1986; LeBlanc et al., 2004; Dou and Ajo-Franklin, 2014; Dou et al., 2016;472

James et al., 2017, 2019; Stemland et al., 2020). In Alaska, James et al. (2017)473

monitored large velocity changes in the active layer employing the MWCS474

method based on high frequency noise recordings (13-17 Hz), resulting in475

dv/v values of up to ∼10%. The authors pointed out that the measured476

amplitudes of dv/v were lower than expected for thawing (90%), because477

only a portion of the wave energy could be recovered.478

Ambient seismic noise across the SPITS array exhibited a higher co-479

herency in a lower frequency range compared to the study of James et al.480

(2017), which allowed us to resolve velocity changes at 0.5-2 Hz. The es-481

timated dv/v amplitude was lower compared to the observations by James482

et al. (2017) in the active layer. Figure 9 illustrates that the smoothed dv/v483

estimates are in phase and anti-correlated with the temperature variations484

at 2-4 m depth. From this, we interpret that the velocity variations observed485

in the frequency range 0.5 to 2 Hz are governed by temperature changes be-486

low the active layer but above the depth of zero annual mean temperature487

change at ∼10 m depth (Fig. 9b). Temperature and thus velocity variations488

at this depth level may be explained by ice saturation with the percent-489

age of unfrozen interstitial water drastically affecting the permafrost seismic490

properties (Zimmerman and Michael, 1986; LeBlanc et al., 2004; Dou and491
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Ajo-Franklin, 2014; Stemland et al., 2020). In particular, the ice saturation492

is most likely controlled by the degree of salinity of the Adventdalen group493

geological formation (Stemland et al., 2020). To examine the possibility that494

spurious dv/v measurements may be caused by systematic temporal changes495

in the wavefield associated with icequake activity, we compared the temporal496

distributions of events in the NORSAR f−k analysis (NORSAR, 1971) with497

the dv/v time series and the temperature variations at 3 m depth (Figure 10).498

The rose plots in Fig.10 suggest that most of the detected events are499

located in N-S direction, consistent with the glacier activity described in500

the previous section and in Köhler et al. (2015). The majority of events is501

characterised by a high frequency content: the number of detections decreases502

by factor 18 between the frequency bands 1-4 Hz and 0.5-2 Hz. In the event503

count plot, the number of daily detections (normalised over the full three-504

year period) is color-coded and compared to the dv/v time series filtered in505

the same frequency bands. In the 1-4 Hz range, a strong increase in the506

number of events detected during summer is discernible, consistent with an507

increase in icequake activity. However, significant seasonal dv/v variations508

are absent. In contrast, the low-frequency results exhibiting the strongest509

seasonal dv/v variations show much less icequake activity.510

These results are thus not implying a correlation between icequake activ-511

ity or wavefield anatomy and seismic velocity change estimates. We conclude512

that the preprocessing of CCFs, especially the removal of segments containing513

large-amplitude transients, resulted in a sufficiently randomised coda wave-514
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field in the 8-20 s analysis window and thus unbiased dv/v estimates (Hillers515

et al., 2015). Ballistic components with a dominant ∼N-S propagation di-516

rection in summer associated with the icequake activity did not govern the517

results. We conclude that the obtained change in the elastic properties of518

the medium are genuine and most likely driven by changes in temperature.519

Therefore, we consider the SPITS continuous array data as an important520

resource to study the behaviour of the permafrost layer in response to the521

globally increasing temperature associated with climate change. We demon-522

strated the ability to study the impact of the seasonal temperature variation523

on permafrost. We also highlight the resolution of a long-term effect that524

is illustrated by the consistency between the decreasing trend in dv/v and525

a simultaneous increase in temperatures from 2009 to 2011 observed in the526

Janssonhaugen borehole (Fig. 9). This type of analysis would benefit from527

ambient seismic noise measurements within shallower surface layers, requir-528

ing the installation of additional sensors with reduced interstation distances.529

Such a network could be accommodated readily within the aperture limits530

of the current array, where essential infrastructure in terms of cables and531

communication lines is already provided. Independent laboratory analysis532

of Adventdalen permafrost samples also would be of great interest to better533

quantify the effect of ice saturation on the observed seismic velocity variations534

(e.g., Zimmerman and Michael, 1986).535
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Conclusions536

Most of the challenges in the application of geophysical investigations in537

polar environments are related to extreme seasonal changes as well as the538

permafrost cover (Kneisel et al., 2008). On the one hand, these climate539

conditions induce large variations in the elastic properties of the ground, al-540

lowing for testing of new methodologies in these natural laboratories. On541

the other hand, the deployment of monitoring systems is hampered by these542

environmental settings. The installation of a seismic monitoring network543

within the Adventdalen valley is challenging. First, the long duration of the544

winter period with snow and ice coverage means that there is only a limited545

time window available which deployment and maintenance of instruments546

is feasible. Second, options for instrument installations are limited, which547

in turn may result in a network geometry that is not optimal for a specific548

research target. For example, the SEISVAL broadband seismometers could549

not be installed on the valley plain, but had to be placed on its north and550

south sides, since a broad braided river emerges during summertime. It is551

unknown in which seismic frequency range this braided river contributes to552

the ambient seismic noise field. Only few rock outcrops were available onto553

which seismometers could be cemented and these boulders are not connected554

to the bedrock, which increases the possibility of low quality records. The555

stiffness of the frozen ground prevented burial of the seismometers to shield556

them from wind. Although the construction of a permanent network such as557
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SPITS is costly and challenging, it is essential for proper long-term seismic558

monitoring of geological features such as permafrost. In particular, the array559

geometry allows for an enhanced signal-to-noise ratio employing array anal-560

ysis approaches. The deployment of temporary seismic networks is essential561

as well, since their geometry and thus sensitivity can be adapted to a spe-562

cific target. In addition, they complement the permanent station coverage.563

This study demonstrates that passive seismic data acquired over an extended564

period of time and collected for initially different purposes can be used for565

environmental applications, such as monitoring the temporal evolution of566

shallow permafrost layers and thus help to assess its vulnerability to climate567

change.568

Our study emphasises the necessity of combining different monitoring569

and analysis methods. The results from the various approaches demonstrate570

the feasibility of geophysical methods for continuous permafrost monitoring.571

The observations provide suggestions for future seismological investigations572

and highlight the sensitivities and resolution capabilities of the employed573

methods. We demonstrated that seismic interferometry applied to several574

years of continuous data can resolve permafrost dynamics. Specifically, we575

recovered both seasonal and long-term temperature effects on the permafrost576

through the measurement of seismic velocity variations.577

The main results of our study are:578

• A shallow S-wave velocity model of the subsurface representative of late579

summer conditions was built from active seismic data. The model is580
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characterized by low shear-wave velocities of only 200 m/s within the581

upper 50 m, increasing to approximately 450 m/s at 100 m depth.582

• The temporary SEISVAL network and the permanent SPITS array are583

suitable for detection and identification of local microseismic events.584

Detected seismicity consists of icequakes and probably mining-induced585

events.586

• Spectral analysis of the ambient seismic noise recorded at SPITS shows587

that the energy is dominated by the secondary microseism peak. A588

stable noise source also is recovered at 0.5-4 Hz.589

• An f − k analysis performed on five years of SPITS data (2009-2013)590

shows that energy corresponding to typical P- and S-wave slownesses591

dominates over all frequency ranges. Interestingly, this pattern seems592

to be a temporally stable feature throughout each year, reduced in visi-593

bility only during summer months when surface wave velocities prevail.594

• This transition between wave types occurs very suddenly, coinciding595

with the average air temperature exceeding the freezing point and is596

accompanied by a change in wavefield direction.597

• The cross-correlation functions computed between SEISVAL stations598

was successfully modelled based on a 3-D velocity model of the Ad-599

ventdalen valley.600
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• The wavefield observed in the modelled Green’s functions fits Rayleigh601

waves propagating along the length of Adventdalen.602

• Seasonal changes in seismic velocity extracted from SPITS array data603

appear to be correlated with temperature variations in the permafrost604

below the active layer.605

• A decreasing trend in seismic velocity is interpreted as the effect of an606

increase in the average temperature recorded at Svalbard between 2009607

and 2011.608

Data and Resources609

NORSAR bulletins are available from https://www.norsar.no/seismic-bulletins/.610

The 12 seismic stations for the SEISVAL experiment were rented from the611

French national pool of portable seismic instruments Sismob-RESIF (https:612

//sismob.resif.fr/). We used a high-performance Python code developed613

at ISTerre, U. Grenoble-Alpes, to compute the noise correlation functions614

(Boué et al., 2013; Boué et al., 2014). The 3-D Adventdalen velocity model615

was updated by systematic gathering of all existing data and their evaluation616

using the OpendTect freeware (https://dgbes.com/index.php/software/617

free#opendtect) as platform. The open-source sw4 code is available at618

https://github.com/geodynamics/sw4. A part of the plots was made us-619

ing the Generic Mapping Tools version 6.1.1 (Wessel and Smith, 1998). Sup-620
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plementary material including additional figures is available to the reader.621
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Comté, 16 route de Gray, 25030 Besançon, France.873
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Figure 1: Overview on the study area. (a) Map of the Svalbard Archipelago.
(b) Map of the Adventdalen area. The location of the CO

2
Lab is indicated

by an open square. The SEISVAL seismic network and the SPITS array
are indicated by open and black filled triangles, respectively. The names
and relative locations of the SPITS array stations are indicated in the upper
right corner inset. Black filled circles in (a) correspond to regional seismicity
between 2008 and 2018 (Pirli et al., 2013) and empty circles in (b) to local
events located in this study. White areas correspond to glaciers (mapped
using data from http://www.glims.org (Raup et al., 2007)). JB refers to
the Janssonhaugen temperature borehole (Isaksen et al., 2001).
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Figure 2: Profile 2 along the main road. (a) Examples of shot records. (b)
Final depth-converted finite-difference-migrated time section, with superim-
posed colour-coded S-wave interval velocities.
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Figure 3: Vertical component records of (a) a local event located to the south-
east with respect to the SEISVAL network; (b) a local event located to the
north with respect to the SEISVAL network and (c) a regional earthquake.
Data are filtered between 2-20 Hz. In (a) and (b), the blue and orange bars
represent the P- and S-wave picks used for event location.
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Figure 4: (a) Temperature and air pressure are compared to absolute hor-
izontal slowness from 2009-2013 for frequencies: (b) 6-18 Hz, (c) 3-9 Hz,
(d) 1.5-4.5 Hz, and (e) 0.5-2.0 Hz. Horizontal slowness is presented as his-
tograms for 3-hour intervals. Colour scales are relative and not comparable
given choice of window lengths for different frequency bands. Horizontal grey
lines mark standard slowness values for local body wave phases (Pg ≈ 1/6
s/km, Pn ≈ 1/8 s/km, Sg ≈ 1/3.5 s/km, Sn ≈ 1/4.5 s/km, Rg ≈ 1/1.6
s/km).
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Figure 5: (a) Temperature and air pressure are compared from 2009-2013
to backazimuths computed for absolute horizontal slowness filtered in the
slowness range from 0.33 s/km to 1 s/km for frequencies: (b) 6-18 Hz, (c)
3-9 Hz, (d) 1.5-4.5 Hz, and (e) 0.5-2.0 Hz. Colour scales are relative and not
comparable given choice of window lengths for different frequency bands.
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Figure 6: Examples of cross-correlation functions computed from SPITS and
SEISVAL data (vertical components) for stations pairs: (a) SPB1-SPB4 (N-
S direction), (b) SPB3-SPB5 (E-W direction) (c) STN02-STN06 (NW-SE
direction, north side of Adventdalen), (d) STN07-STN09 (SE-NW direction,
south side of Adventdalen).
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Figure 7: Comparison of modelled Green’s functions and recorded cross-
correlation functions for sensor pairs on the south side of Adventdalen;
black lines: modelled Green’s functions, red lines: measured cross-correlation
stacks; both data filtered within 0.75-1.5 Hz.
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Figure 8: Sensitivity of Rayleigh wave phase (a) and group (c) velocity to
changes in shear wave velocity with depth for 1-D velocity model (b) including
measured shallow shear wave velocities; red vertical lines in (a) and (c) mark
0.5-2 Hz frequency band for which velocity variations were observed in the
following. Please note logarithmic scale of axes.
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Figure 9: Relative seismic velocity changes compared with ground temper-
atures. Black solid line represents locally weighted linear regression of dv/v
estimated with the doublet method for the frequency range 0.5-2 Hz (repre-
sented as black dashed line); coloured curves represent borehole temperatures
measured at different depths (0.2 to 15 m) within a borehole at Janssonhau-
gen (denoted JB on Fig. 1; Isaksen et al., 2001, 2007). (a) Temperature from
0.2 to 15 m depth plotted together with dv/v (raw and smoothed curves);
(b) temperature from 2 to 4 m depth, smoothed dv/v and linear velocity and
temperature trends computed from the smoothed dv/v curve and tempera-
ture averaged between 2 and 4 m depth, respectively.
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Figure 10: Left: rose plots indicating azimuthal distributions of events ac-
cording to their dominant frequency for the years 2009 to 2011. The abso-
lute number of detected events in each frequency range is indicated below
each rose plot. Right: number of high frequency events (icequakes) per day
normalised over the whole time period (see colour bar) compared to dv/v
estimates (black lines) and temperature measured at 3 m depth variations
(magenta dashed lines). From top to bottom: frequency ranges of 1-4 Hz,
0.5-2 Hz and 0.25-1 Hz.
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