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Graphical Abstract

∙ The EASY prediction score is a practical tool for identifying patients at a
greater risk for severe acute pancreatitis shortly after hospital admission.

∙ The explanation of the impact of features on the prediction helps physicians
understand the decision of the machine learning model.

∙ The easy-to-use web application is available for clinicians and contributes to
the improvement of the model.

mailto:hegyi2009@gmail.com


Received: 27 January 2022 Revised: 6 April 2022 Accepted: 11 April 2022

DOI: 10.1002/ctm2.842

RESEARCH ARTICLE

EASY-APP: An artificial intelligence model and application
for early and easy prediction of severity in acute pancreatitis

Balázs Kui1,2 József Pintér3 RolandMolontay3,4 Marcell Nagy3

Nelli Farkas5,6 Noémi Gede5 Áron Vincze7 Judit Bajor7 Szilárd Gódi7

József Czimmer7 Imre Szabó7 Anita Illés7 Patrícia Sarlós7

Roland Hágendorn7 Gabriella Pár7 Mária Papp8 Zsuzsanna Vitális8

György Kovács8 Eszter Fehér8 Ildikó Földi8 Ferenc Izbéki9

László Gajdán9 Roland Fejes9 Balázs Csaba Németh1,2 Imola Török10

Hunor Farkas10 Artautas Mickevicius11 Ville Sallinen12 Shamil Galeev13

Elena Ramírez-Maldonado14 Andrea Párniczky5,15 Bálint Erőss5,16,17

Péter Jenő Hegyi5,16 Katalin Márta16,17 Szilárd Váncsa5,16,17 Robert Sutton18

Peter Szatmary18 Diane Latawiec18 Chris Halloran18 Enrique de-Madaria19

Elizabeth Pando20 Piero Alberti20 Maria José Gómez-Jurado20

Alina Tantau21,22 Andrea Szentesi2,5 Péter Hegyi5,16,17 the Hungarian
Pancreatic Study Group

1Department of Medicine, University of Szeged, Szeged, Hungary
2Centre for Translational Medicine, Department of Medicine, University of Szeged, Szeged, Hungary
3Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
4MTA-BME Stochastics Research Group, Budapest, Hungary
5Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
6Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
7Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
8Department of Gastroenterology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
9Szent György Teaching Hospital of County Fejér, Székesfehérvár, Hungary
10County Emergency Clinical Hospital of Târgu Mures—Gastroenterology Clinic and University of Medicine, Pharmacy, Sciences and Technology
‘George Emil Palade’, Targu Mures, Romania
11Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
12Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
13Saint Luke Clinical Hospital, St. Petersburg, Russia
14Department of General Surgery, Consorci Sanitari del Garraf, Sant Pere de Ribes, Spain
15Heim Pál National Pediatric Institute, Budapest, Hungary
16Division of Pancreatic Diseases, Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
17Centre for Translational Medicine, Semmelweis University, Budapest, Hungary

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

Clin. Transl. Med. 2022;12:e842. wileyonlinelibrary.com/journal/ctm2 1 of 13
https://doi.org/10.1002/ctm2.842

https://orcid.org/0000-0002-2412-9541
https://orcid.org/0000-0003-0399-7259
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.842


2 of 13 KUI et al.

18Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust,
Liverpool, England, UK
19Gastroenterology Department, Alicante University General Hospital, ISABIAL, Alicante, Spain
20Department of Hepato-Pancreato-Biliary and Transplant Surgery, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona,
Barcelona, Spain
21The 4th Medical Clinic, Iuliu Hatieganu’ University of Medicine and Pharmacy, Cluj-Napoca, Romania
22Gastroenterology and Hepatology Medical Center, Cluj-Napoca, Romania

Correspondence
Péter Hegyi, Centre for Translational
Medicine, Semmelweis University, H-1085
Budapest, Üllői út 26, Hungary.
Email: hegyi2009@gmail.com

Funding information
University of Pécs Medical School
Research Fund, Grant/Award Number:
300909; National Research, Development
and Innovation Office Research Fund,
Grant/Award Numbers: K131996,
FK131864, K128222, FK124632

Abstract
Background:Acute pancreatitis (AP) is a potentially severe or even fatal inflam-
mation of the pancreas. Early identification of patients at high risk for developing
a severe course of the disease is crucial for preventing organ failure and death.
Most of the former predictive scores require many parameters or at least 24 h to
predict the severity; therefore, the early therapeutic window is often missed.
Methods: The early achievable severity index (EASY) is a multicentre, multina-
tional, prospective and observational study (ISRCTN10525246). The predictions
weremade usingmachine learningmodels.Weused the scikit-learn, xgboost and
catboost Python packages formodelling.We evaluated ourmodels using fourfold
cross-validation, and the receiver operating characteristic (ROC) curve, the area
under the ROC curve (AUC), and accuracy metrics were calculated on the union
of the test sets of the cross-validation. Themost critical factors and their contribu-
tion to the predictionwere identified using amodern tool of explainable artificial
intelligence called SHapley Additive exPlanations (SHAP).
Results: The prediction model was based on an international cohort of 1184
patients and a validation cohort of 3543 patients. The best performingmodel was
an XGBoost classifier with an average AUC score of 0.81 ± 0.033 and an accu-
racy of 89.1%, and the model improved with experience. The six most influential
features were the respiratory rate, body temperature, abdominalmuscular reflex,
gender, age and glucose level. Using theXGBoostmachine learning algorithm for
prediction, the SHAP values for the explanation and the bootstrapping method
to estimate confidence, we developed a free and easy-to-use web application in
the Streamlit Python-based framework (http://easy-app.org/).
Conclusions: The EASY prediction score is a practical tool for identifying
patients at high risk for severe AP within hours of hospital admission. The web
application is available for clinicians and contributes to the improvement of the
model.

KEYWORDS
acute pancreatitis, artificial intelligence, severity prediction

1 INTRODUCTION

Acute pancreatitis (AP) is one of the most challenging and
common gastroenterological diseases that requires hospi-
talisation. The importance of the investigation of AP is
uncontroversial: more than 2.6 billion dollars is the annual

cost of the treatment of AP in the USA, where it causes
approximately 300 000 emergency department visits every
year.1,2
According to the revised Atlanta classification, the

severity of AP can be determined as mild, moderately
severe and severe disease course.3 In general, 70%–75% of

mailto:hegyi2009@gmail.com
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patients have mild disease with a very low mortality rate;
however, the remaining 20%–25% of patients have moder-
ately severe disease, and 5%–10% have severe disease with
high mortality.4,5 Moderately severe AP is associated with
transient organ failure (less than 48 h) and/or local com-
plications. In the case of severe AP, organ failure is persis-
tent (more than 48 h), with a mortality rate up to 50%.3,6
Mortality inAP is spread over two periods: during the early
phase (first 2 weeks), indicative of rampant disease, or dur-
ing the late phase (third week and later) following progres-
sive deterioration.7–9
Early identification of those patients who are at a greater

risk for developing complications is necessary to reduce
the risk of adverse disease outcomes and death. Several
prediction scores and biochemicalmarkers have been eval-
uated and compared in the past.10–16 No laboratory test is
consistently accurate for the prediction of AP severity. For
example, C-reactive protein (CRP) levels at 48 h are signif-
icantly higher in the severe pancreatitis group than in the
others but cannot be used on admission because of the low
accuracy.17,18 Concerning multifactorial scoring systems,
all have limitations: typically, these require many and/or
not easily accessible variables or 48–72 h for evaluation.
As a result, none has been adopted for widespread use in
daily clinical practice. The Acute Physiology and Chronic
Health Examination (APACHE) II score was developed
for the assessment of critically ill patients, not specific
to AP. The calculation of APACHE II is complicated and
requires invasive measurements, including blood gases.19
Ranson andGlasgow-Imrie scores contain parameters that
are not routinelymeasured, and completion of these scores
requires 48 h from hospital admission, losing critical time
for more intensive resuscitation, analgesia and nutritional
support.20,21 More recently, developed scores for assessing
the severity of AP are the Bedside Index of Severity in
Acute Pancreatitis (BISAP) and the Harmless Acute Pan-
creatitis Score (HAPS). While the BISAP score was devel-
oped to predict severe AP and mortality, HAPS can pre-
dict non-severe AP with high (96%–97%) sensitivity and
positive predictive value (98%).22,23 The Balthazar score
and the newer computer tomography (CT) scores (mCTSI,
SMART-CT index) are useful for the characterisation of
local injury but are largely useful only several days after
admission and ignore clinical symptoms and signs.24–26
We can conclude that most earlier prognostic scores

need at least 24 h to predict severity or that several param-
eters are not easily available on admission; therefore, early
prediction of AP severity is still awaiting a solution.18,27
Many attempts have been made to use artificial intel-

ligence in healthcare, among others in radiology,28,29 in
pathology30 or for prediction, as it can detect complex non-
linear relationships between various biochemical parame-
ters and disease outcomes.11,31 As a type of artificial intelli-

gence, a machine learning algorithm builds a model based
on a training dataset and can improve its performancewith
experience. Several AP severity prediction models used
artificial intelligence and machine learning, but they were
based on datasets with low patient numbers and used only
internal validation methods.32–35
Our principal aim was to develop and validate a clinical

prediction model of severity in AP that requires parame-
ters easily accessible on admission. Our further aim was to
design and develop a practical application for clinicians for
the easy prediction of severe AP.

2 METHODS

2.1 Preliminary settings

The study protocol was discussed at the third meeting of
the Hungarian Pancreatic Study Group (HPSG) in 2014,
and the pre-study protocol was published in 2015.36 Ethical
permissionwas given by the Scientific and Research Ethics
Committee of the Hungarian Medical Research Council
(30595/2014/EKU), and the trial was registered in the inter-
national ISRCTN registry (ISRCTN10525246). The elec-
tronic clinical data registration (eCRF) system for data col-
lection and management was developed and run by the
HPSG.

2.2 Study design

The early achievable severity index (EASY) is a multina-
tional,multicentre, prospective and observational study. In
the first phase of the study, simple attainable parameters
(medical history, anamnestic data, physical examination,
laboratory parameters and imaging details) were recorded
on hospital admission from AP patients from 15 countries
and 28 medical centres. In the second phase of the study,
validation data of AP patients were collected and anal-
ysed from four international pancreatic patient care and
research centres. The centre distribution and case numbers
are shown in Tables S1 and S2.

2.3 Population

AP patients 18 years of age or older assessed within 12 h of
admission were enrolled after giving their informed con-
sent. Both the definition of AP and severity were based
on the revised Atlanta classification,3 and the ‘IAP/APA
evidence-based guidelines for the management of acute
pancreatitis37’ should have been followed in the diagnosis
and treatment of AP patients.
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2.4 Data collection and management

According to the literature data of predictive scores
(APACHE II, Glasgow-Imrie, HAPS, BISAP), data of
potential prognostic parameters (e.g., medical history, lab-
oratory tests, physical examination and diagnostic imaging
details) were collected. Abdominal ultrasound or contrast-
enhanced CT scan was used to determine pancreatic alter-
ations (necrosis, fluid collections, pseudocyst formation,
etc.) or chest X-ray was performed to determine the pleu-
ral effusion of lung infiltration. These imaging diagnos-
tic tools had standard protocols based on the regulation
of radiological organisations. The evaluation of pancreas-
related local complications was based on the revised
Atlanta classification.3,38
We applied a four-step data quality control system:

after local administrative validation and local professional
approval, a central administrative and professional check
was undertaken by the study coordination team. Cases
of insufficient data quality were excluded from the anal-
ysis. The flowchart of patient inclusion can be found in
Figure S1.

2.5 Outcome

After classifying the population into severity groups
according to the revised Atlanta classification, a compos-
ite binary label was constructed based on the dataset to
define the severity of pancreatitis used in the model. The
new label was 1 if the outcome of the disease was fatal
or the AP was classified as severe (severe AP); otherwise,
the label was 0 (non-severe AP). This binary labelling
methodology was used for both the original and validation
cohorts.

2.6 Predictors and machine learning

Our goal was to predict whether a patient will develop
severe or non-severe AP (measured by the composite label
introduced above) based on the data that are available at
the time of hospital admission. In the language of data sci-
ence, our problem is a binary classification problem,where
the target variable (class label) is the binary degree of sever-
ity of AP. The explanatory variables are the parameters
measured at the time of admission. We suppose that the
reader is familiar with the basic concepts ofmachine learn-
ing and data science; otherwise, we refer to Rowe,39 where
the author describes various concepts behind machine
learning to make clinicians more familiar with these tech-
niques.

There were two main challenges during data prepara-
tion: missing data and imbalanced class distribution. We
used a k-nearest-neighbour-based data imputer algorithm
called KNNImputer40 to handle missing data. Since the
dataset is highly imbalanced (only 6% of the patients were
labelled severe), we applied the synthetic minority over-
sampling technique, the so-called SMOTE algorithm,41 on
the training set to oversample the severe cases. In the over-
sampled training dataset, the proportion of severe cases is
50%.
The predictionsweremade using severalmachine learn-

ing algorithms, including decision tree, random forest,
logistic regression, support vector machine (SVM), Cat-
Boost and XGBoost. The idea of using deep learning mod-
els was discarded due to the tabular nature of the data.42
For the modelling, we used the scikit-learn,43 xgboost44
and catboost45 Python packages.
For the evaluation of the model, we used fourfold cross-

validation, which means that the data were divided into
four equally sized subsets, and one of these subsets was
selected as a test dataset, and the remaining datawere used
to train the machine learning model. The performance of
the model is calculated on the selected test subset; then,
this procedure is repeated for the other subsets as well, that
is, in each round, one of the subsets is the test set, and the
rest are the training data. Cross-validation aggregates the
performance metric, namely, it returns the average perfor-
mance on the test sets.
We also evaluated our models using the receiver oper-

ating characteristic (ROC) curve, the corresponding area
under the curve (AUC) score with its 95% confidence inter-
val using bootstrapping,46 and accuracy metrics calculated
from the union of the test sets of the cross-validation.
To measure the confidence of the model predictions,

many copies of the machine learning model were trained
using a bootstrapping method, that is, we resampled the
training dataset 100 times and trained the copies of the
model independently on these sets and calculated pre-
dicted scores. The 10th and 90th percentiles were used to
construct a confidence interval over the score of the predic-
tion. The workflow for developing the prediction model is
shown in Figure 1.

2.7 Explaining the predictions

Besides predicting the severity of AP, another important
goal is to identify themost important factors and their con-
tribution to the prediction using a modern tool of explain-
able artificial intelligence called SHapley Additive exPla-
nations (SHAP).47 This so-called SHAP value is able to
explain the outcome of a machine learning model using
a game-theoretical concept: the Shapley value. The SHAP
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F IGURE 1 The workflow of the development of the prediction model

value quantifies the (marginal) contribution of each fea-
ture to the final prediction, which in our case is the sever-
ity score of AP. In other words, for a given feature i, the
contribution of i, that is, its SHAP value, is the difference
between the prediction using the value of i and the mean
prediction.
Formally, let 𝑓 denotes the machine learning that for

given input parameters 𝑥 = (𝑥1, … , 𝑥𝑑) of a patient returns
the predicted severity score; moreover, let 𝐷 = {1, 2, … , 2}

denotes the set of features. Then, let 𝑓𝑆(𝑥) be the condi-
tional expectation of 𝑓(𝑥) given the values of the features
of the set 𝑆, that is, the values of 𝑥𝑖 , where ∀𝑖 ∈ 𝑆. If 𝑆 is an
empty set, then 𝑓𝑆(𝑥) is the expectation of 𝑓(𝑥); formally,
𝑓{}𝑂𝑡ℎ𝑒𝑟 (𝑥) = 𝐸(𝑓(𝑥)). Using these notations, let us define
a function 𝑣 that calculates the contribution of a feature set
𝑆: 𝑣(𝑆) = 𝑓𝑆(𝑥) − 𝑓{}(𝑥), which is the difference between
the prediction where we observe the values of the 𝑆 sub-
set of features and the mean prediction. The contribution
𝜑𝑖(𝑥) of feature 𝑖 for the prediction of 𝑥 is defined using 𝑣
as follows:

𝜑𝑖(𝑥) =
∑

𝑆⊆𝐷⧵{𝑖}

|𝑆|! (𝑑 − |𝑆| − 1)!

𝑑!
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆))

The SHAP feature importance 𝐼𝑗 of feature 𝑗 is simply
the mean absolute contribution of the feature where the
average is taken on the whole dataset, that is:

𝐼𝑗 =
1

𝑛

𝑛∑
𝑖=1

|||𝜑𝑗(𝑥(𝑖))
|||

Using the XGBoost machine learning algorithm for pre-
diction, the SHAP values for the explanation, and the boot-
strapping method for the estimation of confidence, we
have developed a web application in the Streamlit Python-
based framework.

2.8 Statistical analyses

Case numbers and percentages were calculated for cat-
egorical variables, and means with standard deviations,
minima and maxima were calculated for numerical vari-
ables in descriptive analyses of the original and validation
cohorts. A two-sided p-value of < .05 was considered sta-
tistically significant.

3 RESULTS

3.1 Characteristics of the original
cohort

A total of 1184 patients diagnosed with AP were included
in the analysis. Eight hundred and seventy-eight patients
(74%) had mild, 243 (21%) moderately severe and 63
patients (5%) had a severe disease course according to
the revised Atlanta classification. There were 26 deaths.
With the constructed binary class label, 1114 patients (94%)
were classified as non-severe, while 70 patients (6%) were
labelled as having severe disease. Hence, the data had a
highly imbalanced class distribution. The general charac-
teristics of the cohort are detailed in Table 1.
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TABLE 1 Characteristics of the original cohort

Data qualitya

Demographic data
Gender, male% 58.1% Female/male 100%
Age, mean (SD); min, max 55.7 (16.6) [17, 95] 100%
BMI, mean (SD); min, max 27.98 (5.86) [14.8, 50.4] 99%

Anamnestic data
Alcohol consumption, yes% 54.0% Yes/no 100%
Smoking, yes% 34.4% Yes/no 100%
Length of abdominal pain, mean (SD) in hours; min, max 36.8 (40.4) [1, 168] 98%

Admission data
Abdominal guarding, yes% 22.7% Yes/no 99%
Abdominal tenderness, yes% 89.6% Yes/no 99%
Body temperature (axillary),◦C mean (SD); min, max 36.7 (0.46) [34.8, 39.0] 98%
Systolic blood pressure (Hgmm), mean (SD); min, max 141.9 (22.5) [75, 220] 100%
Diastolic blood pressure (Hgmm), mean (SD); min, max 85.2 (14.3) [40, 191] 100%
Heart rate, mean (SD); min, max 83.9 (16.5) [41, 153] 100%
Respiratory rate, mean (SD); min, max 17.7 (3.7) [10, 45] 99%

Laboratory parameters
Amylase (U/L), mean (SD); min, max 1077 (1117) [16, 8544] 100%
Aspartate transaminase (U/L), mean (SD); min, max 147.9 (186) [4, 1251] 99%
Serum ionized Calcium (mmol/L), mean (SD); min, max 2.31 (0.22) [1.5, 4.5] 98%
C-reactive protein (mg/L), mean (SD); min, max 49.76 (74.5) [0.07, 515] 100%
Creatinine (μmol/L), mean (SD); min, max 85.8 (46.7) [36, 706] 100%
Glucose (mmol/L), mean (SD); min, max 8.23 (3.48) [2.53, 43.29] 100%
Potassium (mmol/L), mean (SD); min, max 4.12 (0.55) [2.5, 7] 97%
Sodium (mmol/L), mean (SD); min, max 137.8 (4.1) [116, 155] 97%
Urea (carbamide) (mmol/L), mean (SD); min, max 6.32 (3.85) [0.98, 40.09] 100%
White blood cell count (G/L), mean (SD); min, max 12.78 (5.05) [1.32, 52.70] 100%

Imaging examinations
Pleural fluid 12.0% Yes/no 88%
Acute peripancreatic fluid collection 22.2% Yes/no 93%
Abdominal fluid 23.0% Yes/no 96%

Outcome
The severity of acute pancreatitis, severe% 5.9% Non-severe/severe 100%

Abbreviations: BMI, body mass index; SD, standard deviation.
aData not missing.

3.2 Machine learning models

We trained and evaluated the following binary classi-
fiers: decision tree, random forest, logistic regression,
SVM, CatBoost and XGBoost. The best performing model
was an XGBoost classifier with an average AUC score of
0.81 ± 0.033 and an accuracy of 89.1%. The ROC curve and
the corresponding AUC are depicted in Figure 2.
Although the size of our dataset is larger than that of pre-

viously published studies, we investigated how the perfor-
mance of themodel increases as we increase the size of the

training set. We supposed that the model had not reached
its maximal performance and could be further improved
with more data (Figure 3).
As not all parameters were measured or available on

admission, we examined how the performance of the
model decreases if it is built from fewer variables. TheAUC
values for the models built only on the most important k
attributes (according to their SHAP values) are shown in
Figure 4. It is clear that performance increased with the
number of variables used for prediction, but reasonable
performance was obtained with fewer parameters.
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F IGURE 2 The cross-validated (fold = 4) receiver operating
characteristic (ROC) curve of the XGBoost model. The
corresponding mean area under the curve (AUC) is 0.809. The 95%
confidence interval is [0.776, 0.842]

F IGURE 3 The performance of the XGBoost model trained on
different sized sets. The points show the area under the curve (AUC)
scores, and the bars are the corresponding confidence intervals

For binary classification, machine learning models usu-
ally only predict a score that can be interpreted as the like-
lihood of the positive class, here the likelihood of severe
AP. On the other hand, the confidence of the given pre-
diction usually remains unclear. To assist the physicians
in assessing to what extent they can rely on the model’s
output in decision-making, we also estimated the con-
fidence of the prediction using a bootstrapping method.
The confidence intervals for a selected test dataset of 356
records (30% of the dataset) can be seen in Figure 5.

F IGURE 4 The performance of the model using varying
numbers of attributes with the top kmost important features. The
importance is calculated using the SHapley Additive exPlanations
(SHAP) importance. The points show the area under the curve
(AUC) scores, and the bars are the corresponding confidence
intervals

The confidence of the model is greater near the end-
points of the spectrum, that is, when the degree of sever-
ity is clearly mild or severe. On the other hand, the width
of the confidence intervals in the mid range is slightly
larger.

3.3 Explaining the predictions

With the help of the SHAP values, the individual predic-
tions of the machine learning model can be explained, and
it is possible to measure the global importance of individ-
ual features. The effect of the individual features on the
model output and their ranked importance are shown in
Figure 6. The top sixmost influential features were respira-
tory rate, abdominal muscular reflex, gender, glucose, cre-
atinine and urea nitrogen level. The most influential pre-
dictors slightly change if themodel is trained on other vali-
dation cohorts. The six most influential features regarding
all cohorts were creatinine, glucose, respiratory rate, urea
nitrogen, white blood cell count and gender. More detail
can be found in Table S9.
Using the SHAP values, explanations of three different

predictions are depicted in Figure 7. The features pushing
higher the predicted probability of severe AP (compared
to the mean prediction, called base value) are shown in
orange, and those pushing the prediction lower are shown
in green.Moreover, the length of the bars is proportional to
the extent to which the corresponding factor contributes to
the prediction. Note that due to oversampling, the average
prediction on the training set does not reflect the preva-
lence of severe disease. Hence, it is not the exact SHAP
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F IGURE 5 The predicted severity score on a selected subset of the dataset and the confidence intervals for the 10th and 90th percentiles
and the 25th and 75th percentiles. The records are sorted by the severity score

F IGURE 6 A summary plot of the impact of the features on the prediction (severity score) of the model. Each patient is represented by a
point in each row. The colour of the points represents the relative value of the feature, and the x-position of the points is the SHapley Additive
exPlanations (SHAP) value, that is, the impact on the model’s prediction

value of a variable that is meaningful in a clinical setting
but rather its sign and its relative value in comparison with
the other variables’ SHAP value.
If most parameters of the patient are normal, the risk

of developing severe AP is very low (Figure 7A). The fact
that the body mass index (BMI) and glucose level are high,
pushes the predicted severity score higher (Figure 7B).
In the case of most parameters being outside the normal
range (the patient was older and had a high glucose level,
urea nitrogen, BMI, CRP and respiratory rate), the proba-

bility of severe disease increased (Figure 7C). More exam-
ples can be found in Figure S2.

3.4 Validation of the results

Our results were validated on external data from four inter-
national centres: Alicante, Barcelona, Cluj-Napoca and
Liverpool. Altogether, 3164 cases were included in the
analysis. First, we validated the model’s performance by
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F IGURE 7 Three examples of the local explanation of the predictions using the SHapley Additive exPlanations (SHAP) values. (A)
Predicted mild acute pancreatitis (AP). (B) Predicted AP with borderline severity. (C) Predicted severe AP. Factors that push the predicted
score higher compared to the base value (mean prediction) are coloured orange, and those pushing lower the prediction are shown in green

training it on the EASY dataset, and then we measured
its performance on the four international centres. The
AUC scores of the model on the Alicante, Barcelona, Cluj-
Napoca and Liverpool data are 0.72 ± 0.036, 0.79 ± 0.039,
0.74 ± 0.041 and 0.77 ± 0.040, respectively. We found that
the performance of the model improves significantly if
we supplement the training data with the international
datasets; in this case, the cross-validated AUC score is
0.82 ± 0.011 on the EASY dataset, 0.79 ± 0.014 on the
Alicante dataset, 0.82 ± 0.020 on the Barcelona dataset,
0.79 ± 0.023 on the Cluj-Napoca dataset and 0.78 ± 0.026
on the Liverpool dataset. Finally, wemeasured themodel’s
performance on the union of all the datasets; in this case,
the cross-validated AUC score was 0.803 ± 0.010. Further
details of the validation cohort and the results of the anal-
ysis are available in Supporting Information.

3.5 Web application

Using the XGBoostmachine learning algorithm for predic-
tion, the SHAP values for the explanation, and the boot-
strapping method for the estimation of confidence, we
have developed a web application (http://easy-app.org/) in
the Streamlit Python-based framework. The application is
able to operate if not all the input variables are given; how-
ever, at least five input parameters have to be provided.
Although XGBoost can handle missing data, to interpret
the SHAP values, we solved this challenge by retraining
the model using only the given parameters.
The application returns three different plots that show

the probability of having severe pancreatitis according to
the model (the predicted severity score), the confidence

interval of the prediction severity score, the explanation of
the decision of the model, and the distribution of the pre-
dicted scores made by the XGBoost models. A prediction
in the application is shown in Figure 8.

4 DISCUSSION

Wehave appliedmachine learning to the development and
testing of a simple risk score for severe AP between 0 and
1 that can be calculated on admission from simple bed-
side parameters. This score has been derived and validated
by a study of almost 5000 patients from multiple coun-
tries, confirming its applicability at the bedside, which is
now easily used in our web-based application. Further-
more, it is expected that the score will improve with use
as more data are entered. While machine learning mod-
els usually lack an explanation behind the output, operat-
ing as a ‘black box’,11 we solved the problem of machine
learning model interpretation by applying a novel explain-
able artificial intelligence (XAI) tool, called SHAP value.47
This state-of-the-art technique enabled us to identify the
variables that affect the prediction, determining the most
important factors and their contribution to the prediction.
The power of SHAP values has also been illustrated by
Lundberg et al.48 and Haimovich et al.49 who developed
an early prognostic tool for the severity of COVID-19 and
used SHAP values to investigate the effects of the individ-
ual variables. To the best of our knowledge, this is the first
work using SHAP values in the prediction of AP severity.
In the EASY population, the most relevant factors caus-
ing more severe disease were respiratory rate, abdomi-
nal guarding, axillary body temperature, serum amylase,

http://easy-app.org/
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F IGURE 8 An example output of the web application for the following input parameters—age: 55 years, gender: 0 (woman), body mass
index: 22, alcohol consumption: 1 (true), blood pressure/pulse: 140/75/60, body temperature: 37.0◦C, respiratory rate: 25. (A) Predicted severity
score. (B) Explanation of prediction. (C) The kernel density estimate plot of the distribution of the predictions

gender and serum glucose level, all routinely and easily
obtained. From this, we have developed an easy-to-use
web application that gives a prediction for the likelihood
of severe AP using a given input of available parameters
while explaining the prediction of the machine learning
model, making it useful not only for prediction but also for
education.
Handcrafted AP severity prediction scores (APACHE II,

Ranson, Glasgow-Imrie, CTSI, HAPS, BISAP and others)
are readily interpretable and easy to understand but have
three principal limitations. Firstly, they are unlikely to
achieve as high a level of performance as a machine learn-
ing model derived from a set of features. Secondly, most of
the handcrafted scores use parameters that are only avail-
able at least 24, if not 48 or 72 h after hospitalisation.25,50
Thirdly, these scores were developed during the era of the
original Atlanta classification that distinguished mild and
severe AP, unlike the revised Atlanta classification that
distinguishes mild, moderately severe and severe AP. As
the predictive capabilities of these scores, comprehensively
reviewed by Gurusamy et al.,51 have reached their limit,
alternative approaches are needed.
In one of the earliest works using machine learning,

Pearce et al.35 applied kernel logistic regression to pre-
dict the severity of AP using eight variables (age, arterial
pH, serum CRP, Glasgow Coma Scale, pO2 on air, respi-
ratory rate, serum creatinine and white blood cell count)
obtained from 265 patients. Their model achieved a 0.82
AUC score, while the AUC of the APACHE II score was
only 0.74. Hong et al.52 developed a score predicting severe
AP, including systemic inflammatory response syndrome,

serum albumin, blood urea nitrogen and pleural effusion
(SABP score), with an AUC of 0.875, higher than that of
BISAP, APACHE II, HAPS, Glasgow score, Japanese sever-
ity score and CRP. However, relatively small databases
were available for the calculation of these scores.
Qiu et al.53 used three machine learning models (SVM,

logistic regression, neural network) to predict the risk of
multiple organ failure in severe AP. The models were
built on a relatively small dataset of 263 patients, and the
three models’ AUC scores were between 0.832 and 0.840,
while the AUC of the APACHE score was 0.814. They
found haematocrit, kinetic time (thromboelastogram),
interleukin-6 and creatinine to have the greatest predic-
tive power. Ding et al.54 used artificial neural networks and
logistic regression for the early prediction of in-hospital
mortality in AP. The authors used 12 variables that were
collected within 24 h of admission from 337 patients.
The performance of the model was relatively low com-
pared to the other works, with an AUC of the neural net-
work at 0.769 and logistic regression at 0.607. Akshintala
and Khashab55 recently described the application of arti-
ficial intelligence to AP prediction in pancreaticobiliary
endoscopy, presenting a simple AI-based AP risk predic-
tion calculator and decision-making tool. All these previ-
ous results derived from relatively small cohorts11 suggest
the potential of machine learning models to improve upon
handcrafted scores, an approach that we have exploited
in our work. Our 0.81 ± 0.033 AUC value achieved in far
larger populations matches those of the former works, and
our model is improving further with use, as it is applied
even more widely.
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Last but not least, our model and web application
make early prediction possible. Although the study design
allowed 12 h for the inclusion of patients, the model will
work with only a few parameters shortly after the diagno-
sis of AP.

4.1 Strength and limitations

There are several strengths of ourmodel. (1)Wehave used a
large international cohort for bothmodel development and
external validation. (2) The model is continuously improv-
ingwith experience. (3)We also explain the predictionwith
the help of SHAP values, which helps physicians under-
stand the decision of the machine learning model. More-
over, it may also educate patients in finding how to change
their lifestyle or behaviour to avoid developing AP again.
(4) Our model uses only data that are available at the time
of patient admission to the hospital, hence provides a very
early prediction of the likelihood of severe AP. (5) Finally,
we developed a web application, which for a given set
of input parameters returns three outputs: the predicted
severity score of AP, the confidence of the model, and the
explanation of the prediction that highlights the key factors
affecting the severity of AP.
The principal limitation of this study was imposed by

its design, namely, the use of binary classification for non-
severe and severe AP to derive themodel. Binary classifica-
tion has enabled derivation of the likelihood of the devel-
opment of severe AP but may not be able to accurately dis-
tinguish likelihoods of mild from moderately severe AP as
these were entered as one class. This results in a score that
is more akin to the original rather than revised Atlanta
classification, although there may be limitations in the
scores obtained for patients with local complications but
without persistent organ failure. While the score calcu-
lated for any patient varies between 0 and 1, it may be
easier for clinicians to understand percentage likelihoods
instead; this feature can be altered in the future. More
subtly, the confidence limits for the prediction of sever-
ity are wider moving away from the prediction spectrum
endpoints, that is, with scores closer to the middle of the
range. Nevertheless, our model is improving with experi-
ence; thus, these limitations might decrease with the use
of the web application and feeding the model with further
data. A further limitation of the study was that we could
not exclude those patientswith organ failure on admission.

4.2 Implications for practice

Based on the predictions, we can identify patients at
increased risk for severeAP; therefore, themodel can assist

in early triage to intensive care units and the selection
of patients for specific interventions. The easy-to-use web
application (http://easy-app.org/) is a useful tool for clini-
cians for early prediction. The more they use this applica-
tion, the better the model becomes.

5 CONCLUSION

TheEASYprediction score is a practical tool for identifying
patients at a greater risk for severe APwithin 24 h of hospi-
tal admission. The easy-to-use web application is available
for clinicians and contributes to the improvement of the
model.

ACKNOWLEDGEMENTS
The research was supported by National Research, Devel-
opment and Innovation Office Research Fund (project
grantsK131996 to PéterHegyi, FK131864 toArtautasMicke-
vicius, K128222 to LászlóGajdán, FK124632 to BalázsCsaba
Németh), and by funding from the University of PécsMed-
ical School Research Fund (300909) to Andrea Szentesi.
The funders had no effect on the concept, data collection,
analysis and writing of the manuscript. We wish to thank
all further contributingmembers of theHungarian Pancre-
atic Study Group, full names together with affiliations are
listed in the Supplementary material.

CONSENT TO PART IC IPATE
Written informed consent was obtained from all partici-
pants before enrolment.

CONSENT FOR PUBL ICAT ION
Not applicable.

CONFL ICT OF INTEREST
The authors do not have any conflicts of interest to declare.

ORCID
Enrique de-Madaria https://orcid.org/0000-0002-2412-
9541
PéterHegyi https://orcid.org/0000-0003-0399-7259

REFERENCES
1. Garber A, Frakes C, Arora Z, Chahal P. Mechanisms and man-

agement of acute pancreatitis.Gastroenterol Res Pract. 2018;2018.
2. Peery AF, Dellon ES, Lund J, et al. Burden of gastrointesti-

nal disease in the United States: 2012 update. Gastroenterology.
2012;143(5):1179-1187.e3..

3. Banks PA, Bollen TL, Dervenis C, et al. Classification of acute
pancreatitis—2012: revision of the Atlanta classification and def-
initions by international consensus. Gut. 2013;62(1):102-111.

4. Hegyi P, Erőss B, Izbéki F, Párniczky A, Szentesi A. Accelerating
the translational medicine cycle: the Academia Europaea pilot.
Nat Med. 2021;27(8):1317-1319.

http://easy-app.org/
https://orcid.org/0000-0002-2412-9541
https://orcid.org/0000-0002-2412-9541
https://orcid.org/0000-0002-2412-9541
https://orcid.org/0000-0003-0399-7259
https://orcid.org/0000-0003-0399-7259


12 of 13 KUI et al.

5. Párniczky A, Kui B, Szentesi A, et al. Prospective, multicentre,
nationwide clinical data from 600 cases of acute pancreatitis.
PLoS One. 2016;11(10):e0165309.

6. Sternby H, Bolado F, Canaval-Zuleta HJ, et al. Determinants
of severity in acute pancreatitis: a nation-wide multicenter
prospective cohort study. Ann Surg. 2019;270(2):348-355.

7. Johnson C. Persistent organ failure during the first week
as a marker of fatal outcome in acute pancreatitis. Gut.
2004;53(9):1340-1344.

8. Moran RA, et al. Early infection is an independent risk factor for
increased mortality in patients with culture-confirmed infected
pancreatic necrosis. Pancreatology. 2022;22(1):67-73.

9. Párniczky A, Lantos T, Tóth EM, et al. Antibiotic therapy in
acute pancreatitis: fromglobal overuse to evidence-based recom-
mendations. Pancreatology. 2019;19(4):488-499.

10. Gao W, Yang H-X, Ma C-E. The value of BISAP score for pre-
dicting mortality and severity in acute pancreatitis: a systematic
review and meta-analysis. PloS one. 2015;10(6):e0130412.

11. Gorris M, Hoogenboom SA, Wallace MB, et al. Computed
tomography severity index vs. other indices in the prediction of
severity and mortality in acute pancreatitis: a predictive accu-
racy meta-analysis. Front Physiol. 2019;10:1002.

12. Mikó A, Vigh É, Mátrai P, et al. Computed tomography severity
index vs. other indices in the prediction of severity andmortality
in acute pancreatitis: A predictive accuracy meta-analysis. Fron-
tiers in Physiology. 2019;10:1002.

13. Nagy A, Juhász MF, Görbe A, et al. Glucose levels show inde-
pendent and dose-dependent association with worsening acute
pancreatitis outcomes: post-hoc analysis of a prospective, inter-
national cohort of 2250 acute pancreatitis cases. Pancreatology.
2021;21(7):1237-1246.

14. Szakács Z, Gede N, Pécsi D, et al. Aging and comorbidities in
acute pancreatitis II: a cohort-analysis of 1203 prospectively col-
lected cases. Front Physiol. 2019;9:1776.

15. Szentesi A, Párniczky A, Vincze Á, et al. Multiple hits in acute
pancreatitis: components of metabolic syndrome synergize each
other’s deteriorating effects. Front Physiol. 2019:1202.

16. Yang Y-X, Li L. Evaluating the ability of the bedside index for
severity of acute pancreatitis score to predict severe acute pan-
creatitis: a meta-analysis.Med Principles Practice. 2016;25(2):137-
142.

17. Farkas N, Hanák L, Mikó A, et al. A multicenter, international
cohort analysis of 1435 cases to support clinical trial design in
acute pancreatitis. Front Physiol. 2019;10:1092.

18. Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A,
Botelho MF, Tralhão JG. Multifactorial scores and biomarkers
of prognosis of acute pancreatitis: applications to research and
practice. Int J Mol Sci. 2020;21(1):338.

19. Larvin M, Mcmahon M. APACHE-II score for assessment and
monitoring of acute pancreatitis. Lancet. 1989;334(8656):201-205.

20. Ranson JH. Objective early identification of severe acute pancre-
atitis. Am J Gastroenterol. 1974;61(6).

21. Wilson C, Heath DI, Imrie CW. Prediction of outcome in
acute pancreatitis: a comparative study of APACHE II, clini-
cal assessment and multiple factor scoring systems. J Br Surg.
1990;77(11):1260-1264.

22. Lankiscn PG, Weber-Dany B, Hebel K, Maisonneuve P,
Lowenfels AB. The harmless acute pancreatitis score: a clini-
cal algorithm for rapid initial stratification of nonsevere disease.
Clin Gastroenterol Hepatol. 2009;7(6):702-705.

23. Wu BU, Johannes RS, Sun X, Tabak Y, Conwell DL, Banks PA.
The early prediction of mortality in acute pancreatitis: a large
population-based study. Gut. 2008;57(12):1698-1703.

24. Bollen TL, et al. Comparative evaluation of the modified CT
severity index andCT severity index in assessing severity of acute
pancreatitis. 2011;197(2).

25. Choi HW, Park HJ, Choi S-Y, et al. Early prediction of the
severity of acute pancreatitis using radiologic and clinical scor-
ing systems with classification tree analysis. Am J Roentgenol.
2018;211(5):1035-1043.

26. Gupta P, Kumar M P, Verma M, et al. Development and valida-
tion of a computed tomography index for assessing outcomes in
patients with acute pancreatitis: “SMART-CT” index. Abdomi-
nal Radiol. 2021;46(4):1618-1628.

27. Mederos MA, Reber HA, Girgis MD. Acute pancreatitis: a
review. JAMA. 2021;325(4): 382-390.

28. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts
HJWL. Artificial intelligence in radiology. Nat Rev Cancer.
2018;18(8):500-510.

29. Park S, Chu LC, Fishman EK, et al. Annotated normal CT data
of the abdomen for deep learning: challenges and strategies for
implementation. Diagn Interv Imaging. 2020;101(1):35-44.

30. Salto-Tellez M, Maxwell P, Hamilton P. Artificial intelligence—
the third revolution in pathology.Histopathology. 2019;74(3):372-
376.

31. Barat M, Chassagnon G, Dohan A, et al. Artificial intelligence: a
critical review of current applications in pancreatic imaging. Jpn
J Radiol. 2021;39(6):514-523.

32. Andersson B, Andersson R, Ohlsson M, Nilsson J. Prediction of
severe acute pancreatitis at admission to hospital using artificial
neural networks. Pancreatology. 2011;11(3):328-335.

33. KeoganMT, Lo JY, Freed KS, et al. Outcome analysis of patients
with acute pancreatitis by using an artificial neural network.
Acad Radiol. 2002;9(4):410-419.

34. Mofidi R, Duff MD, Madhavan KK, Garden OJ, Parks RW. Iden-
tification of severe acute pancreatitis using an artificial neural
network. Surgery. 2007;141(1):59-66.

35. Pearce CB, Gunn SR, Ahmed A, Johnson CD. Machine learning
can improve prediction of severity in acute pancreatitis using
admission values of APACHE II score and C-reactive protein.
Pancreatology. 2006;6(1-2):123-131.

36. Hritz I, Gede N, Váradi A, et al. Early occurrence of pseudocysts
in acute pancreatitis–amulticenter international cohort analysis
of 2275 cases. Pancreatology. 2021;21(6):1161-1172.

37. Besselink M, van Santvoort H, Freeman M, et al. IAP/APA
evidence-based guidelines for the management of acute pancre-
atitis. Pancreatology. 2013;13(4 suppl 2):e1-e15.

38. Szakó L,GedeN,VáradiA, et al. Early occurrence of pseudocysts
in acute pancreatitis–amulticenter international cohort analysis
of 2275 cases. Pancreatology. 2021;21(6):1161-1172.

39. Rowe M. An introduction to machine learning for clinicians.
Acad Med. 2019;94(10):1433-1436.

40. Troyanskaya O, Cantor M, Sherlock G, et al. Missing value
estimation methods for DNA microarrays. Bioinformatics.
2001;17(6):520-525.

41. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE:
synthetic minority over-sampling technique. J Artif Intell Res.
2002;16:321-357.

42. Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all
you need. Inform Fusion. 2022;81:84-90.



KUI et al. 13 of 13

43. Pedregosa F. Scikit-learn: machine learning in Python. J Mach
Learn Res. 2011;12:2825-2830.

44. Chen T, Guestrin C, XGBoost: a scalable tree boosting system.
In: Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. New York,
NY, USA: ACM; 2016; 10(2939672.2939785):785-794.

45. Dorogush AV, Ershov V, Gulin A, CatBoost: gradient
boosting with categorical features support. arXiv preprint
arXiv:1810.11363. 2018.

46. Balaswamy S, Vishnu Vardhan R. Confidence interval estima-
tion of an ROC curve: an application of generalized half normal
and Weibull distributions. J Probab Stat. 2015; 2015:1-8.

47. Lundberg SM, Lee S-I, A unified approach to interpreting model
predictions. In: Proceedings of the 31st International Conference
on Neural Information Processing Systems. 2017.

48. Lundberg SM, Erion G, Chen H, et al. From local explanations
to global understanding with explainable AI for trees.Nat Mach
Intell. 2020;2(1):56-67.

49. Haimovich AD, Ravindra NG, Stoytchev S, et al. Development
and validation of the quick COVID-19 severity index: a prog-
nostic tool for early clinical decompensation. Ann Emerg Med.
2020;76(4):442-453.

50. Taydas O, Unal E, Karaosmanoglu AD, Onur MR, Akpinar E.
Accuracy of early CT findings for predicting disease course in
patients with acute pancreatitis. Jpn J Radiol. 2018;36(2):151-158.

51. Gurusamy KS, Debray TP, Rompianesi G, Prognostic models for
predicting the severity and mortality in people with acute pan-
creatitis. Cochrane Database Syst Rev. 2018;2018(5).

52. HongW, Lillemoe KD, Pan S, et al. Development and validation
of a risk prediction score for severe acute pancreatitis. J Translat
Med. 2019;17(1):1-9.

53. Qiu Q, Nian Y-J, Guo Y, et al. Development and validation of
three machine-learning models for predicting multiple organ
failure in moderately severe and severe acute pancreatitis. BMC
Gastroenterol. 2019;19(1):1-9.

54. Ding N, Guo C, Li C, Zhou Y, Chai X. An artificial neural net-
works model for early predicting in-hospital mortality in acute
pancreatitis in MIMIC-III. BioMed Res Int. 2021;2021:1-8.

55. Akshintala V, Khashab MA. Artificial intelligence in pancreati-
cobiliary endoscopy. J Gastroenterol Hepatol. 2021;36(1):25-30.

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Kui B, Pintér J, Molontay
R, et al. EASY-APP: An artificial intelligence model
and application for early and easy prediction of
severity in acute pancreatitis. Clin Transl Med.
2022;12:e842. https://doi.org/10.1002/ctm2.842

https://doi.org/10.1002/ctm2.842

