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 A rigorous and axiomatic-deductive approach is emphasized in teaching 
mathematics at university-level. Therefore, the secondary-tertiary transition 
includes a major change in mathematical thinking. One viewpoint to examine such 
elements of mathematical thinking is David Tall’s framework of the three worlds of 
mathematics. Tall’s framework describes the aspects and the development of 
mathematical thinking from early childhood to university-level mathematics. In this 
theoretical article, we further elaborate Tall’s framework. First, we present a 
division between the subjective-social and objective sides of mathematics. Then, 
we combine Tall’s distinction to ours and present a framework of six dimensions of 
mathematics. We demonstrate this framework by discussion on the definition of 
continuity and by presenting a visual construction of a nowhere differentiable 
function and analyzing the way in which this construction is communicated visually. 
In this connection, we discuss the importance to distinguish the subjective-social 
from the objective side of mathematics. We argue that the framework presented 
in this paper can be useful in developing mathematics teaching at all levels and can 
be applied in educational research to analyze mathematical communication in 
authentic situations. 

Keywords: mathematical thinking, advanced mathematics, the three worlds of 
mathematics, secondary-tertiary transition, nowhere differentiable functions 

1 Introduction 

Research on mathematical thinking includes several approaches that focus on 
different aspects of the subject such as the pedagogical, cultural or cognitive 
(Sternberg, 1996). A recent review of research on mathematical thinking (Goos & 
Kaya, 2020) divides these different approaches into individual cognitive and 
constructivist perspective, cultural psychology perspective and discourse perspective. 
Mathematics education research has a long tradition in exploring the cognitive 
aspects of mathematical thinking (see e.g., Bingolbali & Monaghan, 2008; Fan & 
Bokhove, 2014; Tall, 1991). In this theoretical article, we draw upon that tradition and 
present a novel theoretical framework describing various aspects of mathematical 
thinking in mathematical discourse. We discuss the framework using examples from 

ARTICLE DETAILS 

LUMAT Special Issue  
Vol 10 No 2 (2022), 7–32 

Pages: 26 
References: 37 

Correspondence: 
juha.oikkonen@helsinki.fi 

https://doi.org/10.31129/ 
LUMAT.10.2.1693 

https://creativecommons.org/licenses/by-nc/4.0/
http://www.luma.fi/en
https://www.helsinki.fi/en
mailto:juha.oikkonen@helsinki.fi
https://doi.org/10.31129/LUMAT.10.2.1693
https://doi.org/10.31129/LUMAT.10.2.1693


LUMAT 

8 
 

university-level mathematics, although we also consider the significance of our 
theoretical elaboration for primary and secondary school mathematics teaching and 
learning. 

Several studies have described special features of the context of university 
mathematics. One of the main interests of such studies has been the secondary-
tertiary transition. The transition includes a change in mathematical content, 
sociomathematical norms and educational culture (Education Committee of the EMS, 
2013), and therefore causes both cognitive and pedagogical shocks to beginning 
undergraduates (Clark & Lovric, 2009). The secondary-tertiary transition has been 
found problematic for decades and consequently many beginning undergraduate 
become dropouts (Di Martino & Gregorio, 2019). Regarding cognitive aspects of the 
transition, a rigorous and axiomatic-deductive approach is emphasized at university, 
meaning that the transition includes a major change in mathematical thinking (Tall, 
2008). For this reason, some universities have, for example, developed special 
bridging courses to ease the transition to advanced mathematical thinking. 

Mathematics, however, is not only an art of axiomatic-deductive reasoning or 
manipulating symbols, neither in school mathematics nor in university-level 
mathematics. One influential framework to describe the variety of mathematical 
thinking is the framework of the three worlds of mathematics (Tall, 2013). Tall (2013) 
divides mathematical thinking into embodied world (pictures, gestures etc.), symbolic 
world (calculations, symbolic rules etc.) and formal world (axioms, proofs etc.). The 
interplay between these different worlds of mathematics has been found useful for 
developing undergraduate level mathematics teaching (Oikkonen, 2009), as well as 
teacher education (Hannula, 2018). That is to say, such interplay is important in terms 
of secondary-tertiary transition, as well as in terms of development of pre-service 
teachers’ mathematical knowledge for teaching (see e.g., Dreher & Kuntze, 2015). 

In this article, we elaborate the framework of three worlds of mathematics further. 
First, we shall discuss Tall’s framework and combine it with a distinction of two sides 
of mathematics, that is, the subjective-social and objective sides of mathematics. 
Together these ways of looking at mathematics will lead to a division of 6 = 2 x 3 
dimensions of mathematics. After discussing mathematical thinking in general, we 
present a discussion clarifying the definition of continuity and a construction for a 
continuous nowhere differentiable function. Such functions are related to advanced 
undergraduate level mathematics courses. The construction, and the way in which we 
present it, is a novel one and does not appear for instance in Thim’s extensive review 
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(2003) of continuous nowhere differentiable functions. David Tall has been using a 
construction which he calls the Blancmange function in many of his writings (see e.g., 
Tall & Di Giacomo, 2000; Tall, 1982). We use our construction as an example to 
demonstrate six different dimensions of mathematics and their interplay. 

The motivation of our theoretical considerations is connected to our experiences 
as a research mathematician and university lecturer (the first author) and as a 
mathematics teacher and teacher educator (the second author). In our work, we have 
found Tall’s framework extremely fruitful in developing teaching and conducting 
educational research. However, we have come to the conclusion that Tall’s distinction 
does not capture all aspects of mathematical discourse in authentic situations. 
Therefore, we find a theoretical elaboration of Tall’s framework useful in developing 
teaching and in educational research. In this article, we aim to 

1.  introduce a novel theoretical framework of the six dimensions of mathematics 
2.  demonstrate the framework in the cases of the definition of continuity and a 

construction of a continuous nowhere differentiable function 
3.  discuss the possibilities of the framework for educational research and 

development of mathematics teaching and learning. 

2 Theoretical framework 

We examine the broad concept of mathematical thinking from a cognitive viewpoint. 
In the following subsections, we first present a summary of frameworks describing 
cognitive aspects of mathematical thinking. Second, we discuss in more detail the 
framework of the three worlds of mathematics (Tall, 2013). Third, we present our 
distinction between subjective-social and objective sides of mathematics. Finally, we 
elaborate Tall’s framework further by combining the three worlds of mathematics 
with the distinction of two sides of mathematics. 

2.1 Cognitive frameworks of mathematical thinking 

Since the very beginning of the discipline, mathematics education researchers have 
presented several dichotomies and classifications of mathematical thinking and 
knowledge. Skemp (1976), for instance, divides mathematical understanding into 
instrumental understanding and relational understanding. Roughly speaking, 
instrumental understanding refers to how to carry out mathematical operations 
whereas relational understanding refers to why mathematical operations work. 
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Similarly, Hiebert (1986) divides between conceptual and procedural knowledge. 
Several similar dichotomies have been used in educational theories, and Haapasalo 
(2003), for instance, lists 20 such dichotomies presented in literature. Instead of 
discussing all these dichotomies, we summarize some of the most influential 
frameworks of mathematical thinking underlying present mathematics education 
research. 

One of the most established frameworks in mathematics education research is the 
distinction between concept image and concept definition (Tall & Vinner, 1981). (It 
seems that the origin of David Tall’s three worlds of mathematics lies there.) Concept 
image refers roughly to one’s understanding of a mathematical concept and concept 
definition to the official definition of the concept. Tall and Vinner (1981) define 
concept image as the total cognitive structure that is associated with a mathematical 
concept. Thus, concept image may include mental pictures, symbolic processes and 
axioms etc. 

Development of students’ concept images have been widely studied in literature 
especially from the viewpoint of processes and concepts. The term encapsulation, 
originating from Piaget, means a change in thinking in which learner starts to think 
the concept itself instead of the process (Tall, 2013). For instance, Sfard (1991) 
considers the dualism between the operational and structural sides of mathematics. 
The encapsulation process, according to Sfard (1991), occurs in three steps: 
interiorization, condensation and reification. Similarly, Gray and Tall (1991) speak of 
procepts referring to an ‘amalgam of process and concept in which process and 
product is represented by the same symbolism’ (Gray & Tall, 1991, p. 73). Additionally, 
one influential framework explaining the encapsulation process is APOS-theory 
presented by Ed Dubinsky and colleagues (Asiala et al., 1996; Dubinsky & McDonald, 
2002). 

Frameworks presented above focus mostly on learning of algebra and calculus. In 
case of geometry, for instance, van Hiele levels (Burger & Shaughnessy, 1986) give a 
widely used framework to analyze students’ learning. Some researchers have, 
however, presented more generic frameworks. Already in the 1960’s Bruner (1967) 
divided mathematical representations into enactive, iconic and symbolic. Similarly, 
Fishbein (1994) classifies intuitive, algorithmic and formal approach to mathematical 
activity.  

Furthermore, Viholainen (2008) separates mathematical reasoning into formal 
reasoning based on axioms, definitions and proven theorems, and informal reasoning 
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based on visual or physical interpretations of mathematical concepts. Some 
researchers, such as Joutsenlahti (2005), have studied the overall picture of 
mathematical thinking including students’ knowledge as well as their beliefs. In his 
doctoral dissertation, Joutsenlahti (2005) explored mathematical thinking from 
societal perspective, teacher’s perspective and student’s perspective. 

Influenced by many frameworks presented above, Tall presented his framework 
of the three worlds of mathematics first in a conference paper (Tall, 2004). In that 
paper Tall divides mathematical thinking into embodied, symbolic and formal worlds 
of mathematics. Tall’s framework aims to give an overall view to mathematical 
thinking and its development (Tall, 2013). Adapted from Chin (2013), some 
established frameworks of mathematical thinking are summarized in Table 1. 

Table 1.  Summary of frameworks adapted from Chin (2013) 

Researcher(s) Key concepts of the framework Focus 
Sfard operational – structural encapsulation process 
Gray & Tall procept procedural and conceptual knowledge 
Dubinsky et al. action - process - object - schema  cognitive development 
Van Hiele perceptions - operations - proofs levels of knowledge in geometry 
Bruner iconic - enactive - symbolic representations 
Fischbein intuitive - algorithmic - formal approaches to mathematics 
Viholainen informal - formal mathematical argumentation and reasoning 
Joutsenlahti knowledge - beliefs aspects of mathematical thinking 
Tall embodiment - symbolism - formalism modes of mathematical thinking 

 
The summary in Table 1 highlights the variety of frameworks describing cognitive 

aspects of mathematical thinking. In this article, we elaborate Tall’s broad framework 
of the three worlds of mathematics.  

2.2 The three worlds of mathematics 

The idea of three worlds of mathematics is based on humans’ capability to 
 

i) recognize regularities, similarities and differences, 
ii) repeat actions, and 
iii) use language to name concepts (Tall, 2013). 
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Based on these humans’ cognitive-physiological capabilities Tall divides 
mathematical thinking into conceptual-embodied, proceptual-symbolic, and 
axiomatic-formal worlds of mathematics.  Tall has discussed his worlds in a great 
number of writings and the concepts have developed somewhat over the years. 

In his book Tall (2013) gives an overall view of his work and describes the worlds 
as follows. 

A world of (conceptual) embodiment building on human perceptions and 
actions developing mental images verbalized in increasingly sophisticated ways 
to become perfect mental entities in our imagination; 
A world of (operational) symbolism developing from embodied human actions 
into symbolic procedures of calculation and manipulation that may be 
compressed into procepts to enable flexible operational thinking; 
A world of (axiomatic) formalism building formal knowledge in axiomatic 
systems specified by set-theoretic definition, whose properties are deduced by 
mathematical proof. (Tall, 2013, p. 133) 

Later, we refer to these worlds simply as embodied, symbolic and formal. 
The embodied world includes embodied thinking about mathematical concepts 

and processes such as pictures and physical objects, whereas the symbolic world 
includes symbolic thinking such as calculation rules. Formal world, on the other hand, 
includes rigorous mathematical theory including proofs and axioms. As an example, 
Tall (2013, p. 25) relates the system of the real numbers to these worlds. The real 
numbers have embodiment as a number line, symbolism as (infinite) decimals, and 
formalism as a complete ordered field (Figure 1). 

 

Figure 1.  The concept of real number and the three worlds of mathematics 

Although all these worlds are apparent in both school and university mathematics, 
the secondary-tertiary transition includes a change in emphasis from the embodied 
and symbolic world to the formal world (Tall, 2004; Tall, 2008). Therefore, the 
interplay between the different worlds is crucial in undergraduate mathematics and 
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teacher education (Oikkonen, 2009; Hannula, 2018). Although the worlds are 
hierarchical in regard to cognitive development, all of them are more or less present 
in mathematical discourse at all levels of education. 

Sfard’s (1991) framework has some resemblance to the three worlds of Tall, but 
the ordering makes a big difference. The doctoral thesis of Hähkiöniemi (2006) is 
interesting in this respect. Tall (2008) remarks that Hähkiöniemi (2006) considered 
the routes of students towards learning the derivative. Tall say that Hähkiöniemi 
‘found that the embodied world offers powerful thinking tools for students’ who 
‘consider the derivative as an object at an early stage’. According to Tall this questions 
Sfrad’s suggestion that operational thinking precedes structural. 

2.3 The subjective-social and objective sides of mathematics 

As discussed above, several dichotomies and distinctions of mathematical thinking 
and activity have been presented in literature. These frameworks focus, for instance, 
on representations and cognitive development (e.g. Bruner, 1967; Fischbein, 1994). 
On the other hand, many of these frameworks somehow distinct between formal and 
informal aspects (e.g. Tall, 2013; Viholainen, 2008) or conceptual and procedural 
aspects (e.g. Gray & Tall, 1991) of mathematical thinking. Our distinction, presented 
in this section, is somewhat different to prior distinctions, and can actually be seen as 
‘orthogonal’ to many of them. 

Our distinction is based on the observation that there are aspects in mathematics 
that are objective and others that are subjective or social. To the first belong printed 
formulas and pictures that one can find in textbooks etc. To the latter belong my 
mental images that I as the author had in my mind while writing formulas or making 
pictures appearing in printed material, and your mental images that you as a reader 
had in your mind while reading the text. We refer to this distinction by speaking about 
the two sides of mathematics. 

In our own work as university and schoolteachers, as well as mathematics and 
mathematics education researchers, such a division between two sides of 
mathematics has become important. But the emphasis seems to be somewhat 
different from those approaches referred to above. For us the division is related to 
what one does ‘here and now’ e.g., while working on a mathematical problem or 
teaching a mathematical concept: does one in the next moment speak about the ideas 
behind a mathematical concept or does one explicitly work with the formal definition 
of the concept. Our idea of the two sides was initially outlined several years ago 
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(Oikkonen, 2004) and it has been an important idea behind first author’s 
development of university mathematics teaching (Oikkonen, 2008, 2009). 

Let us consider as an example the continuity of a function 𝑔𝑔 at a point 𝑎𝑎. The idea 
is simple: 𝑔𝑔(𝑥𝑥) should be near 𝑔𝑔(𝑎𝑎) when 𝑥𝑥 is near 𝑎𝑎.  This is often visualized by well-
known pictures like Figure 2. 

Figure 2.  Continuity of g at a 

Pictures like that in Figure 2 can be argued to represent the embodied world of 
mathematics while the exact epsilon-delta definition represents symbolic world of 
mathematics. But if we look closer at how these pictures are used in teaching, we see 
an example of the interplay between the subjective-social and the objective sides of 
mathematics. 

We come now to our first main example. Consider an imaginary discussion 
between a teacher T and (a) student(s) S. The letters A to E refer to the pictures in 
Figure 3 (A-E). 
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Figure 3.  Discussion about continuity 

The discussion goes in the following way. 

T: Is f appearing in picture A continuous at a? 

S: No! 
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T: Is g in B continuous at a? 
 
S: Yes! 
 
T: Why f is not continuous, but g is continuous? 
 
S: g(x) goes near g(a) as x goes near a but f(x) does not go near f(a) as x goes 
near a. 
 
T: Can you elaborate / be more exact? 
 
S: ??? 
 
T: Let us draw horizontal lines shown in C and D. What can you see? 
 
S: g(x) appears between these lines as x is close to a but a part of f stays outside 
the lines no matter how close to a we are. 
 
T: Yes! For g we get in the bigger rectangle shown in E. (The graph of) g does 
not cut / go through the floor or roof of this rectangle. What happens if we draw 
new horizontal lines as in E closer to y = g(a)?  
 
S: We can draw new vertical lines and get a smaller rectangle so that g does not 
cut the floor or the roof. This appears in the smaller rectangle of E. 
 
T: Good! When the horizontal lines are near enough the line y = g(a) so that we 
can be sure of continuity? 
 
S: ??? 
 
T: Never. The point in continuity is that no matter however close we draw the 
lines, there always are the vertical lines making a box such that g does not cut 
the floor or roof of the box. Can you say this in other words? 
 
S: Could it work to say that for all horizontal lines…? 
 
T: Yes. And it is enough to speak about vertical and horizontal distances. 
Actually, this is exactly what the epsilon-delta definition in your textbook says! 

Pictures somewhat like Figure 2 appeared in the above discussion but here they 
had a role as a means of sharing thinking between the teacher and the student(s). 
Hence these pictures and the whole discussion are examples of the subjective-social 
side of mathematics. The discussion ends in a reference to the textbook of the students 
and the formal definition continuity. These are of course examples of the objective 
side of mathematics. 
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When combining the subjective-social vs. objective dichotomy to Tall’s three 
worlds, we can say that the main part of the previous discussion lives on the 
subjective-social side and in Tall’s embodied world.  

Continuity has also an objective aspect, the well-known epsilon delta definition 
appearing in textbooks and mentioned at the end of the above discussion. In Tall’s 
terminology, the definition belongs to the symbolic world, perhaps with a flavor of 
formal world. According to the definition, a function g is continuous at a, if (and only 
if) for every 𝜀𝜀 > 0 there is such a 𝛿𝛿 > 0 that |𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)| < 𝜀𝜀 for all x satisfying 
|𝑥𝑥 − 𝑎𝑎| < 𝛿𝛿. 

One of the main purposes of an introductory course in analysis is to teach this kind 
of definitions and proofs of the main theorems of analysis based on such definitions. 
But it is not an easy task. This is not helped by the way how we too often begin 
solutions of examples or proofs of theorems: ‘Assume that 𝜀𝜀 > 0. Let 𝛿𝛿 = 3

7
𝜀𝜀...’

The first author’s experience in teaching analysis supports the idea that it is helpful 
to change the viewpoint from which we look at mathematics. This takes place by 
combining the formal definitions with an active use of teacher’s and students’ mental 
images like the one described above. By doing this it is also possible to reveal in 
teaching the way in which an expert mathematician thinks.  

In our experience this kind of an approach helps in making the content of a 
mathematics course meaningful and understandable to students. Thus, a course in 
mathematics is not only the polished formal content of the course but also – and to 
the authors essentially – the thinking and culture that lies behind the text. We believe 
that this approach explains partially the success shown in Oikkonen (2009). (There 
are also other pedagogical ideas involved in this paper.) 

The first author’s path to this kind of an approach results from the striking 
similarity between two seemingly quite different types of discussion on mathematics 
in which he has taken part: those taking place in math days in elementary schools and 
those taking place when experts discuss some problem in research mathematics. The 
‘here and now’ choice between different kinds of action that was mentioned above 
seems to be characteristic to such discourses. 

So, we have two sides of mathematics. But which of them is the correct one? Let 
us go back to continuity: which side is the correct one, the human (mental) images or 
the formal epsilon-delta definition? Our own answer is that neither of them is the 
correct one. The concept of continuity depends on both of its sides, and it is to us really 
a kind of interplay between these two sides. 
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2.4 There are six = 2 x 3 dimensions of mathematics 

Above we discussed the ideas of the tree worlds of David Tall and the two sides of 
mathematics. In this section, we elaborate on how these ideas can be combined into a 
new way of looking at mathematics and mathematical thinking.  We argue that this 
leads to new insight in mathematical thinking and communication. It may also help 
in better understanding of Tall’s three worlds. 

It seems to us that our distinction between subjective-social and objective and 
Tall’s division between embodied, symbolic and formal look at similar features in 
mathematical thinking from two different standpoints. Moreover, the resulting 2 x 3 
= 6 dimensions of mathematics help us to see some aspects more easily. Indeed, we 
shall consider some examples that show how each of Tall’s three worlds seems to 
divide into two sides. 

The case of the embodied world seems especially natural. Our own mental images 
of mathematical objects or situations are subjective embodiment. It becomes social 
when a group of people shares such images while working on a problem. Various 
objects like number sticks etc. made for teaching mathematics are examples of 
objective embodiment. 

A number line was mentioned above as an embodied version of the system of the 
real numbers. It can belong to either side depending on what we actually mean. The 
idea of a line of numbers belongs to the subjective-social side whereas an actual line 
drawn on a blackboard belongs to the objective side. 

But is the real line itself an objective ‘mathematical object’ belonging to the 
objective side of mathematics? What do we think about it and its existence? In a sense 
this is not an important question here. On the subjective-social side most 
mathematicians seem to behave as if the real line would actually ‘be there’. But to us, 
it seems that we cannot distinguish those mathematicians who really believe that the 
real line “is there in a Platonic universe” from those who only behave as if it existed. 
The theorems concerning the reals are proved using the axioms of the reals in the 
objective side of Tall’s formal world and they make no direct reference to the truth or 
meaning of the actual statement that the ‘reals exist’. In this sense formalism and 
platonism are not very far from each other. 

Moreover, it is not clear how to reply from a set-theoretic point of view to the 
question what the real line really is. Namely, there are different constructions 
(Dedekind-cuts of the rationals, certain equivalence classes of Cauchy sequences of 
the rationals etc.) leading to different sets. 
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The case of the symbolic world is more interesting. Rules for manipulating 
symbols and correct application of such rules belong to the objective side. These 
include long divisions in elementary school or solving equations or doing 
differentiation of expressions for functions in upper secondary school. Students’ own 
minitheories and systematic errors seem to belong to the subjective-social side of the 
the symbolic world.  

Perhaps also various routines applied in what is called street mathematics (see e.g. 
Resnick, 1995) in basic calculations can be seen also as examples of the subjective-
social side of the symbolic world. 

Written university level mathematics with its axioms, definitions and theorems is 
an example of objective side of the formal world of mathematics. Higher level strategic 
discussion on research mathematics belongs to the subjective-social side or the formal 
world. An example of this represents the comment ‘she mixed ideas from physics to 
analysis to solve the problem’. 

The step from the subjective-social side or the formal world to the subjective-social 
side of embodied mathematics with its mental images and gestures is very short. A 
nice example of this is in the Introduction of W. Hodges’ book (1985) where he tells 
about a difficulty with his own doctoral thesis. His supervisor C. C. Chang made an up 
and down movement with his hand and said: ‘This should help.’ (see Figure 4) 
According to Hodges, it helped. 

 

Figure 4.  Supervisor’s advice 

Chang’s gesture indicated a certain model theoretic back-and-forth construction 
and obviously Hodges understood Chang’s suggestion. (Such constructions are the 
main theme of Hodges’ book.) 

Before leaving this section, we shall have closer look at the concept of continuity 
of a function discussed above in connection to our two sides of mathematics. There 
we considered the appearing in Figure 2. 

The notion of continuity and the function studied is clearly embodied in such a 
drawing. (Of course, it is possible that there is no specific function that is considered 
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and that the whole discussion concerns the concept of continuity.) This drawing is 
clearly objective in the sense that everybody can observe it. So, the drawing belongs 
to the objective side and to the embodied world of mathematics. 

But these drawings are used either by oneself to think about continuity or by a 
group of people to discuss continuity. Such actions belong to the subjective-social side 
of the embodied world of mathematics. 

When one works with examples of assertions concerning continuity, one usually 
has to manipulate mathematical formulas. As long as one thinks or discusses how to 
proceed, one acts in the subjective-social side of the symbolic world of mathematics. 
When these formulas are actually written they become observable and thus objective 
and so one acts in the objective side of the symbolic world of mathematics. 

But usually, the real interest lies in understanding, teaching or using the ‘epsilon-
delta’ -definition of continuity, and so the subjective-social or objective side of Tall’s 
formal world is involved. 

As a conclusion, while discussing the continuity of a function, all six dimensions 
of mathematics may be involved (Table 2). 

Table 2.  The six dimensions of mathematics in the case of continuity 

Embodied Symbolic Formal 
Subjective-social What does one see in the picture 

and how is the picture used in a 
mathematical discussion? 

How are the formulas 
manipulated and how 
are the symbols used? 

How does one 
understand, teach and 
use the definition? 

Objective |𝑔𝑔(𝑥𝑥) − 𝑎𝑎| 
= |𝑥𝑥2 − 4| 
=  |(𝑥𝑥 + 2)(𝑥𝑥 − 2)| 
=  |𝑥𝑥 + 2||𝑥𝑥 − 2| 
≤ 5|𝑥𝑥 − 2|  

For every 𝜀𝜀 > 0 there 
is such a 𝛿𝛿 > 0 that 
|𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)| < 𝜀𝜀 for 
all x satisfying |𝑥𝑥 −
𝑎𝑎| < 𝛿𝛿. 

This framework gives a viewpoint in which mathematical activity is an interplay 
between six dimensions of mathematics. 
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3 A continuous nowhere differentiable function and the six 
dimensions of mathematics 

In this section, we present a novel construction of a continuous nowhere differentiable 
function and discuss our construction from the viewpoint of six dimensions of 
mathematics. 

3.1 Continuous nowhere differentiable functions 

Continuous nowhere differentiable functions have an important role in the 
development of mathematics in the 19’th century. After the first discovery of a 
continuous nowhere differentiable function by Karl Weierstrass (1872), a great variety 
of constructions leading to such functions have been found (see e.g., Thim 2003). 
Being extremely counterintuitive such functions and their existence present also an 
interesting challenge for learning of the basic concepts of analysis and in 
mathematical thinking in general. For example, David Tall has been using a 
construction which he calls the Blancmange function in many of his writings (see e.g., 
Tall & Di Giacomo, 2000; Tall, 1982). 

Such functions are related to first year analysis courses in university mathematics. 
Mostly their existence is only mentioned in analysis courses without going to details. 

Our example of such a function is related to the use of pictures in communication 
mathematics. It seems that explicit reliance on Tall’s embodied world is of special 
interest in connection to such technical mathematics. We shall present a new 
construction of a nowhere differentiable continuous function. We shall first discuss 
the construction of the function and the proofs of its special properties on the level of 
pictures. These pictures are not machine-made graphs of the function. Instead, they 
present the thinking behind the construction and therefore can be used as a basis of 
argumentation. 

3.2 A visual construction of the function f 

We shall give a construction of a continuous nowhere differentiable function by visual 
means. The construction of our continuous nowhere differentiable function f and the 
discussion of its properties are written below so that the presentation suits for a group 
of students in a university course of analysis. Especially it is assumed that the students 
know in advance the basic properties of the real line including completeness and 
‘epsilon-delta’-definitions for continuity and differentiability. 
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Constructions of continuous nowhere differentiable functions usually rely on 
several theorems of analysis. The construction we present next is in this sense simpler. 
Besides the definitions of continuity and differentiability only a simple principle 
concerning nesting closed intervals will be used. 

We shall consider the function 𝑓𝑓 defined during the following imaginary 
discussion between a Teacher (T) and a Student (S). Originally the function will be 
defined for 𝑥𝑥 satisfying 0 ≤  𝑥𝑥 ≤  1. Later a simple way of extending it to the whole 
real line is indicated. 

In the discussion T and S look at the pictures appearing in Figure 5. While the 
pictures as such belong to the objective side of Tall’s embodied world, they are used 
on the subjective-social side of mathematics in the discussion. 

Figure 5.  Explanation of the definition of f 
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T: Let me show you a very interesting function 

S: Fine! What is the definition? 

T: Actually, I am not going to give a simple definition. Rather I use pictures to 
describe a process of adding information so that all the values will eventually 
be determined. 

S: Exciting! 

T: Look at picture A (of Fig. 5). We start with the information that f goes from 
the bottom left corner to the top right corner of the unit square.  

This means that at the beginning we know that 0 ≤  𝑓𝑓(𝑥𝑥)  ≤  1 for 0 ≤ x ≤ 1. 
Moreover, f(0) = 0 and f(1) = 1. In picture A, a sketch of a graph is drawn only 
to give a feeling of what kind of a function we have in mind. 

S: OK. But this does not tell much. 

T: Look at picture B. At the next step we cut the square horizontally into four 
and vertically into two. This gives the smaller rectangles shown in the picture. 
And the function goes through some of these small rectangles as the sketch of a 
graph indicates. 

So 0 ≤ f(x) ≤ 1/2 as 0 ≤ x ≤ ¼; ½ ≤ f(x) ≤ 1 as ¼ ≤ x ≤ 2/4 (= ½); ½ ≤ f(x) ≤ 1 
as 2/4 ≤ x ≤ ¾ and ½ ≤ f(x) ≤ 1 as ¾ ≤ x ≤ 1. Moreover, f(0) = 1, f(¼) = ½, 
f(2/4) = 1, f(3/4) = ½ and f(1) = 1. 

S: The function seems to be in all these smaller rectangles somehow similar to 
the whole function in the original unit square with the exception of the third 
one. 

T: Good! The third rectangle will be like the others, but everything is only upside 
down. 

S: OK! 

T: We know at this stage that we have rectangles in which the function goes 
from a left corner to the opposite right corner. To get more information we keep 
on cutting our rectangles to smaller. At each step we cut the rectangles 
horizontally in to four and vertically into two.  

Look at picture C. There the next step / third step is drawn. 

S: Yes, a similar idea seems really to repeat itself! But the small rectangles 
become all the time somehow different. 

T: Can you say how they become different? 

S: They become somehow more and more narrow! 
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T: indeed! Look at the ratio of the height to the width of these rectangles. Can 
you say what happens to it as our construction goes on? 
 
S: It seems to increase all the time! The function becomes all the time somehow 
steeper and steeper. 

To spare space, we end the dialogue and describe what happens. The above process 
is repeated infinitely many times. In cases where the function “goes from the upper 
left corner to the lower right corner” (which is above the case on the subinterval  
�1
2

, 3
4
� ), the picture is used “upside down” as in Figure 6. 

 

Figure 6.  One more detail in the definition of f 

Pictures can be used also for communicating proofs for the continuity and 
nowhere differentiability of 𝑓𝑓 – or at least for indicating the thinking behind the 
formal proofs.  

To do this, some notation will help. Notice that at each step n of the construction 
we use rectangles with certain width 𝑤𝑤𝑛𝑛 and height ℎ𝑛𝑛. Indeed, 

𝑤𝑤1  =  1 and 𝑤𝑤𝑛𝑛+1  = 1
4
𝑤𝑤𝑛𝑛; 

ℎ1 =  1 and ℎ𝑛𝑛+1  = 1
2

 ℎ𝑛𝑛. 

Especially, the form of these rectangles is characterized by the ratio  

ℎ𝑛𝑛+1
𝑤𝑤𝑛𝑛+1

  =  2𝑛𝑛. 
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The first immediate consequence of the construction is that whenever 

|𝑥𝑥 −  𝑡𝑡|  <  𝑤𝑤𝑛𝑛, 

the points (𝑥𝑥, 𝑓𝑓(𝑥𝑥)) and (𝑡𝑡,𝑓𝑓(𝑡𝑡)) of the graph of f must lie in the same or consecutive 
rectangles. (If we were discussing such pictures in front of us, it would be natural to 
show with one’s finger the points discussed. So, gestures appear naturally on the 
subjective-social side of mathematics.)  

Thus 

|𝑓𝑓(𝑥𝑥)–  𝑓𝑓(𝑡𝑡)| <  2ℎ𝑛𝑛. 

It follows from this observation that 𝑓𝑓 is uniformly continuous (see Figure 5, picture 
C). 

To prove the nowhere differentiability of 𝑓𝑓, we take a new look at the pictures used 
before and make a small addition to them. This is done in Figure 7. To show that 𝑓𝑓 is 
not differentiable at a certain point 𝑥𝑥0, we shall consider the difference quotients  

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)
𝑥𝑥 − 𝑥𝑥0

 

for certain other values 𝑥𝑥. 
In every stage n of the construction, we can locate 𝑥𝑥0 in a picture like this. We can 

assume that f ‘goes’ from the bottom left corner to the top right corner. (The other 
case where 𝑓𝑓 ‘goes’ from the top left corner to the bottom right corner is quite similar.) 

Assume first that 𝑥𝑥0 is ‘in’ the rightmost quarter. Let the other value 𝑥𝑥 in the 
difference quotient correspond to the left bottom corner. For geometric reasons we 
see that the absolute value 

�
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)

𝑥𝑥 − 𝑥𝑥0
� 

is at least the slope for the rising line drawn in the picture. Thus 

�
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)

𝑥𝑥 − 𝑥𝑥0
� ≥

1
2
∙  
ℎ𝑛𝑛
𝑤𝑤𝑛𝑛

 .
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But this ratio can be made as big as we like by choosing 𝑛𝑛 big enough! Notice that if 
𝑥𝑥0 is ‘in’ any other part of the picture, we have the same estimate. (If 𝑥𝑥0 is ‘in’ the 
leftmost part, then we take 𝑥𝑥 to ‘correspond to’ the top right corner of the picture.) 

This observation gives us the following result: For every 𝑥𝑥0, every 𝜀𝜀 > 0 and every 
𝑀𝑀 >  0, there is x for which |𝑥𝑥 –  𝑥𝑥0|  < 𝜀𝜀 and  

�
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)

𝑥𝑥 − 𝑥𝑥0
� > 𝑀𝑀. 

Especially, 𝑓𝑓 is nowhere differentiable since the difference quotient corresponding to 
any 𝑥𝑥0 cannot have a limit.  

 

Figure 7.  Why f is not differentiable 

(The picture is of course too wide here, but it is meant to express the idea.) 
One theoretical detail has been omitted so far. The reader may wonder how 

actually to prove that this construction leads to exact values 𝑓𝑓(𝑥𝑥). This follows from 
the simple principle that if we consider a nesting sequence of closed intervals 
[𝑎𝑎1,𝑏𝑏1], [𝑎𝑎2,𝑏𝑏2], [𝑎𝑎3, 𝑏𝑏3], … where 𝑎𝑎1  ≤  𝑎𝑎2  ≤  𝑎𝑎3  ≤  …  ≤  𝑏𝑏3  ≤  𝑏𝑏2  ≤  𝑏𝑏1 and where 
length 𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛 tends to 0 as 𝑛𝑛 increases, then there is a unique number lying in all 
these intervals. Indeed, this number is the supremum of 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … 

This property is actually very interesting for several reasons.  It is rather obvious 
when we ‘look at’ the real line. Hence it is very close to our ‘visual image’ of the real 
line.  It is also rather easy to prove this property in an introductory course in analysis.  
Moreover, this property is a nice version of the compactness of closed intervals, and 
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it can be used to give a uniform way of proving the main consequences of compactness 
in an analysis course by ‘cutting closed intervals into to halves’. 

In this construction and in the arguments above the authors like especially the 
feature that all the thinking is completely visual (or embodied in the pictures, as will 
be said later in this paper). It would be wonderful to present this at a backboard! 

More exactly, the visual proof consists of the above pictures and a discussion while 
observing the pictures. This will suffice to convince most novices and experts. In case 
we would like to write a formalized proof, we could use such a discussion as a recipe.  

Since 𝑓𝑓 is continuous and nowhere differentiable, also that the function 𝑔𝑔(𝑥𝑥)  =
 𝑓𝑓(𝑥𝑥)  −  𝑥𝑥 is continuous and nowhere differentiable. This function has the additional 
property that 𝑔𝑔(0)  =  𝑔𝑔(1). Therefore, extending 𝑔𝑔 on the whole real line is especially 
simple: just put 𝑔𝑔(𝑥𝑥)  =  𝑔𝑔(𝑥𝑥 −  𝑛𝑛) when 𝑛𝑛 ≤  𝑥𝑥 <  𝑛𝑛 +  1. 

Finally, in Figure 8 there is a ‘realistic’ picture of the function 𝑓𝑓 produced by Maple 
using a code kindly written for us by Antti Rasila. 

 

Figure 8.  The portrait of the function 𝑓𝑓  
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3.3 The function f from the point of view of the six dimensions of 
mathematics 

We defined in the previous section a continuous nowhere differentiable function using 
pictures and dialogue. This was very much like the dialogue used earlier in connection 
to the notion of continuity. In this section we shall relate this to our idea of 2 x 3 (= 6) 
dimensions of mathematics. 

A continuous nowhere differentiable function is a very theoretical object. As such 
it seems to belong strongly to Tall’s formal world. There are many constructions of 
such functions in literature, and they are presented usually in a theoretical way. 

The function whose construction and properties were discussed in the previous 
section is essentially quite similar. But the main interest in the previous section was 
how to think and communicate about our function. This was done by means of sketchy 
pictures and a dialogue. 

The dialogue and thinking were strongly subjective-social. The pictures as part of 
the communication had also a subjective-social role. It is probable that the 
participants of the dialogue constructed several mental images of their own related to 
the pictures and sayings (and gestures) of the other participants.   

From the point of view of Tall’s worlds, this happened in the embodied world. 
Hence our construction was presented in the dimension of the subjective-social side 
of the embodied world.  

The pictures and a description of how to interpret them would belong to the 
objective side of Tall’s embodied world when printed. The meaning of the pictures as 
such would have been very hard to understand without the dialogue or a good written 
explanation.  

There was also an explanation of how to prove the continuity and nowhere 
differentiability of 𝑓𝑓. This used simple calculations on the proportions of the 
rectangles appearing in the construction. There we added aspects of the subjective-
social side of Tall’s symbolic world. And when printed, this addition was in the 
objective side of the symbolic world. 

Finally, if we would have continued the discussion to the meaning and interest in 
continuous nowhere differentiable functions, we would have entered the subjective-
social side of Tall’s formal world. And when printed, this would have happened in the 
objective side. 

So, all the 2 x 3 dimensions of mathematics had a role in what was done. 
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4 Conclusion 

We introduced a novel framework of six dimensions of mathematics by combining our 
view of two sides of mathematics with the framework of three worlds of mathematics. 
The idea of objective and subjective-social sides of mathematics does not as such 
appear in other distinctions presented in literature. However, the view of two sides of 
mathematics can be seen as an extension of many prior distinctions. Especially, the 
construction of the function 𝑓𝑓 presented in this paper supports the view that our two 
sides of mathematics and Tall’s three worlds of mathematics fit nicely together in a 
sense that they look at the same mathematical scenery from two ‘orthogonal’ 
directions. Both of our two sides correspond to aspects of most of Tall’s three worlds 
and each of Tall’s three worlds has aspects of both of our two sides. This holds even 
for the formal world for example in the sense that reading and making proofs belong 
to our subjective-social world. 

In terms of developing university-level mathematics teaching, we considered two 
main examples. First, we presented a discussion on the definition of continuity which 
shared the expert’s thinking with the students. Later, we analyzed this discussion 
using our theory of the six dimensions of mathematics. To the second we gave a 
construction of the function 𝑓𝑓 presented in this paper and used it to give insight into 
the variety of mathematical thinking behind advanced mathematics. Tall’s worlds can 
easily be seen as three steps of growth towards deeper and more abstract (expertise 
in) mathematics. But a more correct view seems to be that more than one of them are 
present in an expert’s relation to mathematics. However, the secondary-tertiary 
transition includes a change in mathematical thinking as the formal world is 
emphasized at university (Tall, 2008). Therefore, explicit interplay between different 
worlds of mathematics is crucial in university-level teaching (cf. Oikkonen, 2009). 
One of the most interesting features of the construction and argumentation 
concerning the function 𝑓𝑓 in this paper is that it serves as an example of an unusual 
route through the six dimensions of mathematics to present a piece of higher 
mathematics. 

Regarding school mathematics teaching and teacher education, we also suggest 
more explicit interplay between different worlds of mathematics. Both Tall’s three 
worlds and our two sides of mathematics are closely related to attempts to understand 
how mathematics can be made meaningful to people. Several studies show that use of 
multiple representations is crucial in teacher’s profession (e.g., Dreher & Kuntze, 
2015) and teacher education would benefit from more explicit links between 
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university mathematics and school mathematics (e.g., Hannula, 2018). Our 
framework is one viewpoint to develop such mathematical thinking both in pre-
service and in-service teacher education. 

Concerning further research, our framework can be utilized especially in analyzing 
mathematical discussion in authentic situations. For instance, the framework can be 
used in analyzing the elements of student groups’ (un)successful problem-solving 
processes of in undergraduate mathematics courses. In addition, the framework gives 
a new lens to widely studied themes of representations and teacher knowledge (cf. 
Hannula, 2018). Therefore, the framework can be applied also in school mathematics 
and teacher education related research projects. 
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