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Vassend on Verisimilitude
and Counterfactual Probabilities
Ilkka Niiniluoto*

Olav Benjamin Vassend proposes two solutions to the “interpretive problem” of assign-
ing nonzero probabilities to hypotheses that are known to be false. He argues that the veri-
similitude interpretation (probability expresses the degree of belief that the hypothesis is
closest to the truth) and the counterfactual interpretation (probability is conditional on a
false supposition) are equivalent. While Vassend’s intuition about these two solutions is
basically correct, the technical details of his treatment need elaboration and correction.
Appropriate tools for combining verisimilitude and Bayesian probabilities can be found
in my Truthlikeness.
1. Vassend on the Interpretive Problem. Vassend (2019) formulates the
interpretive problem by noting that Bayesian methods often assign nonzero
probabilities to hypotheses that are known to be false. This is inconsistentwith
the standard interpretation that Bayesian probabilities express degrees of be-
lief in the truth of a hypothesis given evidence. Vassend argues that this prob-
lem can be solved only by giving a new semantics for Bayesian inference.

Let V be a set of rival and mutually exclusive hypotheses indexed by a
parameter v, and let X be the set of possible outcomes of an observation
or experiment. Then a Bayesian statistical model specifies the prior proba-
bility p(v) of v in V and the likelihood p(x=v) of v on x in X, and calculates
the posterior probability p(v=x) of v given x by means of Bayes’s theorem as
proportional to the product p(v)p(x=v). Assume now that background infor-
mation K implies that each hypothesis v in V is false. Then, given K, p(v) as
the degree of belief in the truth of v is zero, which implies by Bayes’s theo-
rem that p(v=x) is zero as well. In this situation Bayesian inference collapses.
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DISCUSSION 555
Vassend’s verisimilitude interpretation suggests that the prior p(v) is un-
derstood as

the probability that v is closest to the truth out of  the hypotheses in V: (1)

If a verisimilitude measure v is available, then according to (1) p(v) is the
probability that vmaximizes v. Even though typically v ismaximized by a sin-
gle hypothesis in V, so that disjunctive hypotheses do not satisfy the condi-
tion (1), the probability of members of V can be formally extended to their
exclusive disjunctions by the addition law.

The counterfactual interpretation, which Vassend attributes to Sprenger’s
(2017) unpublished paper, states that the prior probability of v should be un-
derstood as the conditional probability p(v=b), where b is the counterfactual
assumption that one of the hypotheses in V is true. In statistical regression
analysis, b might be the false idealizing assumption that the functional depen-
dency of two quantities can be expressed by a linear function.

While Sprenger seems to think that these two alternatives are separate in-
terpretations of probabilities, Vassend’s contribution is to argue that his veri-
similitude interpretation is in fact “intertranslatable” with the counterfactual
interpretation. The reason why these approaches are “two sides of the same
coin” comes primarily from the fact that the semantics of counterfactuals in-
volve a similarity ranking s of possible worlds, and the functions v and s can
be defined in terms of each other.

Vassend’s project has an aim similar to Shimony’s (1970) “tempered per-
sonalism,”which wishes to assign nonzero “degrees of rational commitment”
to “seriously proposed hypotheses,” even if their degree of belief in the ordi-
nary sense is zero or extremely small. Shimony too typically has in mind sit-
uations in which the true theory is not included among the relevant hypoth-
eses, but his treatment is clearly different from Vassend’s.

2. The Problem with Sharp Hypotheses. Let us start the assessment of
Vassend’s article by noting a special issue with sharp hypotheses. These
are typically statements that pick out a point in a continuum, so that their
probability measure is zero. Vassend thinks that his set of hypotheses V
can be assumed to be finite “without loss of generality” (2019, 699), but this
is potentially misleading, since, for example, in the estimation of real-valued
parameters V is a continuous subset of the infinite class R of real numbers.
Then the prior probability density p(v) may have a nonzero value for each
point v in V, but the probability of a sharp hypothesis v is nevertheless zero.
This situation is different fromVassend’s interpretive problem, since all sharp
hypotheses in V receive zero probabilities—independently of the question
whether V includes a true element. But the interpretive problem is in a sense
independent of the problem with a sharp hypothesis, since it reappears as the
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task ofmaking sense of nonzero probability densities for point hypotheses and
nonzero probabilities for regional hypotheses, when all the hypotheses are
known to be false.

When Vassend illustrates the interpretive problem in practice in his sec-
tion 3, he chooses the class V so that it includes all functions of the form
Y 5 a(1,010 2 X)n 1 ε between quantities X and Y. In section 6 he sim-
plifies this equation to straight lines. In both cases V is a continuous subset
of the real space (three parameters in R3 or two parameters in R2), so that the
counterfactual probability of its individual members is zero.

Even though sharp hypotheses have zero probability, their degree of prob-
able approximate truth may be nonzero (see Niiniluoto 1987, 280). This
degree can be defined for a real-valued hypothesis v as the probability of a
small interval u(v) around v, that is, the sum of all values p(v) for v in u(v).
The same idea can be generalized to hypotheses that are real-valued curves.
This concept, which has important applications in Bayesian probably ap-
proximately correct learning as amethod inmachine learning (see Niiniluoto
2005), is clearly different from Vassend’s verisimilitude interpretation of
probability.

3. Verisimilitude Measures. Standard expositions of the similarity ap-
proach to verisimilitude define this concept relative to a cognitive problem B,
which consists of a partition of mutually exclusive and jointly exhaustive hy-
potheses hi in some interpreted language L (seeOddie 1986; Niiniluoto 1987).
Then there is one and only one element h* in B that is true (in the actual world).
This h* is the unknown element of the problem B, and the task of the inves-
tigator is to identify it. If a metric or distance function d is defined between
the elements of B, and d is extended to measure the distances of disjunctions
of hypotheses hi to an element in B, then a verisimilitudemeasure v is obtained
for any theory H expressible in L: the degree of truthlikeness v(H, h*) of H
depends on its distance to the target h*.

The choice of the distance function d depends on the type of hypotheses
in the cognitive problem B. Vassend’s section 6 illustrates this in the case in
which the compared hypotheses are real-valued curves in R2, but his attempt
is not successful. Niiniluoto (1987, 385–86) proposes to measure the dis-
tance between two real-valued quantitative laws f and g by the Minkowski
metrics for function spaces:

Lp f , gð Þ 5
ð

 f zð Þ 2 g zð Þj jpdz
� �1=p

, (2)

where integration is defined over the domain of the functions f and g. Here Lp

for small values of p reflects the area between the curves f and g, while for
infinite p it gives the maximum distance between the values of f and g. Apart
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from this maximum distance, Vassend mentions the minimum distance be-
tween f and g (2019, 708), but for a good reason this is not included in the
Minkowski family (2). Indeed, the minimum distance as a measure of veri-
similitude is here worthless: if any curve that intersects the true curve g has
maximal verisimilitude, then we have no useful discrimination or ordering
among false hypotheses by this criterion. As a curve is a conjunction of an
infinite number of claims, also the maximum distance is a crude measure,
and theManhattan metric (p 5 1) and the Euclidean metric (p 5 2) are more
plausible.

4. Verisimilitude with a False Presupposition. According to Vassend’s
verisimilitude interpretation (1), p(v) is the probability that v is closest to
the truth among hypotheses in V, when background knowledge implies
the falsity of all elements ofV. But this means thatV is not a cognitive prob-
lem in the standard sense, since there is no element inV that serves as the true
target of the verisimilitude measure v. Thus, the condition (1) that p(v) is the
probability that vmaximizes the verisimilitude measure v is not well defined.

A solution to this problem has been proposed by Niiniluoto (1987, 259–
62). Let Bb 5 fhiji ε Ig be a cognitive problem in language L relative to a
false presupposition b. Thus, b implies that the elements hi in Bb aremutually
exclusive and jointly exhaustive, but they all are false. If s is a metric on the
space of L-structures (possible worlds), then choose the target h*[b] as the
element of Bb that is true in the b-world that is minimally distant from
the actual world. If there is more than one suchminimally distant L-structure
where b is true, choose the target as the disjunction of the corresponding state-
ments in Bb.1 Using the semantics of counterfactuals by Lewis (1973), this
choice can be expressed by saying that the target h*[b] of a cognitive prob-
lem Bb with a false presupposition b is the most informative statement in the
language of Bb that would be true if b were true. By this choice, the elements
of Bb and their disjunctions can be compared for verisimilitude vb by their
1. A referee of this journal finds the proposed “proxy solution” problematic. If we are
looking for the geographic center of Italy and Florence happens to be slightly closer
to this center than Rome, then we would measure the closeness to the center by the dis-
tance to Florence, evidently disadvantaging southern Italian places. It is not clear what
the counterfactual assumption is in this example, but if it is the restriction of choices to
big cities, then this idealization is not fruitful. It should be acknowledged that idealiza-
tions exclude exact truth from our set of available hypotheses and thereby are biased in
one way or other. But, as Galileo was well aware, idealizations may be methodologically
useful, if their concretizations or de-idealizations help in the search for truth. So here the
idealized network of big cities could be replaced by a rectangular grid, whose system of
nodes can be made tighter step by step, so that eventually we are approximating the true
center of Italy.
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distance to the target in Bb. And the rule (1) now states that the prior p(hi) of
hi in Bb expresses the probability that hi is identical with this target h*[b].

Another solution is implicit in Vassend’s paper.2 Assume that Bb is a sub-
class of a larger cognitive problem B with the true target h*, where B is de-
fined without the counterfactual assumption b. Then the members of Bb can
be compared for their verisimilitude by the measure v for B (instead of vb for
Bb), even though the target h* is not included in the set Bb. There may be is-
sues about the choice of B, and the comparison of verisimilitude orderings v
and vb, but for the purposes of Vassend’s project they are irrelevant, since
both v and vb aremaximized in Bb by the hypothesis h*[b]. According to both
solutions, the probability that an element hi of Bb is closest to the truth is the
probability that hi is h*[b]. Note also that if b is true, then h*[b] is identical
with h*.3

Vassend correctly notes that similarity rankings of possible worlds and
verisimilitude rankings of propositions induce each other (2019, 712). It is
also correct that this sort of link was used by Hilpinen (1976) in his pioneer-
ing account of the similarity approach to truthlikeness (n. 15). But Vassend’s
exposition here is flawed. Hilpinen employed Lewis’s qualitative notion of
similarity spheres as a primitive, while Niiniluoto (1987) explicitly defines
a quantitative measure by structural similarity considerations.4 Moreover, if
theory H is a set (disjunction) of possible worlds, then the verisimilitude of
H should not be defined by the minimum distance of H from the actual
world, as Vassend (2019, 712) assumes.5 Hilpinen defined the notion of ap-
proximate truth by the minimum distance, but as a definition of verisimili-
tude this is known to be hopeless. Indeed, Hilpinen argued convincingly that
the comparative notion of truthlikeness should take into account at least the
maximum distance as well, but this gives only a partial ranking of hypoth-
eses. A quantitative version of Hilpinen’s proposal was given byNiiniluoto’s
(1977) min-maxmeasure, andmore elaborate alternatives likeOddie’s (1986)
average measure and Niiniluoto’s (1987) min-sum measure are still debated
(e.g., Oddie 2014; Niiniluoto 2020).
2. I am grateful to Vassend (pers. comm., February 14, 2020) for the clarification of his
position.

3. Note also that we are not replacing the hypothesis hi with hhi is closest to the truthi
(e.g., Vassend 2019, 704).

4. This also means that possible worlds as full-blown metaphysical entities are replaced
by more accessible logical tools, like Jaakko Hintikka’s “small worlds” or “constituents”
(maximally informative descriptions of possible worlds in a given linguistic frame-
work). See Niiniluoto (1987), 204–9.

5. This assumption is explicit in Vassend’s construction of v from s. The other direction
from v to s is ambiguous, since different measures of verisimilitude might disagree on
the question of which hypothesis H containing a word w is most truth-like.
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5. Counterfactual Probabilities and Expected Verisimilitude. The pre-
ceding section gives support to Vassend’s contention that probabilities (1)
under the verisimilitude interpretation are equivalent to counterfactual prob-
abilities, when the set of hypothesesV is based on a false presupposition. It is
also correct that thereby Bayesian probabilities depend on the pragmatic fac-
tor related to the choice of the verisimilitude measure, since different dis-
tance measures s and s0 could lead to different targets h*[b] in Bb.

But it should be remembered that after all the Bayesian agent does not
knowwhich hypothesis is the true one (in the standard case) or would be true
(in the counterfactual case), so that she may choose the priors freely as long
as probability axioms are satisfied. In the standard special case in which V
includes a true target h*, a hypothesis v has the minimum distance from
the truth if and only if v is identical with h*. In the counterfactual case, the
best hypothesis is identical with the target h*[b]. Condition (1) is not an op-
erational rule for finding the maximally truth-like hypothesis, but it suggests
that prior probabilities should express the agent’s best guesses about the loca-
tion of the unknown target h* or h*[b] within the relevant cognitive problem.

Formally, let H be a theory in a cognitive problem B, and let ε > 0 be a
small real number. Let Uε(H) be the set of hypotheses hi in B such that
v(H, hi) ≥ 1 2 ε. Then one may define probable verisimilitude in the follow-
ing way: the probability pv12ε(H=e) that the degree of truthlikeness of H is at
least 1 2 ε equals the probability of Uε(H) (see Niiniluoto 1987, 279). Then
pv12ε(H=e) has the maximum value 1 if and only if the posterior probability
is wholly concentrated onUε(H). It is thus possible thatmore than one hypoth-
esis hi in B receives the maximum value, and it may happen that p(hi=e) 5 0
but pv12ε(hi=e) 5 1. But when ε→ 0, we have in the limit pv12ε(hi=e)→
p(hi=e) for all i.

There is a further concept that behaves formally in a way different from
probability, that is, expected verisimilitude ver(H=e), introduced by Niiniluoto
(1977):

ver H=eð Þ 5 o
i ε I

p hi=eð Þv H, hið Þ, (3)

where e is the available evidence. Here v(H, hi) is the degree of truthlikeness H
would have if hi were true, which is weighted by the posterior probability
p(hi=e) of hi given e, and the sum goes over all hypotheses hi in B. If V is a
continuous space, then in (3) p is a probability density, and the finite sum op-
erator Σ is replaced by the integral

ver H=xð Þ 5
ð
V

p(v=x)v(H, v) dv: (4)

(See Niiniluoto 1987, 269). Definitions (3) and (4) are tools for estimating un-
known degrees of truthlikeness, when we have an epistemic probability
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distribution over the relevant alternatives hi in B. Unlike posterior probabil-
ity P(H=e), the value of ver(H=e) may be nonzero and even high, when e
contradicts H (274). If posterior probability is almost completely allocated
to a particular hypothesis hj in B, so that hj is believed to be true, then the ex-
pected verisimilitude of other hypotheses hi are approximately equal with their
closeness to this presumed truth hj (273).

If a cognitive problem Bb is defined relative to a counterfactual presup-
position b, so that the realist condition:b implies the falsity of all of its elements
hi, then p(hi=e&:b) 5 0 and ver(hi=e&:b) 5 0 for any true evidence e.
For example, hi might describe the ballistic behavior of projectiles near the
surface of the air, where b is the idealizing assumption that the resistance of
air has no influence, and e describes observations under real conditions on
air. Niiniluoto (1987, 286) argues that still we may have p(hi=e0&b) > 0,
where e0 tells what the data e would have been in the idealized situation b.
Thus, e0 is obtained—perhaps using theoretical background assumptions—
by subtracting the influence of air from the observational data e (e.g., Suppes
1962) or by trying to realize the idealized circumstances in controlled exper-
iments or computer simulations (e.g., study of free fall in a vacuum). For empty
evidence, this positive prior probability p(hi=b) is an instance of Sprenger’s
(2017) counterfactual interpretation of conditional probability. Applying (3)
with counterfactual probabilities, wemay have ver(hi=e0&b) > 0 and likewise
ver(H=e0&b) > 0 for a disjunctive theory H in Bb. An alternative approach is
to transform the idealized hypotheses into a realist one hi

0 by concretization,
that is, by adding the influence of the air to the description hi (see Niiniluoto
1987, 116–17). Then we may have p(hi

0=e&:b) > 0 and ver(hi
0=e&:b) > 0.

In other words, idealized hypothesesmay be confirmed by idealized evidence,
and factual hypotheses by factual evidence.

These considerations illustrate the important feature of Bayesian model-
ing that counterfactual assumptions may have a significant role in the determi-
nation of both prior and posterior probabilities—as well as evidence-based
estimates of verisimilitude.
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