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Abstract

We describe a method for computing the number of Hamilton cycles in cubic polyhedral graphs.
The Hamilton cycle counts are expressed in terms of a finite-state machine, and can be written
as a matrix expression. In the special case of polyhedral graphs with repeating layers, the state
machines become cyclic, greatly simplifying the expression for the exact Hamilton cycle counts,
and lets us calculate the exact Hamilton cycle counts for infinite series of graphs that are generated
by repeating the layers. For some series, these reduce to closed form expressions, valid for the
entire infinite series. When this is not possible, evaluating the number of Hamiltonian cycles
admitted by the series’ k-layer member is found by computing a k − 1th matrix power, requiring
O (log2(k)) matrix-matrix multiplications. We demonstrate our technique for the two infinite
series of fullerene nanotubes with the smallest caps. In addition to exact closed form and matrix
expressions, we provide approximate exponential formulae for the number of Hamilton cycles.
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1. Introduction

A Hamilton cycle is a spanning cycle in a graph G = (V, E), that is, a closed path that
visits every vertex exactly once. In general, determining whether a given graph has at least
one Hamilton cycle is NP -complete, including for cubic polyhedral graphs.[1–3] Thus, counting
all Hamilton cycles is #P -complete, the complexity class for counting solutions to NP -complete
problems: a computationally much harder problem [4, 5]. For a history of Hamiltonian graphs see
R.J.Wilson [6].

Within the class of cubic polyhedral graphs, there is at least one subclass of layered cubic
planar graphs, defined by Franzblau, which are always Hamiltonian.[9] Those are graphs that can
be completely decomposed into—not necessarily identical—concentric cycles, where neighboring
cycles are connected by two or more edges and where the first and last cycles are identical to a
face.
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Figure 1: The Tutte graph ((a) a planar drawing of the graph, and (b) a 3D embedding produced using the software
in [7] and [8]) is an example of a cubic polyhedral graph that is not Hamiltonian. In general, determining whether
a given polyhedral graph admits a Hamilton cycle is an NP -complete problem, whereby counting the number of
Hamilton cycles is a #P -complete problem.

In the special case of layered graphs that are the underlying graphs of closed nanotubes (a
subclass of fullerenes), we can decompose the graph into layers, such that a sequence of layers
is identical and consists only of hexagons. These identical layers are characterized by the chiral
vectors Ch = (n,m).

Since layered cubic planar graphs are always Hamiltonian, counting their Hamiltonian cycles
is no longer #P -complete, opening for the possibility of discovering more efficient algorithms.

In the following (Section 2) we first describe a method for counting Hamilton cycles in any
cubic polyhedral graph. This method is applied to the special case of layered polyhedral graphs, for
which it efficiently computes the number of Hamilton cycles. The method works not just for single
graphs, but applies to infinite inductively defined series, yielding exact closed form expressions in
simple cases, and expressions in terms of matrix powers for more difficult cases. In Section 3 we
demonstrate it on the two infinite series of layered fullerene graphs with the smallest caps. A proof
for the main theorem, showing that the method indeed produces exact Hamilton cycle counts, is
given in Section 4.

2. Counting Hamilton cycles in a cubic polyhedral graph

We introduce here a general technique for counting the Hamilton cycles in cubic polyhedral
graphs. As the general problem is #P complete, it will in the fully general case require exponential
time in the graph size, as it must. However, for layered graphs of bounded layer size, it reduces
down to polynomial time. While we begin by describing how the method works for a single
polyhedral graph, the method’s strength – and the motivation for us to introduce it – is for finding
exact expressions for the Hamiltonian cycle count for entire infinite series of layered polyhedral
graphs.

We begin by identifying Hamilton cycles with certain bi-colorings. While this identification
has been used before for layered graphs [9, 10], we make it precise and prove its correctness for all
cubic polyhedral graphs:

Lemma 1 (Hamiltonian cycles as bi-colorings). Given a cubic polyhedral graph G, and a choice
of one of its faces F0, there is a bijection between the set of Hamilton cycles and the set of face
bi-colorings on G that have the following three properties: (a) F0 is unshaded, (b) Every vertex is
adjacent to at least one shaded and one unshaded face, and (c) all shaded and all unshaded faces
are connected.

Proof. Let there be given a cubic polyhedral graph G and a choice for F0 (which will be the “outer
face” in the planar drawings used to illustrate the method), and consider a Hamiltonian cycle γ
on G. By Jordan’s curve theorem, γ separates the surface uniquely into two connected regions,
since it traces a simple closed curve on G’s surface. Let the entire region containing F0 be white
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Figure 2: Illustration of the correspondence between Hamilton cycles and the bi-coloring defined in Lemma 1 for a
Hamilton cycle for the dodecahedron, the C20 fullerene.

(without loss of generality), and the other region shaded. Hamiltonicity implies that every vertex
of G must lie on the boundary between the shaded and unshaded region. Hence, this bi-coloring
fulfills properties (a), (b), and (c). It is unique since the color of F0 is fixed, whereby it yields a
well-defined mapping f from the Hamilton cycles to the set of colorings that fulfill (a), (b), and
(c). Lastly, the edges comprising the Hamilton cycle are the boundary between the two regions,
any two distinct cycles yield distinct colorings, whereby f is injective.

Conversely, let there be given a bi-coloring of G’s faces fulfilling properties (a), (b), and (c).
By property (c), the edge set comprising the boundary forms a simple cycle γ, which by property
(b) visits every vertex in G, i.e. it is a Hamilton cycle. Hence, this bi-coloring is the value f(γ),
whereby f is also surjective.

In all, f is bijective, so we can identify the Hamiltonian cycles through f with the bi-colorings
that fix the color of F0 and fulfill (b) and (c).

Definition 1 (Cap). A cap is a subgraph that has exactly one boundary. It must have at least
one face and no leafs.

Definition 2 (Layer). A layer is a subgraph that has exactly two boundaries which do not have
any vertices in common. It may not have any leafs. That is, it has exactly two holes with respect
to the parent graph.

Each layer has an inner and an outer boundary cycle. If k = 1, the outer boundary is the
boundary of A, and the inner cycle is the boundary of Z. If k ≥ 2, the two terminal layers share a
boundary with A and Z respectively, and for 1 ≤ i < k, the inner boundary of layer i is the outer
boundary of layer i+ 1.

We write S⊕T for the combined graph of subgraphs S and T , merged by identifying the inner
boundary of S with the outer boundary of T . A and Z only have one boundary each, respectively
considered “inner” and “outer”.

Consider now a polyhedral graph that is partitioned into two caps and zero or more layers.
We do not address here the question of how to optimally decompose a graph into caps and layers.

The second important step needed to construct the Hamilton cycle counting method is the
following locality condition, which ensures that we can count incrementally by way of a finite
state-machine. We start from one cap and end in the other:

Lemma 2 (Locality). When shading in a graph which is decomposed into layers according to the
rules defined in Lemma 1, the legal colorings of each layer depend only on the previous layer and
which of the shaded and unshaded faces in the previous layer are already connected, i.e., which
shaded faces in the previous layer are connected by shaded faces in the subgraph that consists of
all previous layers and the starting cap (and respectively for unshaded faces).

Proof. By Lemma 1(c), for a shading of faces to correspond to a Hamilton cycle, it is required
that all shaded and all unshaded faces, respectively, are connected after all faces are colored in.

While shading in the graph layer-wise, the set of shaded faces may be disconnected. However, in
order to connect them through the following layers, each shaded face must through other shaded
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faces be connected to the boundary where new layers are added. This analogously applies to
unshaded faces.

In order to fulfil this requirement, we must include information on the connectedness of shaded
faces into a local layer description.

Lemma 1 requires that each vertex is adjacent to a shaded and an unshaded face. As all
vertices in a graph that is decomposed into layers are either interior to the layer or lie on the
boundary between one layer and the next, the face adjacency of each vertex is fully determined
by the two layers and their orientation and does not depend on any other layers.

Because of the locality condition of Lemma 2, we can model the counting as a finite state
machine, in which the finitely many states are the possible shadings of single layers together with
the information about which shaded faces are connected. We represent the state machine as a
directed multigraph M , in which the edges represent transitions to states that are accessible from
the corresponding state. The directed subgraph that describes the transition from one layer to
the following one is denoted as M(p). If one state can be followed by another state in more than
one way (due to symmetry), they are connected by multiple directed edges. We call the vertices
that correspond to starting points initial states (typically every valid shading of the first cap), and
those that can be final layers in a Hamilton cycle accepting states (typically every valid shading
of the last cap).

The number of Hamilton cycles admitted by a graph that consists of two caps and k layers
is then the number of paths of length k + 1 in M that originate in an initial state (start-cap
bi-coloring) and end in an accepting state (end-cap bi-coloring). See Figure 3(b).

The state-machine can equivalently be represented by a very sparse square matrix M, with
Mst = n if s

n−→ t is an arc of M , and Mst = 0 otherwise. In the kth power of M, the entry Mk
st

is the number of length-k paths from state s to state t. Hence, the number of Hamilton cycles
can be counted by raising M to the kth power and summing the elements of the AZ-subblock,
consisting of the initial-state rows and final-state columns. This sum is the number of Hamilton
cycles.

M is zero everywhere except in the blocks M(p) directly above the diagonal, representing the
directed subgraphs M(p) : Lp → Lp+1 that link layer p to layer p + 1, as shown in Figure 3(c)
(where we identify A = L0 and Z = Lk+1). The small blocks M(p) are still sparse, but rectangular
with dimensions Np ×Np+1, where Np is the number of valid shadings for layer p (with A and Z
as p = 0 and p = k + 1).

Because of this, we can calculate the number of Hamilton cycles as a single length-(k + 1)
product of the much smaller blocks M(p). The entry M(p)

st in the adjacency matrix is the
number of single-step transitions from state s in layer p to state t in layer (p+ 1). In the product
of two consecutive matrices M(p) and M(p+1) the entry (s, t) is the number of length-2 paths from
state s in layer p to state t in layer (p+ 2), and so forth. The product of the k + 1 matrices M(p)

directly yields the AZ-subblock of Mk, and thus sums to the number of Hamilton cycles. This
representation makes calculations convenient, shown in Equations (1) and (3) below.

2.1. An Acyclic Finite State-machine that Counts Hamilton Cycles in Polyhedral Graphs

We are now ready to construct a finite state machine that counts the Hamiltonian cycles in
infinite series of cubic layered-graphs.

The following procedure constructs a deterministic finite automaton (DFA), such that paths of
length k + 1 starting in an initial state and ending in a final state count the number of Hamilton
cycles in Gk:

Definition 3 (Hamilton cycle-counting DFA). Let A and Z be compatible caps, and let {Gk}k∈N0

be a graph that is decomposed into A, followed by k layers, and end-capped with Z. Construct a
finite state machine as follows:
Initialization:

I.1 Define the initial states as the symmetry-distinct shadings of A that do not violate Lemma 1.

I.2 Initialize the set S of states to the initial states.
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(a) A L1 L2 ··· Lk−1 Lk Z

(b)
Valid
A

shadings

Valid
L1

shadings
· · ·

Valid
Lk

shadings

Valid
Z

shadings

MA)1

...

M1)2

...

Mk−1)k

...

Mk)Z

...

(c)

A L1 L2 L3 Z

A 0 MA)1 0 0 0

L1 0 0 M1)2 0 0

L2 0 0 0 M2)3 0

L3 0 0 0 0 M3)Z

Z 0 0 0 0 0

Figure 3: (a) The polyhedral graph is subdivided into two caps A and Z, separated by k layers L1, . . . , Lk.
We identify A with L0 and Z with Lk+1. (b) For each layer Lp, the symmetry-distinct shadings that do not
violate Lemma 1 are considered “valid” and are added as a state in the DFA. Lemma 1 then determines the valid
combinations of shadings from Lp to shadings in Lp+1, defining the arcs in the DFA. (c) The DFA can be described

by a large matrix M, which is zero everywhere except in the blocks M(p) just above the diagonal, which count the
valid combinations of Lp-shadings to Lp+1-shadings; here shown for k = 3.

Recursion:

R for each of the k layers and Z:

(a) for each state s in S:

i. Write the associated shading as S(s).
ii. For each connectedness-labeled shading t of the current layer, for which S(s)⊕S(t)

fulfills L1(a)–(b), and if we have reached the cap Z, also fulfills (c):

A. If t is not already an existing state in T (up to symmetry), create it and add
it to T .

B. Draw an arc s→ t.
C. Label the arc with the number of legal ways to identify the inner boundary of

s with the outer boundary of t.

(b) move T to S

Theorem 1 (The Hamilton cycle-counting DFA counts Hamilton cycles). Let {Gk}k∈N0
be a graph

which is decomposed into k layers and the two caps A and Z, and let M be the state machine of
Definition 3. Then (i) each Hamilton cycle of Gk corresponds to a length-(k + 1) path from an
initial state in M to a final state in M , and (ii) the product of the labels along the path counts
how many Hamilton cycles correspond to this path. (iii) Equivalently, let M be the matrix such

that Mst = n if s
n−→ t is an arc of M , and Mst = 0 otherwise. Writing P = Mk+1 for the (k+ 1)
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matrix power of M, the total number of Hamilton cycles in Gk is:

NHC(Gk) =
∑

s∈Initial
t∈Final

Pst

(1)

Writing M(0),M(1), . . . ,M(k) for the k + 1 blocks of M that link consecutive layers (see Fig-
ure 3(c)), we can write Pst as a product of these smaller rectangular matrices:

Pst =
(
M(1) × · · · ×M(k+1)

)
st

(2)

The proof is given in Section 4 below.

2.2. A Cyclic Finite State-machine that Counts Hamilton Cycles in Infinite Series of Polyhedral
Graphs

The real strength of the method becomes apparent when we consider an infinite series of layered
polyhedral graphs, in which identical layers are repeated arbitrarily many times. That is, instead
of considering a single polyhedral graph, we consider an entire series. This can be modeled simply
by adding cycles to the state machine. In the general case, this yields a matrix product that can
be evaluated to yield the exact Hamilton cycle count for any member of the series, and in neater
cases such as shown in Section 3, we can obtain closed form expressions that apply to the entire
series.

To simplify the following definition we may fuse any number of non-repeating layers with A or
Z, such that the obtained state machine contains only one type of layer of which there are zero
or more instances. One can shade these layers separately and produce the product matrices MAL

and MLZ layer-wise for efficiency.
The two caps A and Z together with a single layer L define an infinite series of polyhedral

cubic graphs in the following way:

Definition 4 (layered polyhedral graph series). The layered polyhedral graph series for two caps
A and Z and a single layer L is an infinite series of polyhedral graphs {Gk}k∈N0 , such that Gk

consists of A and Z connected by k ≥ 0 instances of the layer L. The repeated layer must have
a total Gaussian curvature of zero, such that a variable number of layers is permissable without
violating the discrete Gauss-Bonnet theorem.

The total number of Hamilton cycles in Gk can now be simplified from equation 1, where we
needed k + 1 matrix blocks, to just:

NHC(Gk) =
∑

s∈Initial
t∈Final

(MAL ×Mk−1
LL ×MLZ)st (3)

where MAL describes the transition from A to L, MLL is the square matrix describing the tran-
sition between two instances of L, and MLZ describes the transition from L to Z, see Figure
4(c).

We can thus either compute NHC(Gk) directly for a particular k with O (log2(k)) matrix-matrix
multiplications by the standard recursive algorithm for computing powers, or for all of k = 1, . . . ,K
with K+1 matrix-matrix multiplications in total. We will see that we can sometimes obtain either
exact or approximate closed form expressions, when the infinite layered graph series under study
is sufficiently well-behaved.

The correctness of this cyclic DFA follows by construction from the fact that it is a special case
of the state machine defined in Definition 3 which counts the number of Hamilton cycles according
to Theorem 1.

6



(a) A L L ··· L L Z

(b)
Valid
A

shadings

Valid
L

shadings

Valid
Z

shadings

MA)L

...

ML)Z

...

ML)L

...

(c)

A L Z

A 0 MA)L 0

L 0 ML)L ML)Z

Z 0 0 0

Figure 4: (a) When polyhedral graphs can be decomposed into two caps A and Z, separated by k repetitions of
the identical layers L, the situation simplifies greatly. (b) The repeated layer is modeled with cycles in the DFA.
Again, Lemma 1 determines the legal shadings, as well as the arcs that connect layer shadings that can combine
to eventually form Hamilton cycles. (c) The matrix form of the cyclic DFA has three (sparse) nonzero blocks: the
two super-diagonal blocks representing combining cap A with the first layer and the last layer with cap Z, and in
addition an L → L block on the diagonal, which captures how the repeated layer L combines with itself.

3. Examples

As examples we examine two series of graphs: those of the nanotubes with the smallest diam-
eters.

In both cases the graphs fall into the class of layered graphs as defined by Franzblau.[9]
In the first case considered the chiral vector is Ch = (5, 0), implying caps that consists of six

fused pentagons and no hexagon, ie., they have 10 vertices each. Each layer consists of 5 hexagons
and adds 10 vertices, yielding a total of N = 20 + 10k vertices with k = 0, 1, 2, . . . per graph.
Each layer induces a twist of π/5 of the end-pentagons with respect to each other. Since the main
axis of symmetry runs through the ends, the result is that the symmetry alternates between D5d

for even k, and D5h for odd k. We denote this series as D5+. Figure 5 shows two representative
examples of this series, C70-D5h and C60-D5d.

The smallest D5+ nanotube is C20, which is also the smallest fullerene. It has exactly 30 Hamil-
ton cycles, which are all equivalent under Ih-symmetry, but up to the symmetry of the D5+-
nanotube series, (5-fold rotation and reflection), the three cycles shown in Figure 6 are distinct.

The second series has a chiral vector of (6, 0) and caps consisting of one hexagon which is
surrounded by six pentagons. Here the caps consist of 12 vertices each and each layer contributes
12 vertices, yielding a total of N = 24+12k vertices per graph. Members of this series alternatingly
have D6d (for even k) and D6h (for odd k) point group symmetry. We denote this series as D6+.
Figure 7 shows two representative examples of this series, C60-D6h and C72-D6d.

In the remainder of this section we derive expressions for the number of Hamilton cycles in
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(a) (b)

Figure 5: Two representative polyhedra for (5,0) fullerene nanotubes, (a) C70-D5h and (b) C60-D5d. Pentagon
caps are distinguished from the hexagons by shading.

(A) (B) (C)

Figure 6: The three D5-symmetry distinct Hamilton cycles out of in total 30 for C20-Ih. The Hamilton cycle traces
the boundary of the green shaded area. Note, that in the full Ih-symmetry, these are symmetry-equivalent as well.

these to series of layered graphs. Following the same approach, expressions for any other series of
layered graphs can be constructed.

3.1. Syntax

In order to keep track of the information needed in Lemma 2, we introduce the following
notation for a partial coloring of a layer in a layered graph: a) All faces in the layer are numbered
counter clockwise, starting at 1. b) Each set of shaded faces that is connected, either because
they are neighbors, or through shaded faces in previous layers, is written as a comma separated
list enclosed in parenthesis. The elements in the lists are ordered ascendingly. c) The connected
groups are ordered ascendingly by their respective first elements. d) The starting point of the
counter clockwise numbering is arbitrary, but needs to be chosen consistently for all layers in the
graph (up to rotation and reflection with respect to the connections between consecutive layers).
If the selected first face is not unique due to symmetry, it is chosen such that we start counting in
the largest connected group, and each following face is given the smallest possible number, while
larger connected groups have preference to get smaller indices and hence be listed first. If the layer
has reflectional symmetry, both clockwise and counter clockwise numbering has to be considered,
i.e., mirror images are given the same label.

(a) (b)

Figure 7: Two representative polyhedra for the (6,0) fullerene nanotubes, (a) C60-D6h and (b) C72-D6d.
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It is not necessary to include the total number of faces in a layer, because only one size occurs
in a chosen layered graph. Furthermore, it is not necessary to specify the connectedness of the
unshaded faces, because it follows implicitly from the shaded faces and the fact that we are dealing
with planar graphs.

For example, ‘(1,2)(4)’ denotes a layer with two neighboring shaded faces that are connected
to each other and a third face at position ‘4’ which is not connected to them through previous
layers. ‘(1,2,4)’ denotes a layer that is locally identical, but where all three faces are connected
through previous layers. In the examples in Section 3, the layers have 5-fold and 6-fold rotational
symmetry, respectively, as well as reflection symmetry. Therefore, all faces are equivalent with
respect to the connections to the previous and the following layer, and we chose the starting point
and orientation of the numbering such that indices are minimized as explained above.

As is conventional, the initial states are indicated by an arrow, and the final states are drawn
with double circles.

3.2. The number of Hamilton cycles in C20+10k-D5+(5,0) nanotubes

We now turn to the series of C20+10k-D5+(5, 0) fullerene nanotubes. This is a k-layered poly-
hedral graph for every k = 0, 1, . . . (where k counts the inner layers). The smallest specimen is
C20, with two layers and k = 0.

Theorem 2. The D5+ fullerene nanotube C20+10k (k ∈ N0) admits exactly

NHC(k) = 5
[
2k+1 + 4 · 12

k
2 χ(k)

]
(4)

Hamilton cycles, where χ(k) = 1 for even k, and χ(k) = 0 for odd k.

Proof. Consider a C20+10k-D5+ fullerene nanotube. In the planar drawing below, let F0 be the
outer face, unshaded. Up to the D5-symmetry common for the nanotube-series, there are two
inequivalent ways to shade the faces in the first cap of the graph that do not violate Lemma 2,
each of multiplicity 5.

A

×5

and

B

×5

(5)

All other colorings of the cap yield either vertices that are not adjacent to a shaded face, or the
unshaded faces are separated into two disconnected areas (by shading in all five faces that are
adjacent to the boundary). It will be seen below that Hamilton cycles starting in type A give rise

to the term 5× 2k+1, and type B to the term 5× 4× 12
k
2 χ(k).

Assume that the cap is shaded as A. One can easily show using Lemma 2 that only two
layer types need to be considered for shading of all remaining layers (up to reflection). Using the
notation introduced above, these are (1) and (1,2,3,4):

(1) (1, 2, 3, 4)

(6)
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A (1,2,3,4)-layer must be followed by a (1)-layer in one of two ways, and a (1)-layer must be
followed by a (1,2,3,4)-layer in one of two ways:

(1,2,3,4) (1)
2

2

(7)

for which the adjacency matrix is:
A =

(
0 2
2 0

)
. (8)

The possible end-cap shadings that can follow on states (1) and (1,2,3,4) are W and X
respectively. W can follow on (1) in two ways and X can follow on (1,2,3,4) in two ways.

W X

(9)

As state (1) can follow on cap A in one of two ways, and for each of (1) and (1,2,3,4) there
is a cap which may follow in one of two ways, we obtain the two terminal adjacency matrices ( 2 0 )
and ( 0 2

2 0 ). The number of Hamilton cycles of C20+10k that originate from case A is:

N
(A)
HC (k) = 5×

∑(
(2 0)×

(
0 2
2 0

)k−1
×
(

0 2
2 0

))
(10)

= 5× 2k+1 (11)

When case B is chosen for the cap, there are four layer types to be considered for shading in
the remainder of the graph: (1,3), (1)(3), (1,2,4), and (1,2)(4).

(1, 3)/(1)(3) (1, 2, 4)/(1, 2)(4)

(12)

This is described by the following DFA, which with the order ((1,2)(4), (1,2,4), (1)(3), (1,3))
has the adjacency matrix B:

(1,2)(4) (1,2,4)

(1)(3) (1,3)
2

23 32

2

B =

0 2 2 0
0 0 0 3
3 0 0 0
0 2 2 0

 (13)

with accepting states corresponding to columns 1 and 4.

10



Cap B may be followed by (1,2,4) and (1)(3) in one of two ways each.

Y Z

(14)

States (1,2)(4) and (1,3) may be followed by either of caps Y and Z in one of two ways each. No
other caps are possible because shading the central last face differently would either yield multiple
cycles by disconnecting the shaded or unshaded area, or exclude one vertex from the cycle, both
violating Lemma 1.

Thus, the number of Hamilton cycles in C20+10k that start from case B is

N
(B)
HC (k) = 5×

∑(
(0 2 2 0)×Bk−1 ×

2 2
0 0
0 0
2 2


)

(15)

= 5× (Bk+1
1,2 + Bk+1

1,3 ) (16)

To understand the alternating term in Eq. (4), we compute the first few powers of B:

B2 =

6 0 0 6
0 6 6 0
0 6 6 0
6 0 0 6

, B3 =

 0 24 24 0
18 0 0 18
18 0 0 18
0 24 24 0

, B4 =

72 0 0 72
0 72 72 0
0 72 72 0
72 0 0 72

 (17)

We now prove the even and odd cases separately by induction. Assume for some odd k ≥ 1 that

Bk+1 is of the form

(
x 0 0 x
0 x x 0
0 x x 0
x 0 0 x

)
. Then the next odd k yields:

B2Bk+1 =

6 0 0 6
0 6 6 0
0 6 6 0
6 0 0 6

x 0 0 x
0 x x 0
0 x x 0
x 0 0 x

 =

12x 0 0 12x
0 12x 12x 0
0 12x 12x 0

12x 0 0 12x

 = 12Bk+1 (18)

Since B2 (the case k = 1) is of this form, we obtain by induction that Bk+1 is of this form for
every odd k ≥ 1, by which we obtain Bk+1

1,2 + Bk+1
1,3 = 0 for every odd k ≥ 1. That is, the number

of Hamiltonian cycles starting in configuration B is 0 whenever the number of layers k is odd. For

the even case, assume for some even k ≥ 0 that Bk+1 is of the form

( 0 x x 0
y 0 0 y
y 0 0 y
0 x x 0

)
. Then the next

even k gives:

B2Bk+1 =

6 0 0 6
0 6 6 0
0 6 6 0
6 0 0 6

0 x x 0
y 0 0 y
y 0 0 y
0 x x 0

 =

 0 12x 12x 0
12y 0 0 12y
12y 0 0 12y
0 12x 12x 0

 = 12Bk+1 (19)

Since B (Bk+1 for k = 0) is of this form, we obtain by induction that this holds for every even
k ≥ 0. How many Hamilton cycles start in configuration B for k inner layers when k is even? For
k = 0, we read off the number to be 5 × (2 + 2) = 5 × 4 × 12

0
2 . Finally, assuming the count is

5× 4× 12
k−2
2 for some even k − 2 ≥ 0, the count for k (by Equation 19) is

N
(B)
HC (k) = 5× 4× 12

k−2
2 × 12 = 5× 4× 12

k
2 (k even) (20)

whereby, by induction, the formula holds for all even values of k ≥ 0. Together, Equations (10)
and (20) complete the proof.
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3.3. The number of Hamilton cycles in C24+12k-D6+(6,0) nanotubes

We next turn to the number of Hamilton cycles in the C24+12k-D6+(6,0) fullerene nanotube
series, the next-thinnest class of layered nanotubes.

Theorem 3. The C24+12k-D6+(6,0) fullerene nanotube (k ∈ N0) admits

NHC(k) ≈ 16× 2k + 55.67911535839× 22.1679870k (21)

Hamilton cycles. The exact expression for the Hamilton cycle count is given in Eq. (38).

Proof. There are four inequivalent options for shading in the first cap of the graph up to D6-
symmetry, with multiplicities 6, 6, 3, and 2, respectively:

A

×6

B

×6

C

×3

D

×2

(22)

Starting from the first case (A) we need to consider only two different layer shadings (in analogy
to case A of the previous proof), namely (1,2,3,4,5) and (1):

(1, 2, 3, 4, 5) (1)

(23)

Both layers may follow each other according to the following graph:

(1) (1,2,3,4,5)
2

2

, (24)

which can be written as the adjacency matrix U = ( 0 2
2 0 ).

State (1,2,3,4,5) may follow on A in two ways, and states (1,2,3,4,5) and (1) may be
followed by caps V and W respectively in two ways each.

V W

(25)

The number of Hamilton cycles starting from cap A is therefore

N
(A)
HC (k) = 6×

∑(
(2 0)×

(
0 2
2 0

)k−1
×
(

0 2
2 0

))
(26)

= 6× (Uk+1
1,1 + Uk+1

1,2 ) = 6× 2k+1. (27)

12



Caps B and C can be treated together because starting from either leads to the same options
for shading in the remainder of the graph. We need to consider (1,2,3)(5), (1)(3), (1,2,4),
(1)(4), and (1,2)(4,5).

(1, 2, 3)(5) (1)(3) (1, 2, 4) (1)(4) (1, 2)(4, 5)
(28)

We obtain the following graph V and adjacency matrix V:

(1,2,3)(5)

(1)(3)

(1,2,4)

(1)(4)

(1,2)(4,5)

2

2

2

1

1

1

3

2

2

4

2

V =


0 2 2 0 0
2 0 0 0 1
0 1 3 1 0
2 0 0 0 2
0 0 4 2 0

 (29)

Cap B may be followed by (1)(3) and (1,2,4) in two ways each, while cap C may be followed
by states (1,2,4) and (1)(4) in four and two ways respectively.

There are two end caps. X may follow on states (1,2,3)(5) and (1,2,4) in two and one way
respectively while Y may follow (1,2)(4,5) and (1,2,4) in two and one way respectively.

X Y

(30)

Keeping in mind the multiplicities of the first layers, we get

N
(B)
HC (k) +N

(C)
HC (k) =

∑(6 3)×
(

0 2 2 0 0
0 0 4 2 0

)
×Vk−1 ×


2 0
0 0
1 1
0 0
0 2


 with (31)

N
(B)
HC (k) = 6× (Vk+1

1,2 + Vk+1
1,4 ) and (32)

N
(C)
HC (k) = 3× (Vk+1

5,2 + Vk+1
5,4 ). (33)

13



Cap D only allows for choosing state (1)(3)(5) for all following layers.

(1)(3)(5)

(34)

However, there are two possible orientations for each layer.

(1)(3)(5) 2

(35)

There is one possible cap Z that may follow (1)(3)(5) in either of two ways.

Z

(36)

The adjacency matrix is (2), yielding

N
(D)
HC (k) = 2× (2)× (2)k−1 × (2) = 2× 2k+1 (37)

Hamilton cycles starting from cap D. In total the number NHC of Hamilton cycles in C24+12k

(6,0) nanotubes is

NHC(k) = N
(A)
HC (k) +N

(B)
HC (k) +N

(C)
HC (k) +N

(D)
HC (k)

= 6× 2k+1 + 6× (Vk+1
1,2 + Vk+1

1,4 ) + 3× (Vk+1
5,2 + Vk+1

5,4 ) + 2× 2k+1,
(38)

Due to the complicated behavior of the matrix powers Vk, it is not possible to derive a simple
closed form expression. However, while the exact counts have many complicated terms, they
do asymptotically approach simple exponentials: (Vk

1,2 + Vk
1,4) → 1.0862679 × 22.1679870k, and

(Vk
5,2 + Vk

5,4) → 1.9573872× 22.1679870k, yielding 16-digit accuracy already at k = 35, improving
as k grows (tested up to k = 3000). Hence, a simple approximate expression can be found:

NHC(k) = N
(A)
HC (k) +N

(B)
HC (k) +N

(C)
HC (k) +N

(D)
HC (k)

≈ 16× 2k + 55.67911535839× 22.1679870k
(39)

3.4. Long-range exponential behavior of C20+10k-D5+ nanotube series vs. C24+12j-D6+ series.

Our original interest in finding expressions for the Hamiltonian cycle counts of the infinite series
was due to our work in [11], which originally suggested that the C20+10k-D5+ series defined both
strict upper and lower bounds to the number of Hamiltonian cycles admitted by any fullerene
graphs. This was verified for the tens of millions of graphs up to C120. However, while the
conjecture that this D5d nanotube series maximizes Hamiltonian cycle count looked extremely
plausible, the exact expressions allowed us to produce a counter-example – in a region that could
never have been checked exhaustively.
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Figure 8: Hamiltonian cycle counts for the D5d (solid) and the D6-series (dashed). Near to the crossing, the two
exponentials are very similar (left), but as N grows, so does the gap between them (right).

The crossover-point is C1020 = C24+83×12 = C20+100×10 (i.e. k = 100 and j = 83). From C1020

on, every C24+12j-D6+ break the conjectured upper bound due to the larger exponent taking over.
C1020-D5d has

NHC(C1020-D5d) = 18,200,876,300,004,299,546,655,183,227,191,134,932,148,320,173,545,226,240 (40)

Hamiltonian cycles (i.e. 1.820× 1055) but C1080-D6d has

NHC(C1020-D6d) = 18,250,747,738,371,979,597,388,745,176,681,058,911,549,835,175,654,326,272 (41)

(i.e. 1.825 × 1055). After that, the D6+ series takes over forever (but may be overtaken by other
series).

4. Proof of Theorem 1

Proof. (i): Consider a Hamilton cycle admitted by Gk = A⊕L1⊕· · ·⊕Lk⊕Z represented through
Lemma 1 as a face shading S. We can decompose S into shadings of the subgraph components,
S = SA ⊕ SL1 ⊕ · · · ⊕ SLk

⊕ SZ .
Each shaded subgraph corresponds to a unique node in the DFA connected through a path

from start to end. We prove the property by induction. For notational convenience, write S0 =
SA, Sk+1 = SZ , and Si = SLi

for i = 1, . . . , k.
Since by Lemma 1, S fulfills property (a)–(c), so must also SA, SZ , and S1, . . . , Sk (where,

for property (c), we consider two faces connected in a sub-component if they are either connected
within that component, or determined to be so from the connectedness-label). In particular,
SA = S0 and SZ = Sk+1 are nodes in the DFA by Step I.1.

We show that the appropriately connectedness-labeled shadings S1, . . . , Sk are nodes in the
automaton, and S0 → S1 → · · · → Sk+1 is a path over it. This is done by induction over the
length i of the sub-path S0 → · · · → Si.

i = 0: The node for S1 is created in I.1 if k = 0, or R.1 in the first iteration if S1 is an internal
layer. In both cases, the arc S0 → S1 is created in the first iteration of Step R.1.

i =⇒ i+1: Assume now for 1 ≤ i ≤ k that the path S0 → S1 → · · · → Si exists. Then, at some
step j ≤ i, the connectedness-labeled shading Si is extracted in Step R.1, and since Si⊕Si+1 must
fulfill L1 (a)–(c) (or S would not be a Hamilton cycle), the appropriately connectedness-labeled
Si+1 is added together with the arc Si → Si+1 at latest in Step R.3 of iteration j ≤ i.

The caps are not connectedness-labeled, but are not needed to be, as this information is only
needed to maintain Lemma 1(c) through Lemma 2 in the induction step.

(ii): We show that every path beginning in an initial state and ends in a final state corresponds
to a Hamilton cycle, and the product of the arc labels along the path is the number of Hamilton
cycles that correspond to this path through (i).

Consider such a path S0 → · · · → Sk+1. By construction, a node for the connectedness-labeled
shading Si is created if either Si is a cap-shading, or if Si−1 ⊕ Si fulfills property (a) and (b),
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and does prevent (c) in the future. By Lemma 2, this then extends to all of S0 ⊕ S1 ⊕ · · · ⊕ Si.
The final arc to the end-cap Sk → Sk+1 is placed if and only if it closes correctly, so that S =
S0 ⊕ S1 ⊕ · · · ⊕ Sk ⊕ Sk+1 fulfills all of (a), (b), and (c). Thus, S represents a Hamilton cycle by
Lemma 2.

Since at each step, the arc is labeled with the number of equivalent ways to orient the shading
Si+1, the product yields the total number of Hamilton cycles that are represented by this path.

(iii): By the above, every Hamilton cycle maps uniquely to a path S0
m01−−→ S1

m12−−→ · · · mk,k+1−−−−−→
Sk+1 starting in an initial state S0 and ending in a final state S2, such that the productm01m12 · · ·mk,k+1

is the number of Hamilton cycles that map to this same path. The total number of Hamilton cycles
admitted by Gk is then the sum of these products over all such paths of length k. Letting M be
the adjacency matrix of the state machine M with mst nonzero whenever s

mst−−→ t is an arc in M ,
this is exactly calculated by

NHC(Gk) =
∑

s∈Initial
t∈Final

Mk
st (42)
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