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Abstract: 

Producing timely information regarding the current and future state of the economy is important for the practice of economic 
policy: the delay between the implementation of policy measures and the emergence of their effects is typically considerable, 
which creates a need to anticipate developments in macroeconomic variables. The producer price index is one such variable: 
producer price indices are used to track changes in the general price level of goods produced within an economy from the 
point-of-view of producers, which makes them prominent indicators of inflationary pressures and business cycle conditions. 
The principal objective of this thesis is to investigate whether the Finnish Producer Price Index for Manufactured Goods could 
be reliably forecasted in the short run using large sets of external predictors. 

Increasing the number of predictors exposes standard forecasting methods to inaccuracies and makes their application out-
right infeasible once the number of variables exceeds the number of observations available for the estimation of the forecasting 
model. Various alternative methods have been proposed to counter this issue. This thesis provides a broad overview of these 
methods as well as other relevant issues pertaining to the forecasting macroeconomic variables. 

Given that no single framework has proven to dominate others in practical applications, a selection of methods has been chosen 
for the empirical section of this thesis. These methods represent two different approaches to high-dimensional forecasting: 
dynamic factor models and penalized regressions. The effectiveness of dynamic factor models is based on the assumption that 
relevant information contained in high-dimensional data can be summarized using only relatively few underlying factors, the 
estimates of which can, in turn, be used for forecasting. The solution offered by penalized regressions, on the other hand, is 
based on striking a balance between the bias and variance of the forecasts. Out of the broader class of penalized methods, four 
different variations will be utilized in this thesis: the Ridge, Lasso, Elastic Net, and Adaptive Lasso. 

The empirical performance of the methods will be assessed by conducting a simulated out-of-sample forecasting experiment, 
in which a series of consecutive forecasts are estimated for the target variable using historical data. These forecasts are, in turn, 
compared to their realized counterparts. The objective of the experimental arrangement is to produce representative infor-
mation regarding the empirical accuracy of the respective forecasting models by emulating circumstances faced in real-time 
forecasting: only information that would have been available at the time is used to produce each forecast. The set of predictors 
used in the experiment is composed of monthly economic time series collected from a variety of sources. 

Based on the forecasting experiment, the benefit of the high-dimensional models in terms of average forecasting accuracy turns 
out to be only marginal in comparison to a univariate autoregressive benchmark at the one-, two-, and three-month horizons. 
Moreover, the differences among the respective high-dimensional methods are found to be insignificant. On the other hand, 
more favorable results are achieved by using relatively timely market-based variables to predict the concurrent rather than 
strictly future values of the index. In this case, the penalized models perform particularly well. The results indicate that lever-
aging the advantage in publication lag enjoyed by external predictors for the purpose of contemporaneous prediction, or now-
casting, could represent the most potential for predicting the producer price index. 
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Tiivistelmä:  

Kansantalouden nykyistä ja tulevaa tilaa koskevan ajankohtaisen tiedon tuottaminen on tärkeää käytännön talouspolitiikan 
näkökulmasta: politiikkatoimien toimeenpanon ja niiden vaikutusten ilmenemisen välillä on tyypillisesti merkittäviä viiveitä, 
mikä luo tarpeen ennakoida kokonaistaloudellisten suureiden kehitystä. Tuottajahintaindeksi on yksi tällainen 
makrotaloudellinen suure: tuottajahintaindeksien avulla pyritään seuraamaan kansantaloudessa tuotettujen hyödykkeiden 
yleisen hintatason muutoksia tuottajien näkökulmasta, mikä tekee niistä varteenotettavan inflaatiopaineen ja suhdanneolojen 
indikaattorin. Tämän tutkielman pääasiallisena tavoitteena on selvittää mahdollisuuksia kotimaisen teollisuuden 
tuottajahintaindeksin luotettavaan ennustamiseen lyhyellä aikavälillä hyödyntäen suurta ulkoisten ennustavien muuttujien 
joukkoa. 

Ennustavien muuttujien lukumäärän kasvattaminen altistaa tavanomaiset ennustamismenetelmät epätarkkuuksille ja tekee 
niiden soveltamisen suoranaisen mahdottomaksi, kun muuttujien määrä ylittää mallin estimoimiseen käytettävissä olevien 
havaintojen lukumäärän. Ratkaisuksi tähän ongelmaan on ehdotettu lukuisia vaihtoehtoisia menetelmiä. Tutkielma tarjoaa 
laajan yleiskatsauksen näihin menetelmiin sekä muihin makrotaloudellisten muuttujien ennustamisen kannalta oleellisiin 
näkökohtiin. 

Koska yksikään vaihtoehtoisista menetelmistä ei ole osoittautunut käytännön sovelluksissa yksiselitteisesti muita 
paremmaksi, tutkielman empiiriseen osuuteen on valittu sovellettavaksi menetelmiä, jotka edustavat kahta keskenään 
erityyppistä lähestymistapaa suuriulotteiseen ennustamiseen: dynaamisia faktorimalleja ja regularisoituja regressioita. 
Dynaamisten faktorimallien vaikuttavuus perustuu oletukseen, jonka mukaan suuriulotteisen aineiston sisältämä oleellinen 
informaatio voidaan tiivistää huomattavasti pienempään joukkoon taustalla vaikuttavia muuttujia, faktoreita, joiden 
estimaatteja voidaan käyttää edelleen ennustamiseen. Regularisoitujen regressioiden tarjoama ratkaisu taas perustuu 
ennusteeseen liittyvän harhan ja varianssin tasapainottamiseen. Laajempaan regularisoitujen regressioiden luokkaan 
kuuluvista menetelmistä tutkielmassa on käytössä neljä eri muunnosta: ridge, lasso, elastinen verkko ja adaptiivinen lasso.  

Menetelmien empiiristä suorituskykyä arvioidaan toteuttamalla simuloitu otoksen ulkopuolinen ennustekoe, jossa 
kohdemuuttujalle estimoidaan historiallisen aineiston avulla sarja peräkkäisiä ennusteita verrattavaksi vastaavan ajanjakson 
toteutuneisiin arvoihin. Koejärjestelyn tavoitteena on tuottaa edustavaa tietoa ennustemallien tarkkuudesta jäljittelemällä 
tosiaikaisen ennustamisen olosuhteita: kunkin ennusteen tuottamiseksi hyödynnetään ainoastaan informaatiota, joka olisi 
ollut käytettävissä ennusteen laadinta-ajankohtana. Kokeessa käytettävien ennustavien muuttujien joukko koostuu eri 
lähteistä kerättyjen taloudellisten muuttujien kuukausittaisista aikasarjoista. 

Ennustekokeen perusteella suuriulotteisten mallien etu keskimääräisessä ennustetarkkuudessa yksinkertaiseen 
autoregressiiviseen verrokkimalliin verrattuna osoittautuu ainoastaan marginaaliseksi yhden, kahden ja kolmen kuukauden 
päähän tähtäävillä ennustehorisonteilla. Myöskään käytettyjen suuriulotteisten menetelmien kesken ei havaita merkittäviä 
eroja ennustetarkkuudessa. Suotuisampia tuloksia saavutetaan sen sijaan käyttämällä suhteellisen nopeasti saataville tulevien 
markkinamuuttujien havaintoja indeksin samanaikaisten arvojen ennustamiseen tulevien arvojen sijaan. Tässä tapauksessa 
erityisesti regularisoidut mallit esiintyvät edukseen. Tulokset antavat osviittaa, että varteenotettavimmat mahdollisuudet 
tuottajahintaindeksin ennakoimiseen voisivat perustua ulkoisten muuttujien julkaisuviiveeseen liittyvän edun 
hyödyntämiseen indeksin samanaikaisessa ennustamisessa.  
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1 Introduction 

Being able to peer into the future is a notion that has without a doubt compelled man from the 

beginning of times. In macroeconomics, foresight is especially called for from a policy perspec-

tive, as the effects of policy measures usually manifest themselves only after considerable lags 

following implementation. This notion has given rise to an active field of research focused on 

developing methods for forecasting various macroeconomic variables. 

The producer price index (PPI) is one such variable. The Finnish Producer Price Index for Man-

ufactured Goods provides a monthly measure of the aggregate price-level of goods produced 

within Finland from the point-of-view of producers. The PPI has many applications. In a mac-

roeconomic context, the aggregate index provides a useful indicator for policy makers for an-

ticipating developments in overall economic circumstance. For example, producer prices can 

serve as an early indicator for inflation, reflecting cost-push forces stemming from the prices of 

domestically produced goods. In addition, changes in producer prices may signal turning points 

in the business cycle. Thus, being able to produce timely information regarding the evolution of 

producer prices is of great practical relevance. 

Despite being an already relatively fast indicator of economic circumstances, the publication of 

the Finnish PPI lags behind the events that it intends to capture by nearly one full month, which 

is due to the meticulous data collecting process that underlies the index. This raises a question: 

would it be possible to augment the information content of the monthly publication by provid-

ing reliable predictions of the current and near-future values of the index? This is the main 

question that the present study seeks to answer. Specifically, the intention is to find out if any 

data available in advance of the publication date of the month’s index could be useful in this 

regard. This poses a challenge, as the prices of the hundreds of individual goods that underlie 

the PPI could be affected by equally numerous external determinants, and it is not a priori clear 

which predictors out of a large number of candidates should be included in a model attempting 

to forecast the aggregate index. Therefore, a forecasting model able to accommodate large num-

bers of predictor variables is required. 

While traditional statistical forecasting techniques begin to struggle as the number of predic-

tors grows, the increasing availability of ever larger datasets in forecasting has spurred the de-

velopment of various alternative methods specifically designed to cope with such data. The lit-

erature reports of numerous successful empirical applications of different methodologies in 
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forecasting macroeconomic variables, but no single framework has, so far, been found to dom-

inate others across different applications. Owing to this, it is reasonable to consider some alter-

natives for the purpose of forecasting the PPI. To narrow down the range of candidates, two 

classes of forecasting methodologies, which have exhibited promising results in the literature, 

will be considered: dynamic factor models and penalized regressions.  

By now, factor models represent an established way of dealing with high-dimensional data in 

macroeconomic forecasting. The appeal of dynamic factor models lies in their ability to sum-

marize data in large panels of time series by extracting hypothetical factors that commonly 

drive the individual observable series. Over time, a number of different methods have been 

proposed for the purpose of factor estimation. In this study, the method based on principal 

components as proposed by Stock and Watson (2002a, 2002b) will be utilized.  

Penalized regressions, on the other hand, represent a more recent approach to time series fore-

casting. Instead of summarizing data from large panels of time series, their strength lies in the 

ability to emphasize particularly relevant individual variables from large sets of candidates and 

construct forecasts based on the principle of bias-variance trade-off. The general class of penal-

ized regressions encompasses a range of different methods. The specific variants considered in 

this study are the Ridge, Lasso, Elastic Net and Adaptive Lasso. 

While somewhat arbitrary, the choice of methods is necessary in order to keep the scope of the 

study at a manageable level. However, these choices can be motivated in terms of the preva-

lence and empirical performance of the chosen approaches as well as their complementary fea-

tures. For one, dynamic factor models are chosen because they represent an established ap-

proach to forecasting macroeconomic variables using large datasets. The dynamic factor model 

and its extensions have not only been shown to provide generally superior forecasting perfor-

mance over the earlier parsimonious models, but they have also managed persist in the face of 

subsequent competing approaches. The penalized regression methods represent an emerging 

approach to macroeconomic forecasting: despite finding extensive application in general sta-

tistics before, they have only relatively recently begun to receive wider attention in time series 

applications.  

The complementary nature of the two methodologies arises from the unknown characteristics 

of the data generating process of the forecasted variable. The effectiveness of the factor models 

relies on the existence of truly common factors shared by the target and predictors and the 



6 
 
 

failure of this assumption has been found to be detrimental to its forecasting capability (Boivin 

and Ng 2006). Penalized regressions, on the other hand, have been observed to be more robust 

to such specific assumptions and can leverage relevant information contained in individual pre-

dictors in the absence of common processes (Smeekes and Wijler 2018). 

Additionally, some penalized methods may serve to supplement a particular deficiency of the 

factor models, which is the fact that the estimated factors provide little interpretability and 

tractability with regards to individual predictor variables. That is, while the factor models sum-

marize information from the complete dataset, they are largely opaque with regards to the role 

of individual predictors. On the other hand, the penalized methods considered here work by 

singling out individual predictors based on their relevance to the forecast target, with most of 

them being capable of explicit variable selection and enhanced interpretability. 

The aforementioned variable selection property of the penalized regression models gives rise 

to a final argument in favor of the particular choice of methods: in addition to representing 

independent approaches to forecasting by themselves, features of the dynamic factor and 

shrinkage methods can be combined to give rise to further means of leveraging information 

contained in the data. In particular, the penalized methods can be used to alleviate the sensitiv-

ity of the factor forecasts to mismatches between the set of predictors and the target variable 

by selecting a subset of the predictors prior to factor extraction (Bai and Ng 2008).  

While the primary aim of this study is to assess the possibility of predicting the Finnish PPI in 

the short run, this setting also enables the study to contribute to the existing literature by 

providing evidence on the relative performance of the aforementioned high-dimensional fore-

casting approaches as a secondary objective. In addition, using recent data up to November 

2021 also allows the study to touch upon another interesting and highly topical matter: the 

effect of the COVID-19 pandemic, which began in early 2020, on the forecasting performance of 

the high-dimensional models. The Finnish PPI has been markedly affected by the pandemic, 

which makes it a prime candidate to facilitate such an examination: while the early onset of the 

crisis was met with a sharp decline in aggregate prices, this fall was quickly countered by an 

incline of unprecedented magnitude, which is still ongoing as of the time of writing (see Figure 

1). Such extraordinary events present a challenge to any forecasting procedure even in the 

short term and providing evidence regarding the performance of the models under such ad-

verse conditions can be seen as another valuable addition to the forecasting literature. 
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Figure 1. Evolution of the Finnish Producer Price Index for Manufactured Goods over time. 

The structure of the study will be as follows. The next section provides a brief overview of pro-

ducer price indices in Finland. In the third section, a general review of methodologies and other 

issues pertaining to macroeconomic forecasting will be presented, with an emphasis on meth-

ods applicable to high-dimensional data, dynamic factor models and penalized regressions in 

particular. The fourth section provides an account of the empirical methodology employed in 

this study: this includes an outline of the simulated out-of-sample forecasting experiment, 

which is used to assess the empirical performance of the different forecasting methods, as well 

as a detailed exposition of the forecasting approaches themselves. The fifth section presents the 

data used in the forecasting experiment. Results of the empirical out-of-sample experiment are 

presented and discussed in the sixth section, while the seventh section concludes. 

2 Overview of the Finnish Producer Price Index 

The purpose of the Producer Price Index (PPI) is to track aggregate developments in the prices 

of goods manufactured within a given economic area. As the name implies, the PPI is a closely 

related to the consumer price index (CPI) in concept: while the latter is used to measure 

changes in the general price level from the point-of-view of consumers, the latter measures in-

flation from the perspective of the producers of goods. In Finland, various producer price indi-

ces are compiled by Statistics Finland, the national statistical authority, on a monthly basis. The 

most prominent among these is the Producer Price Index for Manufactured Goods (Teollisuuden 

tuottajahintaindeksi), which measures the prices of industrial goods manufactured in Finland 
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for either local consumption or for export. Other related price indices include the Export and 

Import Price Indices, which measure the prices of exported and imported goods from the 

points-of-view of domestic producers and importers, respectively. It is noteworthy that the 

aforementioned indices are exclusively concerned with the prices of manufactured goods. The 

aggregate prices of services are tracked separately by the Producer Price Indices for Services, 

which consider the prices of services offered to both businesses and consumers alike on a quar-

terly basis. The Price Index for Manufactured Goods, which will be specifically referred to as 

the Finnish PPI throughout the paper, is the primary measure of interest in the present study. 

A brief overview of this index, based on  Statistics Finland (2020), will be provided next. 

The PPI has many general applications. Perhaps most prominent is its use as a deflator in vari-

ous aggregate output statistics, where the price index is used to convert nominal quantities into 

real quantities. Owing to its relatively fast publication schedule, the PPI is also useful as an in-

dicator of macroeconomic circumstances: systematic changes in producer prices may antici-

pate changes in consumer price inflation as well as signal changes in business cycle conditions. 

More business-oriented applications include the possibility of using good-specific subindices of 

the PPI as reference terms in long-term contracts. Tying the contract price to a reference index 

insures both suppliers and buyers to unexpected changes in the general price level relevant to 

the object of the contract.  

As an aggregate price index, the Finnish PPI is constructed based on the prices of individual 

goods. Goods featured in the index are classified using the European Classification of Products 

by Activity (CPA), which assigns individual goods to categories based on common attributes 

among the goods. The CPA features a hierarchical structure, which allows goods to be aggre-

gated at different levels of detail. The basic units of the Finnish PPI are goods categories identi-

fied at the most accurate level of the classification: the main index is formed from subindices 

corresponding to each category according to the Laspeyres index formula. 

The PPI considers a majority of goods production in Finland: the featured categories are chosen 

in the order of their prevalence in terms of annual production, so that their combined produc-

tion covers around 80% of the value of annual industrial production at the national level. As of 

2018, the PPI includes over 600 individual goods categories. The share of annual production 

also determines the weight of each goods category in the calculation of the overall index. To 

maintain the correspondence of the price index with the structure of industrial production over 

time, the weights require regular updating. Prior to 2019, the weights were updated every five 
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years to coincide with the change of the base year of the index. Since then, a more frequent 

updating regime has been adopted, in which the weights as well as the composition of the index 

is updated annually to improve its representativeness. Owing to this, the base year of the index 

also implicitly changes annually, while the explicit base year of the index is still changed only 

quinquennially. To maintain commonality across years, the index is formed by chaining to-

gether these annual indices, that is, by extrapolating changes in the updated index to the earlier 

one (for details, see, Statistics Finland 2020, 25–26). 

The price index pertaining to each individual goods category is based on a representative sam-

ple of prices of goods belonging to a given category. The price information is primarily collected 

directly from the manufacturers themselves and are tracked over time using monthly electronic 

surveys. That is, the same firms report the prices for the same products, usually each month. As 

of 2018, the sample underlying the PPI comprises the prices of over 3000 individual products, 

which are aggregated to form good-specific indices and further aggregates.   

 The monthly data collection cycle usually starts at the end of the month to which the price 

observations pertain to and concludes around three weeks later. During this time, the gradually 

accumulating responses are screened both automatically and manually to detect potential er-

rors and anomalies. Following this, the finished data is used to calculate the indices, which are 

published around the 24th day of the following month. 

3 Macroeconomic Forecasting 

3.1 Standard Methods and the Curse of Dimensionality 

The need to deduce the developments of tomorrow and beyond by using information available 

today has given rise to a broad field of research within macroeconomics, which has produced a 

range of alternative forecasting methods. Different types of linear regression models have tra-

ditionally been the workhorses of data driven forecasting. The most basic representatives of 

these are autoregressive moving average (ARMA) models, which rely solely on the past infor-

mation of the variable to be forecasted, the target variable, to predict its future values. The dy-

namic process of the target is modeled as a linear combination of past observations and shocks 

occurring in the series. The autoregressive (AR) model is a special case and further simplifica-

tion of the former, which encompasses only a regression of the future value of the target varia-

ble on its preciding values. While the obvious appeal of such univariate models lies in their sim-

plicity of application and modest data requirements, they have also been found to provide 
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highly competitive forecasting accuracy in empirical applications. (Elliot and Timmermann 

2016, chap. 7) 

It is, however, not unlikely that forecasts could benefit from the inclusion of information in ad-

dition to that contained in the target variable itself. The vector autoregressive (VAR) model pro-

vides a convenient way to consider multiple variables in a forecasting application. The VAR ef-

fectively generalizes the AR model into a multivariate setting by considering multiple endoge-

nous variables that are allowed to simultaneously interact with one another over time. This 

enables the model to trace out complicated relationships, both direct and indirect, between the 

variables considered. Thus, the VAR model can effectively, given the appropriate choice of var-

iables, model the whole dynamic process of the data. Owing to this and its relative simplicity of 

application, the VAR model has enjoyed great popularity in forecasting and general economet-

ric modelling. (Elliot and Timmermann 2016, chap. 9) 

While VAR models provide a flexible multivariate framework, its use in macroeconomic fore-

casting may be limited by the nature of macroeconomic data, which is usually sampled at a rel-

atively low frequencies of monthly or quarterly rates. As a result, the number of historical ob-

servations available for the estimation of the model is inherently limited, which gives rise to the 

so-called curse of dimensionality. The premise of the curse lies in the lack of degrees of freedom, 

which results when there are few observations available relative to the number of unknown 

parameters in a model requiring estimation. Owing to the curse of dimensionality, coefficient 

estimates in standard models are characterized by high sampling variance, which leads to er-

ratic coefficient estimates and, ultimately, to poor forecasting performance. Moreover, increas-

ing the number of parameters beyond the number of observations makes the estimation of 

models outright infeasible using standard statistical methods, such as ordinary least squares 

(OLS). 

The most obvious way to alleviate the problem of dimensionality is by selecting a subset of the 

data of a size that can be processed by means of regular estimation methods. One way is to 

consult economic theory to choose variables that should play a relevant role in the data gener-

ating process. While, the choices of variables can be accomplished heuristically, more system-

atic ways of extracting the most relevant variables have also been developed to aid in the pro-

cess. A traditional example of the latter is the so called general-to-specific approach, which in-

volves gradually pruning down the dataset of predictor variables based on their explanatory 

power over the target variable (Elliot and Timmermann 2016, 93–96). Typically, the process 
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starts from a general model, that is, one with all possible explanatory variables, from which 

variables are gradually removed one at a time according to their explanatory power over the 

dependent variable. The process continues until a variable is encountered, whose explanatory 

power exceeds a preset threshold. The specific-to-general approach reverses the order of the 

process, starting from a model of just a single variable with variables added until the explana-

tory power of the last variable falls below the threshold. The latter approach is generally most 

useful in especially high-dimensional applications, where the initial general model may be in-

feasible to estimate (Lütkepohl 2007). 

3.2 High-Dimensional Methods 

3.2.1 Using Factors to Summarize Information 

Owing to the availability of ever-increasing numbers of economic data during the latter part of 

the last century, a need was recognized for methods that could accommodate large numbers of 

variables to take advantage of their full information content in time series modelling and fore-

casting.  

The dynamic factor model is perhaps the earliest approach to data reduction in time series to 

gain wide acceptance and one that remains prominent to this day. The basic assumption under-

lying the dynamic factor model is that observable economic variables relevant to the forecast, 

both the target and predictors, are driven by a considerably smaller number of unobservable 

underlying variables, the factors, which evolve over time according to their own dynamic pro-

cess. Under this assumption, the observable series are merely measurable manifestations this 

process. It follows that the ideal way to analyze a given series would be to model them by using 

the factors directly, instead of the multitude of variables that only act as proxies to the under-

lying processes. Moreover, given that the factors should number few relative to the observable 

variables, their use in modelling would circumvent the curse of dimensionality that inhibits the 

use of standard estimation techniques. 

The principal challenge pertaining to the use of common factors is the fact that they cannot be 

observed directly. They can, however, be estimated, and to this end various techniques have 

been proposed over the years. Foremost among these is the method proposed by Stock and 

Watson (2002a, 2002b), which is based on principal components analysis. Specifically, the factor 

estimates are recovered as the largest principal components extracted from the panel of pre-

dictor variables. The use of principal components as a tool for dimension reduction traces its 
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roots to cross-sectional applications. In these applications the efficacy of principal components 

for estimating the underlying factors had traditionally relied on the assumption that the ob-

servable variables were both cross-sectionally and serially uncorrelated, giving rise to so-called 

exact factor models. While this assumption can be supported in cross-sectional settings, it is 

hardly the case in time series contexts. However, Stock and Watson (2002a) show that the prin-

cipal components methodology can be used to construct consistent estimators for the underly-

ing factors even in the presence of serial correlation and weak cross-correlation among the ob-

servable variables. In this case, the factor model is said to be approximate as opposed to the 

exact non-dependent models. This consistency result is obtained as the both the number of pre-

dictor series used for estimation and the number of observations tend to infinity. Owing to this 

result in double asymptotics, the principal components approach can be thought of as effec-

tively turning the curse of dimensionality into an outright blessing. That is, the estimates of the 

underlying factors and, by extension, the accuracy of forecasts based on them could actually be 

improved by expanding the set of predictors. Moreover, Stock and Watson (2002a) show that, 

under general conditions, the estimated factors can be used in a forecasting equation in place 

of the actual unobserved factors to yield consistent estimates using standard methods. 

Since this inaugural work, interest in the dynamic factor framework has spurred the develop-

ment of various alternative methods to estimate the factors for use in time series forecasting. 

These include the dynamic principal components estimator of Forni et al. (2005), the maximum 

likelihood estimator of Doz, Giannone, and Reichlin (2011), among others. While the alternative 

methods have been shown to provide some gains in forecasting accuracy over the static princi-

pal components estimator (Forni et al. 2005; Eickmeier and Ziegler 2008), the practical benefits 

of the more elaborate methods appear to be highly dependent on specific application and are 

typically marginal (see, e.g., Smeekes and Wijler 2018). 

The ability of the factor framework to provide improvements in forecasting accuracy relative 

to low-dimensional methods has been showcased using real data in a number of empirical ex-

periments. These include the inaugural papers by Stock and Watson (2002a, 2002b), in which 

the authors apply variations of the factor model to forecasting different US macroeconomic var-

iables. Others include the study of Artis, Banerjee, and Marcellino (2005) on forecasting UK 

variables and Wang (2009), who compares the performance of factor and structural DSGE mod-

els in forecasting US output and inflation, only to name a few. Smeekes and Wijler (2018) 
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provide a more recent comparison of a range of different factor estimation methods, as well as 

other forecasting methods, in forecasting various US macroeconomic variables. 

While the reported results are generally favourable to the factor models, there is also a great 

deal of variation involved: depending on the target variable as well as other circumstances, such 

as the country or period considered, the benefits of factor models can range from considerable 

to non-existent. This issue is conveniently showcased in the meta-study of Eickmeier and 

Ziegler (2008), in which the results of a large number of both published and unpublished em-

pirical studies examining the performance of factor models in forecasting output and inflation 

are summarized. Their findings suggest that the factor models outperform low-dimensional 

benchmarks on average in terms of both target variables, but only somewhat marginally so, 

with both inferior and superior outcomes commonly encountered. Moreover, they find evi-

dence of systematic variation in the geographic performance of the models. For example, the 

factor models appear to provide better output forecasts for the US than the euro area, while 

opposite applies for inflation forecasts.  

The aforementioned results highlight the fact that, despite its potential, there is no guarantee 

that the factor framework can yield improvements over simpler alternatives in forecasting. 

While forecast failure may be caused by the fact that a given set of predictors is simply not 

informative regarding the future developments of certain target variables, another possibility 

is that the factor approach itself may be ill suited to extract relevant information from the pre-

dictors in some circumstances.  

Specifically, the factor approach has been found to be sensitive to the composition of the data 

used for forecasting. While asymptotic results imply that increasing the number of predictors 

can be used to improve factor estimation, the practical utility of this notion with regards to 

forecasting performance relies profoundly on the assumption that the predictors and the target 

variable are indeed determined by a common underlying factor process. Furthermore, even if 

the common factor assumption is satisfied, the contribution of additional predictors also de-

pends on their quality both in absolute terms and relative to other predictors. Specifically, pre-

dictors may be noisy, in the sense that the variation in their observed series is dominated by a 

random error term, rather than the common factor process, or they can be cross-correlated, in 

the sense that the errors of individual predictors are highly correlated with each other. Boivin 

and Ng (2006) show that adding such poor predictors to the set used for factor extraction can 

actually deteriorate the accuracy of the estimates. Moreover, they show that the forecasting 
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performance of the factor model can be poor if the set of predictors is dominated by variables 

that do not share the common factors with the target variable. The authors refer to this issue 

as oversampling. These results highlight the sensitivity of the factor framework to assumptions 

regarding model variables and their interrelations.  

To counter the issues above in practice, Boivin and Ng (2006) propose various procedures to 

aid in the preselection of variables prior to factor extraction and show they can be useful in 

improving the forecasting accuracy of the factor model. These conclusions are also echoed by 

Caggiano, Kapetanios, and Labhard (2011). An alternative way of dealing with oversampling in 

particular is proposed by Bai and Ng (2008), who show that the performance of factor forecasts 

could be improved by preselecting predictors either by an algorithmic selection procedure 

based on regressions between the target and individual variables or by using variable selection 

based on penalized regression methods. Similar conclusions using these so-called targeted pre-

dictors, are reached by Eickmeier and Ng (2011), although some, for example, Medeiros and 

Vasconcelos (2016), have encountered less conclusive evidence. 

Another option is to consider alternative forecasting methods altogether. The continued prolif-

eration of large economic datasets has given rise to a number of competing methods capable of 

leveraging high-dimensional information. One such alternative, which has been found to be 

more robust than the factor models to features of the underlying data, is the group of penalized 

regressions. 

3.2.2 Leveraging the Bias-Variance Trade-Off Using Penalized Methods 

Various machine learning methods have been prominently utilized for prediction in non-de-

pendent settings for a long time. Although the definition is generally vague, machine learning 

can be thought of as encompassing methods that rely on numerical procedures to solve a given 

optimization problem. This in contrast to, say, regular OLS estimation, which, owing to the ex-

istence of an explicit closed form solution solves the linear optimization problem by analytical 

means rather than procedural trial and error. Owing to pioneering empirical results and some 

theoretical advances, machine learning methods have relatively recently begun to make their 

way into economic forecasting applications as well (Masini, Medeiros, and Mendes 2021). 

Machine learning approaches can be further divided into groups of linear and nonlinear meth-

ods. So-called penalized regression methods, also known as regularized regressions, are the 

foremost representatives of the class of linear methods. The underlying model pertaining to 
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these methods is a linear regression, which characterizes a linear relationship between a num-

ber of independent covariates and the target variable. Thus, it is worth underlining that penal-

ized regressions do not by themselves entail a distinctive model, but rather provide an alterna-

tive method for the estimation of linear models with distinct benefits in comparison to standard 

methods.  

While both penalized and OLS methods obtain coefficient estimates by minimizing the sum of 

squared residuals of the fitted model, the former methods perform optimization subject to a 

restriction on the regression coefficients. This is accomplished by way of including an addi-

tional term in the objective function, which levies a penalty on the loss function for large coef-

ficient values. The presence of this penalty function causes the coefficient estimates produced 

by the penalized methods to be closer to zero, or shrunk relative to the corresponding OLS es-

timates. Owing to this, the penalized methods are also commonly referred to as shrinkage meth-

ods. While shrinkage introduces bias into the estimator, it also reduces its variance relative to 

the OLS estimator. That is, while the predictions produced by penalized methods may be 

slightly off target on average, the dispersion of the predictions tends to be smaller, which will, 

ideally, result in overall smaller prediction errors. This feature represents the main attraction 

of penalized methods with regards to high-dimensional prediction and balancing the trade-off 

between bias and variance is crucial to extract the most benefit out of the methods. 

Different variations of the general penalized regression framework are further distinguished 

by the form of the penalty function that is used to constrain the linear optimization problem. 

Numerous alternatives have been suggested over the years to tackle specific estimation chal-

lenges and some of the most prominent methods applied to macroeconomic forecasting will be 

briefly discussed here. Two of the most fundamental representatives are the Ridge and Lasso 

estimators. The Ridge estimator, first proposed by Hoerl and Kennard (1970) was originally 

developed specifically to counter the detrimental effects of collinear covariates in linear regres-

sions. While the Ridge can shrink the coefficients of each covariate arbitrarily close to zero, it 

cannot, notwithstanding pure chance, set them to exactly zero, thus making it incapable of out-

right variable selection even if some explanatory variables were truly irrelevant. The Lasso, 

short for ‘Least Absolute Shrinkage and Selection Operator’ (Tibshirani 1996) was developed 

specifically to address this deficiency. As its name implies, the Lasso can simultaneously per-

form variable selection in addition to shrinkage by truncating the coefficient estimates of irrel-

evant variables at exactly zero, thus being able to identify sparsity among the predictors. While 
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it is not clear a priori which methodology provides better results in term of pure predictive 

performance, the variable selection property offers a distinctive advantage in terms of inter-

pretability. 

Ideally, a process combining model selection and estimation should not only be able to recog-

nize the correct variables but also estimate their coefficients effectively. In this case, efficiency 

means that the coefficient estimates of the process should converge to the OLS estimates recov-

ered from a regression that involves only the relevant variables. This dual requirement is re-

ferred to as the oracle property. Recognizing the deficiency of the regular Lasso in this regard, 

Zou (2006) proposed the Adaptive Lasso to provide a penalized estimator with the oracle prop-

erty. The Adaptive Lasso essentially augments the Lasso penalty by applying initial weights to 

the coefficients in the penalty function, which allows for varying amounts of shrinkage to be 

applied to different variables to enhance estimation results. 

The Elastic Net was proposed by Zou and Hastie (2005) to address another shortcoming of the 

Lasso regression, namely, the fact that despite being able to handle sets of covariates larger 

than the number of observations, the latter can assign non-zero values only up to a number of 

variables equal to the number of observations. The Elastic Net circumvents this restriction by 

combining the penalties of the Lasso and Ridge estimators. Adaptive extensions, which combine 

features of the Adaptive Lasso and Elastic Net, have also been explored in the literature (e.g., 

Smeekes and Wijler 2018). 

The Group Lasso is yet another modification of the basic Lasso. As the name implies, the group 

Lasso penalty, first proposed by Yuan and Lin (2006), encourages the selection of groups of 

related variables to either be included or excluded from the regression together. The variables 

are assigned to groups prior to estimation and can be based on prior knowledge such as eco-

nomical relationship. The main attraction of the Group Lasso penalty is to enhance interpreta-

bility of the estimated model in comparison to the regular Lasso, which may exhibit inconsistent 

variable selection behavior within groups composed of similar predictors (Li and Chen 2014). 

Theoretical research on the properties of penalized regressions in time series contexts is, so 

far, sparse and covers mostly only a few specific methods, with most results pertaining to the 

model selection consistency and oracle properties of the Lasso type estimators, the Lasso and 

Adaptive Lasso, in particular. A recent summary of these results is provided by Masini, 

Medeiros, and Mendes (2021). In a nutshell, research so far indicates that the favorable 
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properties of the Lasso and Adaptive Lasso in independent settings tend to carry over to time 

series applications as well.  

Among the most substantial results with respect to high-dimensional forecasting applications 

are presented by Medeiros and Mendes (2016), who examine the properties of the Adaptive 

Lasso in estimating very general time series regressions, including models featuring numerous 

exogenous variables as well as their respective lags. Specifically, they show that the estimator 

retains the oracle property even as the number of candidate variables exceeds the number of 

observations, and the predictor series are characterized by conditionally heteroscedastic, 

highly correlated and non-normal error terms. They furthermore reaffirm their analytical re-

sults for finite samples by conducting a Monte Carlo experiment, in which estimation perfor-

mance is tested on different time series data generating processes and sample sizes. 

The lack of theoretical foundations has not, however, hindered the empirical application of pe-

nalized regressions in macroeconomic forecasting. Several studies have so far reported encour-

aging results regarding the forecasting prowess of penalized methods in combination with 

high-dimensional data. Given the prevalent status of the factor model, many studies also pro-

vide direct comparisons of the respective methods in different contexts. These include 

Eickmeier and Ng (2011), who apply the Ridge and Elastic Net to forecast output in New Zea-

land. Examples of forecasting various US macroeconomic variables include Li and Chen (2014), 

who use the Lasso, Elastic Net and Group Lasso; Medeiros and Mendes (2016) and Medeiros 

and Vasconcelos (2016) who apply versions of Lasso and Adaptive Lasso; and Smeekes and 

Wijler (2018), who utilize the Ridge, Lasso and Elastic Net, as well as adaptive variations of the 

latter two. Overall, the results indicate that the penalized methods, in general, offer a viable 

alternative to the factor models, with performance usually more or less on par with the latter. 

There is however some variation in the results, with the factor models providing superior re-

sults for some combinations of target and forecast horizon, while penalized regressions prove 

superior for others. Moreover, there is also similar variation among the different penalized 

methods. 

While the literature provides little in the way of conclusive evidence in favor of either penalized 

or factor models, some of them manage to highlight the specific advantages of penalized meth-

ods with respect to factor models and where they might arise from. Eickmeier and Ng (2011) 

examine the effects of using different sets of predictors, either national, international variables 

or both, for forecasting output in New Zealand. They find that the performance of factor 
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forecasts generally deteriorates once the set of predictors is augmented with the international 

variables. This implies that the signal of the more relevant national variables may be crowded 

out by the less relevant international variables in factor estimation, which is consistent with 

the notion of oversampling raised by Boivin and Ng (2006). In contrast, the penalized methods 

considered, the Ridge and Elastic Net regressions, appear to be far less affected by the addition 

of potentially irrelevant data. 

Smeekes and Wijler (2018) explicitly shed light on the implications of different data generating 

processes on the performance of factor models and penalized regressions respectively. As the 

data generating processes of empirical variables are, without exception, unknown, the authors 

conduct a series of Monte Carlo experiments, in which the respective methods are used to fore-

cast simulated time series based on either an underlying factor process or a sparse subset of 

the observable variables directly. Their results indicate that, while the factor models have a 

slight edge in forecasting the former types of processes, the penalized models have a consider-

able advantage in forecasting the latter. Their subsequent empirical assessment of the methods 

in forecasting different US macroeconomic variables is, however, not as conclusive. In particu-

lar, they note that factor models tend to generally dominate penalized models for forecasting 

real variables, but the field is more even for nominal variables.  

Overall, the studies discussed up to this point reflect the general difficulty of drawing conclu-

sions regarding the superiority or inferiority of any particular forecasting approaches based on 

empirical assessments: the relative performance of given approaches depends profoundly on 

the features of the research design, with different predictors, targets and overall circumstances 

often leading to different outcomes regarding forecasting performance. This is most evident in 

large-scale forecasting experiments, such as the formidable study of Kim and Swanson (2014) 

that features dozens of different forecasting specifications, including factor models and penal-

ized regressions, as well as other methods and their combinations. With eleven target variables 

considered in total, the choice of optimal model differs considerably between targets as well as 

across different forecasting horizons. Results such as this underline the fact that finding an op-

timal method among many candidates is a fundamentally empirical question that can generally 

be answered only on a case-by-case basis.  

The empirical literature results does, however, indicate that both factor models and penalized 

regressions offer viable alternatives for forecasting with high-dimensional data. In addition, 

they indicate that these methods could complement each other by providing supplementary 
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features to account for the uncertainty involved in the data generating process of the target 

variable. For these reasons, the factor model and a selection of different penalized methods 

have been chosen as the basis of the present study. While this choice is necessary for practical 

reasons, it inevitably leaves some prominent alternative methods outside of consideration. The 

remainder of this subsection is devoted to a brief overview of some of these methods.  

3.2.3 Other High-Dimensional Methods 

The class of nonlinear machine learning methods encompasses a range of distinctive ap-

proaches that aim to estimate and approximate nonlinear functions by minimizing a loss func-

tion by way of different sequential algorithms. As the name implies, the main attraction of these 

methods lies in their ability to account for nonlinear relationships among predictor and target 

variables, which sets them apart from the penalized methods, whose alternatives for fitting the 

observed data are strictly limited to the linear domain. Specifically, this means that the re-

sponse of the target variable to a change in one variable can depend on the values of other pre-

dictors, which is not an unlikely possibility in either cross-sectional or time series contexts. 

Specific methods commonly applied to time series forecasting include neural networks and dif-

ferent ensemble methods based on regression trees. A thorough treatment of these and other 

machine learning methods can be found in Hastie, Tibshirani, and Friedman (2009). Recent ex-

amples of the application of these methods to macroeconomic forecasting includes Maehashi 

and Shintani (2020), who apply nonlinear algortihms, along with penalized regressions and 

factor models to a selection of Japanese macroeconomic variables. While the results vary by 

target variable, the authors find that, in general, the nonlinear methods tend to be particularly 

beneficial at longer forecasting horizons. 

The idea of combining, or pooling individual forecasts to improve accuracy has been an endur-

ing idea in the literature. The foremost theoretical advantage of forecast combinations lies in 

the notion that averaging over a number of unbiased forecasts can be used to reduce the vari-

ance of the overall forecast relative to any single forecasts. Another potential benefit arises from 

the fact that combinations may be more robust to structural shocks occurring in the target se-

ries than any of the underlying individual forecast. Due to structural shocks, different individual 

models may provide superior forecasts during different periods. However, because it is only 

possible to identify such models after the fact, combinations of numerous candidate models 

may be useful in providing robustness for structural shocks in advance. To date, numerous dif-

ferent methods have been devised to this end, ranging from taking simple means or medians of 
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to applying time-varying weights based on past forecasting performance to combine individual 

models. (Elliot and Timmermann 2016, chap. 14) 

Forecast combinations can be applied regardless of the type of model underlying the individual 

component forecasts. For this reason, it is not unusual that combinations are included in many 

comprehensive empirical experiments, as they are straightforward to implement once there is 

already a considerable number of individual forecasts available. While combining models that 

are already quite complicated and able to aggregate high dimensional data by themselves may 

seem superfluous, they have been, nonetheless, found to occasionally improve results in these 

cases as well (e.g, Li and Chen 2014; Kim and Swanson 2014).  

Perhaps more organic applications of forecast combinations to the high-dimensional setting are 

those, in which large numbers of individual low dimensional models are aggregated to leverage 

expansive datasets. An example is found in Stock and Watson (2004), who apply different tech-

niques to combine the forecasts of individual single predictor autoregressive distributed lag 

(ARDL) regressions. The ARDL is an extension of the basic AR framework, where lags of exoge-

nous variables are included in the regression along with the lags of the target variable. They 

find that such combinations tend to outperform competing dynamic factor models in a forecast-

ing exercise considering US output.  

A distinct high-dimensional forecasting approach implicitly encompassing forecast combina-

tions is the Complete Subset Regression (CSR) proposed by Elliott, Gargano, and Timmermann 

(2013). The basic idea behind CSR is to regress the target variable individually on every possi-

ble subset of a given size extracted from a set of predictors in turn. The ultimate forecast is 

obtained by averaging over each of the subset forecasts. While leveraging fairly basic linear 

regression methods at the grassroot level, the repetitive algorithmic nature and ensuing com-

putational demand makes CSR essentially another representative of machine learning methods. 

The drawback of this approach is that, even if the size of the subset is limited, the number of 

possible combinations and, hence, number of underlying forecast models increases rapidly with 

the number of candidate predictors, which makes the procedure computationally demanding 

and even practically infeasible for particularly large datasets unless some preselection of the 

candidate predictors is carried out in advance. Favorable results regarding the empirical per-

formance of the CSR approach in macroeconomic forecasting have been reported by Elliott, 

Gargano, and Timmermann (2015) for US variables, and Garcia, Medeiros, and Vasconcelos 

(2017) for Brazilian inflation. 
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The idea of using Bayesian estimation to overcome the limitations of the VAR framework in 

high-dimensional applications has been suggested by Bańbura, Giannone, and Reichlin (2010). 

They show that by imposing shrinkage on the model coefficients by way of choosing a suitable 

prior distribution, which reduces the coefficients of irrelevant variables to zero, the VAR frame-

work can be extended to take advantage of as many as hundreds of endogenous variables along 

with their lags. Favorable forecasting results have also been reported by Koop (2013), who 

finds that different variations of the Bayesian VAR framework to be generally superior to com-

peting factor models in forecasting US macroeconomic variables. On the other hand, Carriero, 

Galvão, and Kapetanios (2019) find that large-scale Bayesian VARs are on average outdone by 

both factor models as well as combinations of simple single predictor models in an output and 

inflation forecasting exercise encompassing multiple countries. 

3.3 Additional Considerations for Forecasting 

3.3.1 Nowcasting 

Traditionally, forecasting has been predominantly concerned with predicting the strictly future 

values of given variables. Relatively recently, nowcasting, the objective of inferring the current 

values of variables has also received increasing attention in the macroeconomic forecasting lit-

erature. While assessing the current state of an economic variable may seem like a trivial task, 

the relevance of this issue can be justified based on the typically lengthy publication lags in-

volved in producing macroeconomic time series. This issue was already alluded to in the case 

of the Finnish PPI, which is published close to a month following the end of the relevant time-

period, but the issue is more pronounced for other variables such as the GDP, which are usually 

published at quarterly frequencies and with lags of several months. Such a considerable gap 

between the start of the period of interest and the eventual publication of the data opens up the 

possibility of using other, more frequent and more timely sources of information regarding the 

current period to gain an indication of the concurrent evolution of the variable of interest.  

Although nothing prevents the use of regular forecasting models, there are some practical is-

sues specific to nowcasting, which have warranted the development of more specialized meth-

ods specifically for the task. These challenges include missing observations at the end of the 

panel of predictors, which are due to disparate publication lags among the variables, and fitting 

together data observed at widely different frequencies (Elliot and Timmermann 2016, 498–

499). The former issue, commonly referred to as the ragged edge problem, causes difficulty for 
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typical time series models, as they require the observations of different variables to be tempo-

rally aligned and absent of missing observations. One solution to the latter problem is proposed 

by Giannone, Reichlin, and Small (2008), who use methods based on Kalman filtering to esti-

mate dynamic factors based on partially observed time series. They show that their approach 

is able to provide increasingly accurate nowcasts of the US GDP as monthly data gradually ac-

cumulates during the quarter.  

The second issue arises from the fact that timelier predictors are typically observed at higher 

frequencies than the slow-moving target variable, and one might wish to include lags of the 

predictors in the model. While the low-frequency target can be regressed on the lags of the 

high-frequency predictors directly, this may require the estimation of a large number of param-

eters in case the temporal mismatch between the variables is great, which can, again, lead to 

degrees of freedom problems. For example, every lag of a quarterly target variable corresponds 

to three lags of a monthly predictor, and the contrast is even starker for combinations of 

monthly and daily variables. One solution to this problem is the mixed data sampling regression 

(MIDAS) originally proposed by Ghysels, Sinko, and Valkanov (2007). The idea of the MIDAS 

approach is to compress information contained in the lags of high frequency variables by ap-

proximating the lag structure with a small-order polynomial function, which reduces the num-

ber of parameters requiring estimation compared to estimating the coefficients of the high fre-

quency lags directly. This makes the MIDAS regression essentially another form of dimension 

reduction, albeit from a slightly different viewpoint. Applications of the MIDAS in nowcasting 

include Heinisch and Scheufele (2017), who use weighted combinations of a number of single 

equation MIDAS and ARDL models based on monthly and quarterly predictors, respectively, to 

predict German output. 

3.3.2 Estimation Window 

A practical question concerning forecasting is, how much data should be used to estimate the 

models. The intuitively obvious answer to the question would be ‘as much as possible,’ but the 

matter is complicated by the potential instability of time series processes over time. Most fre-

quently, either a rolling or recursive estimation window is used in the empirical literature. In 

the rolling window approach, the size of the estimation sample is kept constant by removing 

earlier observations as the forecast origin, the point at which a given forecasts is made, moves 

forward. In the recursive, or expanding window setup, the number of observations used for 
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estimation increases over time, as all previous observations are preserved in the estimation 

sample, while new ones are added. 

There are theoretical advantages to both approaches. The rolling window can be thought as 

being more immune to errors arising from structural breaks in the series as the weight of ear-

lier observations is gradually diminished by the rolling window. In the absence of structural 

breaks, the recursive window approach should yield benefits arising from improved estimation 

performance over time as the sample size grows. However, even in the presence of structural 

breaks, the benefits arising from consistency are not unlikely to outweigh the effect of improved 

resilience provided by the rolling window. (Elliot and Timmermann 2016, 376–379)  

Owing to these considerations the recursive window has traditionally been favored in macroe-

conomic forecasting, while the rolling window has been more prevalent in finance, where rele-

vant data is typically reported at a much higher frequency (Clark and McCracken 2009). How-

ever, more recently, the rolling windows have become more popular in macroeconomics as 

well. In practice, most empirical studies in macroeconomic forecasting tend to resort to either 

approach without much elaboration. Moreover, in the case of rolling windows, the length of the 

window is usually set to a somewhat arbitrary number of in-sample periods. For example, 

Smeekes and Wijler (2018) adopt a rolling window approach with 10 years’ worth of observa-

tions for their monthly forecasting experiment. The formidable forecasting experiment of Kim 

and Swanson (2014) touches upon the subject of windowing schemes more explicitly, as the 

authors compare the performance of different forecast models across both rolling and recur-

sive estimation windows. Their results indicate that, although the recursive window scheme 

prevails on average, neither approach clearly dominates the other.  

Other, less frequently used alternatives include using exponentially declining weights to grad-

ually discount past observations as the forecast origin moves forward. In contrast to the strictly 

discrete nature of the rolling and recursive window schemes, all observations are retained in 

the sample, but more recent observations have more influence over the outcome of estimation 

(Elliot and Timmermann 2016, 379). More elaborate alternatives include using combinations 

of rolling and recursive estimation windows. One example of such an approach is the method 

proposed by Clark and McCracken (2009), in which a convex combination of models estimated 

from both rolling and recursive windows is constructed based on an estimated structural break 

in the time series.  
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3.3.3 Contemporaneous Aggregation 

A further possibility for forecasting arises from the fact that most macroeconomic time series 

are the result of some form of aggregation. That is, the ultimate series are the result of numer-

ous sub-series summed together using some weighting scheme or the other. The situation with 

price indices is obvious: the Finnish PPI, for example, considers the price changes of hundreds 

of individual products, each of which occupies its own sub-index. These sub-indices are then 

aggregated together into gradually more general and larger indices using weights that reflect 

their prevalence in total industrial production, ultimately producing the main index. 

This notion raises a question: instead of forecasting the aggregate series directly, could fore-

casting performance be improved by forecasting individual components of the aggregate indi-

vidually and combining the forecasts afterwards using the known contemporary weights? The 

procedure described above is commonly referred to as contemporaneous aggregation. While 

forecasting a potentially large number of series individually is obviously more arduous than 

simply forecasting the aggregate in one fell swoop, the approach has some intuitively appealing 

characteristics. First, it is possible that the individual components of an aggregate series are 

uncorrelated and treating the aggregate as monolithic could leave relevant internal dynamics 

unaccounted for. Second, especially for various indices, the weighting schemes of the aggregate 

variables are subject to periodic updates. This constitutes an effective change in the data gen-

erating process of the aggregate, which is known in advance and could therefore be accounted 

for in forecasting. While the incremental changes are usually small, given the usually long spans 

of data used for estimation, they could have a non-negligible effect on forecast accuracy. Finally, 

contemporaneous aggregation can be thought of as a special case of forecast combinations, 

which implies that similar benefits in forecasting accuracy could also be attained. (Hubrich 

2005) 

Despite being outwardly appealing, empirical studies of on contemporaneous aggregation have 

produced predominantly unsatisfactory results. Hubrich (2005) finds that contemporaneous 

aggregation produces inferior results in comparison to direct forecasts for euro area inflation. 

While forecasting core inflation, that is, inflation excluding unprocessed food and energy prod-

ucts, benefits more, the improvements are only marginal. On the other hand, Moser, Rumler, 

and Scharler (2007) uncover somewhat better results for Austrian inflation, but these gains are 

nonetheless statistically insignificant. Similar conclusions are reached by Hendry and Hubrich 

(2011), who find that contemporaneous aggregation fails to improve upon forecasts of US 
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inflation. Instead, they suggest that using the component sub-indices as predictors for the ag-

gregate variable in a dynamic factor framework could represent a more viable means of lever-

aging disaggregate information in forecasting. 

4 Methodology 

This section details the methodology applied in this study. The first subsection describes the 

out-of-sample forecasting experiment, which provides the general framework to assess the per-

formance of different forecasting approaches. The second subsection provides a detailed de-

scription of these forecasting models. 

4.1 Real Time Out-of-Sample Forecasting Experiment 

The primary aim of this study is to find out, which, if any, of the models considered could be 

used to produce accurate forecasts of the Finnish PPI in the short term. This is foremost an 

empirical question, which will be investigated by way of a real-time out-of-sample forecasting 

experiment. Out-of-sample forecasting experiments are commonly used to assess the relative 

performance of different forecasting methods. The central idea in such experiments is to use 

historical data to simulate a sample of forecasts for the target variable over a given timespan in 

a realistic manner. That is, for each individual forecast, only information that would have been 

available at the forecast origin will be used to construct each forecast. Given the resulting sam-

ple of forecasts, the performance of different models with regards to each other is determined 

using measures of average accuracy. 

In this study, the main out-of-sample period ranges from December 2011 to November 2021, 

yielding a total of 120 monthly point forecasts of the Finnish PPI for each combination of model 

and forecast horizon. In addition, some alternative out-of-sample periods will be considered to 

gauge the effects of certain extraordinary events on forecasting accuracy, the COVID-19 pan-

demic in particular. 

To reflect a realistic setting, each of the models will be specified anew at each forecast origin to 

fully leverage the gradual accumulation of data. This entails not only the estimation of the fore-

cast equation itself, which gives rise to new coefficient estimates, but also the tuning of addi-

tional parameters in the respective models. Furthermore, estimation will be based on the re-

cursive, or expanding window approach. That is, all historical observations will be conserved 

in the estimation sample for consecutive periods.  
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It is worth noting that, while this experiment aims to reflect real time forecasting, it is not nec-

essarily precisely so due to two reasons. First, statistics are sometimes subject to post-publica-

tion revisions. While the historical datasets used here contain only the most up to date versions 

of the respective time series, these may be different from the data that was initially published 

and would have been used in for an actual forecast. The second reason is related to the timing 

of publication of the data. That is, the predictors have been chosen based on their current pub-

lication time relative to the PPI, so that the relevant predictors would be available at the time 

of publication of the PPI. This timing may be subject to change, and information that would be 

suitably available at this point, may not have been so in the past or may not be so in the future. 

For these reasons, experiments such as this are usually referred to as pseudo real-time experi-

ments. In this case, however, the concerns regarding revisions and timing should be small, as a 

majority of the predictors used are market-based variables, which are rarely subject to revi-

sions and are available in a timely manner relative to the PPI. 

The fact that the aggregate PPI is composed of a number of subindices based on different prod-

uct categories opens up the possibility of constructing forecasts of the overall index from fore-

casts of individual subindices, that is, by contemporaneous aggregation. While contemporane-

ous aggregation could provide some benefits by accounting for the changing weights used to 

construct the main index over time, considering the generally underwhelming results with re-

spect to contemporaneous aggregation discussed in the previous section, the added complexity 

involved in this approach is unlikely to be justified and, thus, will not be pursued in this study. 

Instead, the forecasts will be based on the aggregate index directly. 

4.1.1 Measuring Forecasting Accuracy 

Quantifying the forecasting performance of different models in forecast experiments is usually 

based on measures of aggregate error calculated over the sample of out-of-sample forecasts. 

While a multitude of different measures have been proposed to emphasize different aspects of 

forecasting accuracy (see, eg., Hyndman and Koehler, 2006), by far the most common ones used 

in macroeconomic forecasting studies are various scale dependent error measures. The most 

prominent of these are the mean absolute error (MAE), mean squared error (MSE) and root mean 

squared error (RMSE). Each of these aggregate errors measures the average deviation of the 

forecast from the realized value of the target variable. In the present study, the MAE and RMSE 

will be utilized. 
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Consider an observation of the target variable 𝑦𝑦𝑡𝑡 at time t and the respective forecast from a 

given model 𝑦𝑦�𝑡𝑡. The forecast error at time t is then defined as 𝑒𝑒𝑡𝑡 = 𝑦𝑦�𝑡𝑡 − 𝑦𝑦𝑡𝑡. The out-of-sample 

experiment produces a sample of forecast errors 𝑒𝑒 = (𝑒𝑒1, … , 𝑒𝑒𝑇𝑇)′ for the particular model. The 

MAE is defined as the average of absolute forecast errors: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇−1 � |𝑒𝑒𝑡𝑡|
𝑇𝑇

𝑡𝑡=1
. 

Correspondingly, the RMSE is defined as the square root of the average squared forecast errors, 

that is: 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = √𝑀𝑀𝑅𝑅𝑀𝑀 = �𝑇𝑇−1 � 𝑒𝑒𝑡𝑡
2

𝑇𝑇

𝑡𝑡=1
. 

While both MAE and RMSE essentially measure the dispersion of the forecasts from the realized 

values, there is a subtle difference between the measures. Due to the squaring of individual 

errors, the RMSE gives a stronger emphasis to large deviations compared to the MAE. That is, 

the RMSE punishes relatively larger errors more than small ones (Verbeek 2017, 83). This is 

obviously a feature shared with the MSE, which is possibly the most commonly encountered 

measure of error in the forecasting literature. In this case, RMSE is chosen over the latter, be-

cause it is reported on the same scale as the target variable, which makes the results more 

straightforward to interpret. 

4.1.2 Statistical Significance of Forecasting Results 

Differences in observed forecast accuracy using a finite sample can occur due to sampling var-

iation instead of true differences in underlying performance. Tests of statistical significance can 

be used to lend further credence to conclusions based on these observations. The most com-

monly used means of assessing relative forecasting performance in the literature is the test of 

equal predictive accuracy proposed by Diebold and Mariano (1995). The Diebold-Mariano 

(DM) test provides a pairwise comparison of two series of forecasts based solely on the differ-

ences in their squared forecast errors. Thus, the DM test is agnostic with respect to the specific 

features of the models: only information on individual prediction errors is required to conduct 

the test. While this makes the test easy to apply, it also follows that one must take care in inter-

preting the results. As noted by Diebold (2015), the DM test is fundamentally a test of the accu-

racy of forecasts, not of forecast models. As such, the test answers the question of whether the 

historical performance of the respective forecasts would have been significantly different from 
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each other, which does not guarantee that the relative performance will necessary carry over 

to the future. Despite this shortcoming, the DM test will be utilized in this study due to its prev-

alence in macroeconomic forecasting literature.  

The specific version of the DM test used here includes the small sample modification proposed 

by Harvey, Leybourne, and Newbold (1997). Consider two series of 𝑇𝑇 ℎ-step-ahead forecast 

errors from different models, 𝑒𝑒1 = �𝑒𝑒1,1, … 𝑒𝑒1,𝑇𝑇�′ and 𝑒𝑒2 = �𝑒𝑒2,1, … 𝑒𝑒2,𝑇𝑇�′ respectively. Further-

more, defining the squared forecasting error differential as 𝑑𝑑𝑡𝑡 = 𝑒𝑒1,𝑡𝑡
2 − 𝑒𝑒2,𝑡𝑡

2  and the sample mean 

of the error differential as �̅�𝑑, the standard DM test statistic is expressed as 

𝐷𝐷𝑀𝑀 =
�̅�𝑑

𝑇𝑇−1�𝛾𝛾�0 + 2 ∑ 𝛾𝛾�𝑘𝑘
ℎ−1
𝑘𝑘=1

, 

where 𝛾𝛾�𝑘𝑘 is the kth sample autocovariance of the error differential 𝑑𝑑𝑡𝑡: 

𝛾𝛾�𝑘𝑘 = 𝑇𝑇−1 � (𝑑𝑑𝑡𝑡 − �̅�𝑑)(𝑑𝑑𝑡𝑡−𝑘𝑘 − �̅�𝑑)
𝑇𝑇

𝑡𝑡=𝑘𝑘+1
. 

Under the null hypothesis of equal predictive ability, the original DM statistic follows a standard 

normal distribution. Noting that the standard test tends to reject the null too often in small 

samples, Harvey, Leybourne, and Newbold (1997) suggest a refinement of the following form 

to the statistic: 

𝐷𝐷𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐷𝐷𝑀𝑀�𝑇𝑇 + 1 − 2ℎ + 𝑇𝑇−1ℎ(ℎ − 1)
𝑇𝑇

. 

Given this rescaling, the critical values of the test are obtained from a Student’s t distribution 

with 𝑇𝑇 − 1 degrees of freedom. 

4.2 Forecasting Models 

In this section, a closer examination of the specific forecasting models utilized in this study will 

be presented. As noted above, the main models of interest encompass two distinctive ap-

proaches to forecasting with high-dimensional data: dynamic factor models and penalized re-

gressions. The dynamic factor model used is based on the approach proposed by Stock and 

Watson (2002a, 2002b), in which static estimates of the underlying dynamic factors are recov-

ered using principal components analysis. For penalized regressions, the four variations to be 

considered are the Ridge, Lasso, Elastic Net, and Adaptive Lasso estimators. In addition, a 
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hybrid model combining the variable selection properties of the Lasso estimator and the ability 

of the factor models to summarize information in large datasets, the targeted predictors ap-

proach, as originally proposed by Bai and Ng (2008) will be applied. 

Finally, two simple benchmark models will be applied to act as yardsticks for the high-dimen-

sional models. These are the random walk and univariate autoregressive models. 

4.2.1 Dynamic Factor Model 

The forecasts of the dynamic factor model used here are based on the following forecast equa-

tion: 

𝑦𝑦�𝑇𝑇+ℎ
ℎ = �̂�𝜇ℎ + � 𝛼𝛼�𝑝𝑝

ℎ𝑦𝑦𝑇𝑇+1−𝑝𝑝

𝑃𝑃

𝑝𝑝=1
+ � �̂�𝛽𝑟𝑟

ℎ𝐹𝐹�𝑟𝑟,𝑇𝑇 .
𝑅𝑅

𝑟𝑟=1
 (1) 

Here,  𝑦𝑦�𝑇𝑇+ℎ
ℎ  is the ℎ-step-ahead forecast of the target variable and 𝐹𝐹�𝑟𝑟,𝑇𝑇 is an estimate of the 𝑟𝑟th 

static factor, whereas �̂�𝜇ℎ is the estimated intercept of the model, and 𝛼𝛼�𝑝𝑝
ℎ and �̂�𝛽𝑟𝑟

ℎ are coefficient 

estimates pertaining to the 𝑝𝑝th lag of the target variable and 𝑟𝑟th factor estimate respectively.  

A notable feature of the forecast equation is the way in which multistep forecasts are obtained. 

Specifically, a distinct model is estimated for each forecast horizon individually, which is em-

phasized by the superscript ℎ in the parameters of the model. This approach is referred to as 

direct multistep forecasting, which is in contrast to the iterative approach typically used in AR 

and VAR models, where the one-step-ahead forecasts are used iteratively as inputs to the model 

to construct forecasts for subsequent horizons.  

Another noteworthy point is that the factors enter in the forecast model only in the form of 

estimates owing to their de facto unobservable nature. While the forecasting model itself is es-

timated by OLS, this step is preceded by the estimation of the factors. Before addressing the 

issue of factor estimation, it is instructive to demonstrate the general assumptions regarding 

the dynamic factor model in closer detail. The following exposition is based on Elliot and 

Timmermann (2016, chap. 10). The central assumption underlying the factor approach is that 

the data generating process of each observable, including the target variable and each predictor 

𝑥𝑥𝑖𝑖,𝑡𝑡 , is characterized as a combination of a factor-driven common component and an idiosyn-

cratic component as follows: 

𝑥𝑥𝑖𝑖,𝑡𝑡 = 𝜆𝜆𝑖𝑖(𝐿𝐿)′𝑓𝑓𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 . (2) 
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Here, 𝜆𝜆𝑖𝑖(𝐿𝐿) is a 𝑄𝑄-dimensional vector of lag polynomials and 𝑓𝑓𝑡𝑡 is a 𝑄𝑄-dimensional vector of 

dynamic factors, which together form the common component of 𝑥𝑥𝑖𝑖,𝑡𝑡 . The common component 

is so named because it transmits the influence of the common factors to each observable varia-

ble. The extent to which the factors affect each observable variable is determined by the varia-

ble-specific dynamic factor loadings contained in 𝜆𝜆𝑖𝑖(𝐿𝐿). On the other hand, 𝜀𝜀𝑖𝑖,𝑡𝑡 is a random in-

novation term, which represents the idiosyncratic component. While the idiosyncratic compo-

nent is unique to each variable, it can be cross-correlated with the idiosyncratic components of 

other variables. Moreover, it can also be serially correlated.  

The dynamic factors themselves are determined by a vector autoregressive process of the fol-

lowing form: 

𝑓𝑓𝑡𝑡 = 𝛹𝛹(𝐿𝐿)𝑓𝑓𝑡𝑡−1 + 𝜂𝜂𝑡𝑡 . 

Here, 𝛹𝛹(𝐿𝐿) is 𝑄𝑄 × 𝑄𝑄 matrix of lag polynomials, which determine the interactions of the factors 

and their lags among themselves, whereas 𝜂𝜂𝑡𝑡 is a vector of 𝑄𝑄 random innovations. Under these 

assumptions, the dynamics of the observable variables ultimately arise from two primary 

sources: the idiosyncratic components of the variables themselves and the innovations of the 

factor process. Under these assumptions, the observable variable can alternatively be ex-

pressed in terms of lagged values of itself and the dynamic factors: 

𝑥𝑥𝑖𝑖,𝑡𝑡 = 𝛼𝛼(𝐿𝐿)𝑥𝑥𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽𝑓𝑓(𝐿𝐿)′𝑓𝑓𝑡𝑡−1 + 𝑢𝑢𝑖𝑖,𝑡𝑡 . (3) 

Here, 𝑢𝑢𝑖𝑖,𝑡𝑡 is another idiosyncratic term that, this time, collects the effects of all of the unpredict-

able shocks affecting 𝑥𝑥𝑖𝑖,𝑡𝑡 that arise from both 𝜀𝜀𝑖𝑖,𝑡𝑡 and 𝜂𝜂𝑡𝑡 (for details, see, Elliot and Timmermann 

2016, 222). The above equation casts the factor process in a form that could already be used 

for forecasting. However, the inclusion of lagged factors prevents the use of the principal com-

ponents approach, which is a fundamentally cross-sectional procedure, to estimate the factors. 

As long as the lag-order of the dynamic factors is finite, the dynamic factor process in equation 

(2) can equivalently be expressed in the following, so-called static form to facilitate estimation 

by principal components analysis: 

𝑥𝑥𝑖𝑖,𝑡𝑡 = Λ𝑖𝑖
′ 𝐹𝐹𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 . 

Here, 𝐹𝐹𝑡𝑡 is an 𝑟𝑟-dimensional vector of static factors and Λ𝑖𝑖 is the corresponding vector of static 

factor loadings. 𝐹𝐹𝑡𝑡 = (𝑓𝑓𝑡𝑡, … , 𝑓𝑓𝑡𝑡−𝑝𝑝)′ contains the current and lagged values of the dynamic factors 

in stacked vector form. That is, the vector contains all past and present values of the dynamic 
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factors that have a contemporaneous effect on the observable variables. Given this alternative 

representation, equation (3) can now also be expressed in terms of static factors as 

𝑥𝑥𝑖𝑖,𝑡𝑡 = 𝛼𝛼(𝐿𝐿)𝑥𝑥𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽′𝐹𝐹𝑡𝑡 + 𝑢𝑢𝑖𝑖,𝑡𝑡 . 

This gives rise to an estimable forecast equation corresponding to equation (1). While this dis-

cussion justifies the use of common factors for forecasting, the obstacle posed by the unobserv-

ability of the common factors remains. The estimation of these factors will be discussed next. 

4.2.1.1 Estimation of the Factors Using Principal Components 

Estimation of the unobservable factors will be carried out using the principal components 

method proposed by Stock and Watson (2002a, 2002b), which recovers estimates of the 𝑅𝑅 

static factors, or the space spanned by them, as the 𝑅𝑅 largest principal components of the panel 

of the predictor variables. As shown by Stock and Watson (2002a), these estimates can be used 

in place of the true, unobserved factors to produce asymptotically equivalent forecasting re-

sults. 

Although not strictly necessary, the standardization of the predictors prior to factor extraction 

by principal components has been found to be beneficial in empirical applications (Elliot and 

Timmermann 2016, 232). This approach will be followed in this study as well. Specifically, 

standardization entails transforming each observable variable to have zero mean and unit var-

iance. That is, 𝑥𝑥𝑖𝑖,𝑡𝑡 = (𝑥𝑥�𝑖𝑖,𝑡𝑡 − �̅�𝑥𝑖𝑖)/𝜎𝜎�𝑖𝑖, where 𝑥𝑥�𝑖𝑖,𝑡𝑡 is the original value of the series at time 𝑡𝑡, and �̅�𝑥𝑖𝑖 

and 𝜎𝜎�𝑖𝑖 are the sample mean and standard error of the series calculated up to time 𝑡𝑡, respectively.  

The static presentation of the factor process can be compactly expressed for the panel of ob-

servable variables 𝑋𝑋𝑡𝑡 = (𝑥𝑥1,𝑡𝑡, … , 𝑥𝑥𝐻𝐻,𝑡𝑡)′ as  

𝑋𝑋𝑡𝑡 = Λ𝐹𝐹𝑡𝑡 + 𝜀𝜀𝑡𝑡, 

where Λ is an 𝑁𝑁 × 𝑅𝑅 matrix containing the static factor loadings for each individual variable, 

while 𝜀𝜀𝑡𝑡 is a vector containing the 𝑁𝑁 respective idiosyncratic components. The principal com-

ponents estimator aims to recover the factors and their loadings from the set of observable 

variables by solving the least squares optimization problem 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹1,…,𝐹𝐹𝑇𝑇,𝛬𝛬

1
𝑁𝑁𝑇𝑇

� (𝑋𝑋𝑡𝑡 − 𝛬𝛬𝐹𝐹𝑡𝑡)′(𝑋𝑋𝑡𝑡 − 𝛬𝛬𝐹𝐹𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
 (4) 
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subject to certain normalizations regarding the factor loadings and the covariance matrix of the 

factors. Specifically, the covariance matrix of the factors, Σ𝐹𝐹𝐹𝐹 = 𝑀𝑀(𝐹𝐹𝑡𝑡𝐹𝐹𝑡𝑡
′), is assumed be diagonal 

and 𝑁𝑁−1Λ′Λ = 𝐼𝐼𝑅𝑅 . The need for these restrictions arises from the fact that both Λ and 𝐹𝐹𝑡𝑡 are 

unobserved, which means that extracting either one is not possible without imposing further 

restrictions. Even in this case, arbitrary normalizations can be used only to identify the space 

spanned by the factors, that is, some linear combinations of the underlying factors, which de-

pend on the normalization used, instead of the factors themselves. However, for the purpose of 

forecasting, this fundamental restriction is of no concern and the aforementioned normaliza-

tions provide a ‘mathematically convenient’ way to extract the relevant information from the 

factors. (Stock and Watson 2016, 425–426)  

The solution to (4) subject to the aforementioned normalizations can be expressed as, 

𝐹𝐹�𝑡𝑡 = 𝑁𝑁−1Λ�′ 𝑋𝑋𝑡𝑡, 

where the estimate of the factor loadings,  Λ� is composed of the eigenvectors pertaining to the 

𝑅𝑅 largest eigenvalues of the sample covariance matrix of the observed variables, which, given 

the standardized predictors, equals Σ�𝑋𝑋𝑋𝑋 = 𝑇𝑇−1 ∑ 𝑋𝑋𝑡𝑡𝑋𝑋𝑡𝑡
′𝑇𝑇

𝑡𝑡=1 . That is, 

Λ� = [𝑚𝑚1, … , 𝑚𝑚𝑅𝑅], 

where 𝑚𝑚𝑟𝑟 is the eigenvector corresponding to the 𝑟𝑟th largest eigenvalue of Σ�𝑋𝑋𝑋𝑋. Thus, the vector 

of static factor estimates 𝐹𝐹�𝑡𝑡 are the 𝑅𝑅 largest principal components of 𝑋𝑋𝑡𝑡 .   

4.2.1.2 Model Selection 

The central model selection issue pertaining to dynamic factor models is the determination of 

the number of factor estimates to be included in the forecast equation. Using the principal com-

ponents procedure, factors estimates are extracted in the order of their relevance to the overall 

variation in the set of predictors: while the first factor estimate explains the largest individual 

fraction of variation, the explanatory power of subsequent factors gradually declines. The num-

ber of factors estimates that the principal components process extracts can at most equal the 

total number of variables 𝑁𝑁. Including too many factors would obviously defeat the purpose of 

the dimension reduction procedure altogether, while including too few would run the risk of 

neglecting potentially relevant information contained in the omitted factors. Thus, to identify 

the true number of static factors 𝑅𝑅, additional methods need to be employed. 
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Over time, a number of different approaches have been proposed to this end, ranging from vis-

ual inspection of so-called scree plots, which depict the contributions of successive factors to 

the overall variation of the set of predictors, to different information criteria and tests (Stock 

and Watson 2016, 435). Arguably the most established tools used in the empirical forecasting 

literature are the information criteria proposed by Bai and Ng (2002). Each criterion is opti-

mized by choosing a number of factors that minimizes the sum of squared residuals resulting 

from fitting the observable variables to the estimated factors subject to a penalty factor that 

accounts for both the number of variables and number of observations used in estimation. The 

authors show that the information criteria consistently estimate the number of static factors 

and demonstrate favorable small sample behavior in a Monte Carlo experiment. 

Among the more recent additions to the set of factor selection tools is the eigenvalue ratio test 

proposed by Ahn and Horenstein (2013). In this case, the optimal number of factors 𝑘𝑘∗ chosen 

is simply the one that maximizes the ratio of two adjacent ordered eigenvalues of the covariance 

matrix of the predictors. That is, 

𝑘𝑘∗ = argmax
𝑘𝑘

�
𝜇𝜇𝑘𝑘

𝜇𝜇𝑘𝑘+1
�, 

where 𝜇𝜇𝑘𝑘 is the 𝑘𝑘th largest eigenvalue of Σ𝑋𝑋𝑋𝑋 and 𝑘𝑘 ∈ (1,2, … , 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚). Despite its overwhelming 

simplicity, the authors show that the eigenvalue ratio test provides an equally consistent esti-

mate of the true number of factors as well as providing generally superior small sample perfor-

mance with respect to a number of alternative methods based on Monte Carlo simulations. Fur-

thermore, their results indicate that the eigenvalue ratio test is less sensitive to the arbitrary 

choice of 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, the upper bound for the number of factors, than the Bai and Ng (2002) infor-

mation criteria. 

The Ahn-Horenstein eigenvalue ratio test is chosen as the factor selection method applied in 

this study based on the aforementioned results and, equally importantly, owing to the lesser 

computational burden involved in its application compared to the alternative information cri-

teria, which is no trivial consideration, given that the number of factors must be estimated in-

dividually for each combination of forecast origin, horizon and model. As the eigenvalues of the 

covariance matrix of the predictors are already derived during principal components estima-

tion, the application of the eigenvalue ratio test is particularly straightforward. 
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With the number of factors decided upon, another specification choice concerns the lag order 

𝑃𝑃 of the AR component in (1). Following existing literature, lag selection will be conducted by 

using standard information criteria. In the empirical experiments, the maximum number of lags 

will be set to six. Commonly used information criteria include the Akaike and Bayesian infor-

mation criteria (AIC and BIC, respectively). Based on the results of Marcellino, Stock, and 

Watson (2006) regarding macroeconomic forecasting applications, the AIC will be used here. 

4.2.1.3 Targeted Predictors 

Given the practical concerns raised over the sensitivity of the factor forecasts to potentially ir-

relevant variables in the set of predictors (Boivin and Ng 2006), a modification of the basic dy-

namic factor approach will also be considered in this study. Specifically, this extension is a var-

iant of the targeted predictors approach proposed by Bai and Ng (2008). In this approach, var-

iable selection techniques are used to select a subset of the predictors, which are, in turn, used 

to estimate the factors that are ultimately used for forecasting. This preliminary step aims to 

remedy the potential shortcoming of the basic approach that it takes no account of the relation-

ship between the target variable and predictors in factor estimation, which can lead to a mis-

match between the estimated factors and the forecasted variable, or oversampling. In an em-

pirical evaluation, the authors find that factor forecasts based on a subset of no more than thirty 

predictors as selected by penalized regressions or the closely related LARS algorithm tend to 

improve upon factor forecasts based on the complete set predictors. Similarly encouraging re-

sults have also been reported by Eickmeier and Ng (2011). 

Based on these results, a similar arrangement will be tried out in this study. Specifically, the 

Lasso, a variant of the penalized regression methods, will be initially used to determine a subset 

of 40 predictors for each forecast individually. Variable selection is carried out by adjusting the 

shrinkage applied by the Lasso regression to produce a model featuring exactly the desired 

number of nonzero coefficients and selecting the corresponding predictors into the subset used 

for factor estimation. Thus, only the variable selection features of the Lasso will be utilized in 

this application. Furthermore, the size of the subset will remain constant, but its composition 

may change from period to period. Apart from the initial screening of the predictors, model 

selection and estimation will be carried out in a manner no different from the regular dynamic 

factor model as described above.  
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4.2.2 Penalized Regressions 

While a number of different penalized methods will be considered here, they all share a com-

mon forecasting equation. At the ℎ period forecast horizon, it encompasses a linear projection 

of the ℎ-step-ahead target variable onto the 𝑁𝑁 predictor variables and an AR component en-

compassing lagged values of the target itself as follows: 

𝑦𝑦�ℎ
𝑇𝑇+ℎ = �̂�𝜇ℎ + � 𝛼𝛼�𝑝𝑝

ℎ𝑦𝑦𝑇𝑇+1−𝑝𝑝

𝑃𝑃

𝑝𝑝=1
+ � �̂�𝛽𝑛𝑛

ℎ𝑥𝑥𝑛𝑛,𝑇𝑇

𝐻𝐻

𝑛𝑛=1
. 

That is, the forecast equation assumes the general form of an AR model with external variables 

specification, which is not unlike the forecast equation of the dynamic factor model earlier. Con-

sequently, multistep forecasts of the target variable are obtained by way of the direct approach 

in this case as well. The only differences with respect to the factor model are in the predictors 

used: the forecast equation now includes each of the 𝑁𝑁 standardized predictor variables 𝑥𝑥𝑖𝑖,𝑡𝑡 

directly instead of the factors extracted from them. To simplify notation, explicit reference to 

the lagged values of the target variable will be excluded from this point on. This can be done 

without loss of generality because the coefficients of these lags will be estimated by the penal-

ized methods impartially with the other predictors. Thus, the past values of the target variable 

can be thought of as being included among the set of exogenous variables, represented by some 

individual 𝑥𝑥𝑖𝑖,𝑡𝑡 . 

While the forecast equation is a rather straightforward linear regression affair, its estimation 

using regular means becomes increasingly imprecise as the number of predictors increases rel-

ative to the number of available observations, and outright infeasible once the regressors out-

number observations. Penalized regressions remedy this problem by imposing a restriction on 

the coefficient vector. The distinguishing characteristics of penalized regressions is best illus-

trated by the constrained optimization problem by which the estimated coefficient vector is 

obtained: 

�̂�𝛽ℎ = argmin
𝛽𝛽ℎ

� �𝑦𝑦𝑡𝑡+ℎ
ℎ − 𝜇𝜇ℎ − � 𝛽𝛽𝑛𝑛

ℎ𝑥𝑥𝑛𝑛,𝑡𝑡

𝐻𝐻

𝑛𝑛=1
�

2𝑇𝑇

𝑡𝑡=1

 

𝑠𝑠. 𝑡𝑡.  𝑝𝑝(𝛽𝛽ℎ) ≤ 𝑠𝑠. 

Here, 𝛽𝛽ℎ = (𝛽𝛽1
ℎ, … , 𝛽𝛽𝐻𝐻

ℎ)′ is vector containing the 𝑁𝑁 regression coefficients and 𝑝𝑝(𝛽𝛽ℎ) is the pos-

itive real-valued penalty function, which is increasing in the norm of the coefficient vector. In 
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general, a norm is some measure of the distance of the coefficient vector from the origin of the 

coefficient space. On the other hand, 𝑠𝑠 is a positive constant, which determines an upper bound 

for the penalty. Thus, in the restricted optimization problem, the residual sum of squares is 

minimized by any vector of coefficients, whose penalty lies within the boundary imposed by 𝑠𝑠. 

It follows that for values of 𝑠𝑠 large enough, the optimization problem becomes an unrestricted 

one with a solution equivalent to the OLS optimization problem. Conversely, for a value of 𝑠𝑠 

small enough, the solution of the problem can only be obtained by way of a vector whose norm 

is reduced relative to the OLS solution, which gives rise to the bias-variance trade-off that un-

derlies the utility of the penalized methods.  

An alternative way of expressing the constrained optimization problem is in the following La-

grangian form, in which the penalty function is nested in the optimization equation directly 

(Hastie, Tibshirani, and Friedman 2009, 63): 

�̂�𝛽ℎ = argmin
𝛽𝛽ℎ

���𝑦𝑦𝑡𝑡+ℎℎ − 𝜇𝜇ℎ −� 𝛽𝛽𝑛𝑛ℎ𝑥𝑥𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
�
2𝑇𝑇

𝑡𝑡=1

+ 𝜆𝜆𝜆𝜆(𝛽𝛽ℎ)� . (5) 

Here, the penalty function is scaled by the non-negative parameter 𝜆𝜆, which is known as the 

complexity parameter. The complexity parameter has a direct correspondence with 𝑠𝑠, although 

inversely so: the larger 𝜆𝜆 is, the stronger the shrinkage applied to the coefficient vector is, and 

vice versa. The latter point is easily seen by setting 𝜆𝜆 to zero in (5), which makes the penalty 

function vanish from the optimization problem altogether and gives rise to the typical OLS op-

timization problem. The Lagrangian form of the problem can be intuitively interpreted as bal-

ancing model fit and coefficient magnitude: if increasing a single coefficient value improves the 

fit of the model, but by less than its marginal effect on the size of the penalty scaled by 𝜆𝜆, the 

loss function increases in value. This can be contrasted to the solution of regular OLS optimiza-

tion, in which the higher value would be deemed more optimal given the improvement in fit, no 

matter how small it is. This also makes explicit the role of 𝜆𝜆, a higher value thereof imposing a 

stronger emphasis to the penalty with respect to any improvement in model fit. Thus, finding 

an optimal value for the complexity parameter is key to leveraging the bias-variance trade-off 

of the penalized methods. Optimization of the complexity parameter is foremost an empirical 

question that depends on the characteristics of the data and is usually accomplished by way of 

computational methods. The precise means to this end will be discussed in detail further on. 
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Like the factor models, shrinkage methods generally require the predictors to be standardized 

prior to application. In this case, standardization of the series is performed for two reasons. 

First of all, the mechanism of shrinkage is based on rationing the magnitude of the regression 

coefficients. If the scales of the predictor variables vary, the estimated coefficient of a given 

predictor reflects not only its ability to explain variation in the target variable, but also its scale 

relative to the other predictors. By extension, this means that the amount of shrinkage applied 

to each variable also depends on its scale, not its relevance, which can lead to excessive shrink-

age of relevant variables and inadequate shrinkage of irrelevant ones. Standardizing each pre-

dictor to have unit variance rectifies this problem. Second, the demeaning of the predictors is 

performed to conserve the intercept term �̂�𝜇ℎ in the optimization problem from unnecessary 

shrinkage. This is accomplished by fitting the restricted model based on the demeaned target 

and predictors without an intercept. The sample mean is then added to both sides of the result-

ing estimated regression equation to produce a forecast equation of the original target variable. 

(Hastie, Tibshirani, and Friedman 2009, 63–64) 

The inclusion of the penalty function imposes practical limitations to the estimation of the pe-

nalized regressions: with the exception of the Ridge regression, the solutions to the constrained 

optimization problem generally have no closed form analytical solutions (Hastie, Tibshirani, 

and Friedman 2009, 68). Thus, to find the minimum of the restricted sum of squares, computa-

tional optimization algorithms are required, which makes the penalized regressions essentially 

machine learning methods, despite their outwardly similarity to regular regression problems. 

The software used to apply the penalized regressions methods in this study, the R package glm-

net, utilizes the so-called coordinate descent algorithm to solve the optimization problem. Co-

ordinate descent minimizes the objective function by adjusting a single coefficient at a time 

while keeping the rest of the parameters fixed in the interim. Upon encountering a minimum 

along the path of the single parameter, the algorithm switches to another parameter and adjusts 

it to further minimize the objective. The process continues until altering any parameter no 

longer decreases the value of the objective function relative to a convergence criterion, indicat-

ing that a local minimum has been encountered. As the penalized regression problems consid-

ered here are all convex problems (Hastie, Tibshirani, and Friedman 2009, 92), any local mini-

mum encountered is also a global minimum, which makes application of coordinate descent 

feasible.  
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With the general structure of the penalized regression problem explained, a closer examination 

of the specific members of the family of methods to be considered in the present study and their 

features will be carried out next, starting with the Ridge regression.  

4.2.2.1 Ridge 

The progenitor of the penalized regressions methods is the Ridge regression originally pro-

posed by Hoerl and Kennard (1970) as a means of dealing with highly correlated regressors in 

cross-sectional contexts. The specific form of the penalty function of the Ridge regression is as 

follows: 

𝜆𝜆(𝛽𝛽) = � 𝛽𝛽𝑛𝑛2
𝑁𝑁

𝑛𝑛=1
. 

That is, the penalty function equals the sum of squares of each individual coefficient, which 

gives rise to the penalty function measured as the Euclidian norm, also known as the 𝑙𝑙2 norm, 

of the parameter vector: the further away the vector is from the origin of the coefficient space, 

the larger a value the penalty function yields. Due to the characteristics of the penalty function, 

the Ridge regression effectively limits the estimated coefficient vector to an 𝑁𝑁-dimensional ball 

around the origin, with the complexity parameter controlling for the radius of the ball. 

The interaction between the Ridge penalty and the general optimization problem can be illus-

trated in a simple two-variable case in frame (a) of Figure 2. The restriction imposed by the 

Ridge penalty is represented by the gray disc covering the intersection of the coefficient axes: 

this area contains the set of possible solutions to the restricted optimization problem. The un-

restricted OLS solution to the problem, represented in the figure by 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂, resides in the upper 

right quadrant of the diagram. The ellipses around the unrestricted solution represent contours 

lines, along which the residual sum of squares of the model given a combination of coefficients 

is equal: the closer to the OLS solution the ellipses are, the smaller the corresponding sum of 

squared residuals is. The solution to the Ridge problem is found at a point where a contour line 

lays tangent to selection boundary, which are the coefficient values associated with the smallest 

residuals that comply with the restriction. 
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Figure 2. Illustration of the selection regions of the Ridge (a), Lasso (b), Elastic Net (c), and 
Adaptive Lasso (d) regressions in two-dimensional space. 

 

As the penalty function is differentiable, unlike the other shrinkage methods considered here, 

the Ridge estimator also has a closed form solution, which can be derived from the Lagrangian 

form of the optimization problem in a manner similar to the regular OLS problem by deriving 

the normal equations of the optimization problem. In matrix notation, the general form of the 

Ridge estimator is as follows: 

�̂�𝛽 = (𝑋𝑋′𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1𝑋𝑋′𝑦𝑦. 

Owing to the restriction, the Ridge estimator can also be defined uniquely in case where X is not 

of full column rank. This includes not only situations where there are perfectly correlated var-

iables in X but also situations where there are more columns than rows, that is, more variables 

than observations, which makes the approach applicable for high-dimensional problems. An-

other consequence of the continuous penalty function is that while the regularization reduces 

individual coefficient values arbitrarily close to zero, they are run down to exactly zero only by 



40 
 
 

coincident. This can be seen in panel (a) of Figure 2: a given coefficient is reduced to zero only 

if the residual contour happens to lay tangent to the circular selection boundary at exactly the 

point of an axis. This is the reason why the Ridge regression cannot perform outright variable 

selection in the sense of discarding irrelevant variables completely. 

4.2.2.2 Lasso 

The Lasso regression, first proposed by Tibshirani (1996), seeks to combine both shrinkage 

and variable selection into a single estimator in a setting, where the true underlying data gen-

erating process may be characterized by sparsity in the candidate variables. The Lasso estima-

tor seeks to identify the relevant variables, and is characterized by the following penalty func-

tion: 

𝜆𝜆(𝛽𝛽) = � |𝛽𝛽𝑛𝑛|
𝑁𝑁

𝑛𝑛=1
. 

That is, the Lasso penalty measures the sum of the absolute values of individual parameters, 

another measure of vector length, which is also known as the 𝑙𝑙1 norm. In contrast to the Ridge 

penalty, the Lasso penalty constraints the coefficient vector into an 𝑁𝑁-dimensional diamond 

around the origin, with the constraint boundaries characterized by discontinuities along the 

parameter axis, which can give rise to the possibility of zero coefficients for certain variables. 

This feature enables the Lasso to perform both explicit variable selection as well as estimation 

and shrinkage at the same time. 

The variable selection feature of the Lasso is illustrated in panel (b) of Figure 2, where selection 

region of the model is again represented by the grey area surrounding the origin of the two-

dimensional coefficient space. In contrast to the Ridge regression, the Lasso encourages re-

stricted solutions at the corners of its diamond shaped selection boundary, which reside along 

the axis of the coefficient space, giving rise to sparse solutions. Such a situation is illustrated in 

the figure, where, presented with the same optimization problem as the Ridge regression, the 

Lasso sets the coefficient estimate of the first variable to exactly zero, while giving the second 

variable a non-zero value.  

4.2.2.3 Elastic Net 

While the ability of the Lasso estimator to impose sparsity on the coefficient space makes it an 

appealing alternative to the Ridge regression, it is known to struggle in the presence of highly 
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correlated variables: while the Lasso simply chooses one of the correlated in variables in an 

indiscriminate manner, discarding the other, the Ridge tends to shrink their coefficients to-

wards each other Hastie, Tibshirani, and Friedman (2009, 663). Furthermore, the variable se-

lection feature of the Lasso is limited by the number of observations: while the Lasso can handle 

estimation based on predictor sets larger than the number of observations, it is unable to assign 

non-zero coefficients in excess of the number of observations. To overcome these deficiencies, 

the Elastic Net was proposed as a hybrid of the Ridge and Lasso approaches by Zou and Hastie 

(2005). The penalty function of the elastic net can be expressed as a convex combination of the 

Ridge and Lasso penalties: 

𝜆𝜆(𝛽𝛽) = (1 − 𝛼𝛼)� 𝛽𝛽𝑛𝑛2
𝑁𝑁

𝑛𝑛=1
+ 𝛼𝛼� |𝛽𝛽𝑛𝑛|

𝑁𝑁

𝑛𝑛=1
. 

Here, the 𝑙𝑙2 penalty of the Ridge averages the coefficients of correlated variables while the 𝑙𝑙1 

penalty of the Lasso handles variable selection. The parameter 𝛼𝛼 ∈ [0,1] determines the weight 

of the respective penalties relative to each other. It is evident that both the Ridge and Lasso 

regressions can also be thought of as special cases of the Elastic Net, with the former arising 

from setting 𝛼𝛼 = 0 and the latter from setting 𝛼𝛼 = 1. 

In general, the addition of 𝛼𝛼 represents another parameter, whose value must be decided upon 

prior to the estimation of the final model. Finding an optimal value with regards to forecasting 

performance is an empirical matter. In the forthcoming study, the optimal 𝛼𝛼 will be defined for 

each forecast origin along with 𝜆𝜆. 

To gain intuition, the nature of the Elastic Net restriction can once again be illustrated in two-

dimensional space as in panel (c) of Figure 2: the selection region of the Elastic Net regression 

assumes the shape of a diamond like the Lasso, but with sides curving outward. Owing to his 

curvature, the Elastic Net encourages non-zero coefficient solutions more frequently than the 

Lasso. The extent of the curvature is dictated by the relative weight parameter 𝛼𝛼 in the penalty 

function: the smaller 𝛼𝛼 is, the more curvature the selection boundary will exhibit, giving rise to 

less sparsity in the estimates. 

4.2.2.4 Adaptive Lasso 

The Adaptive Lasso, proposed by Zou (2006), was motivated to provide a shrinkage estimator 

with the oracle property. While the Lasso has been found to be effective in performing variable 

selection under certain conditions, its estimation properties are generally lacking: especially 
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when the true coefficient values of some variables are large relative to others, the Lasso tends 

to underestimate them by applying excessive amounts of shrinkage, which may lead to poor 

predictive performance. 

The Adaptive Lasso is distinguished from the Lasso by the addition of variable-specific penalty 

weights in the penalty function, which allow for varying amounts of shrinkage to be applied to 

individual coefficients: 

𝜆𝜆(𝛽𝛽) = � 𝑤𝑤𝑛𝑛|𝛽𝛽𝑛𝑛|
𝑁𝑁

𝑛𝑛=1
. 

The purpose of the penalty weight 𝑤𝑤𝑛𝑛 is to impose additional shrinkage on irrelevant variables. 

Less relevant variables receive a higher additional penalty, which causes their corresponding 

coefficients estimates to be shrunk more relative to their more relevant peers. The penalty 

weight can be further broken down as follows: 

𝑤𝑤𝑛𝑛 =
1

�𝛽𝛽𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡�
𝛾𝛾. 

Here, 𝛽𝛽𝑛𝑛
𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 is a consistent coefficient estimate pertaining to 𝑥𝑥𝑛𝑛, which has been recovered from 

some initial regression of the complete model. That is, the larger the initial coefficient is, the 

more relevant the variable is initially deemed to be, and the smaller the penalty weight is in 

turn. While Zou (2006) suggests the use of OLS coefficients to obtain initial estimates for the 

weights, he notes that the assumption of consistency can be relaxed to utilize other estimates 

without sacrificing the oracle property. This notion becomes especially relevant for cases in 

which OLS estimation becomes infeasible due to the number of predictors exceeding the num-

ber of observations. As an alternative, any of the single stage penalized regressions discussed 

up to this point, the Ridge, Lasso or Elastic Net, can be used for this purpose in place of the OLS 

estimates (see, e.g., Medeiros and Mendes 2016; Medeiros and Vasconcelos 2016).  

In this study, three variants of the Adaptive Lasso will be considered, with the initial weights 

determined by way of either OLS, Ridge, or Lasso. Even if the use of the penalized regressions 

weights was not strictly necessary in this application from the point-of-view of feasibility, the 

experiment could nonetheless provide meaningful results regarding the effects of the different 

initial estimates on the performance of the Adaptive Lasso. 

The parameter 𝛾𝛾 can be further used to adjust the magnitude of the additional penalty. Although 

a value of 𝛾𝛾 = 1 is commonly used, it can also be considered as an additional tuning parameter 
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that can be optimized along with 𝜆𝜆 in a manner similar to 𝛼𝛼 in the Elastic Net. Given that the 

forecasting performance of the Adaptive Lasso have been found to be very sensitive to the 

choice of 𝛾𝛾 in empirical applications (Medeiros and Vasconcelos 2016), this is the approach that 

will be followed in this study. 

The features of the Adaptive Lasso estimator are illustrated in panel (d) of Figure 2: the selec-

tion boundary of the Adaptive Lasso can be presented as an elongated diamond, which distin-

guishes it from the symmetrical diamond shaped boundary of the plain Lasso. This illustrates 

the ability of the Adaptive Lasso to discriminate coefficients according to the initial penalty 

weight. For any given coefficient value, the variable with the larger initial weight will be penal-

ized more relative to the other in order to comply with the penalty restriction. In this case, 𝛽𝛽1 

has an implicitly larger initial penalty, owing to which its coefficient holds more weight in the 

penalty function. This is reflected by the corners of the boundary along the vertical axis being 

closer to the origin relative to the vertical axis. For 𝛽𝛽2, on the other hand, the Adaptive Lasso 

applies less shrinkage than the plain Lasso solution, yielding a larger coefficient estimate. 

4.2.2.5 Parameter Tuning 

The central model selection issue pertaining to penalized regressions is the choice of hyperpa-

rameters, which require optimization prior to the implementation of the methods. While the 

complexity parameter 𝜆𝜆 is common to all methods, the Elastic Net and Adaptive Lasso require 

the additional the choice of the 𝛼𝛼 and 𝛾𝛾 parameters respectively. Furthermore, in the Adaptive 

Lasso, 𝜆𝜆 must be tuned twice in case penalized methods are utilized in the initial stage to obtain 

the penalty weights. Let us therefore define 𝜃𝜃 as the vector of tuning parameters pertaining to 

each method with 𝜃𝜃 = 𝜆𝜆 for the Ridge and Lasso, 𝜃𝜃 = (𝜆𝜆,𝛼𝛼)′ for the Elastic Net and 𝜃𝜃 = (𝜆𝜆, 𝛾𝛾)′ 

for the Adaptive Lasso. 

An optimal parameter choice would be characterized as one that minimizes the prediction error 

of the resulting model. Determining such a value using only past data, however, is not straight-

forward as basing the choice on the in-sample fit of the model will simply result in the OLS 

solution with no shrinkage. A common way to circumvent this problem is by using separate 

parts of the in-sample data for estimation and assessment of the model to obtain optimal pa-

rameter values. This approach is generally referred to as cross-validation, of which there are 

different ways to conduct in practice.  
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In cross-sectional contexts, the most prominent method for parameter tuning in penalized re-

gressions, and machine learning models in general, has traditionally been by using K-fold cross-

validation (Hastie, Tibshirani, and Friedman 2009, 241). In K-fold cross validation, observa-

tions in the sample set are randomly partitioned into K equal length subsets called folds. That 

is, the observations are mixed so that each individual observation is placed into one of the folds 

regardless of its original placement among the observations. Following partitioning, an out-of-

sample prediction is generated for every observation in the sample set by using a model fitted 

solely on observations beyond the fold that it itself occupies. Specifically, given an observation 

in, say, fold 𝑘𝑘, the prediction is generated by a model, which has been fitted using only observa-

tions from the other 𝐾𝐾 − 1 folds. This procedure is repeated for each observation to obtain a 

sample of out-of-sample predictions and consequent prediction errors, the size of which equals 

the number of observations. The whole process is subsequently repeated using different values 

of the tuning parameters. The parameter value or vector that yields the smallest mean error is 

chosen for the model. 

To illustrate the application of K-fold cross-validation in the present context, consider an indi-

vidual observation �𝑦𝑦𝑡𝑡+ℎℎ , 𝑥𝑥1,𝑡𝑡 , … , 𝑥𝑥𝑁𝑁,𝑡𝑡� out of a total sample of 𝑇𝑇 observations consisting of pre-

dictor variables and the h-step-ahead target variable of the forecast at time 𝑡𝑡. Following Hastie, 

Tibshirani, and Friedman (2009, 242), let 𝜅𝜅 be an indexing function, which assigns each obser-

vation to one of the 𝐾𝐾 folds, with 𝜅𝜅(𝑡𝑡) = 𝑘𝑘. Furthermore, let 𝑓𝑓−𝑘𝑘(𝑥𝑥𝑡𝑡 ,𝜃𝜃) be a forecast based on 

the model fitted using observations contained in the folds other than 𝑘𝑘 and a candidate vector 

of tuning parameters 𝜃𝜃. Given a mean squared error loss function, the optimal choice of tuning 

parameters can be presented as 

𝜃𝜃∗ = argmin
𝜃𝜃

1
𝑇𝑇
� (𝑦𝑦𝑡𝑡+ℎℎ − 𝑓𝑓−𝜅𝜅(𝑡𝑡)(𝑥𝑥𝑡𝑡 ,𝜃𝜃))2

𝑇𝑇

𝑡𝑡=1
. 

The main attraction of K-fold cross validation arises from the fact that it enables information in 

the sample to be used in an efficient manner: each observation in the sample is used in each 

iteration of the fitting process either to fit the model or to test its accuracy. Running through 

each of the 𝐾𝐾 folds in turn yields a sample of prediction errors equal to the number of observa-

tions in the sample. At the same time, each iteration of the models is fitted using all of the infor-

mation in the remaining 𝐾𝐾 − 1 folds, which serves to control for the effects of sampling varia-

tion in estimation. Combined, these features should provide for a robust choice of tuning pa-

rameters.  
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The choice of 𝐾𝐾 is a key consideration. In general, K-fold cross-validation can be thought of as 

producing an estimate of the true out-of-sample error of the model. Increasing 𝐾𝐾 up to the num-

ber of observations decreases the bias of the estimate while increasing its variance at the same 

time, another example of the by-now familiar tradeoff. The choice of K also involves a consider-

ation of computational cost, as a total of K estimations of the model must be conducted for each 

iteration of the vector of candidate parameters. A common compromise in the literature is to 

set the number of folds to a relatively low number of five or ten. (Hastie, Tibshirani, and 

Friedman 2009, 242–243) 

The effective use of available data is obviously a favorable proposition in general, and especially 

so with regards to macroeconomic time series. However, the use of regular K-fold cross-valida-

tion is not as straightforward for time series as it is for independently distributed data: due to 

the serial dependence between consecutive observations in time series, the assumption of in-

dependent and identically distributed observations critically underlying the theoretical efficacy 

of randomized cross-validation is violated. An additional tribulation presents itself in the form 

of changes occurring in the data generating process of the target variable over time due to struc-

tural breaks or trends, for example, which will go unaccounted for if the ordering of the data is 

mixed indiscriminately. For this reason, regular K-fold cross validation could lead to inferior 

model selection in time series applications. (Bergmeir and Benítez 2012) 

To account for these possibilities, the traditional manner of assessing model adequacy for time 

series is by respecting the temporal ordering of the data by fitting the candidate models only 

on a subset of earlier data and testing their performance on a latter part reserved solely for this 

purpose. While this approach, sometimes referred to as last block validation, could be effec-

tively used to solve the issues related to the temporal dimension of the data, this benefit is coun-

terweighted by the fact that both the number of prediction samples that can be produced from 

a given number of observations as well as the number of observations that can be used to esti-

mate the candidate models at each iteration is inherently limited compared to K-fold cross-val-

idation. This can, in turn, expose model selection to errors arising from sampling variation ra-

ther than temporal considerations.  

Fortunately, the theoretical challenges related to the use of cross-validation may be of only lim-

ited concern in empirical applications, especially when utilizing stationary time series, such as 

the ones considered in this study. To shed light on these practical implications, Bergmeir and 

Benítez (2012) employ different model selection procedures, including regular K-fold cross 
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validation and variants thereof, as well as last block techniques, to optimize various univariate 

time series models based on both traditional estimation methods and machine learning ap-

proaches. Their results indicate that using cross-validation techniques on stationary time series 

data tends to produce superior outcomes compared to the last block validation methods, which 

implies that the gains in the efficient use of the data outweigh any potential disadvantages due 

to temporal dependencies among the observations.  

In particular, Bergmeir and Benítez (2012) recommend the use of so-called blocked K-fold cross 

validation in time series applications. In blocked cross-validation, the sample observations are 

still grouped into 𝐾𝐾 subsets, but, instead of random partitioning, the equal length blocks are 

formed from consecutive observations. The reasoning is that blocked folds limit the temporal 

dependencies among the folds. For example, if the observations contain lagged values of the 

predictor variables, the dependencies among the blocks are limited to the boundaries between 

the consecutive blocks, where, depending on the number of lags employed, the folds can include 

the same observations of individual variables. In regular K-fold cross-validation, on the other 

hand, the dependencies can spread out across a number of individual folds as consecutive ob-

servations can end up in any of them.  

Beyond the way in which the folds are formed, the model selection procedure of blocked cross-

validation is identical to regular K-fold cross-validation: each fold is used for testing and the 

others for fitting, in turn. Thus, blocked cross-validation does not solve the potential of prob-

lems arising from structural changes in the data generating process, as the ordering of the ob-

servations is still mixed for the estimation, albeit to a lesser extent. Nonetheless, this should be 

a minor problem if the data used is truly stationary, which is a notion that Bergmeir and Benítez 

(2012) stress upon application of the method to time series data.  

Based on these considerations, parameter tuning of the penalized models in this study will be 

performed by way of blocked K-fold cross-validation. Furthermore, cross-validation will be ap-

plied using ten folds, which is a common choice in the applied literature. While the folds are by 

default set to equal length, in the case of uneven division, the excess observations will be dis-

tributed one at a time to successive folds, starting from the first one. 

4.2.3 Benchmark Models 

Forecasts are bound to contain some amount of error and quantifying this error is essential to 

assessing their performance. To provide context for the measured errors, it is customary to 
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employ benchmark models in forecasting studies, against which the proposed forecasting 

methods are compared to. The benchmarks are usually based on simple models that represent 

a bare minimum of forecasting performance that the more elaborate models should exceed in 

order for their application to be justified. Here, two benchmarks often utilized in the macroe-

conomic forecasting literature will be utilized: the random walk (RW) and univariate auto-

regressive (AR) models, both of which rely solely on the past observations of the target variable 

to generate predictions. 

The RW forecast offers the simplest possible starting point. The intuition behind the RW fore-

cast is based on the notion that the target series is in fact produced by an integrated time series 

process whose next value equals the sum of the last value and a mean zero random error. As 

such, the best one can do to forecast the series is to assume that its next observations will be 

equal to its last one observed. That is, for any given horizon, the forecast is simply 

𝑦𝑦�ℎ𝑡𝑡+ℎ = 𝑦𝑦𝑡𝑡 . 

For obvious reasons, the random walk forecast is commonly referred to as the naïve forecast.  

In terms of complexity, the AR model is a step beyond the RW in that it attempts to model the 

dynamic process of the target variable based on a number of previous values of the series to 

produce forecasts. Regarding multistep forecasts, the AR model allows for two possibilities: ei-

ther direct or iterative forecasts. The direct approach is the one used for the main models as 

outlined above, where each h-step-ahead value of the target is regressed individually on the 

observed past values. In the iterative approach, the one-step-ahead forecasts are substituted 

into the regression to move the horizon forward.  

The relative performance of the direct and indirect methods in empirical settings have been 

studied by Marcellino, Stock, and Watson (2006), who find that the iterative approach generally 

yields the most accurate results in macroeconomic forecasting. Forecasting price series, how-

ever, appears to represent an exception to this rule, with direct forecasts proving superior over 

the iterative approach in the short term and providing only slightly inferior results in the longer 

term. Due to this, and to allow straightforward comparison with the high-dimensional models, 

the direct approach is adopted for the AR benchmark here as well. Therefore, the forecast equa-

tion assumes the following form: 

𝑦𝑦�𝑡𝑡+ℎℎ = �̂�𝜇ℎ + � 𝛼𝛼�𝑝𝑝𝑦𝑦𝑡𝑡+1−𝑝𝑝
𝑃𝑃

𝑝𝑝=1
. 
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Regarding model specification, the AR model requires the selection of appropriate lag length 

for the target variable, which is commonly obtained using information criteria. Like the AR com-

ponent in the dynamic factor model, lag selection will be guided by use of the AIC at each fore-

cast origin. Estimation of the AR model is carried out using OLS. 

5 Data and Variables 

This section presents the data used in the simulated forecasting experiment. The first subsec-

tion provides an overview of the predictors used, while the second one discusses the transfor-

mations applied to the predictors in order to induce stationarity necessary for the application 

of the forecasting models. 

5.1 Predictors 

Producer prices are bound to be affected by a variety of factors at any given point in time. For 

example, business cycle dynamics are likely play a role via shocks to aggregate demand, while 

on the supply side, shocks to the costs of inputs, be it raw or intermediate materials, energy, or 

labor, are bound to affect producer prices.  

Some of these factors are more difficult to measure and quantify in practice than others. The 

former category includes features of the market, such as the extent of competition and demand 

for individual products. While not directly observable, various proxies could be used to encom-

pass these features of the data generating process. However, even if relevant data were to exist, 

the issue of timing presents a considerable challenge to the application of such data in a near-

term forecast setting. For example, some real variables, such as the volume index of industrial 

output, which is a measure of real industrial production activity in Finland reported at a 

monthly frequency, could provide a compelling means to measure the demand side factors af-

fecting producer prices in the short run, and such measures have been commonly used in fore-

casting studies. In reality, however, even though the volume index of industrial output is a fast 

indicator of business cycle conditions, it still lags behind the PPI by nearly one full month. Thus, 

to forecast producer prices one month ahead, one could only use the data on the volume from 

two months before. Considering that prices are generally faster to adjust than real quantities, it 

is unlikely that a shock to the real index would affect prices only after a period of two months. 

The issue raised above applies to a range of potential candidate predictors, even more severely 

so to many others, as the PPI itself is a fast indicator to begin with. Thus, to respect the pretense 
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of realism, care must be taken in the choice of predictors for the forecasting experiment. Here, 

the choice of data is based on a cut-off point relative to the publication of the PPI. The idea is 

that only variables whose latest observations become available reasonably early with respect 

to the PPI could be used to produce forecasts of the following months index.  

Despite imposing a significant restriction, there is still data that manages to fulfil these criteria. 

Most prominently, various market data are usually quoted at a daily frequencies and monthly 

aggregates thereof are therefore expeditiously available following the end of the respective 

month. The downside of such market data is that it mostly limited to nominal quantities of one 

form or another. Regardless, it is plausible that such data could provide early indication for 

developments in producer prices. For example, commodities prices could provide an indicator 

for supply side effects, whereas stock market indices could signal broader changes in the mar-

ket environment. Whether the relationships between these variables and the PPI exist and are 

consistent enough to be captured by the methods considered here is the empirical question this 

study attempts to answer.  

With the considerations above accounted for, it is time to present an overview of the data em-

ployed in this study. All series utilized are reported at a monthly frequency and span the time 

frame from January 2000 to November 2021. A detailed list of all individual variables is pro-

vided in Table 4 of the appendix. 

Starting with the PPI itself, in addition to the past values of the main index, the set of predictors 

includes derivative price indices based on the Main Industrial Groupings (MIG) classification. 

Using the MIG classification, products are divided into five categories according to their end 

use: intermediate goods, capital goods, consumer durables, consumer non-durables and energy 

goods. A similar treatment is used for the Import Price Index (IPI), which is published in con-

junction with the PPI. While IPI indices are reported for each of the five MIG categories, the PPI 

excludes the energy category due to its negligible role in Finnish output. In addition to the pro-

ducer price indices, data sourced from Statistics Finland includes the Finnish market spot price 

for electricity. 

International commodities prices, sourced from the Primary Commodity Prices database of the 

International Monetary Fund (IMF), represent the largest single group of predictors, compris-

ing a total of 54 individual series. These commodities include raw materials, such as various 

metals and energy products as well as different foodstuffs. The IMF dataset contains prices of 
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commodities reported from different markets around the world and often those marketplaces 

are far from the Finnish producers relevant to our forecasting exercise. While this geographical 

disparity could be a cause of concern, these concerns should be somewhat alleviated by the 

nature of commodities: by definition, commodities are goods that are universally used, easy to 

transport and of standardized quality. Thus, owing to arbitrage, the prices reported in one mar-

ket should reflect global prices to a reasonable degree. While the original commodities prices 

are reported in terms of US dollars, the series have been transformed into euros using contem-

porary exchange rates to reflect prices potentially faced by Finnish producers. 

The next category of predictors contains stock market indices. These include data from the OMX 

Helsinki, Euro Stoxx and Standard and Poor’s indices, which track the market prices of stocks 

of Finnish, European and American publicly traded companies respectively. In addition to the 

main indices, the predictors include industry specific subindices for the Finnish and European 

markets, which encompass the stock prices of companies active in different fields such as man-

ufacturing and finance. All data are monthly averages of daily quotations and have been sourced 

from the Bank of Finland (BoF) and European Central Bank (ECB). 

While a majority of Finnish foreign trade nowadays occurs within the common currency area, 

a number of exchange rates of additional prominent trade partners are included in the set of 

candidate predictors. These include the British pound, the Swedish krone, the Norwegian 

krone, the Russian ruble, the US dollar, the Japanese yen, and the Chinese yuan. The exchange 

rates are monthly averages expressed in terms of the foreign currency price of the euro and 

sourced from the ECB. 

Various interest rates are also considered. These include the Euribor rates at maturities ranging 

from one to twelve months as well as a selection of government bond yields. The latter group 

includes yields for Finnish and US government bonds as well as the euro area benchmark bonds. 

All rates are sourced from the ECB, with the exception of the Finnish bond yields, which are 

provided by the BoF.  

The final category of predictors consists of business climate indicators published by the Euro-

pean Commission. These indicators are based on surveys conducted at a monthly frequency on 

a sample of firms in member countries of the European Union. The questions in the survey con-

cern different aspects of the operational environment of the firms, both present and future, in-

cluding current stocks of finished products and expectations regarding developments in sales 
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prices of their products in the near future. Individual answers are aggregated to form numerical 

indicators for each specific question and country. Here, the results concerning Finnish compa-

nies in particular as well as responses averaged over all euro area countries are considered.  

5.2 Transformations 

Stationarity, precisely weak or covariance stationarity in the sense that the mean and auto-

covariance of a given series remain stable over time, is a perquisite for the application of most 

econometric time series models, including the ones considered here. The stationarity of both 

target and predictor series was assessed primarily by means of the augmented Dickey-Fuller 

(ADF) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, as well as visual inspection of 

the series as necessary. Each predictor series was tested in original levels, first differences and 

second differences, in turn, in order to determine the suitable level of differentiation required 

to induce stationarity. Series featuring only non-negative values, that is, all series except for the 

interest rates and business climate indicators, were additionally tested in log-levels and the 

respective log-differences. Both tests were specified with constant terms and, to ensure robust-

ness, varying numbers of lags in the test regression, with up to 16 lags considered at most for 

both tests. The detailed test results are available upon request from the author.  

With few exceptions, the ADF null hypothesis of unit root could not be rejected for the untrans-

formed or log-transformed predictor series with the results corroborated by the KPPS test, 

which indicates the rejection of the null hypothesis of stationarity for most of the same series. 

The most notable exception is the group of business climate indicators, which are scaled to vary 

between a fixed interval by design.  

First differencing either the raw or log-transformed series changes the situation, with both tests 

indicating stationarity for a vast majority of the predictors: the ADF test rejects the null hypoth-

esis of unit root for nearly all predictors decisively at the usual confidence levels, with the ex-

ception of the PPI series for capital goods and consumer durables. However, the results of the 

KPSS test provide somewhat contradictory results, with the test indicating a rejection of the 

stationary null for some additional series as well. These include both the PPI and IPI series for 

capital goods and consumer durables as well as some stock market indices. Visual inspection of 

these particular series in first-differenced form reveals that all of them generally revolve con-

sistently around their respective long-run means, but occasionally exhibit large but short-lived 

deviations, which may explain the results of the KPSS test. Furthermore, plotting the 



52 
 
 

autocorrelation functions of the series indicates little persistence in the series, which provides 

further evidence in favor of the assumption of stationarity.  

While the results of both tests indicate that a second round of differencing unambiguously takes 

care of the problem of non-stationarity for the remaining predictor series as well, to retain com-

monality among the different price and stock market index series and given the generally in-

conclusive evidence in favor of non-stationarity, all of the aforementioned predictors were re-

tained in first-differenced form for the forthcoming analysis. To summarize, all prices, price 

indices and stock market indices were transformed into first log-differences, and interest rates 

into first differences, while the business climate indicators were left without transformation.  

The last order of business in the present section pertains to the definition of the target variable. 

The approach to multistep-ahead targets adopted here is based on the Stock and Watson 

(2002b), which has been utilized by a number of subsequent studies (eg., Bai and Ng 2008; Kim 

and Swanson 2014). Given the results discussed above, that is, treating the PPI as a series inte-

grated of order one, the h-step-ahead target for the direct forecasts is defined as follows: 

𝑦𝑦𝑡𝑡+ℎℎ = ℎ−1(log(𝑃𝑃𝑃𝑃𝜆𝜆𝑡𝑡+ℎ) − log(𝑃𝑃𝑃𝑃𝜆𝜆𝑡𝑡)) = ℎ−1 log �
𝑃𝑃𝑃𝑃𝜆𝜆𝑡𝑡+ℎ
𝑃𝑃𝑃𝑃𝜆𝜆𝑡𝑡

�. 

That is, instead of predicting isolated month-on-month changes multiple periods ahead, the 

multiperiod dependent variable is the average of cumulative changes of the logarithm of the 

PPI during the h periods following t. An advantage of this approach is that the multiperiod fore-

cast can be straightforwardly transformed back into levels without needing to explicitly con-

struct the forecasts of the intervening periods. On the other hand, a side-effect of these trans-

formation is that the each multiperiod target variable effectively represent a unique series, as 

the differences are calculated with respect to different observations depending on the horizon 

considered. This is illustrated in Figure 3, which exhibits how averaging over multiple periods 

of monthly changes smooths the respective series relative to the one-month series. 
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Figure 3. Evolution of the target series for different forecast horizons. 

Despite these changes, ADF and KPSS tests indicate that the series pertaining to the longer ho-

rizons retain the stationarity of the month-on-month first-differenced PPI series. Furthermore, 

while the target variable depends on the scope of the forecast, the predictor variables are 

shared commonly by all horizons. This applies also to the lagged observations of the PPI itself, 

which are always included as month-on-month differences when used as predictors. 

6 Empirical Results and Discussion 

This section presents and discusses the results of the comparative out-of-sample forecasting 

experiment on the Finnish PPI. The section is further divided into three subsections corre-

sponding to separate experiments. The first subsection details the results of outright forecast 

simulation, in which only data pertaining to the previous period are used to predict the forth-

coming values of the PPI at the one-, two- and three-month horizons. In the second subsection, 

the forecasting performance of the models over time and during alternative out-of-sample pe-

riods will be examined. In the third subsection, a separate experiment will be carried out to 

assess whether the advantage in publication lag of certain market variables present among the 

predictors could be leveraged by using them to predict the concurrent values of the PPI instead 

of future ones. To reflect the use of contemporary data for prediction, the last experiment will 

be referred to as the nowcasting experiment. 
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6.1 Forecasting Experiment 

The results of the out-of-sample forecasting experiment over the main sample period, ranging 

from December 2011 to November 2021, are summarized in Table 1. For each model, the mean 

absolute errors and root mean squared errors (MAE and RMSE, respectively) are reported on 

the columns for each of the three forecast horizons. Specifically, each respective error is re-

ported as a ratio relative to the aggregate error of the main benchmark, the AR model, to enable 

straightforward comparisons. With the benchmark error occupying the denominator of the rel-

ative error, a value of less than one indicates that the forecast produced by the competing model 

is, on average, more accurate than the AR model. A value of over one implies the opposite. For 

the AR model itself, the actual aggregate errors are reported in the table instead. Furthermore, 

the best results in terms of both error measures and for each forecast horizon are reported in 

bold. 

In addition to the relative errors, Table 1 reports the p-value of the Diebold-Mariano test, again 

relative to the AR benchmark for each model. The test can be specified with either one-sided or 

two-sided alternative hypothesis. In this case, the one-sided alternative is used, as the main 

question of interest is specifically whether or not the competing models are useful in yielding 

improvements in forecasting performance. Thus, the alternative hypothesis states that the fore-

casts produced by the high-dimensional models are more accurate than those produced by the 

benchmark. 

The first two rows of table are occupied by the benchmarks, the AR and RW models respec-

tively. The benchmarks are followed by the dynamic factor models (DFM). In addition to the 

factor model, in which the optimal number of factors is determined individually for each fore-

cast origin by way of the eigenvalue ratio test, models with fixed numbers of factors are in-

cluded in the experiment as well. While the model with dynamic factor selection is the one with 

most practical relevance, as the optimal number of factors is otherwise difficult to determine in 

advance, the fixed factor variations are included in order to assess the adequacy of the factor 

selection methodology as well as to provide a broader perspective on the potential of the factor 

approach. To this end, the results for a total of five fixed factor models, with the number of 

factors ranging from one to nine, will be presented. Experiments with further numbers of fac-

tors were also conducted, but these provided no additional benefit and, thus, their results will 

not be presented. The parenthesized expression in the model label indicates whether the choice 



55 
 
 

of static factors included is fixed (𝑅𝑅 = 1,3,5,7,9) or determined by the Ahn-Horenstein eigen-

value ration test (AH). Maximum lag-order of the AR component is set to six. 

Next in line are the factor models estimated using targeted predictors (T-DFM), where the static 

factors have been extracted from a subset of 40 predictors variables chosen by an initial Lasso 

estimator on the target variable at each forecast horizon. Apart from the different set of predic-

tors, the application of the models is identical to the regular factor models. Furthermore, results 

are reported similarly for models featuring both fixed and dynamically selected numbers of 

factors. 

The final group of models encompasses the penalized methods: the Ridge, Lasso, Elastic Net 

and Adaptive Lasso (Ada-Lasso). The Adaptive Lasso is, furthermore, present in three varia-

tions, which are distinguished by the method used to determine the penalty weights in the re-

gression: as indicated by the parenthesized expression in the label, either OLS, Ridge or Lasso 

regression is used for this purpose.  

For the Elastic Net, the parameter 𝛼𝛼 is optimized at each forecast origin along with lambda over 

a sequence of five candidate values (𝛼𝛼 ∈ {0.1,0.3,0.5,0.7,0.9}). Similarly, the weight parameter 

𝛾𝛾 in the Adaptive Lasso models is optimized over three candidate values (𝛾𝛾 ∈ {0.5,1,2}). In 

keeping with the factor models, each penalized model includes six lags of the target as potential 

predictors. 

Overall, the results indicate that, while some of the high-dimensional models would have, on 

average, offered improvements over the AR benchmark, the aggregate forecast errors are gen-

erally very close to the benchmark and any gains in performance arising from these models 

tend to be very modest. This is also reflected in the fact that none of these improvements, at any 

horizon, are statistically significant at the common confidence levels in terms of the Diebold-

Mariano test, as indicated by the p-values reported in the table.  
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Table 1 

Results of the out-of-sample forecasting experiment for 2011M12–2021M11. 
  h = 1    h = 2    h = 3  

Model MAE RMSE p-value  MAE RMSE p-value  MAE RMSE p-value 
AR 0.00493 0.00694   0.00445 0.00611   0.00441 0.00604  

RW 1.222 1.145 0.983  1.224 1.183 0.949  1.242 1.249 0.956 
DFM (AH) 0.968 0.980 0.260  0.978 1.002 0.529  0.976 1.013 0.630 
DFM (R=1) 0.981 0.975 0.179  0.977 1.007 0.586  0.979 1.018 0.658 
DFM (R=3) 0.968 0.980 0.260  0.978 1.002 0.529  0.976 1.013 0.630 
DFM (R=5) 0.966 0.983 0.297  0.963 1.004 0.540  0.983 1.023 0.711 
DFM (R=7) 0.971 0.987 0.342  0.970 1.017 0.670  0.986 1.024 0.728 
DFM (R=9) 0.981 0.994 0.437  0.966 1.023 0.719  0.967 1.016 0.670 
T-DFM (AH) 1.014 1.003 0.541  0.988 1.009 0.611  0.979 1.044 0.795 
T-DFM (R=1) 1.019 1.005 0.557  0.994 1.010 0.633  0.979 1.034 0.736 
T-DFM (R=3) 0.971 0.993 0.417  0.978 1.012 0.656  0.977 1.039 0.787 
T-DFM (R=5) 0.988 1.005 0.557  0.976 1.028 0.750  0.981 1.042 0.782 
T-DFM (R=7) 0.999 1.010 0.610  0.978 1.030 0.730  0.988 1.040 0.769 
T-DFM (R=9) 1.016 1.007 0.575  1.008 1.049 0.829  1.000 1.046 0.814 
Ridge 0.977 1.009 0.606  1.018 1.052 0.891  0.972 1.023 0.716 
Lasso 0.995 1.004 0.549  1.032 1.045 0.848  0.980 0.994 0.427 
Elastic Net 0.991 1.005 0.570  1.015 1.032 0.802  0.980 1.009 0.604 
Ada-Lasso (OLS) 1.059 1.031 0.779  1.147 1.129 0.984  1.210 1.160 0.983 
Ada-Lasso (Ridge) 1.003 1.005 0.568  1.052 1.059 0.917  0.991 0.985 0.321 
Ada-Lasso (Lasso) 1.028 1.013 0.665  1.046 1.033 0.758  0.978 0.973 0.222 
Note: Mean errors are reported relative to the AR forecast. P-value reported for the Diebold-Mariano test with alternative 
hypothesis of superior forecast accuracy with respect to the AR forecast. 

 

At the one-month horizon, the plain dynamic factor models stand out from the set of candidates: 

all of these models manage to produce lower mean errors than the AR model. In particular, the 

models with fixed numbers of one and five factors prevail over all competing models in terms 

of MAE and RMSE, respectively. However, even for these models, the improvements in forecast-

ing accuracy are very marginal: the MAE of the five-factor model, for example, is only some 3.4 

percent lower than that of the simple benchmark, whereas the RMSE of the one-factor model 

is, equivalently, no more than 2.5 percent smaller. These observations extend to further hori-

zons as well, with similarly modest improvements over the AR benchmarks in terms of MAE. 

Moreover, in terms of RMSE, even this meager advantage is all but lost, with the sample errors 

equal to or even slightly in excess of the benchmark. 

Regarding model selection, the Ahn-Horenstein test sets the number of factors consistently to 

three for each of the forecast origins over the whole out-of-sample period, which explains the 

ostensibly identical results between the dynamically optimized model and the corresponding 

fixed factor model. While the relatively favorable results of this model would imply that the test 
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does a good job at estimating the adequate number of factors, the differences among the factor 

models are overall not profound enough to make such conclusions, as none of them are far from 

each other in terms of accuracy.   

In general, the forecasts of the dynamic factor models tend to follow the AR forecast very 

closely. This is illustrated in Figure 4 below, in which the series of forecasts from the five-factor 

model and the AR model are plotted against the realized values of the first-differenced log-PPI 

series for the one- and three-month horizons. As the results are qualitatively similar for the 

other factor models as well as the second forecast horizon, the plots for these will be omitted 

for the sake of brevity. 

 

Figure 4. Comparison of the AR and five-factor DFM forecasts against realized PPI at the one- 
and three-month horizons. 

While both forecasts roughly follow the realized target series, they exhibit difficulty in account-

ing for large unforeseen shocks in the series at both horizons. This is especially evident in the 

latter part of the sample, which is characterized by particularly large deviations from the long-

run mean in the post 2020 period. This is a situation, where one might expect a model relying 

on information other than the history of the target to prevail, but this does not seem to be the 

case. Rather, both factor and AR forecasts exhibit behavior that can be characterized as reactive 

rather than proactive. That is, preceding shocks appear to be extrapolated into following fore-

casts with a lag, which implies that the additional factors, or the variables that they are based 

on, have little predictive power over the PPI even in the short run. The reactive behavior is 
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further emphasized at longer horizons, where the effects of the large shocks appear in the fore-

casts with gradually increasing delays. The three-month horizon is also characterized by a no-

ticeably widening gap between the forecasts and the realized values, which is especially evident 

towards the end of the sample.  

The targeted predictors appear to provide little assistance to the factor models. On the contrary, 

the factor models appear to benefit more from the quantity rather than the quality of the data, 

as evidenced by the superior results of the regular models, although this is most noticeable at 

the one-month horizon. The earlier observations regarding the model selection capacity of the 

Ahn-Horenstein test carry over to this case as well, with the resulting model yielding mediocre, 

but not considerably worse results on average compared to the fixed factor alternatives. 

Turning our attention to the penalized methods, the Ridge, Lasso and Elastic Net models man-

age to beat the AR forecast at the one-month-horizon in terms of MAE, albeit with even smaller 

margins than the factor models. The Ridge forecast achieves accuracy closest to the latter with 

a meager 2.3 percent improvement over the benchmark, but others fare even worse, with each 

of the Adaptive Lasso models providing outright inferior performance. Out of the latter, the 

model with OLS-derived penalty weights is, by far, the most unsuccessful of all the high-dimen-

sional models across all horizons. In terms of RMSE, none of the models manage to beat the AR 

at the one- or two-month horizons. The situation is curiously reversed for the three-month 

horizon, with the Adaptive Lasso model achieving best RMSE accuracy out of all models, alt-

hough marginally so. 

Overall, despite somewhat inferior average accuracy, the performance of the penalized models 

is not considerably different from the factor models. To illustrate, Figure 5 plots the MAE best 

penalized forecast, the Ridge, against the realized values of the PPI and the AR benchmark at 

the one- and three-month horizons. As with the various factor models, the penalized forecasts 

exhibit largely similar behavior among themselves and for this reason it suffices to examine 

only the Ridge forecast in more detail. The plot reveals a familiar pattern: like the factor fore-

cast, the Ridge forecast tends to follow the AR forecast very closely. This notion extends to the 

fact that the penalized forecast shares the deficiency of the factor models, in that they appear 

to be no better equipped to capture large changes in producer price inflation in advance. 
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Figure 5. Comparison of the AR and Ridge forecasts against the realized PPI at the one- and 
three-month horizons. 

Based on the results of the out-of-sample experiment, it can, by now, be stated with a high level 

of confidence that the added complexity involved in applying the high-dimensional models can-

not be justified in terms of forecasting performance. While some average improvements are 

observed, they are not substantial enough to be meaningful in practice. Furthermore, they are 

not substantial enough to rule out the possibility of pure chance as the cause of the results, as 

implied by the p-values of the Diebold-Mariano tests reported in Table 1, which indicate the 

failure to reject the null hypothesis of equal or worse forecasting performance on the part of 

the high-dimensional models.  

That being said, the results are consistent with earlier empirical experiments in forecasting the 

PPI using high-dimensional methods. The large-scale forecasting experiment of Kim and Swan-

son (2014) includes the US PPI among other target variables. Moreover, their candidate meth-

ods include most of the models considered in this study, alongside several others. Their results 

indicate that the high-dimensional methods tend to generally produce results very close to the 

AR model, with accuracy in terms of MSE usually no more than a few percent away from the 

benchmark, either above or below, in the short term. Their results also indicate similar relative 

performance between the penalized and factor forecasts, with the factor models generally 

providing marginally superior accuracy. These results are echoed by Smeekes and Wijler 

(2018), who also forecast the US PPI among other variables using different variations of dy-

namic factor models and penalized regressions. Their results exhibit similarly small advantages 
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as well as disadvantages for the high-dimensional models. Furthermore, the improvements en-

countered in neither study are, apart from few exceptions, statistically significant despite the 

relatively longer out-of-sample periods utilized in these experiments. Thus, these results pro-

vide some context to the ones presented here, as they give testimony to the general difficulty of 

forecasting the PPI. 

The most obvious candidate to explain the lackluster performance of the high-dimensional 

models is that the information contained in the set of predictors is simply not informative re-

garding the future values of the PPI. Another possibility is that forecasting performance may be 

inhibited by structural instability in the target series. That is, the forecasting models estimated 

on a sample of past data may become detached from the future values of the target variable due 

to shifts in the underlying data generating process. While the overall results of the experiment, 

as reported in Table 1, represent only a single summary of average forecasting performance 

over a relatively long timespan, it is possible that the performance of individual models may 

have changed over time due to such changes in the forecasting environment. In particular, the 

onset of the global pandemic, which caused a shock in the global markets for goods by abruptly 

shifting demand and disrupting established production chains, is not unlikely to represent such 

a structural shock, which may have broken down relationships between the target and predic-

tors that were prevalent in the past.  

The resilience of high-dimensional forecasting methods to the pandemic shock has been re-

cently studied by Goulet Coulombe, Marcellino, and Stevanović (2021). With an emphasis on 

machine learning methods, they examine the performance of different approaches in forecast-

ing a selection of UK macroeconomic variables, including the local PPI, during different sub-

periods ranging from 2008 up to late 2020. They find that the pandemic had a considerable 

detrimental effect on forecasting accuracy for a majority of the models and target variables, and 

that different models tend to prevail depending on the time-period considered. For the PPI spe-

cifically, they find that the Elastic Net and Lasso tend to generally work well at the one-month-

horizon during the pre-pandemic period, but their relative accuracy deteriorates during the 

pandemic. On the other hand, a variant of the nonlinear Random Forest model provides consid-

erable improvements over the AR benchmark during the latter period, but this advantage is 

counterweighted by considerably inferior performance during the earlier period.  

Given the general notion of time-dependence in forecasting performance, the accuracy of the 

Finnish PPI forecasts over time will be examined more closely next. 
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6.2 Forecasting Accuracy Over Time 

Figure 6 plots the evolution of forecast errors for the AR benchmark and the five-factor dynamic 

factor model and the Ridge regressions, the best performers of their respective classes, over 

the main out-of-sample period. Results are reported solely for the one-month horizon, as this 

is where the forecasts appear to yield the most benefit in absolute terms. The errors are pre-

sented in terms of RMSE and MAE calculated over a rolling window of 12 months for illustrative 

purposes. Due to this, the graphs exhibit some occasionally abrupt ebbs and flows, which are 

caused by large individual errors entering and leaving the rolling window. Despite this, the 

plots provide a general idea of the systematic variation in the accuracy exhibited by the respec-

tive forecasts over time.  

 

Figure 6. Evolution of mean errors calculated over a 12-month rolling window for select fore-
casts at the one-month horizon.  

The figure reveals some interesting insights. First of all, the mean errors exhibit considerable 

variation over time. For example, the period between late 2014 and early 2017 is distinguished 

by particularly large errors, while during the three-year period that follows, the errors settle to 

a level of some one third lower than before. After phase of relative calmness, the errors hike to 

unprecedented levels following early 2020, nearly tripling in magnitude. While the reason for 

the earlier incline in errors is ambiguous, the latest hike clearly coincides with the beginning of 

the COVID-19 pandemic. 
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Second, while the errors of different forecasts tend to generally move closely together, there is 

an inkling of heterogeneity in the responses over time. Especially during the earlier and middle 

parts of the out-of-sample period, the high-dimensional models appear to have a slight edge on 

the benchmark in terms accuracy, whereas the situation is somewhat reversed towards the end 

of the period.  

To illustrate this further, Figure 7 plots the evolution of the cumulative errors of the respective 

models relative to the benchmark. That is, at each point in time, the vertical axis measures the 

relative mean errors for each model accumulated up to a given point in time, with a value of 

less than one indicating superior accuracy with respect to the benchmark as in Table 1. It fol-

lows that the rightmost points in the plots correspond directly to the values reported in the 

main results. On the other hand, earlier points correspond to a situation where the out-of-sam-

ple period had been cut short of its full length. The plot excludes cumulative errors prior to 

2014, as they exhibit considerable volatility owing to the small number of accumulated 

observations. 

 

Figure 7. Cumulative errors of select high-dimensional forecasts relative to the AR forecast at 
the one-month horizon. 

Figure 7 offers a contrast to the overall results regarding the relative performance of the high-

dimensional models. For most of the early out-of-sample period the advantage of the high-di-

mensional models is far greater than implied by the ultimate results. That is, the external pre-

dictors appear to offer a more meaningful advantage during the earlier period. It is only to-

wards the very end of the out-of-sample period that the benchmark begins to catch up with the 
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high-dimensional models. This is consistent with the observation of Goulet Coulombe, Marcel-

lino, and Stevanović (2021), who attest to the relative disadvantage of high-dimensional linear 

models following the beginning of the pandemic.  

While the historical perspective presents the high-dimensional models in a slightly more favor-

able light than before, they should not be taken as particular evidence in contradiction to the 

overall results discussed earlier. The results of Table 1 still stand as resilience to structural 

shocks is a feature that an adequate forecasting model should possess. Rather, the volatility of 

the cumulative errors should be interpreted as a cautionary example of the limitations involved 

in using the out-of-sample experimental procedure to determine the ranking or absolute accu-

racy of different forecasting models. For instance, had the present analysis been conducted, say, 

two years earlier, using data up to November 2019 instead of November 2021, the results of 

the forecasting experiment would have appeared considerably more favorable to the high-di-

mensional models. In that case, average gains in forecasting accuracy of the five-factor model 

relative to the AR model would have been no less than 9.3 and 9.6 percent in terms of MAE and 

RMSE, respectively.  

Detailed out-of-sample results for all models during the sub-periods both preceding and fol-

lowing the onset of the pandemic are reported in Table 2 for the one-month-ahead forecasts. 

The results reaffirm the notion that the high-dimensional models are at a considerable disad-

vantage during the pandemic, while exhibiting far greater, even statistically significant perfor-

mance gains with respect to the AR between December 2011 and November 2019.  

While even these gains would have hardly been enough to justify the practical utility of the high-

dimensional models, they would have implied considerable gains in forecasting accuracy in 

comparison to the earlier studies on forecasting the US PPI, which were discussed above. It is 

however noteworthy, that while those results are not burdened by the recent pandemic, they 

encompass another event with potentially devastating effects for forecasting performance, the 

global financial crisis of 2008, which the out-of-sample period of our main experiment excludes. 

Owing to this, the comparison above may not be a fair one.  

To provide a more meaningful comparison to the previous literature as well as to shed further 

light on effects of the global economic calamity on forecasting performance, the out-of-sample 

experiment was repeated for an alternative time-period. To include the abnormal negative 

shock in producer prices caused by the climax of the financial crisis in late 2008 and to exclude 
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the volatility caused by the pandemic, the sample of forecasts for this experiment considers the 

period ranging from April 2008 to November 2019 for a total of 140 out-of-sample periods. 

Apart from the time period, the forecasting experiment is carried out identically to the main 

experiment, albeit only for the one-month horizon. All previous models are included except for 

the Adaptive Lasso with OLS penalty weights, whose estimation becomes infeasible owing to 

the low number of observations available for the earliest out-of-sample forecasts. By extension, 

the following results also serve to showcase the performance of the models in a situation where 

the number of variables exceeds the number of observations.  

Table 2 

Results of forecasting experiments for alternative out-of-sample periods at the one-month horizon. 
 2008M04–2019M11  2011M12–2019M11  2019M12–2021M11 

Model MAE RMSE p-value  MAE RMSE p-value  MAE RMSE p-value 

AR 0.00453 0.00609   0.00396 0.00533   0.00881 0.01128  

RW 1.214 1.170 0.997  1.268 1.238 0.999  1.138 1.054 0.679 

DFM (AH) 0.949 0.918 0.033  0.921 0.916 0.032  1.052 1.035 0.796 

DFM (R=1) 0.944 0.901 0.023  0.932 0.923 0.035  1.068 1.019 0.701 

DFM (R=3) 0.955 0.925 0.051  0.921 0.916 0.032  1.052 1.035 0.796 

DFM (R=5) 0.952 0.925 0.047  0.907 0.904 0.019  1.072 1.049 0.859 

DFM (R=7) 0.954 0.946 0.122  0.907 0.908 0.029  1.085 1.052 0.881 

DFM (R=9) 0.947 0.957 0.233  0.910 0.917 0.052  1.108 1.059 0.868 

T-DFM (AH) 0.963 0.923 0.052  0.965 0.939 0.122  1.103 1.057 0.918 

T-DFM (R=1) 0.959 0.920 0.045  0.966 0.940 0.125  1.114 1.059 0.923 

T-DFM (R=3) 0.924 0.909 0.031  0.917 0.925 0.070  1.068 1.050 0.860 

T-DFM (R=5) 0.928 0.910 0.031  0.921 0.928 0.072  1.109 1.069 0.906 

T-DFM (R=7) 0.935 0.917 0.061  0.929 0.931 0.081  1.124 1.076 0.928 

T-DFM (R=9) 0.963 0.935 0.101  0.983 0.954 0.193  1.075 1.052 0.830 

Ridge 0.921 0.912 0.003  0.920 0.931 0.041  1.078 1.074 0.921 

Lasso 0.940 0.925 0.010  0.956 0.950 0.112  1.067 1.049 0.885 

Elastic Net 0.934 0.925 0.008  0.952 0.952 0.115  1.062 1.051 0.871 

Ada-Lasso (Ridge) 0.936 0.916 0.039  0.976 0.973 0.282  1.053 1.033 0.802 

Ada-Lasso (Lasso) 0.969 0.939 0.134  1.010 0.991 0.430  1.060 1.033 0.801 
Note: See notes for Table 1. 

 

The results for this alternative forecast simulation are also reported in Table 2. Despite being 

burdened by the financial crisis, the accuracy of all models is considerably improved relative to 

the benchmark in terms of MAE and especially in terms of RMSE, with all models yielding supe-

rior results. This applies especially to the penalized models, which provide accuracy on par or 

in excess of the factor models, although the differences are still rather marginal. Furthermore, 
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the targeted predictors appear to be somewhat more helpful during this time period. Most of 

the improvements are also statistically significant relative to the AR benchmark. 

The differences are even more striking when compared to the earlier forecasting results re-

garding the US PPI. At the one-month horizon, the greatest improvements relative to the AR 

benchmark reported by Kim and Swanson (2014) and Smeekes and Wijler (2018) are equal to 

around 9 and 7 percent respectively in terms of MSE. On the other hand, the RMSE best model 

here, the fixed single-factor model, yields an improvement of no less than 18.8 percent once 

converted to MSE.  

Although one should exercise caution in comparing these results, as both of the aforementioned 

studies consider very different out-of-sample periods, the improvements here are, nonetheless, 

considerable. In this sense, a more direct comparison is afforded by Goulet Coulombe et al. 

(2021) who also consider the specific timespan between 2008 and 2019 as one of their alter-

native out-of-sample periods. During this period, the best one-month forecasts for the UK PPI 

are obtained by the Elastic Net, which yields an MSE improvement of only 5 percent over their 

AR benchmark. 

Apart from different time periods, there are two main alternatives to explain these gaps in fore-

casting accuracy. First, the Finnish PPI may be fundamentally easier for to predict using high-

dimensional models, for some reason or the other. Geographical variation in forecasting results 

is not an uncommon occurrence in the empirical literature (see, e.g., Eickmeier and Ziegler 

2008). While this is a feature of the research design that is beyond the control of the researcher, 

the choice of data, which is the other potential reason, is not. The aforementioned studies rely 

on somewhat generic sets of predictors, which feature a wide array of different macroeconomic 

and financial variables. It is possible that the set of predictors used here, despite its limitations, 

may lend itself better to forecasting the PPI in particular. Specifically, the most distinguishing 

feature of the present dataset is the prevalence of highly disaggregated commodity prices, 

which could explain the improvements in accuracy. To this end, the explicit variable selection 

features of the Lasso-based models can be used to shed light on the relevance of individual pre-

dictors in the overall forecasting results.  

Figure 8 presents the number of times that 30 of the variables most frequently selected by 

Ridge-based Adaptive Lasso were featured in the forecasts. The shorthands used in the figure 

for individual predictors are explained in Table 4 of the appendix. It turns out, that several 
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commodity prices are prominently represented: out of the 30 most frequent predictors, 18 are 

commodity prices, with the price of copper featured in each of the 140 samples.  

 

Figure 8. Variables most frequently selected by the Adaptive Lasso (Ridge) model over the 
2008M04–2019M11 out-of-sample-period.  

While not conclusive nor particularly formal, these results suggest that there may indeed be 

some information contained in the international commodity prices, that is particularly relevant 

for forecasting the aggregate producer prices. While the other studies also feature some com-

modity prices as predictors, they are far fewer especially relative to the other predictors in-

cluded. Given that the factor models especially have been shown to be sensitive to the compo-

sition of the set of predictors (Boivin and Ng 2006), it would be interesting to examine, if a 

dataset featuring commodity prices more prominently, such as the one here, would be useful 

for forecasting the producer prices of other countries as well. 

The detrimental effects of the pandemic cannot, however, be escaped. While the historical ex-

periment is of academic interest, more recent data reveals the sensitivity of high-dimensional 

methods to structural shocks, which undermines their utility in practical use. 

6.3 Nowcasting Experiment 

The analysis so far has indicated that, the set of predictors considered provides limited predic-

tive capacity over the PPI in the short run. There is, however, one advantage that the predictors 

possess, whose potential for forecasting remains to be unexplored. That is the fact that a 
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majority of the predictors considered here represent market variables that are quoted at daily 

frequencies, owing to which information regarding these variables usually becomes available 

with little delay. Even if these variables appear to provide little predictive power over the forth-

coming months’ PPI, there remains a possibility that they may comove with aggregate producer 

prices. In this case, the temporal advantage of the market variables relative to the PPI could be 

used to give leading indication of the latter by using contemporaneous observations instead of 

past ones for prediction. This possibility will be explored next in a separate out-of-sample ex-

periment.  

The following simulation has been conducted by including only the market variables in the set 

of predictors and by aligning their values with the concurrent values of PPI in the forecasting 

equation. That is, the set of predictors excludes the non-market variables altogether to produce 

a panel of 87 potential external predictors. These variables are elaborated in Table 4 of the 

appendix. Apart from this, the experimental procedure is unaltered from the earlier simula-

tions.  

A practical limitation of the present application is that the data used represents monthly aver-

ages of the market variables, which become available only after the end of the respective month. 

Thus, the window of opportunity for nowcasting is inherently limited as the PPI itself is pub-

lished only mere weeks later than this. While this short lead on the actual PPI inevitably limits 

utility of these nowcast, the upcoming experiment could, nonetheless, provide some meaningful 

insights into the relationship between the predictors and the target variable. Thus, more so 

than a potential tool for practical nowcasting, the following experiment should be considered 

as a sort of proof-of-concept for the viability of using contemporaneous market information in 

predicting the PPI. Specifically, given that the monthly averaged data used here is based mostly 

on daily data, this underlying data could be leveraged directly to provide timelier nowcasts in 

further applications. 

The results of the nowcasting experiment are presented in Table 3. The AR model is, once again, 

used as the main benchmark, against which the performance of the high-dimensional models is 

compared to in terms of aggregate errors and the Diebold-Mariano test. As the AR and RW fore-

casts utilize no external predictors, their results are identical to the earlier one-month-ahead 

forecasts but are nonetheless repeated here for convenience. The results of Table 3 offer a strik-

ing contrast to the earlier forecast experiments. Using contemporaneous information, all of the 

high-dimensional models not only manage to surpass the accuracy of the AR benchmark on 
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average, but this time around the improvements are also statistically significant: the one-sided 

null hypothesis of superior forecasting performance of the AR model can be rejected comforta-

bly at the one percent confidence level for all high-dimensional models. 

Table 3 

Results of the out-of-sample nowcasting experiment for 2011M12–2021M11. 

Model MAE RMSE p-value 

AR 0.00493 0.00694  

RW 1.222 1.145 0.983 

DFM (AH) 0.871 0.831 0.004 

DFM (R=1) 0.870 0.831 0.004 

DFM (R=3) 0.885 0.853 0.001 

DFM (R=5) 0.889 0.863 0.007 

DFM (R=7) 0.819 0.800 0.003 

DFM (R=9) 0.795 0.790 0.003 

T-DFM (AH) 0.823 0.808 0.002 

T-DFM (R=1) 0.833 0.815 0.002 

T-DFM (R=3) 0.814 0.791 0.001 

T-DFM (R=5) 0.749 0.764 0.001 

T-DFM (R=7) 0.736 0.765 0.002 

T-DFM (R=9) 0.720 0.739 0.001 

Ridge 0.764 0.758 0.001 

Lasso 0.726 0.747 0.000 

Elastic Net 0.734 0.753 0.001 

Ada-Lasso (OLS) 0.743 0.762 0.001 

Ada-Lasso (Ridge) 0.699 0.740 0.001 

Ada-Lasso (Lasso) 0.717 0.752 0.001 
Note: See notes for Table 1. 

 

The basic factor models yield improvements in ranging between 11 and 20 percent over the AR 

benchmark depending on the number of factors used. In contrast to the forecasting experiment, 

best performance is now obtained by using as many as nine of the estimated factors. On the 

other hand, the Ahn-Horenstein eigenvalue ratio test suggest using no more than two factors 

for any given forecast, with two and one factors favored over the earlier and latter parts of the 

period respectively. This implies that the common processes that characterize the complete set 

of predictors is not a particularly good counterpart for the PPI in this case.  

The results of the hybrid models provide additional evidence in favor of this conclusion: in yet 

another interesting contrast to the earlier forecasting results, the factor models based on tar-

geted predictors appear to provide systematic improvements compared to the pure factor 
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models. This is consistent with the results of Boivin and Ng (2006), who show that augmenting 

factor models with unnecessary variables can have a detrimental effect on forecasting accuracy. 

Moreover, the results are in line with those of Bai and Ng (2008), who suggest that the accuracy 

of factor models may be, conversely, improved upon by preselecting the variables prior to fac-

tor estimation by using penalized regressions. Despite using targeted subsets of the predictors, 

the eigenvalue ratio test, again, appears to provide a rather poor fit to the target variable by 

underestimating the number factors: much like in the case of the pure factor model, the test 

indicates using either one or two factors for every forecast, while the best results are obtained 

using as many as nine. 

The overall greatest gains in predictive performance are, however, offered by the penalized re-

gressions. While the penalized models were at a disadvantage compared to the factor models 

in the forecasting scenario, this time, the situation has been decisively turned in favor of the 

former, with the penalized models exhibiting superior performance over all of the pure factor 

models. Moreover, the rankings among the penalized models appear to be distinctively re-

versed as well. The Ridge regression, which was the best-performing penalized model in the 

strict forecasting application, now occupies the bottom of the bunch, whereas the most prom-

ising results are exhibited by the Adaptive Lasso models. Out of these, the variant utilizing the 

Ridge regression to estimate the adaptive weights achieves greatest accuracy overall in terms 

of MAE, with an impressive improvement of 30 percent with respect to the univariate bench-

mark. Regarding the performance among the different Adaptive Lasso models, these results 

also provide some further indication that using shrinkage models instead of OLS to estimate the 

initial penalty weights for the regression may be advantageous in high-dimensional applica-

tions even if sufficient numbers of observations were available to make the latter option feasi-

ble. 

A further advantage of the penalized models relative to the factor models showcased here is the 

fact that the former tend to work well ‘out-of-the-box.’ That is, the models specified at the fore-

cast origin using contemporary information deliver good results. The best factor models, on the 

other hand, utilize fixed numbers of factors, which means that they could be identified only after 

the fact. For this reason, the most justified reference models to the penalized models would 

arguably be the factor models based on the Ahn-Horenstein test since their specification is 

equally based on prior information. In this sense, the tendency of the eigenvalue test to under-

estimate the number of factors with respect to forecasting performance widens the gap 
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between the respective approaches even further. This observation corresponds to earlier re-

sults in the literature regarding the use of information criteria to determine factor numbers: for 

example, Boivin and Ng (2006) point out that the information criteria of Bai and Ng (2002) also 

tend to underestimate number of factors in empirical forecasting applications.  

While nowcasting studies predominantly concentrate on predicting particularly low-frequency 

variables, such as GDP, and, to our knowledge, no published studies deal with nowcasting ag-

gregate producer prices in particular, general parallels can be drawn between the existing lit-

erature and the results encountered here. Specifically, the results here are consistent with a 

number of studies that attest to the usefulness of contemporary information in predicting mac-

roeconomic variables (e.g., Giannone et al., 2008; Heinisch and Scheufele, 2017). In particular, 

Monteforte and Moretti (2013) nowcast the euro area CPI inflation using a number of market-

based predictors, including interest rates and commodity prices. Given the nature of the target 

variables and the set of predictors, their study can be considered somewhat more closely re-

lated to the present one, although they utilize the daily observations of the predictors directly 

in a forecast model encompassing the MIDAS framework. Their results indicate that the forecast 

model augmented with daily market data provides a nearly 20 percent improvement in fore-

casting accuracy compared to an AR benchmark, which is similar to the results obtained here 

for the PPI using monthly averages. 

 

Figure 9. Comparison of the AR forecasts and the Adaptive Lasso (Ridge) nowcasts against the 
realized PPI. 
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To illustrate the beneficial role of contemporary data over time, Figure 9 plots the series of out-

of-sample nowcasts for the MAE best Adaptive Lasso next to the PPI and the one-month ahead 

forecasts of the AR model. Compared to the high-dimensional forecasts, the advantage of the 

additional information contained in the exogenous predictors is more evident in the series of 

nowcasts. Instead of slavishly following the AR forecast, the nowcast is noticeably more inde-

pendent and manages to capture some significant shocks to the PPI inflation impressively well 

in advance instead of the delayed responses that were characteristic of the forecasts examined 

earlier. Notable examples of such successes include the abrupt drops in producer price inflation 

that occurred in late 2014 and early 2020, which the Adaptive Lasso manages to account for 

nearly perfectly in terms of both timing and magnitude. That being said, there are still phases 

when the nowcasts are noticeably detached from the realized values. This is most evident 

around the start of 2016 and following early 2020. That is, even contemporary data has trouble 

keeping up with the upheaval caused by the pandemic, although to an ostensibly lesser extent 

than the strict forecasts.  

The tendencies of the AR and Adaptive Lasso predictions are further illustrated in the scatter-

plots of Figure 10, in which the realized values of the PPI are plotted against the forecasts and 

nowcasts of the respective models. In both panels, the dashed line is the 45-degree line, with 

points lying below and above the line indicating over- and undershooting of the individual fore-

casts respectively. The solid line is fitted based on the observations. While the differences be-

tween the models are not enormous, the observation pairs of the Adaptive Lasso nowcast tend 

to reside closer to the 45-degree line and are more evenly spread out along the horizonal axis, 

whereas the AR forecasts are visibly more concentrated around the center of the plot. This il-

lustrates the notion that a major part of the relative advantage of the Adaptive Lasso nowcast 

arises from its ability to account particularly well for extreme values of the target variable. The 

fitted lines, on the other hand, indicate that both models exhibit a similar tendency to underes-

timate large positive, and overestimate large negative values of the target on average respec-

tively. 
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Figure 10. Scatterplots of the AR forecasts and Adaptive Lasso (Ridge) nowcasts against the re-
alized values of the PPI. The dashed line is the 45-degree line, whereas the solid line is fitted on 

the observations. 

In analogy to the forecasting experiment, it is of interest to briefly examine the evolution of the 

relative errors of some of the models over time. The models included are the best performers 

of the factor and penalized classes, the nine-factor model and the Ridge-based Adaptive Lasso 

model, respectively. In addition, the targeted predictor factor model with factor selection by the 

eigenvalue ratio test is included, as, based on the discussion above regarding the model selec-

tion issues of the factor models, it can arguably be considered a more genuine reflection of the 

performance of the factor models in practice. 

Figure 11 plots the cumulative RMSE and MAE of these models relative to the AR benchmark. 

The contrast to the forecast experiment is quite striking: while the forecast models exhibited 

gradually deteriorating relative accuracy towards the end of the out-of-sample period, the cu-

mulative mean errors of the nowcasts remain remarkably stable for most of its duration, espe-

cially in terms of MAE. In the case of the nine-factor model, the cumulative errors even exhibit 

a clear declining tendency. However, apart from the absolute beginning of the observation pe-

riod, the Adaptive Lasso consistently and considerably dominates all competing models 

throughout the out-of-sample period. 
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Figure 11. Cumulative errors of select high-dimensional nowcasts relative to the AR forecast. 

The superior performance of the Lasso based models relative to the pure factor models, in par-

ticular, implies that the relationship between the set of predictors and the PPI may be charac-

terized by sparsity. That is, instead of common factors aggregated over the entire set of predic-

tors, only a small subset thereof is likely to be relevant to predicting the target, which is a sce-

nario where the Lasso-based models would be expected to fare particularly well (Smeekes and 

Wijler 2018). This is particularly interesting given the opposite results of the strict forecasting 

experiment earlier, which implied information contained in the entire set of predictors as a 

whole to be somewhat more effective than individual predictors. 

The variable selection capability of the Lasso-based models can once again be used to investi-

gate this issue in more detail. To this end, Figure 12 presents an illustration of the variables 

selected by the Ridge-based Adaptive Lasso model over time for each of the 120 out-of-sample 

periods. With each vertical block of the grid corresponding to a single nowcast, each colored 

rectangle represents the estimated coefficient assigned to the corresponding predictor, which 

are listed along the vertical axis of the plot. Furthermore, the color of the rectangle indicates 

the magnitude of the respective coefficient: the darker the color, the larger the coefficient is in 

absolute value, with white indicating a zero coefficient for the specific forecast and predictor. 

As all predictors are scaled to have unit variance prior to estimation, the magnitude of the co-

efficient can be interpreted as being roughly indicative of the influence of a given variable for 

the nowcast of the target variable. To enhance interpretability, the figure includes only the 
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variables that have been assigned a nonzero coefficient at least once during the forecasting ex-

periment. Thus, it excludes 48 predictors out of a total of 93, which were not utilized by the 

forecast model at any point in time.  

 

Figure 12. Variable selection and coefficient magnitude of the Adaptive Lasso (Ridge) nowcast 
over time. 

The figure provides evidence in favor of the sparsity hypothesis: especially for the earlier part 

of the out-of-sample period, the Adaptive Lasso employs particularly few predictors, with no 

more than eleven variables utilized for any given nowcast. While model complexity increases 

towards the end of the out-of-sample period, no more than 28 predictors are utilized for any 

single forecast. The variation in the number of nonzero coefficients over time is caused by the 

complexity parameter, which is adjusted at each horizon based on the cross-validation proce-

dure, the results of which are, in turn, affected by the characteristics of the data observed up to 

any given time-point. The sudden and conspicuous increase in the number of nonzero coeffi-

cients following early 2018 is puzzling but reflects the workings of this in-sample optimization 

process.  

Even though the number of nonzero coefficients varies, the choices of variables remain mostly 

consistent over time, with the same predictors usually chosen for consecutive forecasts. In 
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particular, out of the 93 predictors, five are picked by the Adaptive Lasso for every one of the 

120 nowcasts. These include the prices of crude oil, liquified petroleum gas, and copper, as well 

as the first and third lags of the PPI itself. Furthermore, as indicated by the colors of the respec-

tive entries in Figure 12, these predictors also tend to be the ones that exert the most influence 

over the target variable, given their estimated coefficients. Other frequently featured variables 

include the price of gold, the 12-month Euribor interest rate, the foreign exchange rates of the 

Russian ruble, the Swedish krone, and the Norwegian krone.  

A noteworthy feature is that many of these variables seem to relate to the costs of energy either 

directly or indirectly. In addition to oil and gas prices, the Norwegian and Russian exchange 

rates could also be related to fluctuations in energy prices as these countries are major export-

ers of fossil fuels and changes in their exchange rates may reflect changes in the costs faced by 

importers of energy. Energy prices, oil in particular, play a key role throughout the production 

chain by affecting the costs faced by producers both directly and indirectly. In particular, the 

Finnish PPI features the producer prices of various oil-refined products, such as gasoline, prom-

inently, with a combined weight of some 7.5 percent in the overall index as of 2021. As these 

prices are likely to be both volatile and highly responsive to changes in the prices of crude oil, 

it is not unlikely that at least a part of the contemporaneous predictive capability over the ag-

gregate index arises from these subindices in particular. 

Despite the encouraging results presented above, the caveat of the timing of the data must be 

borne in mind. Even though the nowcasts of the mean error best Adaptive Lasso model would 

have been only 0.34 percentage points away from the realized values of monthly PPI inflation 

on average, the fact that the data used becomes available only weeks prior to the actual target 

variable reduces the practical value of this result. Nonetheless, the results can be considered as 

evidence of the predictive capacity of contemporaneous market data over the Finnish PPI. A 

potential way to leverage this capacity in a more meaningful way would be by using the higher 

frequency data underlying the monthly averages used here. This could be accomplished by us-

ing mixed frequency frameworks, such as the MIDAS regression, the capabilities of which have 

been demonstrated in the nowcasting literature (e.g, Monteforte and Moretti 2013; Heinisch 

and Scheufele 2017). Using daily data would allow truly intra-monthly nowcasts to be con-

structed using information accumulated up to the nowcast origin. Whether or not such data 

would be useful in providing early indication of contemporaneous producer price inflation is a 

topic that could be explored in further research. 
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While collecting daily data on all of the market predictors is potentially an unreasonably ardu-

ous task, the results of the Adaptive Lasso nowcast, which implies sparsity in the set of predic-

tors, indicate that favorable results could be obtained by using far fever predictors. As an illus-

tration of this possibility, one final out-of-sample nowcasting experiment was conducted using 

only the seven external predictors selected by the Adaptive Lasso during the earliest part of the 

out-of-sample period in addition to six lags of the target variable. Given the reduced number of 

predictors, the forecast equation was estimated by means of standard OLS. On average, this 

parsimonious model produces an MAE of 0.0035 and an RMSE of 0.0051, indicating accuracy 

roughly on par with or even slightly in excess of the Adaptive Lasso over the main out-of-sample 

period. This result indicates that high-dimensional data may not in itself be strictly necessary 

to produce favorable results in prediction. Rather than deriving each nowcast from the entire 

dataset, a more efficient way to utilize high-dimensional data could be to screen the data infre-

quently for relevant predictors, and to use this subset, in turn, to produce the actual forecasts 

in the intervening periods. This would alleviate the need to collect data on potentially irrelevant 

predictors for every forecast, thus reducing the burden pertaining to data collection, which is a 

relevant concern in practical applications. 

7 Conclusions 

The objective of this study has been to examine the possibility of predicting the Finnish Pro-

ducer Price Index for Manufactured Goods, a monthly indicator of aggregate producer price 

inflation, in the short term. Specifically, the intention has been to find out whether particularly 

large sets of predictive variables could be useful in this regard. To this end, a dataset consisting 

of a total of 114 predictors, including market prices of commodities and financial market vari-

ables, was utilized.  

Different forecasting models designed specifically to accommodate such high-dimensional sets 

of predictors were considered. These models fall under two distinct classes of methodologies: 

models based on dynamic factors and models based on penalized regressions. While both clas-

ses of methods have been found to be effective in leveraging information contained in high-

dimensional data for forecasting macroeconomic variables, their contrasting approaches to di-

mensional reduction could offer complementary features to account for uncertainties involved 

in the data generating process of the target variable. The performance of these forecasting ap-

proaches relative to each other is also a topic, upon which this study sought to shed light on. 
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The empirical performance of the respective models was assessed by way of a pseudo real-time 

out-of-sample forecasting experiment, in which historical data is used to simulate a sample of 

forecasts in a realistic manner. The main out-of-sample period ranged from December 2011 to 

November 2021. In addition, the performance of the forecasts was examined over alternative 

periods to gauge the effects of the COVID-19 pandemic on predictive accuracy. 

At forecast horizons ranging from one to three months, the high-dimensional models are found 

to provide only limited advantages compared to a univariate benchmark model over the main 

out-of-sample period. The dynamic factor models generally yield the most accurate average 

forecasts, while the penalized models fare only slightly worse. An examination of the evolution 

of forecast errors over time reveals that the high-dimensional models would have performed 

somewhat better during the period preceding the outbreak of the global pandemic in early 

2020. A separate out-of-sample experiment excluding the pandemic period exhibits improved 

results, especially relative to earlier studies considering the forecasting of the PPI in other coun-

tries. However, the observed sensitivity of the high-dimensional forecasts to structural shocks, 

as evidenced by the deterioration of their performance following the onset of the pandemic, 

undermines their utility in practical applications. 

In addition to using strictly past observations of the predictors to forecast the PPI, a separate 

experiment was conducted to explore whether contemporary values of a subset of the predic-

tors could be used to provide more meaningful gains in predictive accuracy. This experiment 

could be justified by the temporal advantage in availability enjoyed by certain market-based 

predictors relative to the PPI. The results of this nowcasting experiment indicate that contem-

porary information could indeed provide far greater benefits in predictive accuracy compared 

to earlier vintages of data. The experiment also revealed more substantial differences among 

the classes of methodologies considered, with penalized methods, the Adaptive Lasso in partic-

ular, providing superior performance over the factor models. Although the best of the tested 

factor models are not far behind, the scale is tipped further in favor of the penalized models 

owing to model selection issues that burden the former approach. Specifically, the eigenvalue 

ratio test utilized here tends to underestimate the optimal number of factors, which inhibits the 

applicability of the factor models to some extent. 

The success of the Adaptive Lasso model, especially, indicates that the greatest gains could be 

achieved by using only a sparse subset of the predictors rather than information summarized 

over the whole set of predictors: predictors related to the price of energy, in particular, appear 
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to be relevant as contemporaneous indicators of aggregate producer prices. That is, rather than 

the high-dimensional data itself, being able to identify relevant variables from among the large 

set of candidates appears the be the key to obtaining optimal predictive performance in this 

case.  

While promising, a major caveat of the latter results is the fact that they were achieved using 

data averaged over the whole month: despite being available relatively quickly, the monthly 

data leads the PPI itself only by mere weeks, which gives limited scope for conducting nowcast-

ing in practice. Regardless, the favorable results indicate that the very near-term prediction of 

the Finnish PPI could hold potential worthy of further investigation. Specifically, daily data on 

the market variables could be used to move the forecast origin further back to produce more 

timely, truly intra-monthly nowcasts of the index. Exploring the potential of such higher fre-

quency data for nowcasting the Finnish PPI could be a viable subject for further research on the 

topic.  
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Appendix 

Table 4 lists the predictor variables used in the forecasting experiments. The data were sourced 

from Statistics Finland (StatFin), the International Monetary Fund (IMF), the Bank of Finland 

(BoF), the European Central Bank (ECB) and the European Commission (EC). The transfor-

mation codes correspond to levels (1), first differences (2), and first log-differences (3). The 

variables are organized into groups according to their type. The groups of variables used in the 

nowcasting experiment are indicated by an asterisk (*) next to the group name. 

Table 4 

List of variables. 

Name Description Source Trans. 
Producer Price Indices 
stat.ppi.main PPI Main Index StatFin 3 
stat.ppi.mig1 PPI Intermediate Products (MIG1) StatFin 3 
stat.ppi.mig2 PPI Capital Goods (MIG2) StatFin 3 
stat.ppi.mig3 PPI Consumer Durables (MIG3) StatFin 3 
stat.ppi.mig4 PPI Consumer Non-Durables (MIG4) StatFin 3 
Import Price Indices 
stat.ipi.main IPI Main Index StatFin 3 
stat.ipi.mig1 IPI Intermediate Products (MIG1) StatFin 3 
stat.ipi.mig2 IPI Capital Goods (MIG2) StatFin 3 
stat.ipi.mig3 IPI Consumer Durables (MIG3) StatFin 3 
stat.ipi.mig4 IPI Consumer Non-Durables (MIG4) StatFin 3 
stat.ipi.mig5 IPI Energy Products (MIG5) StatFin 3 
Energy Prices 
stat.enr.spotfi Electricity Spot Price, Finland StatFin 3 
Commodity Prices* 
imf.met.al Aluminum IMF 3 
imf.met.cu Copper IMF 3 
imf.met.pb Lead IMF 3 
imf.met.ni Nickel IMF 3 
imf.met.tin Tin IMF 3 
imf.met.zn Zinc IMF 3 
imf.met.co Cobalt IMF 3 
imf.met.pd Palladium IMF 3 
imf.met.pl Platinum IMF 3 
imf.met.au Gold IMF 3 
imf.met.ag Silver IMF 3 
imf.met.u Uranium IMF 3 
imf.enr.coau Coal, Australia IMF 3 
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Table 4 (continued)    
Name Description Source Trans. 
imf.enr.cosa Coal, South Africa IMF 3 
imf.enr.lngnl Natural Gas, Netherlands IMF 3 
imf.enr.oilbre Crude Oil, Brent IMF 3 
imf.enr.lpgna Propane IMF 3 
imf.mis.rubb Rubber IMF 3 
imf.mis.urea Urea Granular IMF 3 
imf.agr.bana Banana IMF 3 
imf.agr.barl Barley IMF 3 
imf.agr.beef Beef IMF 3 
imf.agr.coco Cocoa IMF 3 
imf.agr.cofa Coffee, Arabica IMF 3 
imf.agr.cofr Coffee, Robusta IMF 3 
imf.agr.raps Rapeseed Oil IMF 3 
imf.agr.fism Fishmeal IMF 3 
imf.agr.gnut Groundnuts IMF 3 
imf.agr.hide Cow Hides IMF 3 
imf.agr.lamb Lamb IMF 3 
imf.agr.cott Cotton IMF 3 
imf.agr.slog Soft Logs IMF 3 
imf.agr.hlog Hard Logs IMF 3 
imf.agr.corn Corn IMF 3 
imf.agr.olio Olive Oil IMF 3 
imf.agr.palo Palm Oil IMF 3 
imf.agr.pork Pork IMF 3 
imf.agr.chick Poultry IMF 3 
imf.agr.rice Rice IMF 3 
imf.agr.salm Salmon IMF 3 
imf.agr.hsaw Hard Sawnwood IMF 3 
imf.agr.ssaw Soft Sawnwood IMF 3 
imf.agr.shri Shrimp IMF 3 
imf.agr.soym Soybean Meal IMF 3 
imf.agr.soyo Soybean Oil IMF 3 
imf.agr.soyb Soybean IMF 3 
imf.agr.suno Sunflower Oil IMF 3 
imf.agr.suga Sugar IMF 3 
imf.agr.tea Tea  IMF 3 
imf.agr.whea Wheat IMF 3 
imf.agr.sorg Sorghum IMF 3 
imf.agr.wooc Wool, Coarse IMF 3 
imf.agr.woof Wool, Fine IMF 3 
Stock Market Indices* 
bof.sto.omxmain OMX Helsinki BoF 3 
bof.sto.omxcap OMX Helsinki CAP BoF 3 
bof.sto.omxmat OMX Helsinki Basic Materials BoF 3 
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Table 4 (continued)    
Name Description Source Trans. 
bof.sto.omxind OMX Helsinki Industrials BoF 3 
bof.sto.omxcong OMX Helsinki Consumer Goods BoF 3 
bof.sto.omxcons OMX Helsinki Consumer Services BoF 3 
bof.sto.omxheal OMX Helsinki Health BoF 3 
bof.sto.omxfin OMX Helsinki Financials BoF 3 
ecb.sto.stx50 Euro STOXX 50 ECB 3 
ecb.sto.stxmain Euro STOXX  ECB 3 
ecb.sto.stxmat Euro Stoxx Basic Materials ECB 3 
ecb.sto.stxfin Euro Stoxx Financials ECB 3 
ecb.sto.stxtec Euro Stoxx Technology ECB 3 
ecb.sto.stxind Euro Stoxx Industrial ECB 3 
ecb.sto.stxtele Euro Stoxx Telecommunications ECB 3 
ecb.sto.stxutil Euro Stoxx Utilities ECB 3 
ecb.sto.sp500 Standard & Poor's 500 ECB 3 
Exchange Rates* 
ecb.fx.usd EUR/USD ECB 3 
ecb.fx.gbp EUR/RUB ECB 3 
ecb.fx.gbp EUR/GBP ECB 3 
ecb.fx.cny EUR/CNY ECB 3 
ecb.fx.sek EUR/SEK ECB 3 
ecb.fx.nok EUR/NOK ECB 3 
ecb.fx.jpy EUR/JPY ECB 3 
Interest Rates* 
ecb.int.ebor1 Euribor 1 Month ECB 2 
ecb.int.ebor3 Euribor 3 Months ECB 2 
ecb.int.ebor6 Euribor 6 Months ECB 2 
ecb.int.ebor12 Euribor 12 Months ECB 2 
ecb.int.euro5 EA Govt. Benchmark Bond Yield, 5 Years ECB 2 
ecb.int.euro10 EA Govt. Benchmark Bond Yield, 10 Years ECB 2 
ecb.int.us10 US Govt. Bond Yield, 10 Years ECB 2 
bof.int.fin5 Finnish Govt. Bond Yield, 5 Years BoF 2 
bof.int.fin10 Finnish Govt. Bond Yield, 10 Years BoF 2 
Business Surveys 
eco.ind.eurcof Confidence Indicator, Euro Area EC 1 
eco.ind.eur1 Production Trend Observed, Euro Area EC 1 
eco.ind.eur2 Order Book Levels, Euro Area EC 1 
eco.ind.eur3 Export Order Book Levels, Euro Area EC 1 
eco.ind.eur4 Stocks of Finished Products, Euro Area EC 1 
eco.ind.eur5 Production Expectations, Euro Area EC 1 
eco.ind.eur6 Selling Price Expectations, Euro Area EC 1 
eco.ind.eur7 Employment Expectations, Euro Area EC 1 
eco.ind.fincof Confidence Indicator, Finland EC 1 
eco.ind.fin1 Production Trend Observed, Finland EC 1 
eco.ind.fin2 Order Book Levels, Finland EC 1 
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Table 4 (continued)    
Name Description Source Trans. 
eco.ind.fin3 Export Order Book Levels, Finland EC 1 
eco.ind.fin4 Stocks of Finished Products, Finland EC 1 
eco.ind.fin5 Production Expectations, Finland EC 1 
eco.ind.fin6 Selling Price Expectations, Finland EC 1 
eco.ind.fin7 Employment Expectations, Finland EC 1 
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