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Abstract

One of the biggest hurdles in cancer patient care is the lack of response to treatment.

With the support of high-throughput drug screening, it is nowadays feasible to conduct

vast amounts of drug sensitivity assays, aiding in the identification of sensitive and

resistant samples to chemical perturbations. In an oncology setting, drug screening is

the process by which patient cells are examined experimentally for response and activity

to distinct drugs and analysed via dose-response curve fitting. However, the ability to

reproduce and replicate with high confidence drug screening outcomes proved to be a

challenge that needs to be addressed. Inefficient experimental designs, lack of standard

protocols to control both biological and technical factors in such cell-based assays are at

the core of a steep influx of experimental biases. Hence, additional endeavour has to be

carried out to provide less biased estimations of drug effects. This thesis work focuses on

reducing erroneous inferences (i.e., bias) from dose-response data in the curve fitting

step, thereby improving the reproducibility of drug sensitivity screening through efficient

dose selection. A novel two-step experimental design is introduced which significantly

improves the estimation of dose-response curves while keeping the amount of cellular

and chemical materials feasible.
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Thesis abbreviations
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CV D Coefficient of variability in difference

DIP Drug-induced proliferation rate
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DR Drug-response
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DSS Quantitative drug sensitivity scoring

ELISA Enzyme-linked immunosorbent assay

FGF Firoblast growth factor

GDSC Genomics of drug sensitivity in cancer

GR Normalized growth rate inhibition

GSC Glioblastoma stem cell

HDAC Histone deacetylase

HSA Highest single agent

HTS High-throughput screening
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LRT Likelihood ratio test

MCLP MD Anderson cell lines project
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NDR Normalized drug responses

NMF Non-negative matrix factorization

recGBM Recurrent glioblastoma

RI Relative inhibition

sDSS Selective drug-sensitivity scores-response

SSMD Strictly standardized mean difference

TAS Target addiction scoring

V EGF Vascular endothelial growth factor

ZIP Zero interaction potency
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Chapter 1

Introduction

Assessment of drug-response (DR) relationship is at the core of understanding the

mechanisms of action, offering breakthroughs in cancer research that ultimately lead to

effective therapies (Malani et al. 2021; Pemovska et al. 2013). With the support of

high-throughput screening (HTS), it is feasible to screen thousands of chemical

compounds that target multiple signalling pathways or metabolic states for a variety of

cancer cell lines (Manuvakhova et al. 2011; Pietarinen et al. 2015). This swift

development has fostered a deeper understanding of cellular responses to chemical

perturbations. In a drug sensitivity experiment, cell-based assays are commonly

performed in two-dimensional (2D) cell cultures by which cancer cell lines are examined

for response in activity (Jakštys et al. 2015; Markossian et al. 2021). In this thesis work,

drug sensitivity data is collected and analysed in multiple myeloma (MM) cancer cell

lines. Cell viabilities with their respective drug concentrations are fitted via a

four-parameter logistic function. Then, using different drug sensitivity metrics, drug

effect can be quantified. Therefore, it is crucial to obtain the estimates as accurate as

possible to increase experimental reliability. Notwithstanding, one of the grand

challenges is the lack of reproducibility and replicability in the experimental phase. For
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example, it has been reported that drug sensitivity experiments on the same cancer cell

lines, using equal drug concentration ranges from different study centers produced

distinct DR curves within the same and across different centers (Niepel et al. 2019).

Optimizing such assays with proper experimental design is crucial to obtain

reproducible results (Larsson et al. 2020). Despite the problem being highlighted in

several studies (Consortium et al. 2015; Haibe-Kains et al. 2013; Haverty et al. 2016),

guidelines to generate DR data in a more reproducible manner have not been widely

explored nor proposed for that matter. Taken together, a novel experimental design is

needed to improve both the reproducibility in DR assays and the accuracy of the

estimated drug effect.
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Chapter 2

Literature review

2.1 Drug sensitivity testing

Historically, Yoshida et al. (1975) investigated drug potency and efficacy in cultured

cells by means of 5-fluorocyclocytidine detection, paving an avenue for further

advancements in pharmacological testing. Drug sensitivity and resistance testing is an

essential step of pharmacological studies to investigate drug responses at individual

cancer samples. Ex vivo drug sensitivity, once reliably measured and quantified, is able

to suggest safe and effective personalized therapies in the form of molecular tumor

boards (Malani et al. 2021).

2.1.1 High-throughput screening

After the onset of the NCI60 cell-line study (Shoemaker 2006) which aimed at

facilitating drug discovery by offering HTS screening data, a report by Weinstein (2012)

further reinforced importance in the search for novel treatments. With the aid of HTS

assays, a wide array of drug testing is conducted in multi-well plates (i.e., 96 -, 384 - or
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1536 -wells) depending on the available laboratory material and research question that

are susceptible to both technical and biological sources of variation. After target

identification and decide whether to activate or inhibit a specific molecule or pathway,

the assay is set up and HTS is optimized for as little bias in the experiment as possible.

A typical drug sensitivity experiment is represented below upon which first, blood

samples are taken from a patient and cancer cells are separated for testing and diluted.

Then, the assay is performed in cell culture plates where a selected drug of interest is

present on each well with cancer cell lines at a different concentration. Drug sensitivity

profiling is then computed in downstream analysis and a DR relationship is inferred.

This type of workflow is widely adopted in current pharmacological studies taking

advantage of large oncology libraries (Pemovska et al. 2013; Yadav et al. 2014). Below is

illustrated a typical drug screening experiment (see Figure 2.1).
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Figure 2.1: Workflow of a typical ex vivo drug sensitivity assay pipeline for leukaemia.

2.1.2 Public resources for the discovery of anticancer compounds

During mid 2000’s, Posner (2005) highlighted potential obstacles and impact of HTS

assays in the pharmaceutical industry. To address such limitations, BioAssay Ontology

(BAO) was developed (Visser et al. 2011) as an attempt to standardize HTS experiments

and was further tested for assay notation and comparative analysis of different methods

(Zander Balderud et al. 2015). This BAO has facilitated the development of chemical
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biology databases such as the widely used drug discovery resource ChEMBL (Mendez

et al. 2019), the key resource for biomedical research PubChem (Kim et al. 2021), and

DrugTargetCommons (DTC) (Tang et al. 2018) for drug repurposing and detection. To

offer a tailored and robust open-access data portal for drug combination screening

studies for a large number of cancer cell lines, DrugComb (Zagidullin et al. 2019) was

developed and more recently updated with more comprehensive screening data as well

as machine learning algorithms to tackle several diseases (Zheng et al. 2021).

Additionally, to aid in the rational design of synergistic drug combinations via pairwise

evaluation in cell-based assays, SynergyFinger (Ianevski et al. 2017) was developed and

further refined by including additional curve fitting models, visualization alternatives

and statistical tools (SynergyFinger Plus) (Zheng et al. 2022).

Around a decade ago, two leading pharmacogenomic HTS studies on cancer cell lines

CCLE (Barretina et al. 2012) and GDSC (Yang et al. 2012) accelerated pharmacological

discovery of candidate drug targets and molecular therapeutics, offering high quality

genomic data but less concordant drug sensitivity data. Additional large and important

databases comprising genomic, transcriptomic and drug sensitivity data were developed

afterwards. For instance, COSMIC (Forbes et al. 2017; Tate et al. 2019), being the

largest and the most detailed database for somatic mutations in cancer, has become the

state-of-the-art resource for mutational signature analysis (Alexandrov et al. 2020)

assisted by advanced machine learning algorithms such as the non-negative matrix

factorization (NMF) (Lee et al. 2000). Moreover, CTRP (Basu et al. 2013) was

developed to facilitate the development of novel therapeutic strategies with their

pharmacogenomic data taking into account genomic confounding factors of cell lines,

and further expanded to the second version CTRP v2 (Seashore-Ludlow et al. 2015). Li

et al. (2017) published the MCLP data portal by adding protein expression data of more

than 200 cancer-related proteins for 600 cancer cell lines. For drug combinations, a
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non-biased dataset involving screening of 22,737 experiments, 583 drug combinations in

39 distinct cancer cell lines was presented (O’Neil et al. 2016). NCI-ALMANAC

(Holbeck et al. 2017) dataset was developed to screen and assess more than 5000 drug

pairs against 60 tumor cell lines and is a common resource in machine learning

applications (Julkunen et al. 2020). Similarly, a couple of years back, to enable a robust

comparison on variational datasets, Smirnov and colleagues published PharmacoDB

(Smirnov et al. 2018), focusing on improving reproducibility of cell viability assays

(Larsson et al. 2020). For a more in-depth survey, a recent review analyzed and

summarized 102 public databases based on both quality and category (Tanoli et al.

2021). Altogether, drug sensitivity profiles have shown great potential, especially if such

outcomes are reproducible. Table 2.1 displays major public resources.

Resource Acessibility Reference

CCLE CCLE collection (Barretina et al. 2012)

GDSC GDSC website (Yang et al. 2012)

CTRP/v2.0 CTRP portal (Seashore-Ludlow et al. 2015)

O’Neil O’neil article (O’Neil et al. 2016)

MCLP MCLP web app (Li et al. 2017)

NCI-ALMANAC NCI-ALMANAC navigation (Holbeck et al. 2017)

PharmacoDB PharmacoDB documentation (Smirnov et al. 2018)

ChEMBL ChEMBL database (Mendez et al. 2019)

PubChem PubChem homepage (Kim et al. 2021)

Table 2.1: Major pharmacological resources for drug sensitivity studies.
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2.1.3 Measuring cellular response

The classical way of counting viable cells is visual inspection under a microscope. Such a

process can be tedious and inefficient (Pierre 2002). In the past, tetrazolium salts were

frequently used to measure activity of cells and enzymes (Slater et al. 1963). The first

cell viability assay with a color reagent was performed using tetrazolium salt measuring

living cells (Mosmann 1983). Additional efforts were carried out to determine numbers

of cultured cells such as the CyQUANT assay (Jones et al. 2001) yielding a

fluorescent-like signal upon DNA binding, and the reagent Alamar Blue dye through

color shift determined via enzyme-linked immunosorbent assay (ELISA) (Ahmed et al.

1994). This measurement technique was applied to cytotoxic studies in mammalian cells

(O’brien et al. 2000) and further improved for hepatocytes and liver cell lines

(McMillian et al. 2002). Further efforts were made to detect cell death through

detection of differential proteolytic activities (Niles et al. 2007). However, the latter

techniques assume that every cell within a population reacts evenly to a drug which is

usually not the case (i.e., cell heterogeneity). Finally, adenosine triphosphate (ATP)

concentrations are among the most commonly used cell viability analyses using the

CellTiter-Glo reagent (Tolliday 2010).

Nonetheless, all of the previously mentioned cellular measurement techniques may

produce discordant results applied to the same cell-line, compound, and laboratory

material. This phenomena was observed around a decade ago where cell numbers were

discordant using ATP and tetrazolium-reduction assays (Chan et al. 2013; Quent et al.

2010). In principle, in HTS assays, the detection reagent contains an enzyme that reacts

with ATP (luciferase enzyme) yielding light for direct measurement of cell viability in

cancer cell lines (Zheng et al. 2013). The weaker the signal, the fewer viable cells are

present in the growth medium, suggesting that the drug has inhibited cancer cells more
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efficiently. Such luminescence or light signal is quantified with a microplate reader at

appropriate excitation wavelengths. This measurement is typically performed 72 or 92

hours after plate incubation (Jaaks et al. 2022). The percentage cell viability values are

normalized in relation to both positive and negative controls and subjected to drug

sensitivity data analysis pipelines.

2.2 Reproducibility challenge for drug sensitivity as-

says

Inconsistent replicability of drug sensitivity assays pose an obstacle in accurate

estimation of drug effects. Recently, multiple studies have identified specific factors of

irreproducibility in drug sensitivity experiments. In 2019, Niepel et al (Niepel et al.

2019) reported the results of five research centers performing drug sensitivity

experiments on the same cell line, culture media, and chemical compound (Figure 2.2,

A). To increase the reliability of the results, each center used various biological and

technical replicates. However, there have been observed big variations in the resulting

DR curves within and across the centers, suggesting procedural variation and low

reproducibility (Figure 2.2, B).

Importantly, a recent study highlighted the importance of minimizing the effects of

experimental confounders in cell viability assays such as cell culture conditions, drug

concentration and treatment time, DR metrics, and medium protocols for assay

optimization (Larsson et al. 2020). However, practical strategies to generate

reproducible DR curves to a greater extent have not been developed.
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Figure 2.2: Comparison of the resulting dose-response curves within one and across different labs. A.

Five research labs perform drug sensitivity experiments using the same experimental settings to avoid

technical and biological biases. B. Comparison of the resulting dose-response curves within and across

distinct labs.

2.2.1 Lack of reproducibility in large-scale pharmacological datasets

The CCLE and GDSC databases consist of drug sensitivity and genomic data.

Nonetheless, the lack of standardized protocols and inconsistent drug effects pose a huge

hurdle in drug discovery. The following year after the introduction of CCLE and GDSC

datasets, Haibe-Kains et al. (2013) carried out a comparative analysis of common drugs

that accounted for variation and found that outcomes from both resources were not

similar (i.e., a potent and effective drug in a specific cell line within one dataset did not

show the same effect on the other). This study raised important questions on whether

drug sensitivity data from these two datasets were reproducible. It is widely assumed
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that because of this study, the CCLE and CDSC authors launched an analytical analysis

to demonstrate that reproducibility was true (Consortium et al. 2015). Haibe-Kains and

colleagues were not satisfied by the analysis performed on both CCLE and GDSC

datasets in 2015 which lead to an extra study and found once again that measures of

drug sensitivity were not consistent (Safikhani et al. 2016a,b). It appears that the

inconsistency of the results might depend on the chosen DR metric, highlighting the

importance of standardized approaches to assess the reproducibility of drug sensitivity.

Figure 2.3 lists major studies focusing on reproducibility. Ideally, using robust DR

metrics, consistency can be improved. However, no standardized approaches have been

proposed.

Figure 2.3: Reproducibility studies in CCLE and GDSC datasets.

2.2.2 The impact of biological and technical drivers of variability

in drug sensitivity studies

A comprehensive characterization and understanding of molecular features is needed to

reduce batch effects and bias originated by both technical and biological phenomena. It

is alarming that in the industrial community, failure to confirm important findings in
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scientific journals have been reported (Baker 2016). In addition, a two-year study (2008

- 2010) attempted to understand the lack of success in Phase II clinical trials regarding

several chemical compounds (Graul et al. 2009, 2010). Then, Arrowsmith (2011) pointed

that a collaborative effort in the industry is needed for reproducible findings in clinical

trials. A crucial report on the open investigation of the reproducibility in oncology

stated that “replication is central to the progress of science: if others cannot reproduce

the evidence backing a scientific claim, then the claim loses status as scientific

knowledge” (Errington et al. 2014). One believes that vigorous and standardized rules in

the field of science are required for efficient reproducibility and replicability of scientific

claims from several fields. After the resurgence of large-scale pharmacological and

pharmacogenomic datasets and the thorough global discussion therein on the issue of

inconsistent outcomes, an essential study on providing proper guidelines for the reuse of

such resources took place (Wilkinson et al. 2016) (i.e., the FAIR Guiding Principles).

Indeed, for higher efficiency of HTS assays, two main sources of variability need to be

taken into account when designing a drug sensitivity experiment for acceptable results

(Niepel et al. 2017). The biology of DR behaviours can be extremely difficult to control,

especially in independent experiments considering that standardization of cell type,

growth medium composition, cell density, plate edge effects, drug dosage and type,

freezers, and incubation time will certainly differ from laboratory to laboratory.

Furthermore, evolutionary dynamics of drug resistance (Zur Wiesch et al. 2011) have

been reported to affect DR on cultured cells (Ramirez et al. 2016). Accordingly, bias in

cell-based assays was shown to be derived from the day and time at which the

measurements were taken (Harris et al. 2016) which indicates another important source

to be considered (i.e., time-dependent bias).
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2.2.3 Quality control in HTS assays

In HTS assays, one single error in the automation process can jeopardize the whole

experiment. Celltiter-Glo, the most commonly used quantification method in a drug

sensitivity experiment, is also susceptible to errors which result in inconsistent DR

relationships. Important drivers of variability that are usually considered are plate edge

effects due to uneven evaporation of the plate edges, robotic liquid handling, laboratory

material and environment of the experiment (Bushway et al. 2010; Root et al. 2003).

Assessing HTS technical errors via quality control is usually performed with the use of

Z-factor (Mpindi et al. 2015) being determined with dimethyl sulfoxide (DMSO) treated

positive and negative controls (Jaaks et al. 2022). These screening controls are crucial in

evaluating plate edge effects and possible technical bias in modern experiments, however,

they are often not enough to increase the quality of the experiment by themselves.

Further, the author responsible for Z-factor (Zhang et al. 1999), in 2007, published new

quality control (QC) methods such as the strictly standardized mean difference (SSMD)

and the coefficient of variability in difference (CVD) to aid in HTS assays (Zhang 2007).

Bioinformatic tools are key to optimize HTS assays through quality control, parameter

estimation, and informative visualisations. Hence, experimental data need to first be

collected, systematized, measured, and visualized in a proper way by means of advanced

tools. Recently, integrated quality control and data analysis applications for HTS have

been developed and provided as open-source tool (Ianevski et al. 2017; Potdar et al.

2020). These applications are crucial to further identify individual drug resistance and

sensitivity patterns for personalized patient care as well as for rational designs of drug

combinations that are able to tackle resistant mechanisms of cancer cells and enhance

treatment efficiency. Lastly, Mpindi et al. (2015) studied key factors in HTS

experiments and emphasized the importance of both scattered plate layout of controls

13



and the use of Loess method for normalization, thereby reducing place edge effects and

generate accurate DR curves.

2.3 Dose-response curve fitting

In cancer research, DR relationship inference is at the core of understanding drug

responses. In a typical drug sensitivity experiment, each cell viability data point with

respect to its dose concentration value is fitted to a four-parameter logistic model

(Findlay et al. 2007; VØlund 1978) which usually displays a sigmoidal curve (Vis et al.

2016). The independent variable of such a model is the drug concentration and the

dependent variable is the cellular viability. Hence, each curve has its parameters which

can be used to determine multiple drug sensitivity metrics (Yadav et al. 2014). The

fitting of a model is achieved by estimating the parameter values that best represents its

true behaviour. However, when the logistic model does not fit the data properly (i.e., it

does not represent a sigmoidal relationship), the IC50 (crucial region when cells are

inhibited by half) is likely ill-defined. In such cases, non-parametric models might be

needed to calibrate cellular responses using Spline, Monotonic or Bayesian approaches

(Amiryousefi et al. 2021). The DR curve fitting experienced a high peak of development

over the last years due to the evolution of the open-source environment R where new

packages and algorithms within surfaced that allow for quantitative analyses of cellular

dynamics. Contemporary state-of-the-art packages based on specific algorithms and

tools include drc (Ritz et al. 2015), nplr (Commo et al. 2016), drda (Malyutina et al.

2021), and DoseFinding (Bornkamp et al. 2010). Alternative resources include nlstools

for hormetic curve fitting (Baty et al. 2015), MCPMod for the design and analysis of

dose finding trials (Bornkamp et al. 2009), and grofit for the fitting of growth curves

under different biological scenarios (Kahm et al. 2010). Throughout this thesis, the drc
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package will be utilized.

The common model to fit a DR relationship curve is the 4-parameter generalized logistic

function (Equation 2.1).

y = β + α − β

1 + e−η(x−ϕ) (2.1)

Where x are the drug doses in raw scale, β and α stand for lower and upper bounds of

the response respectively, η determines the potency of a drug (i.e., how fast or slow cells

are being inhibited - slope), and ϕ (or IC50 ) is defined as the concentration at which the

drug inhibits 50% of cells. Providing that the ϕ is reached with the initial tested doses,

suggests drug-sensitive cells. On the contrary, in cases which the majority of test doses

do not inhibit half of the cell population, it suggests a weak drug response. In the latter

case, it is common to use synergistic combinations to achieve higher treatment efficacy

(Szwajda et al. 2015; Tang et al. 2013). Alternative models for DR curve fitting are, for

instance, the 2-parameter logistic model, the 5-parameter function (or Richard’s curve)

(Richards 1959), and Emax (Macdougall 2006).

2.3.1 Algorithms to infer dose-response relationship

Currently, the drc package is one of the most common resources for DR curve fitting in

drug sensitivity assays. This package contains several functions which have flexible and

versatile model fitting and evaluation functions, to properly capture the true cellular

activity, allowing users to choose a nonlinear model for curve fitting from an ample

range of sigmoid functions. In addition, drc applies quasi-Newton methods such as the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Fletcher 2013) and the limited-memory

BFGS (L-BFGS-B) that has shown improved numerical performance compared to
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previous optimization algorithms (Liu et al. 1989). In addition, certain functions within

the package are able to be extended by other R packages such as medrc (Gerhard et al.

2017) and nlme (Pinheiro et al. 2007).

drda is a fairly recent package developed and proved high performance in the residual

sum squares paradigm which is able to provide accurate and consistent results to a

greater degree (Malyutina et al. 2021). Instead of applying a numerical optimization

routine, drda implements a new Newton method with a trust region through conjugate

gradient for large-scale optimization problems (Steihaug 1983). This overcomes the main

limitations of previous packages using quasi-Newton methods to minimize

non-convergence problems using logistic models for inference. While other algorithms

employ a single initialization step, drda doubles the steps to optimize algorithm

convergence. In addition, the algorithm relies on the analytical gradient and Hessian

formulas instead of numerical approximations in problematic scenarios to assure proper

convergence. Furthermore, it computes confidence intervals for the whole DR curve

using multiple comparisons tests correction such as likelihood ratio test (LRT) through

Akaike information criterion (AIC) (Akaike 1974) and Bayesian information criterion

(BIC) (Schwarz 1978).

The DoseFinding package was designed for phase II clinical trials providing functions

for the design and analysis of DR experiments. Similarly to drc, DoseFinding also

takes advantage of the quasi-Newton algorithm BFGS and enforces boundary constraint

to non-linear models parameters. Bornkamp et al. (2011) studied the challenges of

dose-finding studies (i.e., model uncertainty and variability in the parameter estimates)

and proposed adaptive designs in clinical studies under different scenarios. Later on,

using general parametric models, they also developed a robust framework for model

comparison in dose-finding studies (Pinheiro et al. 2014).
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The nplr package provides generalized logistic functions based on the 5-parameter

logistic regression model utilizing classic Newton approaches (i.e., Newton-Raphson

method) employed in the nlm() function of the package. Furthermore, nplr provides

users metrics to assess the area under the curve and confidence intervals for estimated

drug doses. Albeit fast, it has the disadvantage of providing poor DR inferences due to

improper convergence approximated numerically.

2.3.2 Assessing parameter effect on the shape of a curve

It is essential to evaluate the behaviour of the 4-parametric logistic model (Equation

2.1) when varying the parameters (Figure 2.4).

Figure 2.4: Parameter assessment of the four-parameter logistic function in inhibitory scenarios where

slope is negative. On each plot, a specific parameter of the model is varying while others are fixed as

highlighted for each scenario.
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Varying only the β or α (curve bounds) parameters of the model only alter the

minimum and maximum response of cells in the presence of chemical compounds,

respectively. In cell viability terms, the maximum response indicates the total cell

population and the minimum indicates the point at which cells are completely inhibited.

Fluctuating the η parameter demonstrates how cells react to a particular chemical

perturbation and how fast cells are being inhibited from one concentration level to the

next. The ϕ parameter is commonly used to quantify the potency of a drug. The lower

the ϕ, the more efficiently a compound inhibits cell viability. On the contrary, the bigger

the ϕ, the more doses are needed to inhibit cells which displays less efficacy. A priori, it

appears that η and ϕ parameters of the model are of interest and worthy of exploration.

2.3.3 Curve fitting summary

In order to determine the optimal parameters, all of the above packages except drda

employ iterative Newton approaches extensively (Nocedal et al. 2006). Inconsistent

results of curve fitting when applied to similar pharmacological data from HTS

experiments or from global resources with the exact same model proved to be a

challenge in the discovery of effective compounds. Therefore, not only this thesis will

evaluate drc over a wide spectrum of parameters of the model (Equation 2.1) using

massive simulations, but will also hypothesise, propose, and validate efficient solutions

for higher replicability and reproducibility of drug sensitivity assays through different

dose selection processes.

2.4 Identification of drug candidates

Analysis of sensitive and resistant cells in response to chemical perturbations have

usually used the IC50 value as the main metric (Dong et al. 2015; Fallahi-Sichani et al.
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2013). Attempts to optimize the accuracy of the IC50 estimation through multilevel

modelling were reported (Vis et al. 2016). An alternative to IC50 is the half-maximal

effective concentration (EC50), being the required dose to experience 50% of the drug

effect. Fundamentally, if inhibition is measured, the IC50 is used at which point inhibits

50% of cell population compared to untreated controls. In contrast, if viability is

measured, the EC50 metric is adopted. In HTS assays, cancer cell lines are usually

exposed under five different concentrations in a log10 scale (e.g., 1, 10, 100, 1000, 10000

nmol/L) (Pemovska et al. 2013). Drug scoring in individual patients is a crucial step in

drug discovery. Hence, various metrics have been developed over the years to detect

drug efficacy and potential drug-target candidates.

2.4.1 Quantification metrics of drug sensitivity

DR quantification is an essential process at the forefront of proposing effective treatment

in personalized medicine. Scoring ex vivo drug sensitivity data allows for a broader view

on a systems-wide level by understanding how the cells behave and, potentially, what

genetic modifications the cancer cell rely on. Hafner et al. (2016) developed a new

metric called GR (Growth rate) to measure cell sensitivity to cancer drugs and showed

that classical pharmacological metrics fail to obtain consistent outcomes mostly due to

differences in cellular proliferation. The CCLE study (Barretina et al. 2012) developed

the activity area (AA) to identify the efficacy and potency of 24 compounds in a large

collection of cell lines. Additionally, the quantitative drug sensitivity scoring (DSS) and

selective drug-sensitivity scores-response (sDSS) based on the area under the curve

(AUC) (Ekstrøm 2020), showed performance in (Yadav et al. 2014) for patients with

acute myeloid leukemia (AML). In events such that positive and negative controls are

available, relative inhibition (RI) can be considered as a proper metric and computed for

each dose plate (Malyutina et al. 2019). Curiously, Fallahi-Sichani et al. (2013) used a

19



combination of the (1 ) slope parameter of DR curves, (2 ) AUC, and (3 ) the upper

bound (or maximum response) to assess and prove the strength of a multiparametric

approach in drug sensitivity quantification. Using both the CCLE and GDSC data,

consistency of cell viability data was accomplished by computing the area between two

DR curves (ABC) (Safikhani et al. 2016b). Remarkably, an interesting in vitro study

proposed the drug-induced proliferation (DIP) rate (Harris et al. 2016) as a

quantification metric to remove temporal bias in antiproliferative compound activity on

cells. Their study highlighted the importance of both cellular growth and lag in drug

effect on cells as potential causes of time-dependent bias. Recently, to reduce erroneous

inferences in interpreting drug sensitivity data, normalized drug response (NDR) (Gupta

et al. 2020) was developed and benchmarked via simulations. This new metric also

makes use of positive and negative controls in HTS experiments and it was shown to

improve consistency and accuracy of dose-responses.

Multi-targeted treatments such as drug combinations have shown potential in treating

complex diseases (Adam et al. 2018; Sun et al. 2017). Malyutina et al. (2019) developed

a drug combination sensitivity score (CSS) to score drug pair potency to facilitate the

discovery of synergistic drug effects. Bliss independence is a traditional model where two

drugs A and B act in an independent fashion, thus expecting their effect to be amplified

(Bliss 1939). Other synergy scoring metrics include the highest single agent (HSA)

(Berenbaum 1989), Loewe additivity (Loewe 1953), and the zero interaction potency

(ZIP) (Yadav et al. 2015). Currently, these drug combination metrics are provided in

the SynergyFinder Plus standalone web application (Zheng et al. 2022).
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2.5 Applications of drug sensitivity assays in biomedicine

and biomarker discovery

For optimal anticancer therapy, HTS allows for large-scale drug testing able to aid in

DR biomarker discovery. Such automation is extensively used in cancer research. In just

a couple of days, a large collection of chemical compounds is screened against

patient-derived primary samples or cell lines (Collignon et al. 2020; Lin et al. 2020).

Examples of this type of assay approach have been used to understand DR variability

and patient stratification in AML patients (Majumder et al. 2017; Pietarinen et al.

2015). Drug sensitivity and resistance testing (DSRT) (Malani et al. 2017; Malani et al.

2021; Pietarinen et al. 2017) demonstrated its power in DR biomarker discovery

(Pemovska et al. 2015). Moreover, it has been shown that in vitro drug sensitivity was

able to predict oncogenic signaling pathways (Tyner et al. 2013). A computational

method termed target addiction scoring (TAS) (Jaiswal et al. 2019) was able to convert

DR profiles into drug target signatures allowing for compound ranking. Towards

addressing intertumoral heterogeneity in recurrent glioblastoma (recGBM) cancer cells,

Skaga et al. (2019) applied DSRT to glioblastoma stem cell (GSC) cultures via DSS

metric and one-way ANOVA statistical testing to observe significantly differences in

drug sensitivity across cell cultures.

Drug sensitivity profiling goes beyond haematological diseases. In breast cancer, drug

screening is able to identify candidate predictors of response (Heiser et al. 2012).

Correlation between drug sensitivity and molecular features revealed around 250 genes

associated with response to treatment (Kuo et al. 2009). Representative drug sensitivity

applications in biomedicine are illustrated in Table 2.2.
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Data Description Reference
Ex vivo drug sensitivity
and molecular profiling

Drug sensitivity and resistance test-
ing (DSRT) combined with ge-
nomic profiling was able to pro-
vide patient-specific therapy for 187
drugs in 18 patients with acute
myeloid leukaemia.

Pemovska et
al., 2013

Ex vivo drug sensitivity Identification of novel drug can-
didates based on drug sensitivity
scores and dose-response profiling
for blast phase chronic myeloid
leukemia using a total of 295 drugs.
Effective drugs include VEGFR,
NAMPT, and MEK inhibitors.

Pietarinen et
al., 2018

Ex vivo drug sensitivity This study focused on optimizing
cell-based assays through the identi-
fication of both biological and tech-
nical factors using quality control
metrics.

Larsson et
al., 2020

Ex vivo drug sensitiv-
ity and targeted next-
generation sequencing
(tNGS)

Development of a promising tailored
treatment strategy helped to pro-
vide personalized treatment for 28
acute myeloid leukemia (AML) pa-
tients in less than 21 days.

Collignon et
al., 2020

Multi-omics ensemble (ex
vivo drug sensitivity, ex-
ome and RNA sequencing)

Highlighted failure of genomic data
alone to provide enhanced ther-
apeutics in patients with acute
myeloid leukaemia. A robust in-
tegration of omics data enabled
the identification of a novel drug-
response biomarker such as the
overexpressed IL15 gene in resistant
samples.

Malani et al.,
2022

Table 2.2: Examples of drug sensitivity applications in biomedicine.
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Chapter 3

Aims of the study

The aim of this thesis is to tackle the reproducibility in drug sensitivity studies by

reducing the bias that occurs during the drug effect estimation using dose-response

curve fitting. A two-step experimental design is proposed as an efficient tool to plan the

drug sensitivity assays.

The three main aims of this thesis are as follows:

1. Analyse if the proposed two-step design helps to reduce the dose-response bias and

relative errors of common drug sensitivity metrics via computational simulations.

2. Confirm simulation findings through experimental validation on OPM-2 cancer cells.

3. Final evaluation of the two-step experimental design (i.e., suitability for real exper-

iments) and possible limitations of the approach.
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Chapter 4

Materials and Methods

4.1 A two-step experimental design

A novel two-step experimental design that involves a pilot and validation experiment is

introduced. At the core of the design, new drug doses are proposed by the algorithm

based on the information from the pilot experiment. In the validation experiment, cell

viabilities at new doses are measured and merged with the data from the pilot

experiment. Finally, an accurate dose-response relationship can be inferred with the

merged data.

This thesis will evaluate the curve fitting bias via large-scale simulations governed by

different scenarios under the four-parametric logistic model (Equation 2.1). The

two-step experimental design was initially built based on computational simulations and

assumptions from cell-based assays. First, the strategy will be tested in silico and

further validated using drug sensitivity assays with standardized protocols for OPM-2

cell lines.

Computational simulations and design evaluation: The new design will be
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tested and evaluated via simulations in a large-scale framework with the use of the

4-parameter logistic function (Equation 2.1) over a large grid of parameters. DR

curve fitting is computed by means of applying simulated drug sensitivity data to

the drc package curve fitting pipeline. In the first step, involving a pilot

experiment, drug doses and cell viabilities are first sampled similarly as in a

real-life screening experiment from the true curve when all the parameters are

fixed using normal distribution with mean (µ) centered at the true curve viability

values and a standard deviation (σ) of 0.05. Then, new drug doses are proposed

by the dose selection algorithm and selected for the second step, labelled as

validation testing, based on information from the pilot experiment as input.

Finally, both pilot and validation drug sensitivity data are merged, and a new

curve is fitted with the merged dataset. Bias and relative errors of the main drug

sensitivity metrics area under the curve (AUC ) and ϕ (IC50) are then computed

as the main evaluation metric as follows:

Bias = |x̂ − x| (4.1)

Where x̂ is the estimated dose-response curve values from the fitted drug

sensitivity data, and x is the true dose-response curve values.

RE = |x − x̂

x
| (4.2)

Where RE is relative error, x̂ is the estimated either α, β, η, ϕ, or AUC, and x is

the true computed values.

Drug screening experiments: OPM-2 cancer cell lines and drugs that cover distinct

IC50 scenarios were used for experiments (see Table 4.2). In total, 8 cell culture
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plates were used for the experimental validation (6 for the pilot experiment and 2

for the validation step). For the initial pilot assay, OPM-2 cells were subjected to

doses at 5 concentrations in both log10 and uniform intervals with 1, 2, 3, and 5

replicates. For the validation step, was tested the addition of 3, 4, and 5 doses

with 1 replicate. To assess the performance of the two-step experimental design

denoted as the ground truth, OPM-2 cells were subjected to doses at 15

concentrations in log10 scale with a total of 3 replicates. Analysis of pilot assay

plates ought to provide decisive insights for the selection of effective drug doses for

the second round of experiments. Figure 4.1 illustrates the workflow of the

two-step experimental design.

Figure 4.1: A two-step experimental design with the aim to reduce biases in dose-response estimation

in the curve fitting.
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4.2 A simulation workflow

4.2.1 The importance of computational simulations

Currently, there are mainly two branches of computational biology: high-scale

simulations and knowledge discovery (Kitano 2002). Simulations are powerful methods

to explore the dynamics of a biological system. In this thesis, simulations are applied to

facilitate an understanding of the biases of different designs under a large variety of

scenarios. In the context of pharmacological research and biomarker discovery, reducing

DR curve fitting bias is crucial to accurately determine the potency of a drug. A related

field that takes advantage of computational tools that aid biological experiments is in

computational pharmaceutics (Ouyang et al. 2015). This field has been revolutionized

by a harmonic relationship between computational molecular modelling with

experimental research (Bunker et al. 2020).

4.2.2 Simulating drug sensitivity data

In order to validate the two-step experimental design via simulations, sampled

dose-responses that reflect reality (i.e., viability values from actual experiments) is

required. It is well-documented that bias in experimental procedures such as HTS is the

result of both technical and biological variations (Bushway et al. 2010; Larsson et al.

2020; Niepel et al. 2019). Therefore, the true response for a specific cancer cell line in

the presence of a compound is assumed randomly drawn from Normal distribution with

mean µ centred at the true DR curve and with σ of 0.05.

f(x|µ, σ) = 1
σ

√
2π

e
(x−µ)2

2σ2 (4.3)
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A dose-response curve by sampling from the Equation 4.3 is illustrated in Figure 4.2.

Figure 4.2: Simulation of a drug sensitivity experiment using normal distribution with µ centred at the

true response and σ of 5%.

4.2.3 IC50 as a critical region in curve fitting

Exploratory computational analysis of DR curve fitting with drc indicates that the

highest bias between the true and simulated DR curve is observed within the IC50

region (Figure 4.3). The workflow of this analysis is as such: (1 ) drug doses were

computed in five different concentrations in a 10-fold format, (2 ) true parameters of the

4-parametric logistic function (Equation 2.1) were simulated, (3 ) three replicates were

drawn from the Normal distribution (Equation 4.3) with the mean µ being the true

response and a standard deviation σ of 0.05, (4 ) one replicate data fitted to the drc

algorithm, (5 ) propose a new drug dose based on the DR curve, and finally (6 ) plotting

the true and simulated DR curve alongside replicates, the true cell viability values, and

the proposed drug dose. If the IC50 region is not properly covered by drug doses, drc is

not able to properly estimate the true IC50 value which in turn affects current drug

sensitivity quantification metrics and inaccurate inferences. However, adding a single
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drug dose close to the correct IC50 region can significantly decrease the bias and

therefore improve DR relationship inferences (Figure 4.3).

Figure 4.3: ϕ (IC50) as an essential parameter of the four-parameter logistic function. A. Bias identi-

fication within the ϕ region due to poor choice of drug doses. B. Adding a single drug doses close to the

true ϕ value can considerably reduce the bias.

4.2.4 Generating dose-response curves

For the drc package, the 4-parameter logistic model fct = L.4() was selected along with

the previously mentioned BFGS method, and the number of iterations was fixed at

10000. In a simulation paradigm, the accuracy of the algorithm was computed based on

the (Equations 4.1, 4.2) and determined both inference accuracy and the effectiveness of

the two-step experimental design. In the experimental validation stage, the design was

evaluated on the basis of comparing DR curves between high amounts of drug doses and

biological replicates (i.e., ground truth) to the fitted curve proposed by the design.

4.2.5 Dose selection algorithm

Ideally, knowing the true IC50 region the solution would simply be to add drug doses

within the IC50 region. However, for an actual experimental, we do not know the true
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IC50 beforehand. Indeed, it is possible to infer the ϕ parameter using current R packages

(Section 2.3), however, these are simply estimates and one wrong estimated parameter

can ruin DR inference upon which using constantly such values to select drug doses is a

naive approach. As such, a novel strategy to select efficient drug doses is crucial and

required to tackle reproducibility by reducing inference bias in the curve fitting step.

The assumption of experimental bias in drug sensitivity experiments acknowledged in

this thesis work is approximately 5% based on the observed variation between replicates

from public drug sensitivity datasets. Assuming that each experimental replicate can be

derived from a Normal distribution (Equation 4.3) and taking into account the critical

region for the IC50 of 0.5 (% cell viability for IC50 concentration), along with standard

deviation of 0.05, level of 2 (degree of deviation from the mean), and simulating 100000

cell responses, it was identified the range of [0.4, . . . , 0.6] to develop further the dose

selection algorithm. This ultimately indicates that most of the viability values around

0.5 would fall in the reported range due to bias, landing in the 95% confidence interval

landscape (Figure 4.4).

The approach to select new drug doses is based on four key settings: (1 ) cell viability

values from the initial pilot experiment or previously reported results in respect to its

dose concentration range, (2 ) minimum and maximum validation testing doses to be

considered, (3 ) how much bias or errors in the experimental data is expected, and (4 )

level (i.e., how much deviation from the critical region of 0.5 is assumed) based on a

Normal distribution paradigm - the higher the level, the farthest the viability values

corresponding to 0.5 will deviate. Then, the algorithm suggests which and how many

drug doses to add in the second round of a drug sensitivity experiment (i.e., validation).

Finally, drug sensitivity data from both pilot and validation experiments are merged and

a curve is fitted which is expected to represent the unbiased cellular response.
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Figure 4.4: Normally distributed simulated cell viabilities. Critical region detected to select viabilities

from [0.4 to 0.6] with µ of 0.5, σ of 0.05, and level of 2.

More formally, the algorithm works in a cascade of conditions that need to be met to

choose new doses based on the four main cases. For instance, if the first condition is

already satisfied, new doses will be determined. If not, the algorithm goes down the

cascade until a specific condition is met. Once the algorithm is initialized, if the IC50 is

already reached with the first drug dose (Figure 4.5, case 1, highly effective compound

within the tested dose range), then new doses are proposed prior to the initial pilot dose

to cover the critical region of the DR curve. On the contrary, if the IC50 is not reached

with the last dose from the pilot experiment (Figure 4.5, case 2, ineffective compound

within the tested dose range), drug doses beyond the last pilot dose will be added as an

attempt to reach the IC50 region. Case 3 is a special case upon which all the viability

values fall between the computed range of [0.4, . . . , 0.6] (ideally, without any bias, the

viability for IC50 concentration would be simply 0.5). In such a paradigm, new drug

doses are added before and after the first and last dose from the pilot experiment,

respectively, making the dose interval wider. Furthermore, the majority of drug
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sensitivity data will fall in the very last condition (case 4) when all the previous

conditions were not true. In such a case, the algorithm begins by finding the first dose

followed by the last dose to cover the critical regions of the DR curve.

First and last dose determination

To find the first dose, the algorithm uncovers pilot concentrations whose viabilities are

either above or below the threshold of 0.6 (i.e., µ = 0.5, σ = 0.05, level 2). If the first

cell viability is below 0.6, it means that the first dose from pilot is likely not enough

and, thus, the minimal testing dose should be decreased in the validation step to (Dmin)

(Figure 4.5, case 4, first dose, A). Secondly, from all the viability values, if only the first

viability is above 0.6, its respective concentration is considered as the first for validation

(Figure 4.5, case 4, first dose, B). If all the viability values are consistently above 0.6

prior to the one that is below 0.6, the last dose whose viability is above 0.6 is considered

for additional testing (Figure 4.5, case 4, first dose, C). If all of the above conditions

are not met, the algorithm catches when the first viability is not above 0.6 and chooses

the previous dose (Figure 4.5, case 4, first dose, D). To find the last dose, the algorithm

uncovers pilot concentrations whose viabilities are either above or below the threshold of

0.4 (i.e., µ = 0.5, σ = 0.05, level 2). In an event that the last viability value is above 0.4,

the validation maximal testing dose will be increased to (Dmax) (Figure 4.5, case 4,

last dose, A). Secondly, from all the viability values, if only the last is below 0.4, its

respective concentration is considered as the last dose for validation (Figure 4.5, case 4,

last dose, B). If all the viability values are consistently below 0.4 after the one that is

above 0.6, the first dose whose viability is below 0.4 is considered for additional testing

(Figure 4.5, case 4, last dose, C). If all of the above conditions are not met, the

algorithm catches when the last viability is above 0.6 and chooses the next dose (Figure

4.5, case 4, last dose, D). Finally, doses are computed and proposed uniformly within

the optimized range, to be tested for the validation experiment.
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Figure 4.5: Algorithm to effectively select drug doses that cover the critical regions of the dose-response

curve. Ndoses is the desired amount of doses for the validation experiment, Dmin is the minimal testing

dose and Dmax the maximal testing dose. On each plot, x axis represents the drug concentration range

(in log10 scale) and y axis represents the cell viabilities. Each curve was fitted using the drc R package

under the four-parameter logistic model 2.1. 33



4.2.6 Parameter settings

To assess whether the proposed two-step experimental design by efficient dose selection

could indeed help reduce bias in DR curve fitting, a massive series of simulations were

performed with the drc R package. The 4-parameter logistic model (Equation 2.1) was

used and its parameters were fixed based on the exploration of the parameter effects on

a dose-response curve (Section 2.3.2) where a total of 4 β and α curve bounds were

considered to cover distinct response scenarios, 41 values of η from -20 to -0.1 with a

step of 0.5 to assess design performance varying the steepness of the curve, and finally

60 ϕ values on the grounds that ϕ affects highly DR inference based on the dose interval

(Section 4.3) and, thus, ϕ values before, between, and after the tested doses were of

interest. Further, 3 different number of replicates to simulate biological or technical

replicates was considered as well as 3 different numbers of validation doses to evaluate

design performance. In addition, was chosen a standard deviation (σ) of 0.05 and level

of 2 highlighting how much deviation from the mean µ (0.5 ) is expected from the

Normal distribution (Equation 4.3, and Figure 4.4). For the pilot drug doses, in total, 3

different numbers of doses were computed based on two forms of concentration intervals

commonly used in pharmacological tests (i.e., log 10-fold and uniform intervals). Finally,

for each parameter set, 100 simulations were performed. The code was developed to run

at high efficiency where η and ϕ were set to run in parallel for 100 simulations each

combination of the two for a specific parameter set. In total, 864 parameter sets

comprising a total of 212544000 (864 × 41η × 60ϕ × 100 simulations) rows of data were

computed and preprocessed to 2125440 (864 × 41η × 60ϕ × 1) where only summarized

results out of 100 simulations for each set was of interest for downstream analysis.
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Parameter Value

Number of simulations 100

α [0.0001, 0.1, 0.2, 0.3]

β [0.7, 0.8, 0.9, 1]

η [-20, ..., -0.1]

ϕ [0.001, ..., 20000]

σ 0.05

Level 2

Dmin 0.0001

Dmax 25000

Number of replicates [1, 3, 5]

Number of drug doses [5, 10, 15]

Number of validation doses [3, 4, 5]

Dose interval [log 10-fold, uniform]

Table 4.1: Simulation parameters of the study.

4.3 Drug sensitivity experiments

4.3.1 Experimental protocol

For the experimental validation, drug sensitivity experiments were performed on OPM-2

multiple myeloma cell lines. OPM-2 cell lines were purchased from DMSZ (German

Collection of Microorganisms and Cell Cultures GmbH) and routinely cultured in RPMI

1640 medium (Gibco/Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
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GlutaMax (Gibco), 10% fetal bovin serum, and antibiotics. Prior to the compound

treatment, OPM-2 cells were titrated to determine the optimal seeding number range for

achieving a linear cell viability readout. Furthermore, around 2500 OPM-2 cells per well

were seeded in 25µL of culture medium in a 384-well plate (Corning no.3764, Corning,

NY, USA), using an automatic dispenser BioTek MultiFlo FX RAD (5 µL cassette)

(Biotek, Winooski, VT, USA). Selected drugs (see Table 4.2) at designed concentrations

were subsequently added to the desired wells using a Tecan D300e digital dispenser

(Tecan, Männedorf, Switzerland). For the positive control (toxic that is expected to kill

all the cells), 100 µM of benzethonium chloride (BzCl) was used and 0.2% of DMSO for

the negative control (i.e., vehicle with no effect on cells). After 72h incubation at 37°C

and 5% CO2, the plates were equilibrated at room temperature for 30min before starting

the to viability assay using 25 µL per well CellTiter-Glo luminescent reagent (Promega,

Madison, WI, USA). Finally, luminescence signal was recorded after 10 min incubation

with a PHERAstar FS multimode plate reader (BMG Labtech, Ortenberg, Germany).

Drug g/mol Supplier Target Class

Ruxolitinib 310.00 ChemieTek JAK1/2 inhibitors Kinase inhibitor

Axitinib 386.47 LC Laboratories VEGFR, PDGFR, KIT

inhibitor

Kinase inhibitor

Carfilzomib 719.91 ChemieTek Proteasome inhibitor (20S

subunit)

Protease inhibitor

Bortezomib 384.24 ChemieTek Proteasome inhibitor (26S

subunit)

Protease inhibitor

Vorinostat 264.32 LC Laboratories HDAC inhibitor Kinase inhibitor

AZD4547 463.58 ChemieTek FGFR inhibitor Epigenetic modifier

Lonafarnib 471.35 Selleck PDK1 inhibitor Kinase inhibitor

Table 4.2: A list of drugs used in the experimental validation assays.
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Chapter 5

Results

5.1 Assessment of the two-step design in simulated

dose-response data

5.1.1 Adding replicates does not reduce the bias

In the majority of drug sensitivity experiments, researchers tend to include multiple

technical or biological replicates to improve the estimation of the dose-response curves

for a particular drug (Bolomsky et al. 2021). An overview of the selective true DR

curves with the chosen parameters depicted in the plot, suggests that depending on the

ϕ, the dose-response curve will behave differently (Figure 5.1, A). However, supported

by simulations, it was found that adding replicates does not necessarily reduce the DR

inference bias across several ϕ values (Figure 5.1, B, C, and D). This is the result of

poor ϕ coverage by the tested doses. Such conclusion can be made for every single

parameter set which suggests the need to develop computational models to (1 ) identify

the critical regions of the DR curve, and (2 ) propose new doses to improve DR
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estimation rather than the addition of replicates.

Figure 5.1: Adding replicates does not improve the estimation of dose-response curves. A. Overview of

the true dose-response curves for fixed α, β, and η parameters, varying ϕ. B. Bottom row plots illustrate

the absolute mean of bias (Equation 4.1) as an average over 100 simulations across 60 different ϕ values

for a specific parameter set of the logistic model. The plot highlights absolute mean of bias for pilot

experiment in a log10 interval with 1 replicate, C. bias for 3 replicates, and D. bias for 5 replicates.
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5.1.2 Bias is significantly reduced following the new dose pro-

posal by the two-step design

To evaluate the performance of the dose selection algorithm through the two-step design

workflow, the absolute mean of bias of 100 DR curves to the ground truth for each of

the parameter combinations (i.e., 864 ) was evaluated. For each parameter set, 100 DR

curves are estimated for (η - ϕ) combination and the average performance is determined.

Three key metrics were used to assess the performance of the design compared to a

single experiment (i.e., pilot) with replicates: (1) absolute mean of bias (Figure 5.2), (2)

mean relative error (RE) of AUC (Figure 5.3), and (3) median RE of ϕ (Figure 5.4) in

log10 scale due to high variation within the values. The reason for using median instead

of mean for ϕ is that the variance of the estimates increased drastically for some IC50s

(ϕ) which makes the mean estimation less robust. It is observed that poor inference is

present when the ϕ region is not properly covered by tested doses (i.e., pilot plots on

each Figures 5.2, 5.3, and 5.4). Followed by a second round of simulated experiments

with newly proposed doses and merging data from both pilot and validation at different

amounts, the inferred DR curves across every ϕ are indistinguishable to the ground

truth due to low bias and relative errors, suggesting improved performance of the

two-step design. In addition, a key observation is that, by simply adding 3 validation

doses to the initial 5 from the pilot experiment, the inference accuracy is superior

compared to using 15 doses and 5 replicates (i.e., 8 cell culture wells as opposed to 75),

thereby optimizing cell viability assays. It was found that the addition of 3 or 5

validation doses with one replicate provided similar results, suggesting that the inclusion

of 3 validation doses to the pilot experiment is sufficient to infer accurate DR curves.

Moreover, the addition of 5 doses for absolute mean of bias attenuated bias for IC50s

between 1000 and 5000, which is expected since more doses will cover this critical
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region. For mean RE of AUC and median RE of ϕ, the two-step design decreased

wrongly estimated DR curves across 100 simulations (shades) for every number of pilot

drug dose, suggesting superior confidence while estimating drug effects with such drug

sensitivity metrics. As ϕ increases, the more challenging is to lower relative errors, still

the two-step design diminished both AUC and ϕ. Comparing doses in different intervals,

both the absolute mean of bias and mean RE AUC is lower when doses are in uniform

scale, due to proper IC50 coverage as opposed to ϕ parameter estimation (depending on

how the algorithm chooses the best parameter values in the curve fitting). Taken

together, the proposed two-step design outperforms a single experiment for every drug

sensitivity metric across all IC50 (ϕ) values at both different dose concentration

intervals and amounts through the use of simulations.
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Figure 5.2: Two-step design performance for absolute mean of bias for different number of pilot doses

across 60 ϕ values. Model parameters are highlighted at the top of the plot. First row highlights doses

in log10 and bottom row in uniform interval. Shaded areas spans between the minimum and maximum

bias values.
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values.
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and bottom row in uniform interval. Shaded areas spans between the minimum and maximum RE ϕ
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5.1.3 Bias is minimized once slope goes to zero

A closer look into the distribution for absolute mean of bias for similar parameters from

previously reported analysis, suggests that when η tends to zero, the two-step design is

able to infer proper DR curves with the addition of 3 validation doses from pilot

compared to 15 (Figure 5.5). On both boxplot distribution plots, absolute mean of bias

was measured across all ϕ values for a specific parameter set of the logistic model for

doses in log10 and uniform intervals. As expected, regarding pilot experiments, using 15

drug doses consistently reduces bias compared to 5 for both intervals. With the addition

of 3 validation doses for the two-step design, the bias is significantly decreased compared

to a single experiment with 15 doses and 5 replicates when slope goes to 0. In total, bias
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was tested for all of the 60 IC50s (ϕ). Outcomes of such distribution is generalized for

every parameter combination of the study, suggesting good performance of the two-step

design with the addition of 3 doses to the initial 5 from the pilot experiment.
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Figure 5.5: Boxplots highlighting bias distribution for different number of doses, concentration range,

and ϕ.
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Figure 5.6: Relationship between absolute mean of bias and η for both the pilot and the two-step design,

at fixed ϕ of 100.

As a result of observing differences regarding absolute mean of bias for the lowest and

highest η value, further analysis was conducted to detect the relationship when

−20 ≤ η ≤ −0.1 (Figure 5.6). For similar parameters, it is indeed easier to infer

accurately DR curves when the steepness of the true curve goes towards zero. However,

in practice, this zero steepness is uncommon since drugs and cells usually display a

sigmoidal relationship (Malyutina et al. 2021).
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5.1.4 Wide exploratory statistics

Next, a full-scale statistical analysis for all the 864 parameters of the simulation

workflow was conducted for the three key metrics (bias, AUC, ϕ). First, an overall

distribution for the absolute mean of bias for both the pilot and the two-step design was

computed. Analogous to the previous findings, the design improved DR inference in

such a way that bias did not go above 0.1 whilst bias from the pilot experiments can

reach up to 0.4 with much higher frequencies (Figure 5.7).

Figure 5.7: Histogram for mean of bias across all the parameter sets for both the pilot and the two-step

design.

Finally, summary statistics for (1 ) absolute mean of bias, (2 ) mean RE of AUC, and (3 )

median RE of ϕ emphasizes the power of drug dose selection and how highly similar

estimated DR curves are compared with a single experiment with many replicates for

the two-step design (Table 5.1). Regarding bias, and as expected, the design
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outperformed pilot across every scenario whilst attenuating the maximum possible bias

across 100 simulations for every parameter set. For AUC, the design outperformed pilot

for initial doses in log10 format. However, whenever initial doses were uniformly

distributed, since the theoretical expectation of ϕ was covered in a more consistent

manner, it was difficult to beat the pilot experiment (although the results are quite

similar). Regarding ϕ, mean across all median RE of ϕ highlights how accurate the

design is able to correct ϕ estimates (even more accentuated by comparing maximum

estimated values), aiding in properly estimating the drug effect on cells since the ϕ

parameter of the logistic model is widely used and recommended across the scientific

community to detect drug potency (Larsson et al. 2020).
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Pilot Design
Bias Bias

Dose no. Min Mean Median Quantiles Max Min Mean Median Quantiles Max

5 Log10 0.007 0.101 0.093 (0.03, 0.14) 0.414 0.006 0.024 0.024 (0.01, 0.02) 0.09
Uniform 0.007 0.033 0.027 (0.02, 0.04) 0.177 0.006 0.018 0.017 (0.01, 0.02) 0.05

10 Log10 0.005 0.05 0.037 (0.02, 0.06) 0.286 0.004 0.018 0.018 (0.01, 0.02) 0.096
Uniform 0.005 0.017 0.015 (0.01, 0.02) 0.079 0.004 0.013 0.012 (0.01, 0.017) 0.033

15 Log10 0.004 0.032 0.024 (0.01, 0.03) 0.18 0.003 0.016 0.016 (0.01, 0.02) 0.070
Uniform 0.004 0.013 0.011 (0.009, 0.01) 0.054 0.003 0.011 0.01 (0.008, 0.01) 0.029

AUC AUC

Min Mean Median Quantiles Max Min Mean Median Quantiles Max

5 Log10 0.01 20.98 0.03 (0.02, 0.05) 92421 0.01 13.24 0.03 (0.02, 0.04) 57275
Uniform 0.01 50.28 0.02 (0.02, 0.04) 214198 0.01 50.46 0.02 (0.02, 0.04) 220557

10 Log10 0.01 22.44 0.03 (0.02, 0.04) 86787 0.00 13.85 0.02 (0.02, 0.04) 63644
Uniform 0.00 64.69 0.02 (0.01, 0.03) 282367 0.00 66.96 0.02 (0.01, 0.03) 308472

15 Log10 0.00 25.83 0.02 (0.02, 0.04) 117147 0.00 15.52 0.02 (0.01, 0.03) 65011
Uniform 0.00 63.24 0.01 (0.01, 0.02) 288881 0.00 64.74 0.01 (0.01, 0.02) 294105

ϕ ϕ

Min Mean Median Quantiles Max Min Mean Median Quantiles Max

5 Log10 0.03 1789 0.54 (0.28, 1.00) 279535 0.005 0.648 0.068 (0.03, 0.22) 3471
Uniform 0.00 38477 0.00 (0.00, 1.00) 7656105 0.003 0.606 0.038 (0.02, 0.24) 5928

10 Log10 0.00 1931 0.4 (0.1, 0.9) 415820 0.004 0.623 0.035 (0.01, 0.2) 4041
Uniform 0.00 45444 0.00 (0.00, 1.00) 16250175 0.003 0.581 0.029 (0.01, 0.19) 3568

15 Log10 0.00 1982 0.3 (0.1, 0.8) 384690 0.003 0.54 0.03 (0.01, 0.22) 3070
Uniform 0.00 49617 0.00 (0.00, 1.00) 14631926 0.002 0.57 0.02 (0.01, 0.18) 6930

Table 5.1: Summary statistics of performance for the two-step design compared to pilot.
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5.2 Experimental validation

Given the complexity of the pilot assay plates, validation experiment analysis was

conducted differently for each of the considered drugs. The workflow was as follows: (1)

statistics for the pilot stage for each compound was collected and new drug doses were

computed for validation (e.g., 3 and 5) based on the behaviour and theoretical

expectation of the ϕ region using one replicate for both log10 and uniform concentration

intervals, and (2) fit an estimated DR curve from both pilot and validation assays for

comparison to the ground truth comprising a total of 15 doses and 3 replicates in a log10

scale. The following sections are focused on the outcomes of experimental validation for

7 drugs whereupon the two-step design outperformed a single experiment run for 5

drugs.

5.2.1 Vorinostat

Vorinostat is a well-known oral HDAC (histone deacetylase) inhibitor for the treatment

of relapsed or refractory multiple myeloma (MM) patients (Siegel et al. 2014; Silva et al.

2013). Outcome of the ground truth suggests a sigmoidal relationship where half of the

cells were inhibited within the dose region of [100, 1000] nm/L on Figure 5.8. DR data

from the pilot experiments with one and five replicates in the uniform interval were not

able to accurately infer the true behaviour, highlighting an estimation of IC50 sooner

than the ground truth. On the contrary, the two-step design achieved consistent high

accuracy with the estimated curve being in line with the ground truth (blue DR curves).

To validate the findings for Vorinostat, ϕ values were compared for log interval

whereupon the ground truth depicts an estimated ϕ̂ of 680 nM while, with a single pilot

experiment, the estimated ϕ̂ was 573 nM and with the addition of validation doses of

648 nM (Figure 5.9). Thus, the estimated ϕ̂ from the two-step design is closer to the
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ground truth, suggesting less biased DR inference. Regarding RE of AUC, the two-step

design outperformed pilot with a value of 0.02 against 0.03. Finally, for RE of ϕ̂, and as

expected, the estimation was close to the ground truth and, thus, a relative error of 0.04

against 0.16 suggests higher inference accuracy for the two-step design in scenarios

where cells respond drastically whilst increasing drug dosage.

Figure 5.8: Validation assay analysis of design performance for Vorinostat.

Figure 5.9: Comparison of dose-response curves determined by pilot, validation, and the ground truth
on the log dose interval for Vorinostat.
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5.2.2 AZD4547

AZD454, is a potent inhibitor of the firoblast growth factor (FGF) 1 and 2 by silencing

GFG signalling and proliferation of tumor cells (Gavine et al. 2012). In comparison to

Vorinostat, AZD4547 drug inhibits MM cells by 50% with smaller doses. It is observed

that inferences from the pilot experiments will most likely result in non-harmonic

outcomes since the steepness of these curves are not representative of the ground truth

which is not the case for validation, highlighting the robustness of the two-step design

for the AZD4547 drug (Figure 5.10). With validation doses, the DR curves generally

display a sigmoidal relationship similar to the ground truth. To validate the findings for

AZD454, ϕ values were compared for log interval upon which the ground truth depicts

an estimated ϕ̂ of 161 nM while, with a single pilot experiment, the estimated ϕ̂ was

1218 nM and with the addition of validation doses of 333 nM (Figure 5.11). Thus, the

estimated ϕ̂ from the two-step design is closer to the ground truth, suggesting less

biased DR inference. As a result of poor ϕ coverage, the addition of replicates do not

improve DR estimation in the curve fitting (effect validated through simulations)

(Figure 5.1). Regarding RE of AUC, the relative error for the pilot experiment for doses

in log interval was lower than the two-step design (0.002 against 0.01). Finally, for RE

of ϕ̂, and as expected, the estimation was close to the ground truth and, thus, a relative

error of 1 against 6.6 from the design suggests that in such DR scenarios, the estimation

for the two-step experimental design is superior.
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Figure 5.10: Validation assay analysis of design performance for AZD4547.

Figure 5.11: Comparison of dose-response curves determined by pilot, validation, and the ground truth
on the log dose interval for AZD4547.

5.2.3 Axitinib

Axitinib is a frequently used drug to target mutant hematological cancer cells. Axitinib

is a vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor with

high affinity (McTigue et al. 2012). DR analysis of Axitinib on MM cell lines indicate

that, first, is less potent than AZD4547 with a ϕ̂ of 1507 nM in respect to the ground
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truth DR curve while AZD4547 the ϕ̂ value was around 161 nM (Figure 5.12). To

validate the findings for Axitinib, ϕ values were compared for log interval upon which

the ground truth depicts an estimated ϕ̂ of 1507 nM while, with a single pilot

experiment, the estimated ϕ̂ was 1455 nM and with the addition of validation doses of

881 nM (Figure 5.13). Curiously, the cell viability assay results for this specific drug

should indicate less biased DR curve from pilot due to the highly similar ϕ̂ regions.

However, after curve fitting with drc, the two-step design curve is much more

representative to a higher degree to the ground truth than the pilot curve (blue against

red, respectively). This might be explained due to a better fitting from the other 3

parameters of the logistic model (α, β, and η). Regarding RE of AUC, the relative error

for the pilot experiment for doses in log interval was higher than the two-step design by

a margin of around 0.03 (0.07 to 0.04 from the design). Intuitively, for RE of ϕ̂, the pilot

experiment estimated ϕ̂ was close to the ground truth and, thus, a relative error of 0.03

against 0.41 from the design was found.

Figure 5.12: Validation assay analysis of design performance for Axitinib.
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Figure 5.13: Comparison of dose-response curves determined by pilot, validation, and the ground truth
on the log dose interval for Axitinib.

5.2.4 Ruxolitinib

Ruxolitinib is an inhibitor of JAK1/2 pathways which are essential for cell survival and

proliferation (Mascarenhas et al. 2012). However, in MM cancer cells, Ruxolitinib is

only able to inhibit MM cells at ϕ around 10000 nM (Figure 5.14) for doses in both

intervals (log and uniform). To validate the findings for Ruxolitinib, ϕ values were

compared for log interval upon which the ground truth depicts an estimated ϕ̂ of 17763

nM while, with a single pilot experiment, the estimated ϕ̂ was 2753 nM and with the

addition of validation doses of 11516 nM (Figure 5.15). Albeit closer ϕ̂ to the ground

truth for the two-step design, is clearly visible some inference errors provided by the

algorithm during curve fitting. Nonetheless, it behaves in a similar fashion which is not

the case for the pilot experiment with 5 replicates. Regarding both RE of AUC and ϕ̂,

the relative errors for the two-step design were lower than for the pilot experiment (0.06

against 0.11 from pilot, and 0.35 against 0.84, respectively).

53



Figure 5.14: Validation assay analysis of design performance for Ruxolitinib.

Figure 5.15: Comparison of dose-response curves determined by pilot, validation, and the ground truth
on the log dose interval for Ruxolitinib.

5.2.5 Lonafarnib

Lonafarnib is a RAS signalling pathway inhibitor. RAS pathway has been reported to

be responsible for tumor cell growth through RAS gene mutation effects (Downward

2003). Lonafarnib effects on MM cells are somewhat similar to Ruxolitinib in a way that

is only able to inhibit half of cells with high concentrations within the range of
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102024nM (i.e., ground truth) (Figure 5.16). DR inference in cases such as for

Lonafarnib, the addition of replicates will not help since the tested doses from the pilot

experiment will most likely not cover ϕ regions above its respective maximum tested

dose (thus the relevance of the dose selection algorithm - Figure 4.5). To validate the

findings for Lonafarnib, ϕ values were compared for log interval upon which the ground

truth depicts an estimated ϕ̂ of 102024 nM while, with a single pilot experiment, the

estimated ϕ̂ was 11038 nM and with the addition of validation doses of 11222 nM

(Figure 5.17). Indeed, the two-step design with the addition of 3 validation doses as an

attempt to reach the true ϕ makes the DR inference better than pilot with high amounts

of replicates, however, the estimation still suffers which might be explain by both batch

effects and drivers of variability in the screening assay (Section 2.2.2). Interest findings

for both RE of AUC and ϕ̂ highlights how challenging it is to infer DR curves when the

assumptions under the logistic model are not met. In respect to RE of AUC, the relative

error for pilot was lower than the two-step design by a margin of 0.11 (0.05 to 0.16 from

the design). Remarkably, RE of ϕ for the two-step design was better than pilot by a

margin of 0.1 (0.89 to 0.88 from pilot) which can be explained by the fact that, even if

the ϕ̂ from the design is closer to the ground truth than the estimation from the pilot

experiment, it was still insufficient to overperform by a significant margin.
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Figure 5.16: Validation assay analysis of design performance for Lonafarnib.

Figure 5.17: Comparison of dose-response curves determined by pilot, validation, and the ground truth
on the log dose interval for Lonafarnib.

5.2.6 Carfilzomib and Bortezomib

Carfilzomib is a proteasome inhibitor permanently binding and changing the properties

of the proteasome, thereby regulating cell-cycle progression and apoptosis (Stewart et al.

2015). Bortezomib is another protease inhibitor with the theoretical expectation of

impeding tumor MM cell lines growth. Bortezomib has various mechanisms of action,
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for instance being a key regulator of cyclin kinases or inhibiting nuclear factors (David

et al. 2005). Both drugs are highly potent in MM cell lines such that with just a dosage

of 1 nM or below it, is able to effectively inhibit more than half of MM cells no matter

the interval at which initial doses were chosen (Figure 5.18). However, both the pilot

and the two-step design were not able to infer accurate DR curves either in log or

uniform intervals. For both the Carfilzomib and Bortezomib drugs, the estimated ϕ̂ for

the log interval were consistently superior than for uniform doses (high deviation of ϕ̂

from the ground truth (purple curve)) (Figure 5.18, A and B). Indeed, the dose

selection algorithm proposes drug doses below the threshold of 1 nM for such cases since

the ϕ value is below the first drug dosage from pilot. Intuitively, when doses are in a log

scale, DR inferences are superior than for doses in uniform format due to the fact that

the ϕ value is much below the first dose from pilot, so doses above it are non-relevant

which affects negatively DR inferences. Importantly, the two-step design with the

addition of 3 doses was able to correct DR inferences in the curve fitting step for doses

in uniform scale (ϕ̂ of 14.7 nM to 8 nM and 15.8 nM to 9.2 nM for Carfilzomib and

Bortezomib, respectively). These results suggest two conclusions: (1) the two-step

design is able to correct high inference biases from the pilot experiment for uniform

doses and (2) reformulation of the proposed design is required for such dose-response

scenarios where highly effective compounds inhibit cells with the first initial

concentration. Finally, relative errors of AUC for the two-step experimental design were

lower for both doses in different intervals (0.27 to 0.89 from pilot in log scale, and 58 to

173 from pilot in uniform scale, respectively for Carfilzomib). Strikingly, the relative

errors of ϕ from the two-step design were lower for tested doses in uniform interval but

not for log. Similar results of both metrics for Bortezomib were found where it was

easier to outperform pilot in the uniform interval but similar relative errors in log scale.
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Figure 5.18: Two-step design cell viability analysis of Carfilzomib and Bortezomib.
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Chapter 6

Discussion

In this thesis, a novel drug dose selection algorithm and experimental design was

proposed to reduce biased DR curve inference evaluated in both simulation and

experiment studies. Indeed, reproducibility (different lab technicians perform the same

assay in distinct conditions) and replicability (the same experiment conducted several

times - i.e., replicates), being essential cell-based assays, need to be controlled and

standardized in the experimental design stage. Only through global efforts that the lack

of scientific transparency and inconsistent reproducibility can be achieved.

A large-scale simulation workflow was adopted to first validate the proposed two-step

design prior to the drug sensitivity assays. The outcomes of this simulation study were

useful to acknowledge first, the critical regions of the DR curve and to propose a new

dose selection algorithm (Figures 4.3, and 4.5). Across different values of ϕ, the addition

of replicates was unable to reduce bias in the curve fitting step (Figure 5.1). This is

surprising as replicates are standard protocols in a typical cell-based assay. In fact, no

matter how many replicates are added, if the drug doses do not cover the critical regions

of the DR curve (i.e., IC50), the inference will not be improved significantly. Based on

such findings, the design was evaluated in a massive simulation workflow with many

parameters (Table 4.1) governed by critical parameters of the 4-parametric logistic
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model (Equation 2.1) based on their underlying behaviours (Figure 2.4). The results

suggested that, by adopting a two-step experiment procedure, not only the curve bias is

reduced but also the relative errors of the common drug sensitivity metrics ϕ and AUC

(Figures 5.2, 5.3, and 5.4, respectively). Furthermore, based on the strategy, the

distribution for absolute mean of bias across all parameters of the study depicted how

highly effective the proposed design is in inferring DR relationship (Figure 5.7). Lastly,

a full-scale statistical assessment for absolute mean of bias, median RE of ϕ, and mean

RE of AUC confirmed the previously reported results, the two-step design outperformed

the pilot experiment across different metrics (Table 5.1).

Validating the strategy required first data from the first round of experiments (denoted

as pilot). In total, initial drug sensitivity assays were conducted in 6 multi-well culture

plates and 2 for validation for MM cell lines and 7 chemical compounds that governed

distinct ϕ and DR behaviour scenarios. For instance, it was expected that both

Carfilzomib and Bortezomib drugs inhibit MM cells with the first dose at 1nM

concentration. However, it did not improve DR estimation for doses in both log and

uniform intervals (Figure 5.18). The expectation of the effect of Vorinostat, AZD4547

and Axitinib was such that by the third or fourth dose in log scale, cells would be

inhibited by half (Figures 5.8, 5.10, and 5.12). For Ruxolitinib and Lonafarnib, the ϕ̂

estimations were the most challenging to correct, due to the fact that the IC50 is

ill-defined with the pilot experiment tested doses, and thus, the algorithm is not able to

improve the DR estimation that easily (Figures 5.14, and 5.16). In this study, to

evaluate how accurately the two-step experimental design was able to estimate the true

DR curve compared to the traditional one-step dosage design which involves multiple

replicates, altogether, biological replicates (i.e., samples derived from distinct patients)

for each drug over 15 concentration doses were added to the pilot assay plates and

considered as the ground truth. Based on the pilot and validation assay results,
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important outcomes highlighted both the efficiency and limitations of the proposed

approach. First, it was shown that the proposed two-step design outperformed pilot

experiment with high amounts of replicates for Vorinostat (Figure 5.9), AZD4547

(Figure 5.11), Axitinib (Figure 5.13), Ruxolitinib (Figure 5.15), and Lonafarnib (Figure

5.17). Doses proposed by the algorithm were able to consistently cover the critical

regions of the true ϕ value thereby improving the DR inferences (although in some cases

was more challenging such as for Ruxolitinib and Lonafarnib). Notwithstanding, from

the analysis of the ground truth (i.e., 15 doses and 5 replicates), pilot, and validation:

Lonafarnib proved to be both the most challenging drug to fit a DR curve and the most

less potent compound with a IC50 surrounding 102024 nM. In general, the relative

errors of AUC and ϕ suggest that the two-step design outperforms a pilot experiment

with 5 replicates which is already substantially high. In summary, relative error of AUC

for the design was better for Vorinostat, Axitinib, Ruxolitinib, Carfilzomib, and

Bortezomib for doses within the uniform interval; and the relative error of ϕ for

Vorinostat, AZD4547, Ruxolitinib, Lonafarnib, Bortezomib for doses within the uniform

interval. Albeit with some challenges and limitations of the design, the implicit

performance over a single experiment with high amounts of replicates is evident.

Indeed, the two-step experimental design and dose selection algorithm were developed

under the assumptions from the 4-parameter logistic model (VØlund 1978). Hence, in

the event of unmet expectations (i.e., a dose-response not representing a sigmoidal

behaviour), poses limitations in the curve fitting step of drug sensitivity data analysis,

affecting the IC50 and AUC metrics in the determination of the drug efficacy. In such

cases, the use of non-parametric models could be an option (Amiryousefi et al. 2021).

Another challenge of the design could be in a setting where patient samples need to be

screened against chemical compounds, and it is not advisable nor possible in most cases

to refreeze patient samples and conduct two rounds of experiments. Future steps include

61



optimizing the experimental design to tackle unsuccessful validation outcomes such as

for the Carfilzomib and Bortezomib drugs (Figure 5.18), and to provide the new design

as an R package or a web application for drug screening researchers.

Lastly, it is important to accurately identify which drug sensitivity metric to adopt

when analysing dose-response data depending on the experimental design. This thesis

focused on absolute mean of bias, therefore for the proposed two-step experimental

design, bias should be the main metric of reproducibility. However, it was shown that

the relative errors of both AUC and ϕ were generally improved, which indicates that the

use of IC50 and AUC metrics for drug sensitivity screening can be also an option. In the

future, it is important to consider all of the three metrics (i.e., the bias of viability, and

errors of both IC50 and AUC) to have a complete overview of the data reproducibility

for drug screening assays.
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Chapter 7

Conclusion

Despite significant efforts highlighting the importance of data reliability apace with

reaching consensus standards in cell-based assays (Larsson et al. 2020; Niepel et al.

2019), applicable strategies to reduce erroneous inferences in the dose-response curve

fitting stage have been lacking. An experimental design was proposed to improve the

reproducibility of drug sensitivity assays through efficient drug dose selection based on

the initial experimental data. Thus, the robustness of current drug sensitivity and

resistance metrics is expected to increase. In the event of lack of drug response data for

the validation step, the design will be able to suggest proper dose concentration ranges

and amount of technical or biological replicates to employ depending on the available

resources. Taken together, the results of this thesis study suggests an improvement on

the reproducibility in drug sensitivity assays and warrant further research to, ideally,

minimize poor experimental designs and improve clinical translation from drug

sensitivity screening.
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