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Abstract: The molecular effects of exposures to engineered nanomaterials (ENMs) are still largely
unknown. In classical inhalation toxicology, cell composition of bronchoalveolar lavage (BAL)
is a toxicity indicator at the lung tissue level that can aid in interpreting pulmonary histological
changes. Toxicogenomic approaches help characterize the mechanism of action (MOA) of ENMs
by investigating the differentially expressed genes (DEG). However, dissecting which molecular
mechanisms and events are directly induced by the exposure is not straightforward. It is now
generally accepted that direct effects follow a monotonic dose-dependent pattern. Here, we applied
an integrated modeling approach to study the MOA of four ENMs by retrieving the DEGs that also
show a dynamic dose-dependent profile (dddtMOA). We further combined the information of the
dddtMOA with the dose dependency of four immune cell populations derived from BAL counts. The
dddtMOA analysis highlighted the specific adaptation pattern to each ENM. Furthermore, it revealed
the distinct effect of the ENM physicochemical properties on the induced immune response. Finally,
we report three genes dose-dependent in all the exposures and correlated with immune deregulation
in the lung. The characterization of dddtMOA for ENM exposures, both for apical endpoints and
molecular responses, can further promote toxicogenomic approaches in a regulatory context.

Keywords: engineered nanomaterials; toxicogenomics; dose-dependent; TinderMIX; bronchoalveolar
lavage; multiwalled carbon nanotubes; titanium dioxide; carbon black; mechanism of action; biomarker

1. Introduction

When ENMs interact with biological systems, they induce a cascade of molecular
events which are mainly dependent on their physicochemical characteristics, such as the
size and the surface chemistry [1–3].

Cellular responses to ENM exposures are complex, as they are trying to counteract
the induced perturbation and achieve system homeostasis. In classical inhalation tox-
icology, bronchoalveolar lavage (BAL) cell compositions are widely used to clarify the
immunopathological phenotypes in the lung [4]. ENMs exert diverse responses both in
terms of cell types recruited in the lung and in their numbers [5–10]. However, apical end-
points, such as the one derived by BAL counts, do not provide details about the underlying
mechanisms and responses to distinct ENMs. Usually, each significant molecular alteration
triggered by ENM exposure is considered as the MOA of that compound [11].
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Microarray experiments are an effective tool for the characterization of the mechanism
of action detected at transcriptome levels (transcriptional mechanism of action, hereafter
referred to as tMOA) [12–14]. However, the dissection of this response in the molecular
events directly triggered by the exposure to the ENM and the ones induced by the biological
adaptation process is complicated.

In risk assessment and toxicology, dose-dependent modeling is an established tool
to identify points of departure (POD) that can be used as a guidance value denoting
the adverse effect levels, such as benchmark dose (BMD), no observed adverse effect
level (NOAEL), and lowest observed adverse effect level (LOAEL) [15]. Similar modeling
strategies have emerged for the analysis of transcriptomic experiments to identify the genes
directly and progressively affected with respect to the reference dose or concentration [16–19]
and to characterize their POD.

The tMOA of an exposure arises from different mechanisms of transcriptional regula-
tion. Therefore, some of these events are observed as dose-dependent, whereas others are
consequences of more complex regulatory loops.

The common strategy for the investigation of dose responses is to study their alteration
at each time point of exposure separately. However, this strategy might not accurately
interpret the kinetics of the molecular adaptation processes [20,21]. The joint dose-time
dynamic POD (dPOD) allows us to identify the lowest dose and earliest time points at
which a notable change with respect to the controls takes place, and this effect follows
a monotonic dose-dependent trend. Moreover, few efforts have been made to link the
traditional immune cell quantification and transcriptional responses together [22–25]. To
the best of our knowledge, the correlation between specific portions of dddtMOA and
different immune cells has never been systematically investigated.

To overcome these problems, we applied a computational approach [21] to model the
dose- and time-dependent alteration patterns of publicly available BAL cell counts and
lung transcriptomic responses from multiple ENMs, namely, carbon black (CB), titanium
dioxide (TiO2), and two multiwalled carbon nanotubes (MWCNT), at three different time
points. Our goal was to characterize the dddtMOA as the portion of the adaptation
response directly linked to the ENM, and to further associate its effect with the immune
cell infiltrations.

Our approach suggests that the dddtMOA has the potential to be applied in the context
of an ENM hazard assessment, further facilitating the implementation of toxicogenomic-
based approaches in a regulatory context.

2. Materials and Methods
2.1. Dataset Collection and Preparation

Microarray-based transcriptomics data from lungs of mice exposed, by a single intra-
tracheal instillation, to carbon black (CB), multiwalled carbon nanotubes (MWCNTs) and
titanium dioxide nanoparticles were downloaded from the GEO database. Details on the
nanoparticles are reported in Table 1.

Data for MWCNTs came from the studies of Poulsen et al. [26] (available on GEO
with ID GSE55286), where female C57BL/6 mice were exposed by a single intratracheal
instillation to 18, 54, or 162 g/mouse of a short MWCNT (NRCWE-26, 847 ± 102 nm in
length) or long MWCNT (NM-401, 4048 ± 336 nm in length). Data for CB nanomaterials
came from the studies of Bourdon et al. [27,28] (available on GEO with ID GSE35193),
where female C57BL/6 mice were exposed by a single intratracheal instillation to 18, 54, or
162 g/mouse of Printex 90 carbon-black nanoparticles. Data for nano-TiO2 nanomaterials
came from the studies of Husain et al. [29] and Saber et al. [30] (available on GEO with
ID GSE41041), where female C57BL/6 mice were exposed to rutile nano-TiO2 (primary
size of 20.6 nm and surface area of 107.7 m2/g). Experiments related to CB and TiO2 were
performed by using the Agilent-014868 Whole Mouse Genome Microarray 4x44K G4122F
platform, whereas for the MWCNT data, the Agilent-028005 SurePrint G3 Mouse GE 8x60K
Microarray platform was used. Raw mRNA expression values were imported in R v. 3.4.4
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using the Limma read.maimages function [31]. Raw data were preprocessed using the
eUTOPIA application [32]. First, low-quality probes were removed: only probes with a
value higher than 75% quantile of negative control probes in at least 75% of the samples
were selected. Afterwards, the expression values were log2 transformed and quantile
normalized between arrays. Surrogate technical variables were identified and removed in
the CB and TiO2 datasets by using the ComBat method from the R Ensembl gene ID level
using annotation files provided by the microarray manufacturer (Agilent Technologies,
Santa Clara, CA, USA).

Finally, differential expression between sample groups was evaluated with the Limma
package using the corrected batches as covariates for the model. The combination of the
three exposure doses (18, 54, and 162 µg) and three time points (1, 3, and 28 days) yields
a total of nine comparisons when each dose- and time-point combination is compared
to its corresponding control sample. Genes were considered significantly differentially
expressed with an absolute log2 fold change > 0.58 and Benjamini–Hochberg-adjusted
p-value < 0.05. For the sake of comparison with respect to the dynamic dose-dependent
genes, we computed the union of all the differentially expressed genes revealed by the nine
comparisons and used that to characterize each ENM.

Moreover, the BAL counts for neutrophils, eosinophils, macrophages, and lympho-
cytes, present in the lungs after exposure to the same ENMs considered in this study, were
retrieved from previous publications [26,28,30] (Table S1).

Table 1. Datasets used in this study.

ENM ID Type Length/Diameter
(nm)

Surface Area
(m2/g)

No.
Samples

Doses
(µg)

Time
(Day) GSE Ref.

NM401 Multiwalled
carbon nanotube 4048/67 18 139 18/54/162 1/3/28 GSE55286 [26]

NRCWE-026 Multiwalled
carbon nanotube 847/10 245 139 18/54/162 1/3/28 GSE55286 [26]

CB (Printex 90) Carbon black 14 (diameter) 295–338 67 18/54/162 1/3/28 GSE35193 [27,28]
TiO2 (L181
UVTitan) Nano-TiO2 20.6 (diameter) 107.7 65 18/54/162 1/3/28 GSE41041 [29,30]

2.2. Integrated Time and Dose Analysis of MOA

Sample-wise log2 fold changes were calculated between each exposed sample and
each of its corresponding control samples. Afterwards, each gene was analyzed utilizing the
TinderMIX tool [21]. Briefly, linear- and second-order polynomial models were applied for
the fitting of the log2 fold change. For each gene, the optimal model was selected based on
the lowest goodness-of-fit p-value. Genes with goodness-of-fit p-values > 0.05 were removed
from the analysis. The dose and time ranges were divided into 50 equally distributed
bins, and the optimal model of each gene was used to predict their corresponding log2
fold changes. Thus, the gene was represented by an activation map that interpolates the
space of time and dose also for the experimental conditions (doses and time) not originally
included in the analysis.

From each activation map, a monotonically increasing or decreasing area with respect
to the dose, with a fold change greater than the activity threshold (fold change > |1.5|), was
identified by analyzing the gradient vector field of the map. If present, this area is marked
as responsive, and the gene is deemed altered in a dynamic dose-dependent manner.

Eventually, an activity label was assigned to each gene by dividing both axes of the
activation map into three sections and obtaining a grid with 9 cells. The sections of the
dose axis were named as “sensitive”, “intermediate”, and “resilient”, whereas for time
axis, labels “early”, “middle”, and “late” were assigned. The final dPOD is obtained
by identifying the earliest and most sensitive activation and is labeled concatenating the
corresponding dose and time labels.
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2.3. Integrated Time and Dose Analysis of Cell Counts

For each pair of dose and time points, the cell counts were normalized for the counts
in the control sample in the following way:

CCtpx ds = log 2(countstr/ countsctrl) (1)

where tp is the time point, ds is the dose, tr is the treated samples, and ctrl are the controls.
Within the samples and controls of a particular pair of dose and time points, all the possible
pairwise comparisons are performed.

Afterwards, the TinderMIX tool was used to identify the dynamic dose dependency of
the BAL cell counts. Starting from the normalized cell counts, the linear- and second-order
polynomial models were fitted in the joint dose-time space. The optimal model was used to
predict an activation map associated with each cell count in the form of contour plots. The
optimal model was identified as the one with the lowest goodness-of-fit p-value, among
those with p-values < 0.05. If none of the models met the requirement for the p-value, the
optimal model was selected as the one with the smallest AIC (Akaike information criterion).
Eventually, a dPOD activity label was associated with each cell count in each material.

2.4. Correlation between Gene Expression and Cell Counts

For each material, the correlation between the maps of its dynamic dose-dependent
genes and the maps of the cell counts were computed. For each pair of gene and cell types,
we divided the map in three different regions based on if both gene and cell were dose-
dependent (called region A), only one of the two was dose-dependent (called region B), or
none of the two were dose-dependent (called region C). For each portion of the map, we
computed a binary vector indicating if the activation was higher (1) or lower (0) than the
mean activation value of that portion. The Pearson correlations between the binary vectors
were computed. This led to three correlation values for each pair of gene and cell, which
were combined by a weighted sum that accounted for 70% of the correlation from region A,
20% of correlation from region B, and 10% of correlation from region C. Since the aim of
this study was to identify dynamic-dose dependent alterations induced by the exposure to
ENMs, the weighted schema was selected to give more relevance to the area where both the
gene and the cell counts were dynamic-dose dependent. However, rather than discarding
correlations outside this area, they were considered still relevant to explain interactions
between the genes and cell populations. To avoid spurious correlations, gene activity and
cell counting maps were considered correlated when the final absolute Pearson correlation
value was greater than 0.6.

2.5. Pathway Analyses

The KEGG pathway enrichment analysis was performed with the compareCluster
function from the clusterProfiler R package [33]. To compute the combined p-values for the
pathways shared across the ENMs, we used the sum of logs method (or Fisher’s method)
implemented in the sumlog function of the metap R package [34].

3. Results and Discussion
3.1. Characterization of the dddtMOA

The tMOA of an exposure is commonly defined as the set of significant variations in
gene expression observed between the exposed and unexposed samples. Therefore, we
first performed a classical differential expression analysis of the dataset including exposure
to TiO2, CB, and two MWCNTs of different length with multiple doses (18, 54, and 162 mg)
and multiple time points (1, 3, and 28 days).

Particularly, we identified lists of differentially expressed genes for each combination
of material, dose, and time. As for the lung inflammation, we retrieved information
on BAL counts of macrophages, neutrophils, eosinophils, and lymphocytes in the same
experimental conditions [26,28,30] (Table S1).
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To characterize the dynamic dose-dependent portion of the tMOA (dddtMOA) of
each nanomaterial, we performed an integrated dose and time analysis of the molecular
alteration induced on the whole transcriptome and we investigated the distribution of the
number of dynamic dose-dependent genes across their dose and time dPOD (Figure 1A,
Tables S2–S5).

Figure 1. (A) Number of dose-dependent genes for each ENM for each of the dose-time labels. The
labels can be interpreted as follows: sensitive—genes that respond at low doses; intermediate—genes
that respond at intermediate doses; resilient—genes that respond at high doses.; early—genes that
respond at short time points; middle—genes that respond at intermediate time points; late—genes
that respond at late time points. The blue color gradient describes the number of dose-dependent
genes: dark blue represents a smaller number of genes identified, whereas light blue represents a
higher number of dose-dependent genes. (B) Number of DEG (red) and genes with a dPOD activity
label (green) for each ENM.

Both MWCNTs showed the highest number of dose-dependent genes (2484 and 2670
for NM401 and NRCWE26, respectively), whereas the number of genes altered by CB and
TiO2 was lower (232 and 298, respectively). Our results suggest that the magnitude of the
response could reflect the ENM hazard level. For example, a high aspect ratio and rigid
nanomaterials, such as NM401, are usually more persistent in the lung, and their reduced
clearance contributes to the toxic profile [35].

In our dose- and time-dependent analysis, the genes were labeled based on where
their expression deregulation starts with respect to the time (early, middle, or late) and the
dose levels (sensitive, intermediate, or resilient).

As expected, the kinetics of the molecular response in all ENMs immediately start
at short time points, having an early dPOD. This might be partially influenced by the
single-exposure experimental design, where stronger acute responses can be detected at
shorter time intervals, whereas mechanisms associated with recovery can be detected at
later time points. However, our results are consistent with the acute adaptive response to
ENM exposure [36]. As for the exposure dose, MWCNTs seem to activate most genes at
low doses, having a sensitive dPOD (Figure 1A). As discussed before, the dose required
to induce the alteration can be linked to the toxicity level of the ENMs. Interestingly, the
most represented label in the CB and TiO2 exposures is early resilient. This may indicate
that for spherical-shaped nanomaterials, a portion of the response requires higher doses to
be evident.

To functionally characterize the dddtMOA, we first compared the differentially ex-
pressed genes (DEG) and the genes with a dPOD activity label of the four ENMs, and we
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found an intersection in all the materials (Figure 1B). Particularly, 185 genes were found
for the TiO2, 216 for the CB, and 2347 and 2638 for the NM401 and NRCWE26, respec-
tively. This supports our assumption that the MOA of the different ENMs is only partially
dose-dependent, and that monotonic portions of the molecular adaptation response may
be directly altered by exposure.

We then investigated the functional profile of the dPOD genes by mapping them onto
the KEGG pathways (Tables S6–S9). The functionalities associated with each dddtMOA
were ENM specific; however, some functions were enriched by all the studied nanomateri-
als, as well as by specific subcategories (Figure 2). Among the specific ENM responses, our
analysis highlighted pathways associated with cardiac muscle contraction and signaling in
cardiomyocytes, suggesting a possible cardiotoxic effect of titanium dioxide (Figure 2D).
It was previously shown that exposure to TiO2 nanoparticles both in vitro and in vivo
increases cardiac excitability and conduction velocity [37,38]. Similarly, the most significant
alterations in NM401 exposure pointed to lysosomal effects (Figure 2G). Straight and rigid
carbon nanotubes, such as NM401, are known to induce disruption of cellular structures
and vesicles, including the lysosomes [6].

Figure 2. Functions of the dddtMOA shared across ENM categories (A,B,C,H) and specific to each
ENM (D,E,F,G).

As for shared responses, all spherical-shaped ENMs enriched pathways related to
microorganisms and viral infections (Figure 2A). Similarities in the host response between
carbon-based ENMs and viruses were already observed [39,40]. Interestingly, pattern-
recognition receptors are also commonly present. Toll-like receptors are the sentinels of
foreign biomolecules, and they mediate unspecific recognition of damage- and pathogen-
associated molecular patterns (DAMP and PAMP, respectively). This may suggest that
the exposed cells sense spherical nanoparticles through similar signaling pathways that
evolved to recognize pathogens, reinforcing the importance of physicochemical properties
of the nanomaterials in shaping the adaptive response. Interestingly, toll-like receptors are
known to induce necroptosis, an inflammatory form of programmed cell death, which was
enriched in the carbon-black dddtMOA. MWCNTs specifically enrich pathways related
to the extracellular matrix and focal adhesion, as well as vascular structures (Figure 2C).
MWCNTs are known profibrotic agents, and their hazardous effects on the lung epithelium
were already described in detail [40–43]. Interestingly, carbon-based materials (CNMs)
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share a direct effect on the complement and coagulation cascade (Figure 2B). CNMs are
indeed used in coagulation disorder therapy because of their potential to interact with
platelets and induce thrombosis and hemolysis [44].

Finally, all the investigated ENMs shared a core of functions related to inflammation
and immunity (Figure 2H). Nanomaterials trigger the immune response and induce activa-
tion of inflammatory mediators through various mechanisms. Importantly, NFkB and TNF
are very well characterized mediators of nanomaterial adaptation [45–48]. Similarly, upreg-
ulation of a plethora of cytokines was reported for all the studied nanomaterials [45,46].

3.2. Combination of Transcriptional Changes and BAL Cell Count Dose-Time Responses Informs
on ENM-Specific Immune Cell Activation

The interaction of ENMs with the immune system is an accepted theory; however, clari-
fying the cellular mechanism of ENM-mediated toxicity is still considered a major challenge.

We hypothesized that combining the dose-dependent and time-related transcriptional
changes with the BAL cell count activation may help to better characterize the molecular
basis of the immune cell activation and response.

First, we performed a similar dose- and time-integrated analysis on the BAL cell
counts and identified their joint dynamic dose-dependent dPOD (Table S10).

In the case of neutrophils, the dPOD for all the ENMs was determined as sensitive-
early, specifying a dynamic dPOD starting at a low dose range and an early time interval
and preserved through the postexposure time points. This suggests that the immediate
cell infiltration consequent to the insult extends until later time points. Neutrophils have
long been known as “the first line of defense”, as well as the initiator of the inflammatory
response [49]. In this light, it is expected that neutrophils, as quickly reacting cells, are
labeled as early responders.

Macrophages showed different dPOD labels in different ENMs. They were sensitive-
early in all the CNMs and intermediate-late in TiO2. Macrophages are equally considered
as rapid responders, but unlike neutrophils, which migrate to the site of insult and survive
only 1 to 2 days, macrophages are already residing in lung tissue and survive much longer
at the site of inflammation. More circulating macrophages might be recruited at later time
points or higher doses, thus possibly explaining their varying activation patterns across the
different ENMs.

Eosinophils showed sensitive-late dPOD in CB, still suggesting cell infiltration after
the exposure but at the longest time points [50].

Lymphocytes also showed a dose-time response only in spherical-shaped ENM. In the
case of CB they were labeled as sensitive-early, whereas in TiO2 they were activated later at
low doses.

To contextualize the dddtMOA with respect to the activation of immune cells, we
identified the sets of genes with a dynamic dose-dependent activation which were also
correlated with the immune cell counts (Figure 3).

Figure 3. (A) Number of dynamic dose-dependent genes correlated with cell counts for each ENM.
(B) Proportion of dynamic dose-dependent genes correlated with cell counts for each ENM.
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Macrophages and neutrophils showed the highest number of correlated dPOD genes
(Figure 3A). This can be easily explained by their key role in acute responses to exogenous
compounds, as well as their extremely plastic activation upon cues received from their
immediate microenvironment [51,52].

However, when we analyzed the relative composition, a difference between nanotubes
and spherical-shaped nanomaterials arose (Figure 3B). MWCNTs are predominantly corre-
lated with macrophages (about 75% for NM401) and neutrophils (about 60% for NRCWE26).
On the contrary, TiO2 mainly induced the response of lymphocytes and eosinophils, and
CB of lymphocytes exclusively. Several studies have already shown that ENMs can inter-
act in diverse ways with the immune system [36]. The difference seems to be driven by
physicochemical characteristics, such as the shape and the size, or the hydrophobicity level.
For example, Liu et al. [53] proved that the diameter in silica–titania nanoparticles directly
affects the amplitude of the inflammatory reaction.

In conclusion, correlating the dddtMOA transcriptional profile with dPOD labels
derived by cell BAL counts can inform on different cellular mechanisms induced by spe-
cific ENMs.

3.2.1. ENM Physicochemical Properties Induce Differences in Immune Activation

To characterize the dynamics of the immune response for each ENM, their individual
functional profiles were investigated by mapping the genes onto the KEGG pathways
(Figure 4, Tables S11–S14). Two clear patterns emerged from genes correlated with neu-
trophils and macrophages.

Our set of macrophage-correlated genes (Figure 4A) in TiO2 nanoparticles include
several mediators, such as CCL7, CCL8, CCL9, and IL4. IL4 is a powerful inducer of M2
polarization and marker of M2 macrophages. M2 macrophages are known to promote
tissue repair and an anti-inflammatory phenotype [54]. Comparable results were previously
observed for TiO2 nanotubes, which exert a protective effect on epithelial integrity by
inducing M2 macrophages [55,56]. CNMs, instead, even if with different amplitudes, share
a common functional core of the macrophage adaptive response, including the expression
of IL1, NfkBia, TNF, IL10, and TGF. Both TNF and IL1 belong to the panel of inducers of
M1 polarization, whereas IL10 and TGF belong to the M2 panel instead. We previously
described that CNMs trigger macrophages towards a hybrid M1/M2 phenotype in a
nonacute exposure setup [46]. This evidence points to a different mechanism of polarization
of macrophages across ENMs that is possibly dependent on ENM chemistry (Figure 5A).

As for neutrophil-correlated genes (Figure 4B), they were characterized by a different
adaptive response in TiO2 and CB as compared to NM401 and NRCWE26.

Genes correlated with neutrophils in TiO2 and CB were monocyte-lineage inducers and
chemoattractants related to chemokines and cytokine receptor–ligand activity (Figure 4B). It
is well recognized that the successful initiation and resolution of inflammation is mediated
by neutrophils. GM-CSF genes, such as Csf2 and IL8, directly promote proliferation
and maturation of neutrophils, but also affect macrophages and eosinophils via STAT3
and STAT5, facilitating defense against infections. In fact, most of these genes correlated
with neutrophils overlap between the two spherical-shaped ENMs, highlighting that
sustainment and homeostasis of neutrophils is a conserved mechanism between them.
However, a set of genes was specific for CB, including IL6, Clec4n, CCL12, Ctsk, IL33, Pigr,
Vinn1, and Ifit1. IL6 is a crucial mediator since it induces neutrophilia under inflammation.
Furthermore, when activated via STAT3, IL6 signaling represents an important event for
the termination of the immune response [57,58]. Overall, these results point to the central
role of the JAK-STAT pathway in sustaining neutrophil proliferation and production of
inflammatory mediators (Figure 5B).
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Figure 4. KEGG pathways of the dynamic dose-dependent genes for the different ENMs. The
different panels represent the pathways enriched by the dose-dependent genes that for each ENM
correlate with macrophages (A), neutrophils (B), eosinophils (C), and lymphocytes (D). The size of
the dots represent the gene ration whereas the color represent the adjusted p-values of the enrichment
analysis. The numbers in brackets below the ENM names represent the number of genes correlated
with the cell populations.

On the contrary, neutrophil-correlated genes in MWCNTs suggest induced neu-
trophilia through a different mechanism (Figure 5B). NRCWE26 has only a few genes
correlated with neutrophils, among which are genes associated with cell proliferation
(such as Pol2 and Mcm2/3), and, interestingly, various hemoglobin chains and subunits.
Hemoglobin was recently described to have a pro-inflammatory and pro-oxidant effect,
and it has become clear that it can trigger neutrophil infiltration by recognition of DAMP
or GPCR [59,60]. Multiple studies report that the main effect of neutrophils when triggered
through GPCR is sustained proliferation and chemotaxis [61]. NM401 neutrophil-correlated
genes enrich the epidermal growth factor (EGF) pathway and multiple pathways related
to glutathione transferases. Uddin et al. demonstrated that EGF production by epithelial
cells, a well-known factor of epithelial repair, increases neutrophil accumulation, which can
promote intervention for acute injury, as well as potentially enhance chronic inflammation
in the airways [62].
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Figure 5. Graphic representation of the effect of ENM psychochemical properties on immune cell
populations. In (A), the effect of different-shaped ENMs on neutrophils is reported by showing the
different mediators and signaling pathways activated. In (B), ENMs with different chemistry are
shown to differently polarize macrophages.

Overall, these results suggest that the mechanism of neutrophil activation is different
across ENMs (Figure 5B). This could be due to the activation of a different panel of mem-
brane receptors, and hence, we hypothesize the role of ENM shape as a critical property in
activating a more epithelial or strictly immunological response. Supporting our hypoth-
esis, Danielsen et al. already observed that pulmonary exposure to differently shaped
CNMs induced differences in the neutrophil influx in vivo [63]. In addition, CB-induced
neutrophil influx and transcription of pro-inflammatory genes in lung tissue were shown
to be unaffected by TLR2 and TLR4 status, whereas CNT-induced neutrophil influx was
somewhat reduced in TLR4−/− mice as compared to wildtype mice [63].

Finally, genes correlated with lymphocytes and eosinophils (Figure 4C,D) enriched
only a few pathways and did not show specific trends associated with ENM properties.
A possible explanation could be the small number of genes correlated with eosinophils
and lymphocytes.

Of note, even if the role of eosinophils in TiO2 and NRCWE26 has not been investi-
gated in detail in the community, our results highlight genes enriching the IL-17 pathway.
Th17-derived cytokines, such as IL-17A and IL-17F, exert distinct effects in airway inflam-
mation, and it was postulated that aberrant IL-17A/F production may drive severe forms
of asthma [64].
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3.2.2. Dynamic Dose-Dependent Genes Shared by All the ENMs

Increasing evidence suggests that dose-dependent alterations highlight the most
biologically significant events [65]. In this light, benchmark dose analysis can explain the
MOA of ENM exposures by highlighting relevant responders already at short time points.

The approach applied here revealed 39 genes with dose-dependent alteration in the
four ENMs that show, however, a specific dynamic pattern for each ENM (Figure 6).

Figure 6. Genes with a dynamic dose-dependent transcriptomic profile in the four ENMs. Colors
indicate the dynamic point of departure of the gene with respect to early, middle, and late time points.

The genes were clustered into seven groups based on their dynamic dose-dependent
dPOD genes. Some clusters show specific labels for individual or grouped ENMs. Inter-
estingly, cluster 5 shows an early alteration in the spherical-shaped nanomaterials, but
not in the carbon nanotubes. The Sftpd gene in this group was previously proposed as
a biomarker of TiO2 exposure [66]. Cluster 7, instead, shows an early alteration specific
to CNMs. The Lrg1 gene in this group is an acute phase protein mainly expressed in
neutrophils, involved in wound healing and fibrosis. Notably, it was proposed as a reliable
marker of airway inflammation in asthma [67].

The biggest cluster includes genes with early activation across the four nanomaterials.
Since the aim of our work was to identify dose-dependent responder genes that also
correlate with the phenotype observed in the lungs, we focused our analysis on those that
are also correlated to at least one cell population in each ENM. Of these, three genes met
our criteria, namely, CCL12, CCL7, and IL1b (Table 2). The three genes mostly show a
sensitive-early dPOD, meaning that they are already activated at low doses and early time
points. However, CCL7 and CCL12 show a resilient response in TiO2 and CB. Moreover,
the genes show a material-specific correlation with the different cell populations (Table 2).

Table 2. Genes that are dose-dependent in all the ENMs and are correlated to at least one cell
population. In dPOD column: RE stands for resilient-early, SE stands for sensitive-early. In cell
population column: N stands for neutrophils, M stands for macrophages, E stands for eosinophils.

Gene Description ENM dPOD Cell Population

CCL7 chemokine (C-C motif) ligand 7

TiO2 RE N, M

CB SE N

NM401 SE M

NRCWE26 SE N

CCL12 chemokine (C-C motif) ligand 12

TiO2 RE E

CB RE N

NM401 SE N

NRCWE26 SE N

IL1b interleukin 1 beta

TiO2 SE E

CB SE M

NM401 SE M

NRCWE26 SE M, E
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CCL7 is an important chemoattractant of neutrophils, macrophages, and natural killer
cells, whose expression allows prompt control and the initiation of inflammation [68].
Importantly, CCL7 is a key player in the resolution of inflammation in lungs, suggesting
that it may have a central role in the recovery phase of the exposure [69]. CCL12 binds to
the same receptor of CCL7, and these axes seem to play a key role in insult response in the
lung. In detail, mice with lung epithelial cell-specific deletion of CCL12 were protected
from bleomycin-induced fibrosis and had expression of CCL2 and CCL7 similar to that
of control mice treated with bleomycin. Many MWCNTs seem to induce bleomycin-like
fibrosis [40]. The protective effect of low levels of CCL12 against fibrosis makes this gene
an important factor and possibly a therapeutic target. IL1b is an important marker of
inflammation, already established in cancer as a prognostic and therapeutic target [70,71].
Importantly, IL1 stimulates CCL7 expression through the NfkB and MAPK pathways in
astrocytes [72]. Even if this relationship has not been proven in the lung, our results suggest
an important cytokine–chemokine axis, whose deregulation is potentially predictive of
lung toxicity.

4. Conclusions

Even though ENMs are widely spread, clarifying the molecular events and cellular
mechanisms of adaptation upon exposure is still considered a challenge [12]. BAL cell
counts are commonly used to identify inflammatory events in the lungs. Although they
help identify which cell types and in which proportion they contribute to inflammation,
they lack the ability to inform on the crosstalk across the different populations, as well as
molecular mediators. To overcome this problem, toxicogenomic studies were successfully
applied to characterize the MOA of nanomaterials.

Disentangling the direct effects of the exposures from other secondary ones arising
from complex regulatory loops is a main challenge in toxicogenomics. Here we assumed
that genes whose expression is dose-dependent are directly altered by the exposure at that
specific dose. Dose-dependent modeling is indeed an effective method for the identification
of transcriptomic alterations that have a monotonic trend across the doses. However,
classical dose-dependent analyses are performed at each time point separately, thus limiting
the capability of describing the kinetic effects of the exposures.

In this study we performed an integrative analysis to characterize the dynamic dose-
dependent portion of the dddtMOA of four ENMs, namely, TiO2, CB, and two MWCNTs.
We disentangled the dddtMOA and highlighted specific, functional profiles of each nano-
material and subcategory. Furthermore, we modeled the commonalities between the dddt-
MOA and four immune cell populations. We demonstrated that dynamic dose-dependent
and differentially expressed genes, that also correlate with the patterns of infiltrations of
immune cells in the lungs, are effective in characterizing the direct effects of the exposures.
Furthermore, our analyses highlighted specific adaptive responses modulated by differ-
ent properties of the nanomaterials, such as chemistry and shape. The effect of specific
properties on the mediators’ induction has important, potential therapeutic applications.

The integrated dynamic dose-dependent analysis has the potential to highlight key
mediators and early responders of exposures. Here we highlighted a panel of 39 genes
with dynamic dose-dependent profiles across the nanomaterials. Of these genes, three were
correlated to at least one immune cell population, having the potential to inform on lung
immunotoxicity.

The present study has several limitations. The recovery after acute toxic response
that is highlighted by our analysis might be partially biased by the experimental setup
used when performing transcriptomic experiments, which includes only one exposure at
the baseline. This could also explain why most of the genes identified are correlated with
macrophages and neutrophils, which are known to be early responders against intruders.
The availability of a bigger set of ENMs and data from repeated exposures might help
in characterizing a chronic adaptive response that would correlate with lymphocytes
and eosinophils. Furthermore, the association between physicochemical properties of
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nanomaterials and the adaptive response may be more robustly detected by including a
wider set of nanomaterials.

Nonetheless, the definition of toxicological points of departure for key genes altered
by ENM exposures opens new perspectives in the application of transcriptomic data for
regulatory purposes.
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Djukanović, R. EGF-induced bronchial epithelial cells drive neutrophil chemotactic and anti-apoptotic activity in asthma. PLoS
ONE 2013, 8, e72502. [CrossRef]

63. Danielsen, P.H.; Bendtsen, K.M.; Knudsen, K.B.; Poulsen, S.S.; Stoeger, T.; Vogel, U. Nanomaterial- and shape-dependency of
TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Part. Fibre Toxicol.
2021, 18, 40. [CrossRef]

64. Wang, Y.-H.; Wills-Karp, M. The potential role of interleukin-17 in severe asthma. Curr. Allergy Asthma Rep. 2011, 11, 388–394.
[CrossRef]

65. Ji, Z.; LeBaron, M.J.; Schisler, M.R.; Zhang, F.; Bartels, M.J.; Gollapudi, B.B.; Pottenger, L.H. Dose-Response for Multiple Biomarkers
of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU. Mutagenesis
2016, 31, 297–308. [CrossRef]

66. Okada, T.; Lee, B.W.; Ogami, A.; Oyabu, T.; Myojo, T. Inhalation of titanium dioxide (P25) nanoparticles to rats and changes in
surfactant protein (SP-D) levels in bronchoalveolar lavage fluid and serum. Nanotoxicology 2019, 13, 1396–1408. [CrossRef]

67. Honda, H.; Fujimoto, M.; Miyamoto, S.; Ishikawa, N.; Serada, S.; Hattori, N.; Nomura, S.; Kohno, N.; Yokoyama, A.; Naka, T.
Sputum Leucine-Rich Alpha-2 Glycoprotein as a Marker of Airway Inflammation in Asthma. PLoS ONE 2016, 11, e0162672.
[CrossRef]

68. Ford, J.; Hughson, A.; Lim, K.; Bardina, S.V.; Lu, W.; Charo, I.F.; Lim, J.K.; Fowell, D.J. CCL7 Is a Negative Regulator of Cutaneous
Inflammation Following Leishmania major Infection. Front. Immunol. 2018, 9, 3063. [CrossRef]

69. Szymczak, W.A.; Deepe, G.S. The CCL7-CCL2-CCR2 axis regulates IL-4 production in lungs and fungal immunity. J. Immunol.
2009, 183, 1964–1974. [CrossRef]

70. Zhang, J.; Veeramachaneni, N. Targeting interleukin-1β and inflammation in lung cancer. Biomark. Res. 2022, 10, 5. [CrossRef]
71. Cross, L.J.M.; Matthay, M.A. Biomarkers in acute lung injury: Insights into the pathogenesis of acute lung injury. Crit. Care Clin.

2011, 27, 355–377. [CrossRef]
72. Thompson, W.L.; Van Eldik, L.J. Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through

NFkB and MAPK dependent pathways in rat astrocytes [corrected]. Brain Res. 2009, 1287, 47–57. [CrossRef]

http://doi.org/10.1111/j.1365-2222.2008.03037.x
http://doi.org/10.1002/path.2284
http://doi.org/10.1182/blood-2018-11-844548
http://doi.org/10.1016/j.smim.2017.09.011
http://www.ncbi.nlm.nih.gov/pubmed/28985993
http://doi.org/10.1111/imcb.12236
http://www.ncbi.nlm.nih.gov/pubmed/30746824
http://doi.org/10.1002/iid3.429
http://www.ncbi.nlm.nih.gov/pubmed/33835721
http://doi.org/10.2147/IJN.S188439
http://doi.org/10.1074/jbc.M112.386573
http://doi.org/10.3389/fmicb.2019.01057
http://doi.org/10.3389/fimmu.2020.01323
http://doi.org/10.3389/fphys.2014.00500
http://doi.org/10.1016/j.intimp.2013.06.034
http://doi.org/10.1371/journal.pone.0072502
http://doi.org/10.1186/s12989-021-00432-z
http://doi.org/10.1007/s11882-011-0210-y
http://doi.org/10.1093/mutage/gev035
http://doi.org/10.1080/17435390.2019.1661042
http://doi.org/10.1371/journal.pone.0162672
http://doi.org/10.3389/fimmu.2018.03063
http://doi.org/10.4049/jimmunol.0901316
http://doi.org/10.1186/s40364-021-00341-5
http://doi.org/10.1016/j.ccc.2010.12.005
http://doi.org/10.1016/j.brainres.2009.06.081

