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1. Introduction

Carbon has recently received a lot of attention as a major driving force behind global
warming [78]. While it is not alone to blame for the changing climate, it is the major
greenhouse gas and has a relatively long lifetime in the atmosphere. As much as 60%
of the global warming effect has been attributed to carbon.

Carbon follows a natural cycle on earth. In the atmosphere, it mainly exists as the
gas carbon dioxide [78]. Plants use carbon dioxide during photosynthesis and convert it
into carbohydrate, while simultaneously releasing oxygen into the atmosphere. When
the plants die and decay or are burnt, carbon is released back to the atmosphere.

Lately, the balance of the carbon cycle has been disrupted [78]. This is largely due
to actions by the human population, such as widespread deforestation. As a result,
the amount of carbon in the atmosphere has been steadily increasing. This in turn
contributes to the greenhouse-effect, causing global climate warming. Consequently,
preserving, monitoring, and analyzing the plant ecosystems — and the carbon stored
within them — plays a crucial role in actions against climate change.

While carbon is stored in various different ways, the Intergovernmental Panel on
Climate Change (IPCC) separates terrestrial carbon pools into five categories: above-
ground biomass, below-ground biomass, litter, woody debris, and soil organic matter
[78]. Out of these carbon pools, above-ground biomass (AGB) is generally considered
as one of the most important. Above-ground biomass has been estimated to include
70 to 90% of total forest biomass [7], and around 30% of total terrestrial ecosystem
carbon pool [42].

In addition, above-ground biomass is the most dynamic and manipulable of the
various carbon pools [42]. While, for example, organic matter in soil contains two to
three times the amount of carbon on global scale compared to above-ground biomass,
the carbon in soil is much more protected and less prone to be perturbed and released
back into the atmosphere. Above-ground biomass is in a state of constant change due
to various different factors, such as logging, fires, storms, and changes in land use.
Consequently, estimating above-ground biomass and its changes is crucial for modeling
carbon flux, which allows for more accurate projections and estimates of climate change
and its various impacts around the globe.

1



2 Chapter 1. Introduction

Above-ground biomass estimations are used in various initiatives [42], such as
Reducing Emissions from Deforestation and Forest Degradation (REDD) and REDD+
[98]. Both are frameworks proposed by the United Nations Framework Convention
on Climate Change which aim to mitigate climate change by various means, including
various financing schemes and incentives to reduce deforestation and forest degrada-
tion. REDD and REDD+ require the participating nations to report — among other
things — estimates of forest carbon stocks and the changes to them, and above-ground
biomass estimation is an integral part of that.

Around the world, biomass is also used as a fuel [42]. It is a relatively popular
source of energy, partly due to biomass being entirely renewable. Accurate estimation
models are useful for the purposes of the energy industry, as the quality and location
of the biomass greatly affect its feasibility as a source of energy.

While there is a great need for above-ground biomass estimation, the task itself
has its difficulties [48]. Vast amounts of vegetation in both spatial and temporal sense
needs to be measured in order to fulfill the variety of needs for AGB estimations.
In addition, constant monitoring and measurements are required due to the dynamic
nature of above-ground biomass. And the more accurate, timely, and accessible the
estimations are, the more certain and useful the various resulting assessments — such
as carbon stock modeling — can be.

Above-ground biomass estimation has seen a surge of new research in recent years
[48]. This is largely due to the increased interest towards the results, but also partly
because of advancements of computation methods and capacity. In particular, above-
ground biomass estimation methodology relating to the domain of remote sensing has
risen in popularity, which could partially be attributed to an increased availability
of various remote sensing datasets [89]. The financial requirements of launching new
satellites has been steadily going down, while various organizations — such as European
Space Agency (ESA) — offer free and open access to relatively high accuracy remote
sensing data.

This thesis describes a novel application of machine-learning based above-ground
biomass estimation in the hemi-boreal vegetation zone of Finland. Part of the moti-
vation behind this research was the lack of flexible, high accuracy, and low-cost appli-
cations of remote sensing based AGB estimation in the hemi-boreal vegetation zone.
While biomass maps exist for the area [3], they are usually either outdated or have a
low spatial resolution.

There is a similar problem with recent and upcoming biomass-focused satellites.
NASA’s Global Ecosystem Dynamics Investigation [94] (GEDI) uses narrow-swath Li-
DAR to get measurements, and the coverage of the highest-resolution product is very
low. It is also designed to operate only up to 51.6° N latitude, meaning most of North-
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ern Europe is out of its range. ESA’s BIOMASS mission [93] (to be launched in 2023)
uses a relatively low resolution of 200 m, rendering it unsuitable for estimating AGB
accurately in small forest areas.

For Finnish forests, high-quality ground truth data is freely available [60, 51].
This is not the case for many other areas. While the quality and accessibility of the
ground truth data limits the usefulness of the remote-sensing based AGB estimation in
Finnish forest areas, the resulting methodology is hopefully applicable in other areas
with similar vegetation, such as Estonia.

The aim of the research is to create a methodology that produces accurate AGB
estimations, while also being flexible in both spatial and temporal sense. While research
in the domain and public biomass products generally aim for large-scale estimation of
lower accuracy, one of the goals of this research is to be able to create a methodology
that can be used ad-hoc to up-to-date, accurate estimations for even small forest areas.

The methodology used for data processing, feature extraction, and feature selec-
tion is developed with the intention of being easily adaptable to areas apart from the
sample region. While the trained models are likely to perform well only within the
neighboring hemi-boreal zone, the data and feature processing methods should allow
for prototyping and training of fitting models in any area of choice, as long as there
is data available. The remote sensing data itself is sourced from open and free-to-
use satellite products. The utilized satellite missions Sentinel-1 [99], Sentinel-2 [100],
and ALOS-2 [90] are all ongoing and offer global coverage of recent data, although
Sentinel-1 and Sentinel-2 are mostly focused on Europe.

This work also proposes a novel methodology for feature extraction. The data
values of the encircling area (including vegetation indices and textural measures) for
each of the observations are utilized as additional features. While there is research on
using textural analysis to extract patterns from the surrounding observations for AGB
estimation, to my knowledge there are no recent studies using the extracted features
(e.g., spectral and polarization bands, vegetation indices, or textural metrics) of the
neighboring data points as additional features.

As remote-sensing based AGB estimation tends to underestimate biomass values
in areas with dense vegetation and high biomass, the hypothesis is that using the
neighboring features might be able to counter this saturation effect. This is combined
with multi-seasonal data-sourcing, as the characteristics of vegetation in hemi-boreal
mixed forests, especially for the deciduous trees, depend largely on the period of the
year. A goal of the study is to evaluate whether using the neighboring features, in
conjunction with multi-seasonal data, might improve the AGB estimation accuracy of
the trained models — especially for high-biomass areas.

This thesis is divided into two parts. The first part — primarily Chapter 2 —
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contains a brief overview of the statistical and remote sensing -based methods used in
estimating above-ground biomass. Forest-related methodology is the primary focus,
as forests are the most wide-spread target of above-ground biomass-estimation, with a
considerable impact on global climate [42, 48].

In the second part of the thesis — Chapters 3, 4, and 5 — the novel application of
AGB estimation, and the methodology of extracting features from neighboring obser-
vations, are described and the results discussed. The research consists of multi-source
remote sensing approach utilizing spectral bands, vegetation indices, and textural mea-
sures from both optical and SAR data.

In Chapter 3, the methodology of the research is described. The chapter contains
a description of the algorithms and processes used for feature extraction and selection,
including the novel method of adding features from the neighboring data points. In
addition, there is a brief overview of the utilized machine learning model, various scoring
formulas, and data preparation methods. The details of the data sources (Sentinel-1
[99], Sentinel-2 [100], ALOS-2 PALSAR-2 [90], and the Multi-Source National Forest
Inventory of Finland [96]) are also outlined.

The results of the research are detailed in Chapter 4. A comparison of various
combinations of features and data sources is provided, with the primary focus being
on the performance of the models using neighboring features as additional data. The
results of models are compared for general areas, and for high-biomass areas. Further-
more, the sample areas are shown.

In Chapter 5, the findings are discussed. The flaws and advantages of the method-
ology are analyzed, as well the implications of the results. In addition, possibilities for
further research are briefly speculated on. And finally, in Chapter 6 is a brief summary
of the thesis.



2. Forest Above Ground Biomass
Estimation

Specifically, forest above-ground biomass consists of organic matter in living and dead
plant materials [48]. This includes, for example, branches, leaves, and stem, and there
are multiple approaches to estimating the amount of above-ground biomass. Broadly,
these approaches can be divided into destructive and non-destructive methods [78].
In destructive methods, the trees are cut down and weighed, while non-destructive
methods leave the forests intact. Destructive sampling is costly and invasive, and in
certain ecosystems completely unviable due to threatened flora or fauna [42]. But,
while having numerous downsides, destructive methods yield by far the most accurate
measurements of biomass [6]. As such, they are useful for validating and developing
non-destructive methods.

2.1 Allometric Equations

Allometric equations are one of the major ways of estimating biomass. Allometric
equations are statistical models commonly based on easily collected biophysical prop-
erties of a tree [42, 6, 80]. These biophysical properties might include variables such
Diameter at Breast Height (DBH), Commercial Bole Height (CBH), tree height, and
wood density. The aim is to create equations that capture the scaling between a tree’s
form and biomass. Biomass in this context can either be an individual component —
such as root, bark, bole, or needle biomass — or the total biomass.

An example of an approach for allometric AGB estimation is to first create linear
models for each measured variable x for each of the n sampled trees [63]. A single
model can be formulated as

yi = bxi + ei , (2.1)

5



6 Chapter 2. Forest Above Ground Biomass Estimation

where yi is the biomass component y for the tree i, b is the vector of a fixed effect
parameter for the biomass component, xi is the vector of independent variables, and
ei is the residual error. The sampling can be improved by using multiple stands, and
adding an error parameter uk for the models, where the stand is denoted as k. The
linear models can then be compiled into a multivariate model, which can be formulated
as

y1ki = b1x2ki + u1i + e1ki

y2ki = b2x2ki + u2i + e1ki

...
ynki = bnxnki + uni + enki ,

(2.2)

where y1ki to ynki denotes the dependent variables of biomass for each component from
1 to n for tree i in stand k. Finally, the following is an example of an allometric
equation for total AGB of scots pine derived from the multivariate model [63]:

ln(yki) = b0 + b1
dSki

(dSki + 12) + b2
hki

(hki + 20) + uk + eki . (2.3)

To transform the equation into a linear form in addition to obtaining homoscedasticity
of the variance, logarithmic transformation was used. The model uses mainly two
variables, height h and stump diameter dS. The stump diameter is defined as dS =
2 + 1.25d, where d is the diameter at breast height.

Allometric equations have many sources of uncertainty. As biomass data is costly
and invasive to collect via destructive methods, alternative sampling is often used [82].
This alternative sampling is generally based on either biomass estimation from volume,
biomass estimation from predictor variables (such as DBH, CBH, or tree height), or a
combination of both. The results from these sampling methods are rarely as accurate
as actually felling and weighing a tree.

In addition, these allometric equations are often single tree models that assume
that the sampled specimen are representative of the larger population [82]; Selecting
the wrong individual trees as the sample set is going to skew the results of the model,
as the specific properties (such as density or size) might be outliers or generally have
large deviations. These models have limited use in heterogeneous forests with trees of
various sizes, and are most accurate in environments with stands of similar age, such
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as plantations or uniform forests.
This is further complicated by the fact that allometric equations are often applied

to populations of trees that are different from the population the equations were devel-
oped for [80]. Even if the tree species and genetics are equal or very similar, growing in
various conditions (e.g., climate, soil type, competition, tree age, availability of nutri-
ents) affects the various properties of the trees. As a result, there might be significant
amounts of error, in some cases even as much as 240% [82].

Allometric equations can also be used to estimate below ground biomass (BGB)
[29]. While BGB is also an important variable for accurate modeling of carbon and to-
tal biomass, it is also considered much more difficult to estimate than AGB [29, 7]. As a
consequence, various methods to get BGB estimations from above-ground characteris-
tics exist. One of the more popular methods is the root-to-shoot ratio (R:S) [29], which
is a relatively accurate way to estimate the amount of below-ground biomass from the
number of above-ground tree shoots [81]. Above-ground biomass estimation, however,
is both easier and usually more important than below-ground biomass estimation, and
as such gets generally more focus in research [29].

Remote sensing biomass estimation methods often use allometric equations for
validation or as training data. As this is the case, it is important to keep in mind
that allometric equations themselves are very much predictive — with a high level of
uncertainty — and not the hard truth. Partially due to this, the quality of results from
many of the remote sensing estimation methods should be appraised with care.

2.2 Remote Sensing

Remote sensing is a category of methods where the physical characteristics of an area
are measured at a distance — generally from above by an airborne or a spaceborne
device — by the emitted and reflected radiation [89]. For the purposes of above-
ground biomass estimation, the common remote sensing technologies can be divided
into LiDAR, optical, and SAR [48]. All of these measure electromagnetic radiation,
mainly visible light, ultraviolet, or low to medium infrared frequencies (see Fig. 2.1).

Electromagnetic radiation can interact with an object in three distinct ways:
reflection, absorption, and transmission [89]. Objects generally interact with electro-
magnetic radiation in all three of these simultaneously, only the proportions vary. The
deciding factor behind proportions is the wavelength of the radiation and the material
and structure of the object. When it comes to above-ground biomass estimation, only
some of the wavelengths are suitable. The chosen wavelengths need to interact with
the vegetation and other objects in an environment in such a manner, that it is possible
to differentiate — with sufficient accuracy — biological mass from the non-biological.
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Figure 2.1: The electromagnetic spectrum [92].

Besides being able to capture varying objects, the wavelength of the radiation
has multiple implications [89]. Atmospheric transmission between the sensor and the
surface of earth is one of the main considerations. Different wavelengths are able to
travel in the atmosphere with varying success; Some have a higher tendency to be
absorbed or refracted by various airborne particles or to be contaminated by noise
— of, for example, the solar background radiation. In addition, there are financial
considerations: The technology for capturing or transmitting certain wavelengths in a
large scale is sometimes too costly to be viable.

2.2.1 Light Detection and Ranging

Light Detection And Ranging (LiDAR) is an active remote sensing method, where the
environment is scanned using laser [60, 59]. The scanning device — often mounted
on an airborne vehicle, such as an airplane or an unmanned drone — sends pulses of
laser energy, and then measures the amount of time for the pulse to reflect back to the
sensor. Conventionally, the scanning results in a cloud of return pulses, that contains
the intensity of the pulses as well as the coordinates of individual pulses as x, y, and z.
These variables can then be used, for example, to map the environment as a 3D-model,
or, for example, to infer biophysical properties of the vegetation in the scanned area.

LiDAR laser can be ultraviolet, visible, or near-infrared (NIR, ranging from 780
nm to 1550 nm) [89]. For the purposes of mapping vegetation, wavelengths of 905 nm,
1064 nm, and 1550 nm are commonly used, with 1550 nm being a costly but generally
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the most suitable option. While it is possible to construct LiDAR systems that use
multiple wavelengths simultaneously, airborne systems often use a single wavelength.

LiDAR is rapidly gaining popularity as a method of measuring forest data [60].
There are two main approaches of estimating the biophysical variables of vegetation
using LiDAR: Tree-based and area-based. Both use the canopy height model, which is
constructed from the differences of z coordinates between the lowest ground pulse and
highest vegetation pulse. Whether a single pulse is returned from vegetation or ground
can be predicted from the strength of the signal.

The tree-based approach interprets tree heights and locations from the canopy
model [60]. Furthermore, these and other variables can be used to predict tree diameter,
crown diameter, crown shape, and tree species. While the tree-based approach can yield
accurate results, the main disadvantage is the tendency for larger individual trees to
mask smaller trees in the tree height model, lowering the accuracy of the estimations.

The area-focused approach, on the other hand, is based on estimating the prop-
erties of a larger forest areas instead of individual trees [60]. The areas can be, for
example, grids with specific dimensions. An area is scanned and then compared to a
dataset of areas with known, already validated properties. The area from the dataset
with the most similar LiDAR measurements is selected, and its properties are used
to derive the properties of the scanned area. The advantage is that even non-uniform
areas with substantial variety in tree species and sizes can be accurately estimated.
However, a large dataset of validated measurements are needed, which might require
considerable amounts of manual work.

The biophysical measurements from LiDAR can then be used to calculate biomass
by using allometric equations [59]. Variables such as DBH or canopy height have been
shown to correlate highly with above-ground biomass, and the methodology of deriving
these variables from LiDAR data is relatively robust. In fact, there is strong evidence
that with a small-footprint (<1 m) LiDAR system, measurements such as canopy height
can be at least as accurate as ground measurements [2]. As a consequence, LiDAR is
considered to be one of the most accurate and reliable methods of mapping biomass
— and various other properties — in both small and large forest areas.

Airborne LiDAR scanning has its limitations, however [26]. It is expensive, time-
consuming, and requires specific missions to get LiDAR vehicles over the areas where
the measurements are wanted. As a consequence, it is difficult to get airborne LiDAR
data, especially if it is needed for specific periods of time. This is opposed to many
of the global satellite-based approaches, where measurements are constantly updated
and stored, and where the data is often available to almost anyone at a low cost.

Satellite-based LiDAR exists as well [26]. Currently, however, the technology is
greatly limited. Satellite-based LiDAR has high energy requirements, allowing only for
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short bursts of scanning. Combined with the narrow scope of the scanning swath, we
are far from a globally viable spaceborne LiDAR coverage.

As of June 2022, there are six different satellites equipped with LiDAR-based
technology, with varying purposes [26]. For example, some were built to scan ice-
caps, while some measure clouds and aerosols. At the current level of technology, It
has been estimated that 12 satellites working together would be needed to produce a
global LiDAR map every 5 years at 30 m resolution, or 418 satellites for 5 m resolution.
Even a mission of 12 satellites would be a considerably expensive and time-consuming
project, and the resolution of 30 m might not be sufficient for many applications.

In the domain of remote sensing, LiDAR-based AGB estimation methods are
usually the most accurate and reliable, especially when it comes to dense vegetation
[48]. However, due to the cost and difficulty of obtaining up-to-date measurements,
other methods have been widely explored.

2.2.2 Optical Imagery

Optical imaging is one of the most common remote sensing methods [89]. Many air-
borne vehicles from airplanes to drones are fitted with optical sensors. In addition,
tens of satellites with optical imaging capabilities are orbiting Earth, the first of which
— Landsat 1 — was launched in 1972. While the satellites are controlled by varying
organizations and nations, much of the data is easily accessible to anyone.

Optical imaging sensors can utilize visible, NIR, and short-wave infrared (SWIR)
from the electromagnetic spectrum [89]. Typically, the systems produce panchromatic,
multispectral, or hyperspectral images. Panchromatic images are either grayscale or
black and white, captured by systems with monospectral channel detectors that are
sensitive to a broad range of radiation.

Multispectral images are generated by multichannel detector sensors that are
able to measure several spectral bands [89]. Each band is recorded to its own layer
of data, which includes both brightness and spectral (color) information. Often bands
are divided into specific, meaningful ranges, such as red, green, and blue of the visible
light. A multispectral image often contains 2-15 separate bands.

Hyperspectral images are similar to multispectral images, except that they can
contain hundreds of separate bands [89]. Each band is generally very narrow, with
ranges as low as a fraction of a micrometer. The large number of bands allows for ac-
curate discrimination of reflectance and detection of various objects at different wave-
lengths. In multispectral images, the bands can be too broad for fine-grained analysis.

While hyperspectral images store a large amount of information, processing the
images is costly and time intensive. In addition, remote sensing devices with hyper-
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Figure 2.2: The reflectance of light from green vegetation [65].

spectral sensors are rarer than their multispectral counterparts, and the vast amount of
information might be redundant for many purposes. Consequently, for AGB estimation
using optical imagery, most research is centered around multispectral images.

Various transformations can be used to improve the cost and efficiency of process-
ing imagery, and to normalize values or introduce new features [8]. Transformations
are often used for both multispectral and hyperspectral images. Common transforma-
tions include Principal Component Analysis (PCA) and Tasseled Cap Transformation
(TCT).

TCT is a conversion that is used especially for vegetation mapping [39]. It uses
spectral bands to produce several distinct component bands. Originally, six bands
were proposed, out of which three are most commonly used: greenness, wetness, and
brightness. For example, the equation for the component band greenness — a measure
of amount of vegetation — is defined as

vGREENNESS = c1(B1) + c2(B2) + c3(B3) + c4(B4) + c5(B5) + c6(B7) (2.4)

where the coefficients c1, . . . , c6 are values ranging from −1 to 1, and the constants B1,
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B2, B3, B4, B5, and B7 are the spectral bands. Note that this specific equation is
for the sensors of the Landsat-satellite only. For other sensors the coefficients, bands,
and number of bands used needs to be determined, and the process can be complicated
[56].

In short, TCT uses the weighted sum of spectral bands to produce the transformed
components, with the goal of extracting the most relevant information and capturing
the variation of the spectral bands. The components can then be directly used to
estimate the amount of vegetation and biomass in an area.

PCA is one of the most common methods of reducing dimensionality, and is often
used in remote sensing [8]. Similar to TCT, PCA is a linear transformation with the
aim of capturing the most relevant information of data. For a more detailed explanation
of the algorithm, see subsection 3.3.1.

In addition, the spectral bands can be directly used for above-ground biomass
estimation. Vegetation reflects various bands to different degrees [65]. In Fig. 2.2 the
percentage of reflected radiation for green vegetation in various bands can be observed.
Chlorophyll in plants mostly absorb blue and red bands from the visible spectrum,
reflecting back mainly radiation within the green band. Near infrared is reflected
heavily by the mesophyll cells of vegetation. Leaf biochemicals, proteins, lignin, and
cellulose water content reflect shortwave infrared (SWIR). The atmosphere, however,
more readily absorbs certain ranges of the radiation, which needs to be considered.

The differences between the reflectance of certain bands has led to a large amount
of research and experimentation [70]. The high contrast between visible red and NIR
(see Fig. 2.2) is known as the Red Edge (RE), and it is especially useful for vegetation
estimation. The exact position and features of the red edge is affected by a multitude of
factors, including the combination of plant and tree species, and the number of layers
of leaves [30]. Furthermore, these factors can, for example, correlate with canopy
thickness and biomass.

Similar to other spectral transformations, multiple bands can be used to calcu-
late a component band with a better representation of the various characteristics of
vegetation [70]. These component bands are called Vegetation Indices (VI), and they
are considered to be among the most optimal methods of detecting AGB via spectral
features.

Two of the most common vegetation indices in AGB estimation is the Simple
Ratio (SR) and the Normalized Difference Vegetation Index (NDVI) [48]. SR is defined
as NIR divided by the visible red band. It is among the most straightforward methods
of depicting the red edge. While SR allows the separation of vegetation from the
environment, the resulting measurement scale is not linear, often complicating analysis.
In addition, SR is susceptible to division by zero errors.
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Vegetation Index Equation Ref.

Difference Vegetation Index DVI NIR−RED [76]

Simple Ratio SR NIR/RED [37]

Modified Simple Ratio MSR NIR/(RED−1)√
NIR/RED + 1

[11]

Normalized Difference Vegetation
Index

NDVI NIR−RED
NIR+RED

[68]

Enhanced Vegetation Index EVI G
NIR−RED

NIR− C1 ·RED − C2 ·BLUE + L
[32]

Specific Leaf Area Vegetation Index SLAVI NIR

RED + SWIR
[50]

Normalized Difference Water Index NDWI NIR− SWIR

NIR+ SWIR
[28]

Wide Dynamic Range
Vegetation Index

WDRVI a ·NIR−RED
a ·NIR+RED

[22]

Triangular Vegetation Index TVI 0.5[120(NIR−GREEN)− 200(RED −GREEN)] [16]

Transformed Triangular
Vegetation Index

TTVI
√
ABS(NIR−RED

NIR+RED
+ 0.5) [74]

Corrected Transformed
Vegetation Index

CTVI NDV I + 0.5
ABS(NDV I + 0.5)

√
ABS(NDV I + 0.5) [57]

Renormalized Difference
Vegetation Index

RDVI NIR−RED√
NIR+RED

[67]

Ratio Vegetation Index RVI RED

NIR
[64]

Normalized Ratio Vegetation Index NRVI RV I − 1
RV I + 1 [5]

Soil Adjusted Vegetation Index SAVI (1 + L)NIR−RED
NIR+RED

[33]

Normalized Difference Index
using bands 4 and 5 (Sentinel 2)

NDI45 RE1 −RED
RE1 +RED

[17]

Inverted Red-Edge Chlorophyll
Index (Sentinel-2)

IRECI RE3 −RED
RE1/RE2

[20]

Sentinel-2 Red-Edge Position S2REP 705 + 35(NIR+RED/2)−RE1
RE2 −RE1

[20]

Optimized Soil-Adjusted
Vegetation Index

OSAVI NIR−RED
NIR+RED + Y

[66]

Green Normalized Difference
Vegetation Index

GNDVI NIR−GREEN
NIR+GREEN

[23]

Transformed Normalized Difference
Vegetation Index

TNDVI
√
NIR−RED
NIR+RED

+ 0.5 [87]

Green Ratio Vegetation Index GRVI GREEN −RED
GREEN +RED

[18]

Moisture Stress Index MSI NIR

SWIR
[38]

Infrared Percentage Vegetation Index IPVI NIR

NIR+RED
[14]

Table 2.1: Various vegetation indices used in AGB estimation.
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NDVI is the difference between NIR and the visible red band, divided by the sum
of NIR and red [70]. Similarly to SR, NDVI is based on the high contrast of reflectance
between the visible red band and NIR, and shows the separation of vegetation from soil
and other topography. It also produces a linear measurement scale and is less likely to
contain division by zero errors.

Multiple other vegetation indices use the red and NIR bands, or are directly
inspired by NDVI or SR. Some of these include the Transformed Vegetation Index
(TVI), Transformed Normalized Difference Vegetation Index (TNDVI), and Infrared
Ratio Vegetation Index (IPVI). Many bands also use other wavelengths, such as Green
Normalized Vegetation Index (GNDVI) or Enhanced Vegetation Index (EVI). See Ta-
ble 2.1 for various vegetation indices used in AGB estimation.

There is a large amount of research about vegetation indices, with a variety
of equations proposed [48]. The vegetation indices have their individual strengths
and weaknesses, and are often specifically suitable for certain types of vegetation,
topography, imagery, or environmental factors. When estimating AGB via spectral
features, multiple bands and vegetation indices are commonly used in combination.

Vegetation indices and separate bands are well suited as input variables in ma-
chine learning [48]. Regression models are one of the most common methods of optical
imagery based AGB estimation, with algorithms such as Random Forest (RF), Artif-
ical Neural Network (ANN), and Support Vector Machine (SVM) generally showing
good results. Using data derived from manual sampling or LiDAR measurements as
the ground truth data is a common approach. The problem can be formulated as

f(x1, x2, · · · , xn) = E[Y |X1 = x1, X2 = x2, · · · , Xn = xn] , (2.5)

where X1, · · · , Xn are the chosen bands and vegetation indices as input variables, and
Y is the amount of AGB as derived from the ground truth data.

While using the correlating bands and vegetation indices to detect biomass seems
straightforward, the subject is complicated by the reflectance of other materials in the
environment [48]. In Fig. 2.2 can be seen the reflectance of dry soil, snow, litter, and
water alongside vegetation. The choice of bands and VIs used is heavily influenced by a
variety of factors, including soil type, amount of water and moisture, the current season,
and the presence of human-made objects, such as structures and litter. In addition,
different vegetation reflects radiation in different proportions. As such, choosing a
reliable set of bands and vegetation indices to estimate biomass is often a difficult task.
This is, however, made easier by the fact that for most forest areas the composition
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of biomass is dominated by trees, and many forests only contain a few main species of
trees.

Figure 2.3: The reflectance of various materials in the environment [34].

Besides spectral analysis, spatial analysis can also be used for AGB estimation
[45]. This is often achieved by using textural features. Texture is a small-scale ar-
rangement of spectral values that repeats as a pattern in a larger spatial scale. These
various arrangements can be identified as specific elements, such as vegetation or soil.

There are three main classes of methods for extracting textural features: config-
urative methods, statistical methods, and spectrum decomposition methods. Out of
these, statistical methods are most common in AGB estimation, especially Grey Level
Co-occurrence Matrix (GLCM). See subsection 3.2.2 for an overview of the GLCM
algorithm.

A variety of different spatial resolutions of optical imagery have been used in AGB
estimation [48], from low (1000 m) to very high (under 1 m). The data from higher
resolution sensors have an advantage in prediction accuracy, but are costly to acquire
and process. The lower resolution images are generally easier and financially more
viable to use for large areas, and are more readily available for different areas and time
periods. Consequently, low to medium resolution images are often used for monitoring
AGB change over time, or to complement other measurements — for example, from a
forest inventory collected using other sampling methods.
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In addition to the widespread availability of the optical imaging data — especially
at lower spatial resolutions — its main advantages are intuitiveness and ease of use [48].
The flat 2D images, mostly captured directly from above, are comparable to traditional
photography. This is contrasted by SAR or LiDAR imagery, where geometry is depicted
from an odd angle and the data is generally less intuitive.

The main problem of optical imagery is the low penetration depth of the radiation
[48]. Generally, only the reflectance from surface objects and vegetation is retrieved,
rendering much of the underlying biomass invisible in the optical imagery. Especially
in thick vegetation, the data tends to saturate and the volume of AGB gets underes-
timated, meaning that using optical imagery alone is not always viable. In addition,
images can also be partially or completely obscured by clouds, rendering certain images
or areas of images unsuitable for analysis.

2.2.3 Synthetic Aperture Radar

The Synthetic Aperture Radar (SAR) is an increasingly popular technology in the field
of remote sensing [19]. It is frequently used on both airborne and spaceborne platforms,
with many of both the current and the upcoming satellites carrying a SAR sensor. The
use cases of SAR are numerous, including airport surveillance, urban monitoring, global
mapping, maritime navigation, and remote archaeology.

SAR is also a major remote sensing method for AGB estimation [86]. Similarly
to LiDAR, SAR is an active data collection system that sends its own electromagnetic
radiation and then measures the backscatter radiation after it has reflected from the
objects. Instead of using laser, SAR emits and measures microwaves, mostly working
at wavelengths in the range of 0.8 - 100cm.

As with optical data, the wavelength ranges are divided into specific bands [54].
The most common bands are denoted as Ka, K, Ku, X, C, S, L, and P (see Table 2.2).
For the task of AGB estimation, L and P are considered the most feasible bands
[86]. Generally, when the particles are on the scale of the radiation wavelength, most
backscattering occurs. This is due to these longer wavelengths (15-30cm for L and
30-100cm for P) being able to efficiently penetrate even thick canopy covers and reflect
from tree trunks and branches instead of surface leaves. This allows for better modelling
of the height and 3D structure of forests. Higher frequency bands, such as C and X,
have still been successfully used for modelling biomass in regions with sparse vegetation,
such as savannas, grasslands, or various crops [83].

SAR transmits its own radiation, which allows precise control over the signal.
This has an advantage over optical sensors using reflected solar radiation, which has a
wide range of wavelengths and random phase. Phase is a term for a point in time on a
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Band Wavelength (cm) Typical Application

Ka 0.8 - 1.1 Airport surveillance (rarely used).

K 1.1 - 1.7 H2O absorption (rarely used).

Ku 1.7 - 2.4 Satellite altimetry (rarely used).

X 2.4 - 3.8 Urban monitoring, ice and snow.

C 3.8 - 7.5 Global mapping, mapping areas with moderate
vegetation, change detection. (Commonly used)

S 7.5 - 15 Earth observation, agriculture monitoring.

L 15 - 30 Geophysical monitoring, biomass and vegetation mapping.

P 30 - 100 Biomass mapping.

Table 2.2: Various SAR bands and their typical applications [19].

waveform cycle, and measuring allows SAR devices to estimate the distance from the
sensor to the reflected surface with accuracy up to the centimeter level. In addition to
phase, amplitude (signal intensity) can be measured precisely and the polarization of
the wave can be controlled.

Polarization is an important aspect of SAR data [54]. The transmitted electro-
magnetic wave oscillates on a plane, and the orientation of the plane is referred to
as polarization. Generally, the wavelengths transmitted by SAR devices are linearly
polarized, meaning they are either aligned horizontally (H) or vertically (V) (see Fig.
2.4).

Figure 2.4: Waves with vertical (V) and horizontal (H) polarizations [19].

SAR sensors can control the polarization both when transmitting and receiving
[19]. For example, a signal can be sent as H, and received as V. This would be de-
noted as HV, horizontal vertical. There are four different polarization operation modes
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for SAR sensors: single-polarization, cross-polarization, dual-polarization, and quad-
polarization. In single-polarization mode, the radar system receives wavelengths in the
same orientation as it was sent (VV or HH). In cross-polarization, different polariza-
tion is used for transmit and reception (VH or HV). Dual-polarization mode allows the
radar to transmit in a single orientation, while receiving in both polarizations simulta-
neously (VV and VH, or HH and HV). Finally, in quad-polarization mode signals are
transmitted in alternating polarizations and received simultaneously in both, allowing
the collection of all the four different polarization types (VV, VH, HH, HV).

Each combination of polarizations reveals information of the imaged surface in a
distinct way, giving additional control for the requirements of various specific tasks [19].
For example, a vertically oriented standing tree reflects the radiation back in a different
pattern, depending on the polarization (V or H). The scatter is also different between
the upright trunk of the tree and its horizontally or diagonally oriented branches and
leaves.

The reception polarization is also affected by the surface types [19]. For example,
strong HH scattering indicates a pattern of double-bounce scattering, which is often
due to man-made structures of stemmy vegetation. VV relates to scattering from
rough surfaces, such as water or bare ground. Cross-polarized data (VH or HV) is
most sensitive to volume scattering, which can be an indicative of leaves and branches
of trees.

Figure 2.5: The geometry of typical SAR observations. Note the off-nadir angle of the signal and how
it allows the differentiation between objects that are near (the house) and far (the tree) by temporal
analysis [19].

Using SAR data reliably for AGB estimation is often difficult [19]. There are
multiple factors of ambiguity resulting from measuring difficulties, which can be divided
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into two categories: geometrical and environmental. Geometrical factors arise from
the combination of the off-nadir angle of observations and the geometry of the imaged
objects. Unlike with typical optical sensors or many LiDAR arrangements, SAR uses a
side-looking swathe in order to estimate the distance of objects and their proportional
relations within the scanned area (see Fig. 2.5). The observation geometry results in
measurement differences between the near and the far range of the image swath.

In addition, the angle of observation and direction of flight can vary for each
pass over [19]. Furthermore, for spaceborne SAR, it is important to consider whether
the orbit is descending or ascending. All of these factors can cause variances in the
observation data.

The geometry of the targets will also have an effect on the observations [19]. In
cases of trees and other vegetation, this includes the orientation of branches and leaves.
The geometry of branches and leaves is constantly changing, resulting from growth and
from environmental factors, such as wind.

Other environmental factors include soil moisture, surface inundation, intercepted
water, and water content of vegetation [19]. Soil moisture can change backscatter
values, especially when using HH or VV polarization. Surface inundation means the
temporary, full or partial submergence of the imaged object, for example by a seasonal
flood. This increases the power of backscattering significantly, especially for HH and
VV.

Intercepted water can be, for example, from rain or dew [19]. Depending on
the wavelength and droplet size, it can either increase backscattering power (X and C
bands) or lower it (L and P bands). Water content of trees and leaves can also affect
backscattering. The water content changes for various reasons, which include annual
seasons, temperature, time of day, weather, and stress.

Due to all the geometrical and environmental factors, it is difficult to get reliable,
comparable observations on SAR [19]. Generally, intensive preparation and processing
is required to get SAR data into an analysis-ready form. One of the typically unde-
sirable characteristics of SAR images is speckling. The speckle effect is the result of
the interference from the multitude of radiation echoes reflecting and scattering within
the area of a single imaged pixel. Speckling is generally most pronounced in the areas
of the image with the highest amount of radiation reflected back, i.e., the brightest
regions.

The speckle effect is absolutely multiplicative. It can be modelled as

I(t) = R(t)n(t) , (2.6)
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where I(t) and R(t) are the speckled and speckle-free backscatter of a SAR measure-
ment, respectively [88]. Noise factor is noted as n(t), and it is independent with R(t).

The speckling can result in a grainy, noise-like texture in SAR images, introducing
differences in the captured backscatter values even in cases where the imaged objects
are identical [19]. Filters can be used to reduce the effect. There are a variety of
commonly used speckle filtering algorithms, such as the Lee filter [44]. The Lee filter
utilizes minimum mean squared error (MMSE) filtering, and it can be formulated as

R(t) = Ī(t) +W (t)I(t)− Ī(t) , (2.7)

where R̂(i, j) is the speckle-filtered backscatter, and also the estimated value of R(t)
[88]. I is the speckled backscatter, and (̄I) is its mean value. The W (t) represent a
weighing function, defined as

W (t) = 1− Cv
CI

, (2.8)

where Cv is the variance coefficient σv/v̄ of the speckled backscatter, while CI is the
variance coefficient σI/Ī of the speckle-free backscatter.

As a standard deviation based (sigma) filter, the Lee filter is able to suppress
noise while preserving the quality and sharpness of the image [19]. However, the Lee
filter assumes that speckling is uniform throughout the whole image. If there are large
deviations among different parts of the image — such as when imaging largely varied
areas — the Lee filter does not effectively retain all the details of the image.

Other examples of commonly used speckle filtering algorithms are Quegan [61],
Enhanced Lee [46], and Frost [21]. The filters, similarly to the Lee filter, also have
their advantages and disadvantages. Among other factors, the choice of de-speckling
methodology depends largely on the properties of the SAR device, the imaged region,
and the intended purpose of the data.

Besides speckle filtering, SAR imagery often needs radiometric and geometrics
corrections [19]. As the observations are captured using a side-looking geometry, to-
pographic shading is compounded on the sensor-facing surfaces. If a SAR is imaging a
hill, for example, the slope positioned towards the sensor gets radiometrically overex-
posed. Additionally, pixels are often mislocated when imaging topographically inclined
areas, leading to geometric distortion. Both of these effects reduce the viability of the
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imagery for many applications, as the true structure of the targeted areas is masked.
Additionally, the effects depend on the angle and position of the sensor, complicating
a comparison of multiple observations.

A single pixel value σ in calibrated SAR data is defined as

σ = Ir
Ii

4πR2 , (2.9)

where Ir is the received signal intensity and ii the signal intensity at the incident lo-
cation [19]. R is the distance to the target, in meters. The σ is also termed Radar
Cross-Section (RCS). RCS, however, neglects the effect of incidence angle on the mea-
surement. For the purposes of angle-correction, RCS can be defined as

σ = σ0(θi)Aσ(θi) , (2.10)

where Aσ is the surface covered by the pixel, and θi is the local incidence angle. Sigma-
nought (σ0) is the normalized, incidence angle -dependent RCS. To estimate sigma-
nought, the effect of Aσ(θi) is corrected for in a process called Radiometric Terrain
Correction (RTC).

Radiometric terrain correction is able to compensate for both radiometric and
geometric distortion [19]. To correct geometric distortion, geometric terrain correction
(geocoding) is employed. For the removal of radiometric distortion, Radiometric Ter-
rain Normalization (RTN) is utilized in a pixel-by-pixel basis. Both RTN and geocod-
ing require additional data in the form of a Digital Elevation Map (DEM), which is a
topographic map containing elevation information.

While there are many methods of RTC, one of the most common methods was
introduced by Small [2011]. Notably, the Small methodology produces backscatter
values in a gamma-nought (γ0) normalized form, which are used by multiple SAR-
related algorithms [19].

Once SAR data has been calibrated and processed into an analysis-ready form,
above-ground biomass can be estimated using similar methods as with optical imagery.
[47] Statistical models — such as random forest — can be used with features extracted
from the SAR data. The polarization bands can be used alone as predictors of biomass,
and textural algorithms — such as GLCM — can be used to depict patterns in the
imagery.

In addition, the SAR polarizations can be used to calculate vegetation indices [40].
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These SAR-derived vegetation indices are relatively uncommon in research, especially
in biomass estimation. This is partly because many of the common SAR remote sensing
devices only produce — at most — dual-polarized observations (i.e., VV and VH, or HH
and HV) at a given time, while many of the indices require both H and V -polarization
transmitted bands [19]. For example, the Radar Vegetation Index (RVI) is formulated
as

RV I = 8γ0
HV

γ0
HH + γ0

V V + 2γ0
HV

, (2.11)

utilizing the polarizations HH, HV, and VV [40]. The γ0
XX denotes that backscatter

values of polarization XX are in the normalized gamma-nought form.
The major advantage of SAR is the ability to penetrate thick vegetation and

canopy cover, especially when using the long wavelength L and P -bands. Additionally,
as an active sensor, SAR functions without external radiation, meaning it can image
unlit areas. SAR is also more resistant to obstruction by clouds, as the microwaves can
mostly travel through cloud cover without refracting notably.

2.2.4 Combining AGB Estimation Methods

Selecting the most viable approach for an AGB estimation problem is often difficult.
While there are multiple methods of estimating AGB, all of them have their advantages
and disadvantages.

Allometric equations have among the highest prediction accuracy out of the statis-
tical approaches. Manual sampling, however, is expensive and time-consuming. Models
using allometric equations with LiDAR-based data can have — in some cases – an even
higher accuracy than models using ground measurements [2]. As a downside, LiDAR
measurements are expensive, the data is limited, and spaceborne measurement devices
with high spatial resolution and coverage do not exist yet. A large-scale airborne
LiDAR scanning is often a massive undertaking that might take multiple years.

Satellite-based imagery is abundant and often inexpensive or free to use. Optical
and SAR data models to cover large areas can be easily built without the need for a
large financial investment to acquire measurement data. The methods utilizing optical
and SAR data, however, do not generally reach the accuracy of the methods based on
LiDAR or ground measurements.

Processing optical imagery is usually straightforward. Simple statistical AGB es-
timation models can be built by using the raw spectral bands. Further, the complexity
and accuracy of the models can be improved by using vegetation indices. In addition,
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textural measures have been shown to produce high accuracy models when used in
conjunction with spectral band and vegetation indices. Textural measures, however,
lower the spatial resolution of the data. To counteract the loss of information, very
high-resolution data sources are used for best effect.

In general, much of the state-of-the-art research focuses on combining multiple
data sources and feature extraction methods [48]. Combining SAR backscatter with
optical vegetation indices and spectral bands is a common approach [77, 43]. Another
recent approach is to combine features based on textural measures, vegetation indices,
and spectral bands derived from multiple high resolution optical data sources [47].

The intuition is clear, especially when combining optical and SAR sources. Op-
tical data produces high-quality results when used alone, but tends to saturate in high
biomass areas, as the imaged wavelengths are unable to penetrate canopy cover and
vegetation. While high accuracy estimation models utilizing solely SAR data are rare
[48], the SAR wavelengths are able to penetrate surface vegetation, thus resulting in
better approximations of the underlying geometry of the targeted forest areas.

Using both sources of data in conjunction can be thought to negate the disadvan-
tages of each dataset. SAR, however, also suffers from saturation problems. Depending
on the used wavelength, the radiation might not be able to penetrate very far into the
canopy. Highest wavelength sensors that are most resistant to saturation (P-band)
still do not exist on satellite platforms. Even the upcoming ESA’s BIOMASS satellite
carrying a P-band sensor will have a low spatial resolution, rendering it unsuitable for
many biomass estimation purposes.

Compared to optical data, SAR data is more difficult to analyze and process.
The geometry of SAR measurements the physics of backscattering radiation require
complicated processing steps to prepare the data into a cohesive form. The diversity of
the data is usually also lower: Whereas an optical image might have tens or hundreds
of different bands, SAR images generally only contain 1 to 4 polarizations. As a result,
SAR based textural measures are less flexible, and vegetation indices fewer and less
useful. An advantage of satellite based SAR compared to optical imagery, however, is
that it is much more resistant to obstruction by clouds and can take measurements in
the dark.

A major problem of remote sensing -based estimation is the resolution of imagery
[48]. A single unit of data (a pixel) might correspond to a 10 x 10 m area in a relatively
high-resolution image. This pixel has to represent everything in the area, which might
include multiple trees of different species, other vegetation, soil, and human made
objects. Selecting data of sufficient resolution is important, while also having to balance
the downsides of high-resolution data: financial and processing cost, lower availability,
and the increased difficulty of analysis and development. If the estimation model needs
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to be applicable outside the area used for training, a diverse and large enough dataset
is required.

The most common approach of creating a satellite-data based AGB estimation
model is to use high-quality ground truth data — either derived from manual sampling
or LiDAR — in conjunction with satellite imagery. To reach highly accurate models,
the quality of both ground truth data and the satellite data needs to be high. Extensive
coverage by LiDAR or manual sampling is financially costly, often limiting research to
areas with pre-existing datasets. High-quality satellite data is easier to acquire, but the
expenses still limit the covered area, especially when combining multiple data sources.



3. Data and Methods

In this work, a variety of statistical methods were applied to estimate above-ground
biomass for selected forest areas in Finland. The goal was to fit regression-based
Random Forest models that are able to predict the amount of biomass in an area using
satellite-based data. A major goal of the research was to evaluate the efficacy of the
novel method of using neighboring features for estimation. This method is described
in subsection 3.2.3.

Pre-existing biomass data was used as the target data for training the models,
and the openly available forest inventory dataset from the Finnish Forest Center [97]
and the forest inventory and biomass dataset from Natural Resources Institute Finland
[96] are partly behind the inspiration for this research. While the high-quality forest
inventory and biomass data renders the results of this work impractical in Finland, the
methods are hopefully applicable to areas with similar vegetation outside of Finland.
For this reason, the hemiboreal zone of Finland — residing mainly in the coastal south-
west — was chosen as the target of analysis. The vegetation zone (see Fig. 3.1) extends
to Norway, Sweden, Estonia, Latvia, Lithuania, Ukraine, and Russia. Many of these
areas might not have extensive, high-quality forest inventory datasets or biomass maps
readily available.

The satellites Sentinel-1 [99], Sentinel-2 [100], and ALOS-2 [90] were chosen as
the sources of data. The selection was motivated by two major factors: the availabil-
ity and the quality of the data. Products from Sentinel-1, Sentinel-2, and ALOS-2
are freely available and of relatively high quality. The satellites are still functioning
and producing new data, and recent data exists for the target areas of south-western
Finland. Additionally, these data sources are also popular in recent research, which
provides a firm basis for the methods used in this work and the option to compare the
results.

The work has been divided into four parts: The preparation of data, the ex-
traction of training features from the data, feature selection, and the training of the
models.

25
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Figure 3.1: The European hemi-boreal vegetation zone, in orange highlight [52]. The figure has
been edited for clarity.

3.1 Data Preparation

As the data is from distinct satellite sources and imaging equipment, different methods
need to be employed to make the data analysis-ready. The processing of Multi-Source
National Forest Inventory of Finland, Sentinel-1, Sentinel-2 and ALOS-2 PALSAR-2
data is described separately.

3.1.1 The Multi-Source National Forest Inventory of Finland
Data

The biomass data from The Multi-Source National Forest Inventory of Finland (MS-
NFI) [96] was used as the ground truth data for the statistical models. The data is
provided by the National Resources Institute Finland (LUKE). 2019

The methodology behind MS-NFI for year 2015 (MS-NFI-2015) has been openly
published [51]. However, the exact methods for the most recent data of year 2019
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(MS-NFI-2019) have not been disclosed in detail as of yet. The MS-NFI-2019 data was
used in this work, and it should be noted the true accuracy of the dataset is difficult to
evaluate. As a consequence, estimating the error stemming from the inaccuracies and
the unknown methodology of MS-NFI-2019 was left out of the scope of this research.

Figure 3.2: An RGB composite of Sentinel-2 optical imagery (on the left) and the MS-NFI-2019
total above-ground biomass data for the same area.

Both MS-NFI-2015 and MS-NFI-2019 offer comparable products for biomass and
other forest parameters [96]. MS-NFI-2015 uses multiple sources of data to calculate
the variables, with field data from 11th and 12th Finnish National Forest Inventories
forming the basis of the dataset [51]. The inventory contains field data from 78312
systemically located, manually sampled plots across Finland. Both stand level charac-
teristics and tree level measurements have been recorded for the plots.

In addition, satellite data, digital map data, and other geo-referenced data were
used for MS-NFI-2015 [51]. As the field data plots cover only a small portion of the
dataset area, the additional data sources were used to extrapolate the data and extend
the coverage. Notably, optical satellite imagery from Sentinel-2 and Landsat-8, and a
Digital Elevation Model (DEM) were employed among other sources of data.

Biomass was derived for sample plots using allometric equations [51]. The tree-
level measurements in the field data were used in single-tree allometric models, includ-
ing the models from Repola [2008] and Repola [2009]. For example, the equation for
biomass of living branches for birch is

ln (yki) = b0 + b1
dk

(dk + 16) + b2
h

(h+ 10) + u3k + e3ki , (3.1)
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where yki is the living branch biomass (in kilograms) and dki the diameter at breast
height, both for the tree i in stand k. Height is denoted by h, while u3k and e3ki are
the random stand parameter and the residual error, respectively.

MS-NFI-2019 contains 6 distinct component biomass products: living branches,
stem residual, roots, stump, dead branches, stem and bark, and foliage [96]. The
products are available individually for three categories of trees: pine, spruce, and
broad-leaved trees. To get the total biomass, the component biomasses from each of
tree classes were summed together. As the goal of this work is to estimate above-ground
biomass, the root component was left out of the calculations.

The biomass products are available in grids with pixels 16 x 16 meter size [96].
The maximum resolution of other datasets in this work is 10 x 10 meters (Sentinel-1
and Sentinel-2), so the MS-NFI-2019 data was resampled to a matching 10 x 10 meter
resolution. The value for each new pixel was calculated by the average of neighboring
pixels, i.e., by using bilinear interpolation. A visualization of the processed data can
be seen in Fig. 3.2

3.1.2 Sentinel-2

The optical data used in this work is from the Sentinel-2 mission by the European
Space Agency (ESA) [100]. The mission currently consists of two satellites, Sentinel-
2A and Sentinel-2B, the first of which was launched in 2015. The satellites focus on
imaging land and coastal water with an orbital swath width of 290 km.

Each satellite carries a Multi-Spectral Instrument (MSI) [100]. The MSI captures
13 distinct wavelength bands, with resolutions of either 10 m, 20 m, or 60 m (see
Table 3.1). The Red, Green, Blue, and NIR bands have the highest spatial resolution
of 10 x 10 meters, while the Red Edge 1-3, Narrow NIR, and SWIR 1-2 have resolutions
of 20 x 20 m. The three lowest 60 meter resolution bands are used for detecting coastal
aerosols, water vapor, clouds, and other airborne particles, partly in order to estimate
the amount of obstruction between the sensor and the imaged surface on the ground.

Sentinel-2 data products are publicly available in two formats: 1C and 2A [100].
Category 1C data consists of radiometrically and geometrically corrected tiles, in car-
tographic format. Each of the tiles contains top-of-atmosphere (TOA) reflectance for
a 100 x 100 km area. As the Sentinel-2 satellites orbit outside the atmosphere, the
reflectance of objects on Earth’s surface is interfered and refracted by the particles in
the atmosphere. To alleviate these effects, the 2A data product has been atmospher-
ically corrected to transform the TOA reflectance into bottom-of-atmosphere (BOA)
reflectance.
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Band Band Description Resolution Central Wavelength (S2A / S2B)

B1 Coastal Aerosol 60 m 442.7 nm / 442.2 nm

B2 Blue 10 m 492.4 nm / 492.1 nm

B3 Green 10 m 559.8 nm / 559.0 nm

B4 Red 10 m 664.6 nm / 664.9 nm

B5 Red Edge 1 20 m 832.8 nm / 833.0 nm

B6 Red Edge 2 20 m 704.1 nm / 703.8 nm

B7 Red Edge 3 20 m 740.5 nm / 739.1 nm

B8 NIR 10 m 782.8 nm / 779.7 nm

B8A Narrow NIR 20 m 864.7 nm / 864.0 nm

B9 Water Vapor 60 m 945.1 nm / 943.2 nm

B10 SWIR - Cirrus 60 m 1373.5 nm / 1376.9 nm

B11 SWIR 1 20 m 1613.7 nm / 1610.4 nm

B12 SWIR 2 20 m 2202.4 nm / 2185.7 nm

Table 3.1: The captured spectral bands, resolutions, and central wavelengths by Sentinel-2A (S2A)
and Sentinel-2B (S2B) satellites.
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Additionally, the 2A product has been processed using cloud and cloud shadow
detection algorithms, and a cloud masking dataset is provided [100]. In this work,
the 2A imagery for sample areas was cloud masked using the provided dataset, and
a multi-temporal mosaic was generated. Several images captured within a time-span
were selected. The clouds and cloud shadows within the images were removed, and
then the mean value of each pixel over the collection of images was selected, resulting
in a single, cloud-free image.

3.1.3 Sentinel-1

Akin to Sentinel-2, the Sentinel-1 is a mission launched by ESA, consisting of two
satellites [99]. Both satellites carry a C-band SAR sensor, with the ability to produce
measurements in VV, VH, HH, and HV polarizations. The satellites have four different
operational modes: Strip Map (SM), Interferometric Wide Swath (IW), Extra Wide
Swath (EW), and Wave (WV). The SM mode features an 80 km swath with 5 x 5 meter
resolution, the highest available on the Sentinel-1. However, it is mainly reserved for
emergencies, and the high-resolution data is not generally available.

The IW is the main operational mode for imaging land [99]. It has a 250 km swath
and a 5 x 20 meter resolution. The data is available in multiple different processing
levels, out of which the Level 1 Ground Range Detected (GRD) was used exclusively
in this work. The GRD data has been calibrated and processed in a multitude of
ways, including speckle reduction, and radiometric and geometric correction. The end
product has been projected to ground range and is in a cartographic format. The GRD
data has a resolution of 20 x 22 m, with a 10 x 10 m pixel spacing.

To make the GRD data more viable for analysis, further processing can be applied
[55]. In the present work, a collection of images was first acquired. Next, as the GRD
images are prone to backscatter noise along the image edges, border noise correction
was applied to the images. The methodology used is as per Stasolla and Neyt [2018],
and resulted in noisy pixels being masked out.

Further, the Refined Lee Filter (RLF) [85] was used to reduce speckling. The
RLF in an alteration of the original Lee algorithm (see Eq. 2.8) [44], with the addition
of selecting an adjustable maximum number of neighboring pixels (k) to consider in the
calculations. The advantage of RLF is that the optimal parameters can be chosen for
each task, with lower values of k resulting in sharper images at the cost of overall co-
hesiveness. In the present work, mainly lower values of k ∈ {5, 7, 9} were experimented
with to retain image features and sharpness for textural analysis.

In the present study, RFL was used with the multi-temporal filtering framework
proposed by Quegan and Yu [2001]. The framework allows the application of mono-
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temporal speckle filters — such as RFL— over a collection of images. The methodology
of Quegan and Yu has the goal of preserving image radiometry, while optimally reduc-
ing speckle by utilizing the additional information available from the multi-temporal
dataset. The filtering framework also serves to even out the highest variations from the
selected image. In the present work, the multi-temporal filtering conceivably resulted
in a more robust statistical model, as data from different time-spans with differing
characteristics were used, depending on the location of the sample areas.

Further, radiometric terrain normalization is applied to the images to mitigate
the effect of topography on the backscatter values. The methodology used is as per
Vollrath et al. [2020]. As RTN requires an additional topographical elevation map,
the Global Digital Elevation Model (GDEM) [1], produced from data by the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used. The
post-RTN imagery is in a gamma-nought format, with shadow areas and pixels falling
under an active layover being masked.

The final SAR pre-processing step is selecting a single image from the series and
correcting the pixels masked both by border noise correction and RTN. The additional
advantage of the Quegan and Yu multi-temporal filtering framework is the increased
cohesion between images, which allows the noise-masked pixels in an image to be
feasibly replaced by the values in other images of the collection. For analysis, an
image from the middle of the time-series was selected, with unmasked pixels derived
from temporally the nearest images, where applicable. An example of the processed
imagery can be seen in Fig. 3.3.

Figure 3.3: A visualization of the VH polarization band of Sentinel-1 Ground Range Detected
imagery, before and after processing (on the right). The sample area is the same as in Fig. 3.2.
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3.1.4 ALOS-2 PALSAR-2

The Advanced Land Observing Satellite-2 (ALOS-2) is a satellite launched by the
Japan Aerospace Exploration Agency, launched in 2014 [90]. It carries the PALSAR-2
L-band SAR sensor, which is able to produce measurements with resolutions as high
as 3 x 1 m. In the present research, however, the 25 x 25 m resolution imagery is used.
The data is available as a global mosaic composed of manually screened images, with
a single high-quality observation for each area per year [91].

The imagery in the dataset is orthorectified and slope corrected, meaning the
effects of planar tilt and terrain relief on the imagery have been compensated for [91].
A 90 m resolution DEM, constructed from the data provided by the Shuttle Radar
Topography Mission (SRTM) was used in the process. In addition, as neighboring
images in the mosaic can be from differing parts of the year, a destriping process
[69] was applied to even out the differences resulting from seasonal and environmental
factors.

In this work, the global mosaic data was further processed by applying a refined
Lee speckle filter. In addition, the imagery was resampled to 10 x 10 m resolution
using bilinear interpolation.

3.2 Feature Extraction Methods

A variety of feature extraction methods were utilized in this research. These are roughly
divided into three categories: vegetation indices, textural analysis, and deriving fea-
tures from the neighboring pixels.

3.2.1 Vegetation Indices

Various vegetation indices are calculated from Sentinel-2 data. Interestingly, Sentinel-2
offers multiple wavelength bands that are close together, notably the red edge bands
and the NIR bands B8 and B8A (see Table 3.1) [100]. This variety of relatively inter-
changeable bands is especially useful in vegetation detection and estimation, increasing
the flexibility of building various vegetation indices. For example, NDVI can be for-
mulated as

NDV I = B8 −B4

B8 +B4
, (3.2)

where B8 is NIR and B4 the red band. But, the NIR band can be substituted with the
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Narrow NIR band (B8A), leading to a formulation of

NDV I2 = B8A −B4

B8A +B4
, (3.3)

which, in practice, possibly performs differently compared to the standard NDVI.
As the specifics of the captured spectral bands — and especially the features of

the red edge — depend on the environment and the imaged species of vegetation, a
multitude of vegetation indices with several band variations were calculated tested in
the present work. All the used formulations consisted of straightforward arithmetic
operations, such as in Eq. 3.2 and Eq. 3.4. For a full list of the 64 distinct Sentinel-2
vegetation indices used in this research, including the equations, see Appendix A.

In addition to Sentinel-2 vegetation indices, the HH and HV bands from ALOS-2
PALSAR-2 were used to calculate the Radar Forest Degradation Index (RFDI) [19].
Although RFDI is mainly used for evaluating forest and loss and recovery, it can also
be useful in biomass estimation. RFDI is defined as

RFDI = γ0
HH − γ0

HV

γ0
HH + γ0

HV

, (3.4)

where the HH and HV bands are gamma-nought (γ0) normalized.

3.2.2 Gray-Level Co-occurrence Matrix

Gray-Level Co-occurrence Matrix (GLCM) was chosen as a method of extracting tex-
tural features. GLCM is based on the distribution of co-occurring values at a given
offset [27]. A grayscale image is used for analysis, e.g. a single band satellite image.

Given an image I with L gray levels, a GLCM G is a square matrix with dimen-
sions of N x N , where N = L. Each element gi,j in G is the number of times a pixel
with the value i occurs adjacent to a pixel with the value j in I [27]. In Fig. 3.4 a 4 x
5 image with 8 gray levels (left) can be observed, along with a corresponding GLCM
(right). In the GLCM, g1,1 = 1, as the gray level value 1 occurs exactly once next to
an 1 in the original image. Similarly, g1,2 = 2, since the value 2 occurs twice next to
pixels with the value 1.

In Fig. 3.4, the GLCM is constructed by considering the pixel value directly to the
right of the original pixel. However, the analysis can be computed using any direction
horizontally, vertically, or diagonally. Multiple pixel positions can be calculated for a
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Figure 3.4: A GLCM (on the right) and the original image I (on the left) [95]. The GLCM is created
using horizontal direction, considering the value of a pixel directly to the right of each original pixel.

single image, resulting in multiple co-occurrence matrices. These matrices can then be
combined into one, e.g. by averaging the directional occurrences for each value.

The matrix G can be made symmetric with

GS = G+GT , (3.5)

where GT is the transposition of G. This addition ensures that each relationship i to j
is the equal to the relationship j to i. Consequently, the sum of all the elements i, j in
GS is now twice the element-wise sum of the original matrix G. This can be corrected
by normalization

P = GS∑N
i=1

∑N
j=1 g

s
i,j

, (3.6)

where each element i, j in GS is divided by the sum of all the elements in GS. This
results in the matrix P , where each element i, j is the probability of the relationship
i, j or j, i occurring in the original image I.

Finally, texture measures can then be calculated from P [27]. There are multiple
measures, although for remote sensing and AGB estimation there are 8 commonly used
ones [49, 24]: angular second moment, inverse difference moment, variance, correlation,
dissimilarity, contrast, and entropy. The equations can be seen in Table 3.2. As an
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example, the formulation for Angular Second Moment (AMS) is

∑
i

∑
j

(Pi,j)2 , (3.7)

where P is a normalized GLCM, and Pi,j is the probability of value j occurring in
relation to value i.

Angular second moment, Entropy (ENT), and Difference Entropy (DEN) are
measurements of textural uniformity [27]. ASM is used to calculate how regular the
pixel value differences are within the image; Higher ASM values correlate with more
regular differences, meaning the textures are more uniform. Entropy functions in the
opposite way: The higher the entropy value, the less regular the pixel differences are,
and the less texturally uniform the image is. Disorder entropy is similar to entropy,
except that it uses the differences of the gray levels, instead of the gray levels directly.

Contrast (CON), Dissimilarity (DIS), and Inverse Difference Moment (IDM) are
measures of homogeneity [27]. Contrast measures the amount of local variations in
the image. The more similar the nearby pixels are in relation to each other, the less
contrast the image has. Dissimilarity also measures the amount of local variances,
except that it scales linearly, instead of exponentially, like contrast. IDM is strongly
inversely correlated with contrast and dissimilarity: When all the elements in the image
are the same, IDM is at its maximum value.

Variance (VAR) and Correlation (COR) are part of the descriptive statistical
texture measures [27]. Variance (VAR) is similar to contrast and dissimilarity, and
can be thought of as a measure of heterogeneity. While CON and DIS measure the
difference between highest and lowest values, VAR measures the dispersion around the
mean. Correlation, on the other hand, measures the linear dependency of neighboring
pixel values. Higher correlation equates with a more predictable linear relationship.
And lastly, the Sum Average (SAV) measures the relationship between occurrences of
pairs with high values and the pairs with low values.

In applications of AGB estimation, a moving window W is often used instead of
the full image I [10, 12, 49]. A GLCM is calculated for the subset of M within W ,
and then the window is moved to the next position. The process is repeated until the
image (or a specified region of the image) has been analyzed. The window can be of
any size, although sizes ranging from 3 x 3 to 15 x 15 are commonly used in AGB
estimation research.

A common practice is to start with a small window size and increase the dimen-
sions until sufficient textural patterns emerge [48]. In general, large window sizes result
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Texture measure Formulation

Angular Second Moment ASM
∑
i

∑
j(Pi,j)2

Entropy ENT
∑
i P log(Pi,j)

Difference Entropy DEN
∑N−1
i=0 Px−y(i) log{Px−y(i)}

Contrast CON
∑
i

∑
j(i− j)2Pi,j

Dissimilarity DIS
∑
i

∑
j Pi,j|i− j|

Inverse Difference Moment IDM
∑
i

∑
j

1
1+(i−j)2Pi,j

Variance VAR
∑
i

∑
j(i− µ)2Pi,j

Correlation COR
∑
i

∑
j Pi,j[ (i−µi)(j−µj)√

σ2
i σ

2
j

]

Sum Average SAV
∑2N
i=2 iPx+y(i)

Table 3.2: GLCM texture measures most commonly found in above-ground biomass estimation
research [27].
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in lower spatial resolution and increase the estimation errors near separate spatial in-
stances, while small window sizes result in noisier textural features. The range of viable
window sizes greatly depend on the resolution of the source image, with high-resolution
images allowing higher window sizes to extract textural patterns. For AGB estimation,
textural features are usually less useful when derived from low-resolution imagery.

3.2.3 Utilizing the Neighboring Values

As a novel method of both compensating for the saturation effect of AGB estimation
and improving the prediction accuracy, the surrounding feature values for each pixel
were also included in the set of features. After extracting the desired features, we had
a three-dimensional N x M x J matrix, with each cell Cn,m — where n ∈ {1, 2, . . . , N}
and n ∈ {1, 2, . . . ,M} — containing values xm,n,j, where j ∈ {1, 2, . . . , J}. Further-
more, xm,n,j ∈ Xj, where X is a set containing J extracted features.

Figure 3.5: A figure illustrating the geometry of a 5 x 5 kernel used in the analysis of neighboring
feature values. Only the cells highlighted with red are used for the particular calculations. The
resulting values are added as additional feature values to the center cell, which is highlighted with
blue.

For each of the cells cn,m, additional features were created by considering the
neighboring values. This was done by creating a sliding kernel with the dimensions of
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d x d, which was moved over the N and M dimensions of the matrix. The kernel was
shaped like a hollow square, and it only considered the cells on the edges of the shape.
As such, the kernel can be intuited as a cell wide band that encircles the center. See
Fig. 3.5 for clarification.

The feature values for each of the k cells falling within the kernel were summed
together and divided by k. The value of k, by default, was d2 − (d − 2)2. If a cell
contained no data and was masked, or the kernel was out of the bounds of the matrix,
k was subtracted from. The process can be formulated as

xBn,m,j = 1
k

k∑
i=1

xi,j (3.8)

where, if the cell cn,m is at the center of the kernel, xBn,m,j is the new feature value in
the set XB for feature XB

j . xi, and is a feature value belonging to a cell within the
kernel. The process was carried out for each feature in {X1, X2, . . . , XJ}, resulting in
the new feature set XB having J features.

In short, a duplicate feature set containing the encircling feature values of each
cell, within a certain range was created. In this work, kernel size d was either 3, 5, or
7. Depending on the resolution and characteristics of the source data, as well as the
details of the application, higher values can be used as well.

Before the applying the process, the values of the features used were standardized
by removing the mean and scaling to variance. This is formulated as:

z = x− µ
σ

(3.9)

where x is the sample value, µ is the mean, and σ is the standard deviation. As the
features were of different distributions and scales, the standardization was performed
in order to make the neighbor processing feasible for as many features as possible. In
addition, as PCA was applied to the new features, the standardization was useful.

3.3 Statistical Methods

3.3.1 Principal Component Analysis

To reduce the dimensionality of the data, Principal Component Analysis (PCA) was
used. Specifically, PCA was mostly applied to the new feature sets derived from the
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neighboring values of data points. The primary purpose of the neighboring feature
processing was to have a representation of the thickness of the surround vegetation for
each observation. As such, minimizing its possible negative impact on the trained mod-
els — by adding unneeded complexity — was done by extracting principal components
from the features.

In PCA, a linear transformation is applied to maximize the variance of the data
[84]. The bands are first standardized, and then a series of components are produced.
The components are linear combinations of original bands, with the intention of rep-
resenting the variation within the original data while correlating minimally with each
other. The resulting component bands are ordered by the amount of scene variance,
in descending order.

PCA is a flexible process that can be used for a wide variety of purposes, ranging
from visualization to unsupervised learning [84]. In addition, as a dimensionality re-
duction tool, it is applicable to datasets with various characteristics. It is, for example,
resistant to missing data and imprecise measurements. While some accuracy is lost as
PCA removes redundant data, the simpler data is faster and more efficient to explore,
analyze, and process.

As a downside, PCA is a linear method, and does not consider complex relation-
ships. However, for the purposes of this research — especially as a tool of reducing
the dimensionality of neighbor-derived feature sets — capturing simple relationships is
likely sufficient.

3.3.2 Metrics

To rank and evaluate the performance of the statistical models, the adjusted coefficient
of determination (R2

a), the Root Mean Squared Error (RMSE), and the Mean Percent-
age Error (MPE). R2 is a measure of the proportion of the variance in the dependent
variable that is explainable by the independent variables. It is used to measure how
well a regression model fits the data. The equation for R2 is

R2 = 1−
∑n
i e

2
i∑n

i (yi − ȳ) , (3.10)

where e2
i is the square of the residual error for the prediction i, ȳ is the mean of the

dependent variable y, and n is the number of observations. In essence, R2 is the ratio
between the sum of squared residuals and the total sum of squares of the variable y.
Generally, the value of R2 ranges from 1 (all the variance is explainable, and the model
fits perfectly) to 0.
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While R2 is often used for regression tasks, it has disadvantages when used with
multiple input variables; Adding new variables to the model will often increase R2, even
if the variable was redundant and the quality of the model did not increase. In fact,
the actual goodness of the fit might decrease due to additional complexity introduced
by the redundant variable.

For the purposes of this work, the adjusted R2 — denoted as R2
a — was used

instead of R2. Using the original equation of R2, R2
a can be formulated as

R2
a = 1− (1−R2)n− 1

n− p
(3.11)

where n is the number of observations, and p is the total number of variables in the
model. As such, RS

a is a method of effectively considering the number of variables and
adjusting the score accordingly.

In addition to R2
a, RMSE was used as well. RMSE is a measure of how close the

predicted values are to the observed values. It is defined as

RMSE = 1
n

√√√√ n∑
i=1

e2
i . (3.12)

Lower RMSE generally means better fit of the model. As the RMSE and the outcome
variable are measured in the same unit, the error metric is often intuitive to interpret.
In addition, the percentage value of RMSE — denoted as RMSE(%) — is used to make
the results more comparable. It is calculated by dividing RMSE with the mean value
of observations.

For feature evaluation purposes, Spearman’s rank correlation coefficient (RS) and
mutual information (I) were used. Spearman’s correlation is a measure of monotonic
relationship between two variables. Its value can range from −1 to 1. If the nature
of the monotonic relationship is such that the value of one variable decreases as the
other’s increases (i.e., the correlation is negative), the value of RS is negative. If the
variables have a positive correlation — meaning an increase in the value of one variable
equals an increase in the value of the other one — the RS is positive. The further away
from zero the value of RS is, the higher the negative or positive correlation between
the variables.

The Spearman’s coefficient is similar to other correlation statistics, such as the
Pearson’s correlation coefficient (r). Unlike r, (RS) uses the rank of the variable values,
instead of the actual variables. This is advantageous when evaluating two variables with
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different distributions; For statistics such r, the data generally needs to be normalized,
which can lead to loss of information.

The Spearman’s rank correlation coefficient is formulated as

RS = cov(R(X), R(Y ))
σR(X)σR(Y )

, (3.13)

where R(X) and R(Y ) are the rank variable of X and Y , function cov notates covari-
ance between two variables, and σ is the standard deviation.

Mutual information (I) measures mutual dependence between two random vari-
ables [75]. Its value ranges from 0 to 1, where 0 means there is no relationship between
the variables. Generally, the metric is based on the entropy values of the variables and
can be formulated as

I(X, Y ) =
∫∫

dxdyµ(x, y) log µ(x, y)
mux(x)µy(y) , (3.14)

where X and Y are random variables, and µx(x) =
∫
dy(x, y) and µy(y) =

∫
dx(x, y)

the marginal densities of X and Y .
The problem with this variation of I is that the densities µ, µx, and muy need to

be either known or estimated, which is not always feasible [41]. To calculate I using
only the set X, Y , a k-Nearest Neighbor (k-NN) based method can be used. While
there are multiple k-NN based mutual information algorithms, the approach utilized
in this work is defined as

I(X, Y ) = ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉+ ψ(N) , (3.15)

where N is the number of realizations (xi, yi), i = 1, . . . , N of the random vari-
able (X, Y ), and ψ(x) is the digamma function ψ(x) = Γ(y)−1dΓ(x)/dx. Here,
C = 0.5772156 is the Euler-Maschoni constant, and the digamma function satisfies
the recursion ψ(x+ 1) = ψ(x) + 1/x and ψ(1) = −C.

Intuitively, the simplified version of the idea is to consider the distribution of X, Y
as a space where the distance to neighboring values can be measured. The I is then
estimated from the average k-nearest neighbor, normalized by an averaging function.
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The averaging function 〈. . .〉 in Eq. 3.15 is defined as

〈. . .〉 = N−1
N∑
i=1

EN1n
[1, . . . , N ] . (3.16)

If we use Ex(i) to denote the distance from xi to its k-th neighbor, then E(i) =
max{Ex(i),Ey(i)}. In short, 〈. . .〉 averages over a distance measure of all the ob-
servations (xi, yi), i = 1, . . . , N .

The advantage of mutual information is its ability to find almost any sort of
relationship between two datasets. While RS measures only the monotonic relationship
between two variables, I can measure more complex relationships. As such, it is suited
for selecting performant variables in complicated datasets where relationships are not
immediately obvious. Consequently, I is also sensitive to noise and is prone to detecting
ineffective relationships. In addition, to reach the same level of reliability as more
straightforward metrics, mutual information generally requires larger datasets.

3.3.3 Feature Selection

In this work, hundreds of features were extracted from the data, and only the most
relevant features needed to be selected for training the models. Denoting Y as the
outcome variable and X as the input feature set of n feature variables {X1, X2, . . . Xn},
the following automatic process was employed:

(i) Spearman’s rank correlation coefficient RS(Xi, Y ) and mutual information
I(Xi, Y ) was calculated for all variable pairs (Xi, Y ) from i to n.

(ii) RS(Xi, Xj) was calculated for each variable pair (Xi, Xj), i, j ∈ {1, 2, . . . , n}
where i 6= j. If |RS(Xi, Xj)| — the absolute value of RS(Xi, Xj) — was higher
than the constant c, either Xi or Xj was removed from the set of features. To
decide which, the sum of the two scoring metrics

M(Xi) = |RS(Xi, Y )|+ I(Xi, Y ) and

M(Xj) = |RS(Xj, Y )|+ I(Xj, Y )
(3.17)

were compared. IfM(Xi) ≥M(Xj), thenXj was removed; Else, Xi was removed.
Denoting the number of removed features as r, the setX now containedm = n−r
features.
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(iii) The features in the reduced set {X1, X2, . . . , Xm} were ranked according to the
scores {M(X1),M(X2), . . . ,M(Xm)}. Finally, top k features from the ranked set
were selected.

The motivation behind this specific process was to evaluate both monotonic and more
complex relationships between the input features and the outcome variable. The
method allows the selection of variables with complex relationships, while still hav-
ing reliably performing variables with high monotonic correlation. Furthermore, in
item (ii), the RS(Xi, Xj) was used to measure the monotonic correlation between two
feature variables, in order to not have redundant, highly similar features in the fi-
nal dataset. The constant s can be a value between 0 and 1, although in this work,
generally values from 0.8 to 0.95 were experimented with.

However, while both |RS| and I range from 0 to 1, they are not directly compa-
rable. As such, it is simplistic to sum together the two values, as was done in items
(ii) and (iii). In addition, using the straightforward statistical metrics is unlikely to
predict the performance of the features in complex machine learning models. As such,
the method is only fit for crude feature selection, in order to exclude tens or hundreds
of features quickly.

3.3.4 Random Forest

In this work, Random Forest (RF) was used as a statistical model to predict the amount
of above-ground biomass. Random forest is a popular, well performing algorithm for
a wide variety of tasks. While RF can also be used for classification, in the present
research it is used for regression.

Random forest is an ensemble model, meaning it consists of several sub-models.
For RF, the sub-model is a decision tree. A decision tree is a tree-like structure that
is created by stratifying the predictor space into small sections. Intuitively, the tree is
defined by its branching construction, where each junction of the branches — known
as a node — is an evaluation of an observation. The tree is traveled from the trunk
onward, eventually leading to an end node, which results in a prediction produced by
the tree.

Formally, the predictor space x1, x2, . . . , xn of a regression decision tree is divided
into J distinct and non-overlapping regions, R1, R2, . . . , RJ . Then, for every observa-
tion that belongs into a region Rj, same prediction is made. The prediction is usually
the mean value of responses for all the training observations in Rj.

A decision tree is a highly flexible model prone to overfitting. To make the predic-
tions more generalizable, a random forest can be used. An RF is built by splitting the
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training data into B subsets and training a decision tree for each one. The prediction
given by a random forest is the mean prediction of the B decision trees.

Generally, the training data is split using bootstrapping. In bootstrapping, n
observations are randomly selected from the data. Some observations can be sampled
multiple times, while others not at all. This method is used to estimate variability,
without having to sample independent data from the full population.

Random forests generally only consider a subset of the predictor variables at each
node. Combined with the variability from bootstrapping, the effect of strong predictors
is mitigated. This allows for more variation in the trees and reduces the correlation
between them, ultimately lowering variance.

As a non-parametric model, random forest is well suited for AGB estimation.
RF does not require the training data to follow any specific distribution, or that the
predictor values are normalized. This is useful, since the ranges and distributions of
values from the various feature extraction methods can differ greatly — as is the case
in the present work.



4. Results

The training data was sampled from 15 plots within the hemiboreal zone of Finland
(see Fig. 4.1). Each area was a 2 x 2 km square, split into 10 x 10 m observation cells.
A single sample area contained 40 000 individual observations, totaling a combined
600 000 observations over the 15 plots. From the total, 169 601 were discarded due to
missing data, primarily either from the MS-NFI biomass dataset or Sentinel-2 imagery.
Ultimately, the final training outcome data Y contained n = 430 399 individual obser-
vations. In addition, observations from five separate 2 x 2 km square areas were used
for evaluating the performance of the trained models. The test sample areas can be
seen in Fig. 4.2.

In the training outcome set Y = {y1, y2, . . . , yn}, each outcome yk equaled the
combined amount of above-ground biomass (in 10 kg / ha) for scots pine, spruce, and
broad-leaved trees for the corresponding 10 x 10 m area. The testing outcome set Y test

was similar to Y , except that it was sampled from separate testing areas, resulting in a
total of 200 000 samples. In addition, a separate, high biomass testing outcome set was
created from the observations of Y test. The observations had biomass volume higher
than 200 Mg / ha, although this requirement limited the sample size to 27 302. All the
measurements were from the year 2019.

The feature set X of the training dataset D = {(X, Y )} consisted of multiple
subsets. Each of the subsets was a collection of features, and various combinations of
these subsets were evaluated in the research. The primary subsets were the features
extracted from Sentinel-2 data (XS2), Sentinel-1 data (XS1), and ALOS-2 PALSAR-2
data (XA). For each of the subsets, a large set of features were evaluated using several
metrics, and the highest performing ones selected.

In addition, for Sentinel-1 and Sentinel-2 each there were two separate datasets,
for a total of four: S1-HVG, S1-LVG, S2-HVG, S2-LVG. The S1-HVG and S2-HVG
datasets — with HVG denoting High Vegetation Growth — were from imagery cap-
tured during summer, in order to get observations of the highest possible amount of
grown vegetation. The datasets were from the period of time from June 1st, 2019 to
August 15th, 2019. To supplement the high-growth dataset, the low-growth S1-LVG
and S2-LVG datasets were from spring — before the major vegetation growth of early
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Figure 4.1: The sample areas (marked in red), residing in the South-Western coastal area of Finland.

Figure 4.2: The separate testing areas (marked in red), used to evaluate the performance of the
trained models.

summer, while having low snow cover. The time-span for the LG-datasets was from
March 1st, 2019, to May 15th, 2019.

A total of 75 distinct features were initially chosen for Sentinel-2, including of 11
spectral bands and of 64 vegetation indices calculated using the bands (see A for the full
list of vegetation indices). All 75 features were sampled from both high-vegetation (S2-
HVG) and low-vegetation (S2-LVG) datasets, resulting in the feature sets of XS2HVG

and XS2LV G. To select only the most relevant features, the procedure outlined in
subsection 3.3.3 was applied to XS2HVG and XS2LV G separately. In the final step (iii),
however, the two sets were joined together, and for each feature the summed score from
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HVG (Jun - Aug) LVG (March - May)

Feature RS I RS I

B2 0.67 0.39 0.62 0.44

EVI2 0.66 0.60 0.86 0.76

SARVI2-C 0.64 0.59 0.67 0.54

B1 0.59 0.30 0.51 0.33

MSI-B 0.56 0.36 0.71 0.41

B3 0.54 0.48 0.54 0.49

MARI 0.53 0.32 0.79 0.51

B4 0.45 0.47 0.45 0.53

MSI 0.40 0.28 0.55 0.27

MCARI2-B 0.39 0.40 0.53 0.57

Table 4.1: The Sentinel-2 bands and vegetation indices used for training the models. The respective
R2 and I scores are shown separately for high vegetation and low vegetation datasets.
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HVG (Jun - Aug) LVG (March - May)

Feature RS I RS I

VH-D-SAV-5 0.61 0.41 0.61 0.41

VH-A-SAV-7 0.60 0.39 0.60 0.37

VH-A-SAV-5 0.60 0.37 0.60 0.37

VH-A-SAV-3 0.59 0.39 0.58 0.36

VH-D-SAV-3 0.59 0.38 0.61 0.40

VV-A-SAV-7 0.59 0.36 0.50 0.31

VH-D-SAV-3 0.59 0.38 0.60 0.40

VH-D-DEN-7 0.57 0.28 0.56 0.29

VV-D-SAV-7 0.56 0.35 0.55 0.33

VV-A-SAV-3 0.56 0.35 0.48 0.29

Table 4.2: The Sentinel-1 features used for training the models. The respective R2 and I scores are
shown separately for high vegetation and low vegetation datasets.

both XS2LV G and XS2LV G determined the ranks to get the top k features.
Values s = 0.95 and k = 10 were used to select the final set of Sentinel-2 derived

features. The features and the corresponding RS and I values can be seen in Table
4.1.

For selecting features from Sentinel-1, the process was identical to Sentinel-2 data.
The set XS1, however, consisted of 110 features: nine GLCM texture metrics (as seen
in Table 3.2), for the two polarization bands used (VV and VH), for both ascending
and descending orbits, for three separate window sizes (3 x 3, 5 x 5, 7 x 7), separately
— in addition to the original two bands.

Ultimately, 10 features were selected for the final training set XS1 (see Table 4.2).
In the order of the highest sum of RS and I scores, the features were: VH-D-SAV-5, VH-
A-SAV-7, VH-A-SAV-5, VH-A-SAV-3, VH-D-SAV-3, VV-A-SAV-7, VH-D-SAV-3, VH-
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Feature RS I

HV-SAV-3 0.75 0.52

HH-SAV-3 0.67 0.44

RFDI 0.44 0.19

HH-VAR-7 0.32 0.10

HH-COR-7 0.31 0.09

HV-CON-7 0.30 0.10

HV-VAR-7 0.30 0.12

HH-VAR-5 0.29 0.08

HH-CON-5 0.29 0.07

HH-ENT-7 0.28 0.08

Table 4.3: The ALOS-2 PALSAR-2 features used for training the models, along with the respective
R2 and I score.
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D-DEN-7, VV-D-SAV-7, and VV-A-SAV-3. The names are derived from polarization
(VV or VH), orbit (ascending or descending), GLCM texture measure (refer to Table
3.2), and the window size of the GLCM algorithm.

As the ALOS-2 dataset only offered a single image per year for an area, a sea-
sonal division could not be made. Otherwise, the feature extraction process for XA

was similar to XS1 and XS2. The original feature set consisted of the HH and HV
polarization bands, the ratio of HH and HV, the radar forest degradation index, and
nine GLCM textural measures calculated for both polarizations, using window sizes of
3 x 3, 5 x 5, and 7 x 7.

Before selection, XA consisted of 58 features, out of which 10 were chosen (see
Table 4.3). Ordered by the sum of RS and I scores, the features were: HV-SAV-3,
HH-SAV-3, RFDI, HH-VAR-7, HH-COR-7, HV-CON-7, HV-VAR-7, HH-VAR-5, HH-
CON-5, and HH-ENT-7. Similarly to Sentinel-1 features, the names are composed
of polarization (HH or HV), GLCM textural measure, and the GLCM window size.
Orbital variations were not available for the ALOS-2 dataset.

In addition, the neighboring feature sets for each data source were created as
per subsection 3.2.3, with LVG and HVG datasets being processed separately. The
created subsets are denoted as XS2Nk , XS1Nk , and XALOSNk , where k is the kernel
size used for the algorithm. Values of 3, 5, and 7 were used, and datasets created for
each. A separate selection process was used to get the most viable features for the sets,
with the addition of using PCA to reduce the features to three components for each
dataset. The PCA components accounted for 98.9%, 98.2%, and 99.8% of variance of
the ALOS2, Sentinel-1, and Sentinel-2 features, respectively.

Several models using various combinations of the described sets of features were
trained. The models were evaluated using observations from the test areas, with R2

a,
RMSE, RMSE(%) scores calculated. In addition, the models were separately tested
for their performance in estimating high-volume biomass (more than 200 Mg / ha),
although the observation set was very low, with a population of 27302. The results can
be seen in Tables 4.4 and 4.5.

The terms S2 and S1 without HVG or LVG suffix denote full Sentinel-1 and
Sentinel-2 datasets, using both HVG and LVG data. In addition, control datasets
(denoted as CTRL) were trained. For Sentinel-1 the CTRL-set contained the VV, VH,
VV-A, and VH-V features. For Sentinel-2, the selected features were all the available
spectral bands (B1 to B11), in addition to NDVI. For ALOS, the CTRL-set contained
HH and HV polarization bands. In addition, for Sentinel-2 a model using all of the 74
features was evaluated. This model is denoted as S2-ALL.
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All areas High biomass areas

Model R2
a RMSE RMSE(%) R2

a RMSE RMSE(%)

S2-HVG-ALL 0.71 34.18 37.0% 0.46 36.91 35.9%

S2-HVG-CTRL 0.77 32.21 35.9% 0.50 35.92 33.8%

S2-HVG 0.79 31.68 35.6% 0.52 34.88 33.7%

S2-HVG-N3-NPCA 0.80 30.41 34.9% 0.51 34.62 33.5%

S2-HVG-N3 0.81 30.36 34.8% 0.53 34.68 33.5%

S2-HVG-N3-N5 0.81 30.33 34.8% 0.52 34.62 33.5%

S2-HVG-N3-N5-N7 0.80 30.38 34.8% 0.51 34.70 33.5%

S2 0.80 30.82 35.1% 0.51 34.79 33.6%

S2-N3 0.81 30.20 34.7% 0.52 34.41 33.2%

S2-N3-N5 0.80 30.41 34.9% 0.51 34.66 33.5%

S2-N3-N5-N7 0.79 30.44 34.9% 0.51 34.67 33.5%

Table 4.4: The trained models and their respective R2
a, RMSE, and RMSE(%) scores. The results

are shown for both unrestricted observations and for high-biomass observations.
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All areas High biomass areas

Model R2
a RMSE RMSE(%) R2

a RMSE RMSE(%)

S1-HVG 0.37 52.22 47.6% -0.29 57.80 58.8%

S1-HVG-CTRL 0.38 52.29 47.6% -0.30 57.69 58.7%

S1-HVG-N3 0.36 52.18 47.5% -0.29 57.73 58.7%

S1 0.36 52.11 57.5% -0.29 57.90 58.9%

ALOS 0.44 50.31 46.4% -0.08 52.41 52.9%

ALOS-CTRL 0.45 50.28 46.4% -0.07 51.41 51.8%

ALOS-N3 0.45 49.31 45.9% -0.09 52.46 53.0%

S2 0.80 30.62 35.0% 0.50 34.49 33.3%

S2 + S1-HVG 0.81 30.49 34.9% 0.51 34.47 33.3%

S2 + S1-HVG + ALOS 0.79 31.26 35.3% 0.50 34.55 33.4%

S2-N3 + ALOS 0.80 31.24 35.3% 0.51 34.52 33.3%

S2-N3 + S1-HVG 0.78 31.90 35.7% 0.50 36.52 35.5%

S2-N3 + ALOS + S1-HVG 0.77 32.90 36.3% 0.49 36.62 35.6%

Table 4.5: The trained models and their respective R2
a, RMSE, and RMSE(%) scores. The results

are shown for both unrestricted observations and for high-biomass observations.



5. Discussion

Somewhat surprisingly, the NIR bands B8 and B8A were removed from the Sentinel-2
feature set by the selection process (see 4.1). However, most of the vegetation indices
within the final feature set included B8 and B8A in their formulations. According to the
model metrics, the feature selection process for Sentinel-2 showed some improvements.

For Sentinel-1 feature set (Table 4.2), by far the most correlating textural measure
was the Summed Average, with the only other feature being the Difference Entropy.
The summed average metrics of various GLCM window sizes performed better than
either of VV or VH bands, which might be indicative of the noisiness of the Sentinel-1
imagery, even after de-speckling and radiometric corrections.

For ALOS-2, the features were more varied (4.3). Interestingly, the vegetation
index RFDI was a high-performing feature. Similarly to Sentinel-1, neither of the
original polarization bands were included in the final set.

Considering the performance of the Sentinel-1 and ALOS-2 models, the feature
selection for the two SAR datasets meant little. While the final models performed
slightly better than the control models using the most basic features, the difference
was negligible. In addition, the Sentinel-1 and ALOS-2 models using the feature values
of neighboring pixels showed very little improvement. Both of these factors can be
explained by the low spatial resolution of the imagery, and the lack of original bands
in the SAR data — all the subsequent textural features were derived from two bands.
In addition, the specific images of the ALOS-2 mosaic might be unviable for vegetation
measurements, or from vastly different time periods (e.g., some samples being taken
during winter and some during summer), making it difficult for the statistical models
to fit to the data.

The feature selection of Sentinel-2 seemed to have some, but little relevance in
the results. Compared to the control model (S2-HVG-CTR) and the model utilizing
all 74 features (S2-HVG-ALL), the S2-HVG with the selected 10 features performed
slightly better. In addition, the neighbor selection for Sentinel-2 seemed to perform
quite well, with the RMSE scores of the S2-N3 model (30.20) surpassing the scores of
models utilizing both Sentinel-1 and Sentinel-2 data (S2-N3 + ALOS with RMSE of
31.13, S2-N3 + S1-HVG with RMSE of 31.90, and S2-N3 + ALOS + S1-HVG with
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RMSE of 32.90). While this is indicative of the usefulness of the neighbor-feature
extraction, the results are also partly explained by the lack of performance from the
features derived from Sentinel-1 and ALOS-2. As such, using these free sources of data
for AGB estimation in the hemiboreal zone might not be feasible.

However, the results of the SAR features can also be explained by the preprocess-
ing methods. For example, the speckle filters, resampling methods, and radiometric
corrections can be experimented with. As such, more testing is needed to ascertain the
conclusion that the data is unsuitable for AGB estimation in hemi-boreal Finland.

In addition, the Spearman rank correlation coefficient and mutual information
-based feature extraction process might not have been optimal for the SAR datasets.
In fact, the method used was very simplistic, and further feature selection would be
needed to increase the performance of the models.

The lowest RMSE of the trained models (30.20) was achieved by the S2-N3 model,
which was simply using high vegetation and low vegetation features, along with the ex-
tracted neighboring features. This is indicative of the efficacy of using the neighboring
features as a method of enriching Sentinel-2 optical data for biomass purposes. Further
research, however, is needed, as the sample sizes, especially for high biomass test set,
were small. As such, the effectiveness of counter-acting the saturation effect could not
be evaluated. As a note, all the models performed worse in the task of estimating
the high-biomass samples, which shows the saturation effect taking place even for the
relatively low biomass volumes (200 - 300 Mg / ha) used in the sample set.

While the results were on par with comparable research [77, 58, 73], the lowest
prediction RMSE of 30.20, with RMSE(%) of 34.7%, is still high for many AGB esti-
mation purposes. In addition, evaluation of the data and features using models beside
Random Forest would be a useful addition in future research.



6. Conclusion

In this study, a novel application of above-ground biomass estimation in the hemi-boreal
zone of Finland was described. In addition, a novel method of extracting features from
neighboring observations was proposed and evaluated. The findings show that the
method is useful, having the highest RMSE score among the model tested. However,
more research is needed. In addition, the effectiveness of the method as a tool to
compensate for the saturation effect of high-biomass areas is yet to be ascertained.
This is partly due to the low biomass density of hemi-boreal Finland, in general.

Additionally, the viability of using free and highly available satellite datasets for
AGB estimation in sample area was analyzed, with the results suggesting that the free
SAR based products had a lacking performance, possibly due to low spatial resolution
or incorrect preprocessing adjustments. The features extracted from the optical data of
Sentinel-2 produced well-performing models, although the prediction accuracy might
still be too low to be usable.
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Appendix A. Features Used

The following tables contain the formulations and references for the Sentinel-2 based
vegetation indices used in this work. The band variables (B1, B2, B3, etc.) denote the
Sentinel-2 spectral band used. The alphabetically notated indices (e.g., EVI-B, S2REP-
C) are variations of the original equations, where some of the bands are substituted by
similar bands.
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Vegetation Index Equation Ref.

Difference Vegetation Index DVI B8−B4 [76]

Difference Vegetation Index B DVI-B B8A−B4 [76]

Enhanced Vegetation Index EVI 2.5 B8A−B5
B8A− 6 ·B5− 7.5 ·B2 + 1 [32]

Enhanced Vegetation Index B EVI-B 2.5 B8−B4
B8− 6 ·B4− 7.5 ·B2 + 1 [32]

Enhanced Vegetation Index C EVI-C 2.5 B8A−B4
B8A− 6 ·B4− 7.5 ·B2 + 1 [32]

Enhanced Vegetation Index D EVI-D 2.5 B7−B4
B7− 6 ·B4− 7.5 ·B2 + 1 [32]

2-band Enhanced Vegetation Index EVI2 2.5 B8A−B5
B8A+ ·B5 + 1 [36]

2-band Enhanced Vegetation Index 2 EVI2-2 2.5 B8A−B5
B8A+ 2.4 ·B5 + 1

Green Normalized Difference
Vegetation Index

GNDVI B8−B3
B8 +B3 [23]

Green Normalized Difference
Vegetation Index B

GNDVI-B B7−B3
B7 +B3 [23]

Green Ratio Vegetation Index GRVI B3−B4
B3 +B4 [18]

Infrared Percentage Vegetation
Index

IPVI B8
B8 +B4 [14]

Infrared Percentage Vegetation
Index B

IPVI-B B8A
B8A+B4 [14]

Inverted Red-Edge Chlorophyll
Index

IRECI B7−B4
B5/B6

[20]

Modified Anthocyanin Reflectance
Index

MARI (B3−1 −B5−1) ·B8A [9]

Modified Chlorophyll Absorption
in Reflectance Index

MCARI [(B5−B4)− 0.2(B5−B3)](B5
B4) [15]

Modified Chlorophyll Absorption
in Reflectance Index 1

MCARI1 1.2(2.5(B8−B4)− 1.3(B8−B3))(B5
B4) [25]

Modified Chlorophyll Absorption
in Reflectance Index 1 B

MCARI1-B 1.2(2.5(B8A−B4)− 1.3(B8A−B3))(B5
B4) [25]

Modified Chlorophyll Absorption
in Reflectance Index 2

MCARI2 1.5 2.5(B8−B4)− 1.3(B8−B3)√
(2 ·B8 + 1)2 − (6 ·B8− 5

√
B4)− 0.5

[25]

Modified Chlorophyll Absorption
in Reflectance Index 2 B

MCARI2-B 1.5 2.5(B8A−B4)− 1.3(B8A−B3)√
(2 ·B8A+ 1)2 − (6 ·B8A− 5

√
B4)− 0.5

[25]

Modified Normalized Vegetation
Index

MNDVI B8−B4
B8 +B4 + 2 ·B1 [31]

Modified Normalized Vegetation B
Index

MNDVI-B B8A−B4
B8A+B4 + 2 ·B1 [31]

Table A.1: The Sentinel-2 vegetation indices used in this work
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Vegetation Index Equation Ref.

Modified Soil Adjusted
Vegetation Index

MSAVI 2 ·B8A+ 1−
√

(2 ·B8A+ 1)2 − 8(B8A−B5)
2 [17]

Modified Soil Adjusted
Vegetation Index Hyper

MSAVIH 0.5[(2 ·B8 + 1)−
√

(2 ·B8 + 1)− 8(B8−B4)] [17]

Modified Soil Adjusted
Vegetation Index Hyper B

MSAVIH-B 0.5[(2 ·B8A+ 1)−
√

(2 ·B8A+ 1)− 8(B8A−B4)] [17]

Moisture Stress Index MSI B4
B12 [38]

Moisture Stress Index B MSI-B B4
B11 [38]

Modified Simple Ratio MSR B8/(B4−1)√
B8/B4 + 1

[11]

Modified Simple Ratio B MSR-B B8A/(B4−1)√
B8A/B4 + 1

[11]

Modified Simple Ratio C MSR-C B7/(B4−1)√
B7/B4 + 1

[11]

Normalized Difference Index
using bands 4 and 5

NDI45 B5−B4
B5 +B4 [17]

Normalized Difference Vegetation
Index

NDVI B8−B4
B8 +B4 [68]

Normalized Difference Vegetation
Index B

NDVI-B B8A−B4
B8A+B4 [68]

Normalized Difference Water
Index

NDWI B8−B10
B8 +B10 [28]

Normalized Difference Water
Index B

NDWI B8A−B10
B8A+B10 [28]

Normalized Ratio Vegetation
Index

NRVI
B8/B4− 1
B8/B4 + 1 [5]

Normalized Ratio Vegetation
Index B

NRVI-B
B8A/B4− 1
B8A/B4 + 1 [5]

Optimized Soil-Adjusted
Vegetation Index

OSAVI B8−B4
B8 +B4 + 0.16 [66]

Optimized Soil-Adjusted
Vegetation Index B

OSAVI-B B8A−B4
B8A+B4 + 0.16 [66]

Plant Senescence Reflectance
Index

PSRI B4−B2
B6 [53]

Renormalized Difference
Vegetation Index

RDVI B8−B4√
B8 +B4

[67]

Renormalized Difference
Vegetation Index B

RDVI-B B8A−B4√
B8A+B4

[67]

Table A.2: Some vegetation indices used in AGB estimation.
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Vegetation Index Equation Ref.

Red Edge 1 RE1 B5
B4 [13]

Red Edge 2 RE2 B5−B4
B5 +B4 [13]

Sentinel-2 Red-Edge Position S2REP 705 + 35(B7+B4/2)−B5
B6−B5 [20]

Sentinel-2 Red-Edge Position B S2REP-B 705 + 35(B8+B4/2)−RE1
RE2−RE1 [20]

Sentinel-2 Red-Edge Position C S2REP-C 705 + 35(B8A+B4/2)−RE1
RE2−RE1 [20]

Soil and Atmospherically
Resistant Vegetation Index 2

SARVI2 2.5 B8−B5
1 +B8 + 6 ·B5− 7.5 ·B1 [31]

Soil and Atmospherically
Resistant Vegetation Index 2 B

SARVI2-B 2.5 B8A−B5
1 +B8A+ 6 ·B5− 7.5 ·B1 [31]

Soil and Atmospherically
Resistant Vegetation Index 2 C

SARVI2-C 2.5 B9−B5
1 +B9 + 6 ·B5− 7.5 ·B1 [31]

Simple Ratio SR B8/B4 [37]

Simple Ratio B SR-B B8A/B4 [37]

Triangular Chlorophyll
Index

TCI 1.2(B5−B3)− 1.5(B4−B3) ·
√
B5/B4 [35]

Transformed Normalized Difference
Vegetation Index

TNDVI
√
B8−B4
B8 +B4 + 0.5 [87]

Transformed Normalized Difference
Vegetation Index

TNDVI
√
B8−B4
B8 +B4 + 0.5 [87]

Transformed Normalized Difference
Vegetation Index B

TNDVI-B
√
B8A−B4
B8A+B4 + 0.5 [87]

Transformed Normalized Difference
Vegetation Index C

TNDVI-C
√
B8A−B5
B8A+B5 + 0.5 [87]

Transformed Triangular
Vegetation Index

TTVI
√
ABS(B8−B4

B8 +B4 + 0.5) [74]

Transformed Triangular
Vegetation Index B

TTVI-B
√
ABS(B8A−B4

B8A+B4 + 0.5) [74]

Triangular Vegetation Index TVI 0.5[120(B4−B3)− 200(B4−B3)] [16]

Triangular Vegetation Index B TVI-B 0.5[120(B8A−B3)− 200(B4−B3)] [16]

Transformed Vegetation Index TraVI
√

5− 4
5 + 4 + 0.5 [4]

Wide Dynamic Range
Vegetation Index

WDRVI 0.1 ·B8−B4
0.1 ·B8 +B4 [22]

Wide Dynamic Range
Vegetation Index B

WDRVI-B 0.1 ·B8A−B4
0.1 ·B8A+B4 [22]

Table A.3: Some vegetation indices used in AGB estimation.
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