
Master’s thesis

Master’s Programme in Computer Science

Attacks on Smart Contracts

Otto Porkka

June 7, 2022

Faculty of Science
University of Helsinki

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Otto Porkka

Attacks on Smart Contracts

Prof. V. Niemi

Master’s thesis June 7, 2022 48 pages

smart contracts, blockchains, cryptocurrencies

Helsinki University Library

Networking study track

Blockchain technologies and cryptocurrencies have gained massive popularity in the past few
years. Smart contracts extend the utility of these distributed ledgers to distributed state
machines, where anyone can store and run code and then mutually agree on the next state.
This opens up a whole new world of possibilities, but also many new security challenges.

In this thesis we give an up-to-date survey on smart contract security issues. First we give
a brief introduction to blockchains and smart contracts and explain the most common attack
types and some mitigations against them. Then we sum up and analyse our findings.

We find out that many of the attacks could be avoided or at least severely mitigated if the
coders followed good coding practices and used design patterns that are proven to be good.
Another finding is that changing the underlying blockchain technology to counter the issues is
usually not the best way, as it is hard and troublesome to do and might restrict the usability
of contracts too much. Lastly, we find out that many new automated tools for security are
being developed and used, which indicates movement towards more conventional coding where
automated tools like scanners and analysers are being used to cover a large set of security
issues.

ACM Computing Classification System (CCS)
Security and Privacy → Systems Security → Distributed systems security

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Matemaattis-luonnontieteellinen tiedekunta Tietojenkäsittelytieteen maisteriohjelma

Otto Porkka

Älysopimusten hyökkäykset

Prof. V. Niemi

Maisterintutkielma 7.6.2022 48 sivua

älysopimukset, lohkoketjut, kryptovaluutat

Helsingin yliopiston kirjasto

Tietoverkkojen opintosuunta

Lohkoketjuteknologiat ja kryptovaluutat ovat olleet murroksessa viime vuosina. Kryptovaluut-
tojen alkuperäinen ajatus pelkästään hajautetusta ja avoimesta virtuaalivaluutasta on laajen-
tunut huomattavasti älysopimusten myötä, sillä älysopimukset sallivat valuuttasiirtojen lisäksi
myös koodin tallentamisen ja ajamisen hajautetusti lohkoketjussa. Nykyään voidaankin pu-
hua jo paremminkin teknologia-alustoista kuin vain kryptovaluutoista. Älysopimukset tuovat
luonnollisesti mukanaan myös omat tietoturvaongelmansa.

Tässä tutkielmassa annamme ajantasaisen katsauksen tämänhetkisistä yleisimmistä älysopi-
musten tietoturvaongelmista. Lohkoketjuteknologiat ja älysopimukset esitellään ensin lyhyesti,
jonka jälleen käydään läpi yleisimmät älysopimusten hyökkäystyypit ja niiden vastakeinoja.
Sen jälkeen tehdyt havainnot ja löydökset analysoidaan ja käydään läpi.

Havainnoista selviää, että suurin osa esitellyistä hyökkäyksistä pystyttäisiin estämään tai aina-
kin osittain torjumaan olemalla huolellisempi älysopimuksia kehitettäessä. Hyvät kehityskäy-
tänteet ja hyväksi todetut kehitysmallit auttavat tässä huomattavasti. Osa ongelmista pystyt-
täisiin välttämään myös tekemällä muutoksia itse lohkoketjuteknologiaan, mutta tämä on usein
liian raskas ja työläs tapa torjua ongelmia joihin löytyy usein helpompiakin keinoja. Havain-
noista selviää myös, että automaatiotyökaluja käytetään yhä enenevässä määrin torjumaan ja
havaitsemaan älysopimusten tietoturva-aukkoja.

ACM Computing Classification System (CCS)
Security and Privacy → Systems Security → Distributed systems security

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Background on Smart Contracts 3
2.1 Blockchain technology . 3
2.2 Cryptocurrencies . 4

2.2.1 Mining and Consensus Algorithms 5
2.3 Smart Contracts . 7
2.4 Ethereum . 8

2.4.1 EVM and Native Token . 8
2.4.2 Accounts . 9
2.4.3 Transactions and Gas . 10
2.4.4 Ethereum Smart Contracts . 12

3 Smart Contract Attack Types 15
3.1 Re-entrancy . 15
3.2 Timestamp Dependence . 18
3.3 Front-Running . 20

3.3.1 Transaction Ordering Dependence 21
3.3.2 Block Stuffing . 24
3.3.3 Block Reorganization Attacks . 25

3.4 Integer Overflow and Underflow . 29
3.5 DoS With Revert . 31
3.6 Insufficient Gas Griefing . 33
3.7 Forcibly sending Ether To A Contract . 34
3.8 Oracle Manipulation . 35

4 Discussion 37
4.1 Future Views . 40

5 Conclusions 42

Bibliography 43

1 Introduction

Blockchain technology and cryptocurrencies have been extremely popular in the past
decade and there is no end in sight. What started as a prototype of unregulated dig-
ital money in the form of Bitcoin, has become a multi-trillion dollar industry. Using
blockchain as a distributed and immutable database for storing value transactions proved
to be truly revolutionary. With blockchain technologies, anyone can now send, receive and
verify value transactions over the internet, completely without trusted third parties like
banks or governments.

Smart contracts continue this trend by expanding the utility of blockchains beyond simply
being backbone for online currencies. By allowing deployment and execution of code in the
blockchain, smart contracts essentially turn cryptocurrency protocols into big distributed
state machines where anyone can verify and execute deployed code in the same manner
as anyone can verify and execute cryptocurrency transactions. Every call and execution
of a smart contract gets recorded in the blockchain along with the new state of the smart
contract. This new utility brings up a lot of interesting use cases for blockchains and
cryptocurrency protocols. Therefore it is no surprise that it also brings up a lot of new
security challenges.

Smart contract security is particularly crucial as the immutability of blockchain makes
patching vulnerabilities extra hard and a lot of money is usually involved in the form of
cryptocurrencies. Smart contracts are also juicy targets for malicious users as the code
is readable by anyone and anonymity of the blockchains makes it hard to get caught.
Immutability also makes it practically impossible for victims to revert the situation if the
attack is successful.

There have been some previous research on smart contract security, e.g. [3, 29, 31, 43],
and a lot of research on smart contract utility, e.g. [2, 10, 11, 52, 53]. But as a brand new
and constantly changing field, the need for better coverage and understanding of smart
contract security issues is only increasing. The major portion of smart contract research
and innovation also happens outside of scientific field in the online communities, so to get
the up-to-date view on smart contract security, combining the cutting edge open source
knowledge and previous scientific work is needed.

2 CHAPTER 1. INTRODUCTION

This is exactly what is the goal of this thesis, i.e., to provide an up-to-date survey on
smart contract security issues. To achieve this goal, the currently most common attack
types and their related vulnerabilities are explained and some mitigations against them
are presented. Then the overall state of smart contract security is analysed based on the
summary of the discussed issues. The smart contract security is defined in this thesis to
include technology level security issues as well as issues in the smart contract code itself.
Technology level issues must be addressed because the targets of technology level exploits
are practically always smart contracts and many of the attacks are also closely intertwined
with how the blockchain technology behaves.

This review and analysis reveals that security is of the utmost importance when designing
smart contracts. Many of the attacks could be avoided or at least severely mitigated if
the developers followed good coding practices and used design patterns that are proven to
be good. On the other hand, changing the underlying blockchain technology to counter
the issues is not an optimal counter measure, as it is hard and troublesome and might
restrict the usability of contracts too much. Some technology level behaviour can even
be desired, even if it allows misuse when combined with badly designed smart contracts.
Lastly, new automated tools for security are being developed and emerging all the time.
This indicates movement towards more conventional coding where automated tools like
scanners and analysers are being used to cover a large set of security issues.

The structure of the rest of this thesis is as follows. First, in the chapter 2, the basics of
the blockchain technologies, cryptocurrencies and smart contracts are given. Section 2.1
defines blockchains, section 2.2 explains the basics of cryptocurrencies and section 2.3
defines smart contracts. Section 2.4 explains the Ethereum cryptocurrency protocol in a
bit more detail. This is needed, because Ethereum is generally considered to be the first
true smart contract capable cryptocurrency protocol. It is also by far the biggest and most
used one, and most of the explained attacks are against Ethereum smart contracts. In the
chapter 3, attacks and vulnerabilities themselves are explained. Attack types are not in
any specific order, but as a more general type, Front-Running in section 3.3 is split into
sub-cases of Transaction Ordering Dependence, Block Stuffing and Block Reorganization
Attacks. After each separate attack type, some possible mitigations against them are also
presented. In the chapter 4, all the covered attack types and their mitigations are summed
up and analysed to give a better understanding of the big picture of the current state of
smart contract security. In the section 4.1, some thoughts about the possible future of
smart contract security and smart contract research in general are given. Finally, in
chapter 5, a few final words are given to sum up and conclude this thesis.

2 Background on Smart Contracts

Before diving into smart contracts and their attack vectors, one must understand what
smart contracts and cryptocurrencies are and what is meant by blockchain technology
they are built upon.

First, the more abstract view of blockchains and cryptocurrencies is given. Mainly what
is the basic idea behind them. Then the definition of smart contracts is specified. Lastly,
the Ethereum protocol is discussed in a bit more detail to give a more concrete example.
Ethereum is chosen because it is the first protocol to implement smart contracts, and at
the time of writing this, Ethereum has a huge dominance over other protocols with smart
contract capabilities.

2.1 Blockchain technology

The basic idea of blockchains is not very new. On a very abstract level blockchain is a
distributed list of records where a set of nodes contribute to maintain and update it. An
idea that dates back to as early as the 1970s. Another key characteristic of blockchains is
that they are immutable, meaning once the information is in the chain, no one is able to
change it or erase it. [44] The property of immutability proves to be extremely useful when
blockchains are utilized in cryptocurrencies, from which they are the most known of. The
way that immutability is achieved is by chaining blocks of information via cryptographic
hash functions, hence the name “blockchain”. The next block of data always uses the
hash of the block right before it, making it impossible to modify information later on.
This idea has been discussed already in 1979 by Ralph Merkle with Merkle hash trees and
implemented in 1990 by Sutart Haber and W. Scott Stornetta in so called time-stamp
documents. [44]

The term blockchain or blockchain technology itself can have many definitions. Strictly
speaking it only means immutable blocks of information that are linked together in an
ordered chain using cryptography. It does not really matter if it is distributed or centralized
or if users must be trusted or not. This definition can be expanded to the more common
use case mentioned above where the chain is maintained by a peer-to-peer network of
nodes, as is the case with cryptocurrencies. This is also the definition that IBM uses,

4 CHAPTER 2. BACKGROUND ON SMART CONTRACTS

for example. They state that blockchain is “shared, immutable ledger”, where the term
“shared” means that it is distributed and the term “ledger” refers to the common use case
of recording value transactions. [25]

2.2 Cryptocurrencies

The broadest definition for cryptocurrency is that it is a type of digital money or digital
currency. As with any other currency, its main function is to act as a medium of exchange.
What makes it different from other digital currencies is that it builds on the blockchain
and relies on some sort of cryptographic trust to reduce the involvement of third parties
or intermediaries. [39]

The common way of handling payments over the internet rely on these trusted third par-
ties, which are usually banks and other financial institutions. Since they must be able to
reverse transactions in case of disputes, their systems cannot be truly immutable. This
possibility of reversal also spreads the need for trust. One must always have enough
information of other party to gain trust before transactions and with third parties the
extra costs are also present. In the case of cryptocurrencies, the trust in the third party
is replaced with the trust in the consensus of the nodes and the immutability of the
blockchain [39]. The consensus itself is the trusted chronological order of all transactions,
which is considered final once in the blockchain and therefore cannot be reversed or mod-
ified. This allows users of the given cryptocurrency to send and receive value over the
network completely without intermediaries or extra information needed. For example,
Satoshi Nakamoto (alias) uses this as the base motivation for Bitcoin in his famous paper
“Bitcoin: A Peer-to-Peer Electronic Cash System” [36]. This “lack of trust” in cryptocur-
rencies is why they are often referred as “trustless”, although it is a bit misleading since
in reality the trust is in the consensus and honesty of the co-operating nodes.

A cryptocurrency system is a system built on blockchain technology that issues tokens and
uses them as a medium of exchange, and the token itself can be thought as the actual
“cryptocurrency” [39]. However the system itself, or the “protocol”, which is how they
are usually referred to, can also be referred to as a cryptocurrency. Protocols usually
make the distinction between the system and the token by naming them differently. The
most known examples are Bitcoin (the protocol) and bitcoin (the cryptocurrency), and
respectively Ethereum (the protocol) and ether (the cryptocurrency). It has also become
really vague as to what actually counts as cryptocurrency as the modern protocols often

2.2. CRYPTOCURRENCIES 5

differ greatly on their architecture and governance and they have become much more than
simple mediums of exchange. Ingolf Pernice and Brett Scott try to find the definition for
the term in their paper [39] and they come to a conclusion that “cryptocurrency systems
are unified by being intended to host a general or limited-purpose medium-of-exchange,
a cryptocurrency, using infrastructure that replaces trust in institutions by cryptography
to varying degrees.” So in the end, the defining properties of cryptocurrencies are their
“trustlessness” and their ability to act as a medium of exchange. In the terms of this paper
we however avoid using the term “cryptocurrency”, if possible, due to its vague nature
and instead prefer the terms “protocol” and “token” describing the cryptocurrency system
and its respective cryptocurrency.

As the topic of this thesis addresses smart contracts and their attack vectors, it is useful
to be a bit more specific on what kind of protocols we are talking about. Even if cryp-
tocurrency protocols can also be implemented by institutions or states, we focus solely
on open and decentralized protocols. This means that all the code is open source, as it
would be hard to discuss attacks if you cannot see the actual code. It also means that no
centralized authority is behind issuance of the tokens or the governance of the protocol.

2.2.1 Mining and Consensus Algorithms

As was the case with blockchains, the idea of cryptocurrencies also dates back to the
last millennium. In 1998 Wei Dai proposed the idea of creating value for digital money
through solving computational puzzles and in 2005 Hal Finney came close to modern
cryptocurrencies with his Reusable Proofs of Work. They both relied on the idea that
issuance and scarcity, or in other words, the value of the currency, can be implemented by
awarding tokens to users that showed a proof of solving some hard computational problem.
This process of solving computational puzzles for tokens is usually referred to as “mining”
and we will also call it that in this paper. Generation of tokens, in any context, is called
“minting”. After showing the proof, the solver then has some amount of tokens that they
can send to some other user by signing the transaction with their private key. Public keys
of users act as their receive addresses. [7]

However, all these prior prototypes and proposals lacked the consensus algorithm or relied
on some form of third party for updating and maintaining the ledger. It was not until
Satoshi Nakamoto and Bitcoin that the true breakthrough happened. Bitcoin was the
first truly decentralized protocol. It achieved this feat by using blockchain as underlying

6 CHAPTER 2. BACKGROUND ON SMART CONTRACTS

data structure and combining issuing new tokens and maintaining the ledger to the same
algorithm. [7]

How the algorithm works in practice is that every time some miner node successfully solves
the computational puzzle, it is awarded some bitcoin and the solution is used as hash of
the next block in the blockchain. Miner also inputs transactions it has received from the
network in the block, thus participating in the updating the ledger. The consensus itself
is achieved by only accepting the longest chain as the valid one. This means that in case
there are multiple valid blocks mined at the same time or if some malicious node or group
of nodes try to modify transaction history, they must recalculate all of the hashes of the
previous blocks starting from the block where the difference happened. This would be
highly impractical as the attacker or fork of the chain would need by average over half
of the computing power of the network to outrace the longest chain. For the nodes it
is therefore better to be honest and race for the next hash and reward than to fight the
whole network. [36] This type of attack where the attacker controls the majority of the
network is called 51%-attack.

This type of consensus algorithm where nodes need computing power to participate, re-
ferred as Proof of Work (PoW), has an additional and really useful benefit of mitigating
so-called sybil attacks. Sybil attack is a type of attack where the attacking party tries to
take over the network by creating multiple entities. In the case of cryptocurrencies this
means that the attacking party would create or imitate so many nodes that they would
form the majority and be able to dictate the consensus of the network. They would then
be able to, for example, double spend tokens by reversing the transaction by choosing an-
other fork. However, since the power the user has in the network is not tied to the amount
of nodes but the amount of CPU power, simply having many nodes is not enough. [36]

The obvious problem of energy consumption with Proof of Work -type of algorithms should
also be addressed. For example, a CoinDesk article from the August 2021 estimated Bitcoin
network energy consumption at around 80 TWh (terawatt hours) annually [19]. This places
Bitcoin among the top 50 countries per energy consumption, even while being on the lower
end of estimates which usually are anything between 50 to 150 TWh. This problem has
been obvious right from the start when it became clear Bitcoin would become popular,
and for this reason there has been active research and debate for all this time to replace
PoW with something more efficient. Multiple candidates and their various combinations
have been proposed, one of the most promising being so called Proof of Stake (PoS). Basic
idea behind Proof of Stake is to replace the power-intensive CPU mining with the “staked”

2.3. SMART CONTRACTS 7

value, which in theory gives the node right to generate portion of the new blocks based on
the amount of tokens it has locked in the protocol [4]. However, these candidates escape
the topic of this thesis and are just something that is good to acknowledge.

2.3 Smart Contracts

Classical protocols like Bitcoin only focus on being a medium of exchange. They issue
tokens and provide a peer-to-peer network to handle transactions and maintain the state
of the system. The attributes of the underlying blockchain technology however provide
many other interesting opportunities. Security, anonymity and data integrity all without
trusted third parties can also be a game changer in many other use cases. Blockchains
are already used in IoT, smart property, digital content distribution, and of course, smart
contracts, to mention few examples [52]. This revolution of blockchains, so to speak, is
often referred on the field as web 3.0 or Web3.

Extending the underlying blockchain to more general use cases was also the motivation
behind Ethereum, which is generally seen as the foundation of smart contracts and web
3.0. Although Bitcoin provided a weak version of smart contracts via simple scripts, it was
not suitable for more general use cases and had some limitations. The Bitcoin version of
smart contract is a simple script that owns some amount of tokens. Then when some other
user triggers the script by sending a transaction to its public address and its conditions
are fulfilled, the tokens are sent to some other address. Scripting language itself is still not
Turing-complete as it lacks loops, for example. Bitcoin protocol also allows only spending
all of the tokens or none at all which means there can be no internal state and contracts
can only be used once.∗ Ethereum fixed these limitations by providing its own Turing-
complete scripting language and splitting user accounts to externally owned accounts and
contract accounts. Contract accounts have contract code which dictates its behaviour and
conditions, and storage which is used to hold information about contracts state. [7]

Now a definition for smart contract can be given. It is an autonomous account living in the
blockchain with the code that dictates its behaviour. It is typically invoked by sending a
transaction to the address of the account, and if accepted by the network, the contract code
is run. The state of the blockchain, invoking transaction itself and its payload are used as
input. Output of the execution are possible transactions and changes in the internal state

∗A recent Bitcoin update launched in November 2021 called Taproot just improved Bitcoins smart
contract capabilities, but specifics about it escape the topic of this paper. [32]

8 CHAPTER 2. BACKGROUND ON SMART CONTRACTS

of the contract if present. By running the code on the whole network, it is made sure that
the output is agreed on and that the contract is being honored. [31]

2.4 Ethereum

Now that the basics of cryptocurrencies and smart contracts are explained, it is useful to
give a more concrete example on how things work in practice. Ethereum, which has huge
dominance over smart contract space, is the best candidate for this.∗ It is good to mention
here that Ethereum, like almost all the other protocols, is under active development and
the small details may be subject to change. Some of these details are however essential in
the way some of the attacks work so they should be discussed. Whole chapter 2.4 is based
on Ethereum documentation unless explicitly indicated otherwise. [17]

2.4.1 EVM and Native Token

As discussed before, blockchains are essentially distributed databases which state the
majority of the miner nodes in the network mutually agree on. By adding Turing-complete
smart contracts in the blockchain, Ethereum makes the whole network one big distributed
state machine. This state machine is commonly referred to as Ethereum Virtual Machine
(EVM). Every user of the network can request EVM to execute arbitrary code via invoking
its respective smart contract by sending a transaction request to its address. Each miner
then verifies and validates the transaction and executes the smart contract code, and again
mutually agree on the next state of the EVM. As the whole state of EVM, including the
internal state of smart contracts, and all the transactions that have ever happened are
stored in the blockchain, no one can tamper with them later on. This also provides a way
for anybody anywhere and any time to check if execution or transaction really took place.

It would be highly impractical to allow anyone to execute their code on the EVM for as
long as they wanted or store as much data on the chain as they wanted, so some limitations
are needed. The miners who verify and execute transactions and execute smart contract
code also need some kind of incentive to do so. This is where protocols native token,

∗According to cryptocurrency tracking site coingecko.com [12], on 26.5.2022 the market cap of
Ethereum was 225 billion whereas total market cap of all smart contract cryptocurrencies was 381 billion.
This would place Ethereum’s share at around 59% based on native token market cap only. Share in smart
contract usage can be expected to be even higher since the most valuable and most used projects are all
based on Ethereum.

2.4. ETHEREUM 9

ether (ETH), steps in. ETH is minted the same way all the other native tokens are
usually minted, by allowing miners to reward themselves with fresh ETH every time they
successfully generate a new block. Native token refers to the primary token of the chain
which is used as storage of value and medium of exchange. On top of rewarding block
generation, ETH is also used as a fee on every operation that happens on blockchain and
tipping the miners for executing the wanted operation. These required fees are referred
to as “gas” which can be thought of as a usage fee everyone must pay in order to use
the EVM, the same way gas is required to operate a vehicle. Pricing of operations also
provides a market for EVM computation since these fees change based on demand on the
network and higher tipping fees are preferred by miners.

Gas fees are in principle paid in ETH, but all prices and value transactions in the code
are actually integers. To allow small fractions, smaller units of “wei” and “gwei” are
used. Wei is the smallest possible unit on Ethereum and it is 10−18 ETH. In other words,
1 ETH = 1 000 000 000 000 000 000 wei. Gwei is short for giga-wei, or billion weis. 1 ETH
is then 1 000 000 000 gweis.

2.4.2 Accounts

Accounts are the main users of the network. Although miners, or nodes, can also be
thought of as users, their function is different as their purpose is only to keep the system
running. In Ethereum there are two types of accounts, externally-owned accounts and
contracts. Both types of accounts can receive, hold and send ETH and tokens, but there
are also some crucial differences.

External accounts are the ones that humans can control. They can be controlled by anyone
that has the private keys to sign transactions on behalf of the account. Public key is the
account address, against which other participants of the network can check the validity of
the transaction signatures and also send tokens to. External accounts are the only ones
that can initiate transactions. This means they can request transactions from themselves
to other external accounts or to smart contract accounts. Transactions between external
accounts can however only be ETH or token transfers. Generating external accounts is
free, since in practice anyone can generate public and private key pairs and transfer tokens
to that public key.

Contract accounts or broadly speaking, smart contracts, have an expanded utility but
they cannot be changed or controlled by anyone once deployed on the chain. They can be

10 CHAPTER 2. BACKGROUND ON SMART CONTRACTS

thought of as autonomous accounts living on blockchain. Key difference from external ac-
counts is that contract accounts are deployed with the code that dictates their behaviour.
They also have storage which can be utilized for storing their internal state between exe-
cutions. As they are autonomous and not controlled, they cannot execute unless explicitly
invoked. But once invoked by sending a transaction to them, the code involved with them
executes, and they can in practice do about anything. This includes new transactions,
creating new contracts, and anything else the code tells them to do. Note that although
contract accounts cannot initiate transactions by themselves, they can indeed create and
execute new ones once invoked. Deploying (creating) a contract account has a cost since
now the storage of the network is involved. Smart contracts are discussed a bit deeper in
the section 2.4.4 as their security is the main concern of this paper.

In Ethereum, all accounts have four main fields. Nonce is a counter that indicates the
number of transactions sent from the account. It ensures all the transactions are processed
only once. Balance, as one might guess, is the amount of ETH that the account is currently
holding. It is denominated in wei. Last two fields are used only by contract accounts.
storageRoot, or storage hash, is a hash identifying the root node of the storage tree structure
that holds the contract’s internal state. Lastly, codeHash points to the code of the contract
in the state database that contains the code that is executed when the contract is invoked.

Another commonly used term closely related to accounts is “wallet” or “crypto wallet”.
A wallet however is only the key-pair associated with the user-owned accounts and not
the account itself. It can also refer to a piece of software that holds the private keys and
handles the signing and communication with the network on behalf of the user.

2.4.3 Transactions and Gas

Transactions are the bread and butter of every cryptocurrency protocol. They are used
to update the underlying ledger. In the case of Ethereum and similar protocols, this also
means they are used to update the distributed state machine. In their simplest definition
they are cryptographically signed requests from accounts to the network, the most common
use case being transferring ETH from one account to another. Ethereum documentation
is a bit ambiguous on the definition as it is first said that a transaction is “an action
initiated by an externally-owned account” and later on that also contract accounts “can
send transactions over the network”. For the sake of simplicity, in this thesis a transaction
is defined as the request to change the state of EVM.

2.4. ETHEREUM 11

Before anything happens, the transaction must be formed and signed by an account.
Ethereum transactions contain seven fields, the most important ones being recipient, sig-
nature and value. Recipient is the address of the receiver of a transaction, which can be
externally-owned or a contract. Value is the amount of ETH which the sender wants to
send, denominated in wei. And signature is the proof that the one who sends the transac-
tion request actually owns the private keys of the sending account. An optional field data
is used to include arbitrary data in the transaction that is stored in the blockchain with
the transaction.

Last three fields, gasLimit, maxPriorityFeePerGas and maxFeePerGas are used for pricing
in the computation and storage requirements for executing the transaction. GasLimit is
the maximum amount of gas units that the sender is willing to pay for a transaction.
These gas units refer to the computational steps required in execution of transaction as
well as data units stored in the blockchain [30]. MaxPriorityFeePerGas is an extra tip
paid to the miner per gas unit consumed. Higher tip naturally gives a transaction higher
priority as miners prefer to include transactions with higher tips. This is also the only fee
miner gets apart from reward for successfully mining a block. Lastly, maxFeePerGas can
be used to limit the maximum price that sender is willing to pay for gas. This is the sum
of maxPriorityFeePerGas and baseFeePerGas, which is per block value set by the protocol
based on the demand of the network.

With these last three variables, the sender can limit the maximum number of steps for
computation as well as maximum price paid per gas unit. This protects the sender from
unexpected costs. Difference between limits set and actual gas used is returned to the
sender. In case gas runs out when executing the transaction, the miner keeps the tip but
everything else is returned to the sender. State is also not changed. As mentioned when
the EVM and native token were discussed in (section 2.4.1), these gas fees are also needed
to prevent malicious actors from consuming network resources to prevent legit usage.

After the transaction object is formed, it then needs to be sent and broadcast to the miner
network. Transaction gets an identifying hash and it is included in the pool of all pending
transactions. To get validated and executed, a miner must include it in the mined block.
Only after the transaction is in the block and in the blockchain, can it be considered
successful. There is still a small possibility even after this that some fork of the chain
becomes the longest one and invalidates the transaction. However as the new blocks get
added, the chance for this to happen rapidly decreases, thus “cementing” the transaction
in the blockchain. To indicate this, transactions have a number of “confirmations” which
is the count of blocks mined after the one the transaction is in.

12 CHAPTER 2. BACKGROUND ON SMART CONTRACTS

2.4.4 Ethereum Smart Contracts

As stated before, a smart contract can be thought of as an autonomous account living in
the blockchain with its code and state. The code deployed with it dictates its behaviour
and it cannot be changed. It has to be deterministic since all the nodes must end up
with the same result given the same input. Otherwise consensus would be broken. It also
has to be permissionless, meaning anyone can call them by sending a transaction to the
contract’s address. Anyone can also deploy smart contracts as long as they have enough
ETH to pay for it.

One way to think of smart contracts is as open APIs. Web applications can then build on
top of them and use them as backends. This type of applications are called decentralized
applications, or dapps. Dapps aim to benefit from the same things as cryptocurrency proto-
cols in general. Security, privacy and data integrity without need for trusted third parties
are useful traits in almost any application. Immutability and robustness of cryptocurren-
cies is still not without drawbacks. Immutability makes it hard to maintain smart contract
code. Scaling is hard since executing on the EVM is very resource expensive. Frontend
can still be more or less centralized, thus somewhat countering the blockchain mantra of
decentralization. On top of all, executing is really slow since every call needs to be mined
into the blockchain.

Openness of the smart contracts makes them still really attractive for many use cases since
it is easy to reuse and combine them. Contracts can even deploy other contracts. This
formation of intertwined smart contract systems has proven to be useful in many fields,
the most prominent being decentralized finance (DeFi), where contract based systems are
challenging financial institutions like banks and exchanges.

As the code and transactions are run on miner nodes, the EVM needs to provide an
abstraction between executing code and executing machine. The EVM uses a set of opcode
instructions to do this. Smart contract code, when deployed, has to be compiled to EVM
bytecode representing these instructions. EVM itself executes as a stack machine with a
depth of 1024 items and each item as 256-bit word. Stack machine simply means that all
the computation is performed in the stack data structure instead of separate registers.

At the time of writing this, there are two main programming languages used for Ethereum
smart contracts, Solidity and Vyper. From these two, Solidity is the more robust one;
object-oriented, statically typed, curly-bracket language which supports inheritance, li-
braries and user-defined types. Vyper on the other hand is a python-like, strongly typed

2.4. ETHEREUM 13

language with stripped capabilities compared to Solidity. Its aim is to make contracts
more secure and easier to audit via simplicity.

Contracts naturally have to preserve some information during the executions as well as
between them. For this reason there is memory for runtime data and storage for persistent
data. Any contract data must be assigned to one of these locations.

Storage is simply a collection of contract’s state variables that get permanently saved
on the blockchain. They have to be declared with a type so that storage needs can
be calculated. Storage itself is a key-value store which maps 256-bit words to 256-bit
words [45]. Head of this structure is pointed at by the storageRoot field of the contract
account.

Memory variables are used for runtime data. As they are not saved on the blockchain,
they are much cheaper to use. Runtime memory is allocated in 256-bit wide sectors which
can be accessed at byte level or as whole sectors. Gas is paid on sector basis every time
read or write expands to a new sector, or in other words, when a new 256-bit wide sector
is allocated.

Smart contract functions can be categorized in a few different ways. First of all, they
can be split into internal or external functions. Internal functions can only be called
directly in the contract code and they are basically simple jumps inside the EVM. External
function calls on the other hand will always need a transaction, which is often referred
as a “message call” if the sender is a contract account. User controlled external accounts
can only call external functions by sending transactions to them. Functions can also be
public or private. This means the same as in traditional programming. Public functions
can be called from anywhere and private functions only from the same contract. Take
note that public and private distinction is a visibility definition, but internal and external
distinction only matters if the program is making a new EVM call. Lastly, functions can
be split into view functions and write functions. View functions do not modify the state
of the contract. Write functions, as the name suggests, do. There is also a special type of
constructor functions, which are only called when a contract is first deployed.

To give a more concrete example of Ethereum smart contracts, a code snippet is in order.
Listing 2.1 shows a small contract which demonstrates storage usage. First line tells
source code licence, which is important since smart contracts are open source by default.
Second line tells the Solidity version to prevent compiling with a possibly breaking version.
Contract itself features the state variable called storedData, and two public functions.
Variable is typed as uint to tell the compiler exactly how much storage is needed. From

14 CHAPTER 2. BACKGROUND ON SMART CONTRACTS

the two functions set and get, set is a “write” function for modifying the variable and
get is a “view” function for retrieving its current value.

1 // SPDX -License - Identifier : GPL -3.0
2 pragma solidity >=0.4.16 <0.9.0;
3

4 contract SimpleStorage {
5 uint storedData ;
6

7 function set(uint x) public {
8 storedData = x;
9 }

10

11 function get () public view returns (uint) {
12 return storedData ;
13 }
14 }

Listing 2.1: Smart contract example for storing and exposing a single variable [45].

3 Smart Contract Attack Types

Before diving into actual attacks and vulnerabilities, some clarification is needed in what
is actually meant by smart contract attacks in this thesis. As explained in the chapter 2,
smart contracts are pieces of code that are deployed into a blockchain and are executed
by the nodes in the cryptocurrency protocol. In a sense smart contracts then lie between
all the applications using them and the blockchain technology itself.

This thesis focuses solely on attack types that use vulnerabilities in the smart contract
code, leverage the blockchain technology properties, or need both combined. Even if the
vulnerabilities in the underlying blockchain technology might not be directly related to
the smart contracts, those vulnerabilities are still commonly used to target smart con-
tracts. Mechanics of the blockchains are also relevant to many of the attacks even if the
vulnerability itself might lie in the smart contract code, so mechanics of the blockchain
technology and its vulnerabilities must be discussed.

Since the applications using smart contracts can in practice be anything at all, attacks
leveraging off-chain applications to attack smart contracts are left out from this thesis.
This includes attacks like phishing, fake websites or hacked credentials.

Most of the discussed attacks types need both the technology properties and vulnerable
smart contract code to be effective. These include Re-entrancy in section 3.1, Timestamp
Dependence in section 3.2, Transaction Ordering Dependence in section 3.3.1, DoS With
Revert in section 3.5, Insufficient Gas Griefing in section 3.6, Forcibly sending Ether To A
Contract in section 3.7 and Oracle Manipulation in section 3.8. Attacks leveraging only the
underlying blockchain technology and its properties are Block Stuffing in section 3.3.2 and
Block Reorganization Attacks in section 3.3.3. Finally, the only attack type that exploits
just the contract code is Integer Overflow and Underflow discussed in section 3.4.

3.1 Re-entrancy

Re-entrancy is probably the most iconic exploitable smart contract vulnerability. It was
the cause of the famous Ethereum attack against a contract named “The DAO”, which led
to a loss of over 3.6 million ETH. The attack was so severe that the Ethereum community

16 CHAPTER 3. SMART CONTRACT ATTACK TYPES

voted to return the state of the blockchain and EVM to the one before the hack, causing
the original hacked version of Ethereum to continue as a fork called Ethereum Classic. [34]

Re-entrancy itself means that multiple invocations of a function can run concurrently, in
other words, a function can be called again even when it is in the middle of execution.
With smart contracts this can happen when a smart contract calls another smart contract
in its code and waits for this new call to finish before continuing execution. The receiving
contract of this call can then execute its own, and possibly malicious, code and recursively
call the original contract again. However the original contract can now be in exploitable
state because it is in the middle of the original execution. [31]

In the EVM, the transfer of control to the malicious contract is possible because of fallback
function. Fallback function is executed when a contract is called but no function matches
the call, or when a contract receives ETH transfer [41]. The latter is the more usual case
since value transfers are much more common than calling function that does not exists,
which is rarely a wanted behaviour.

1 contract Victim {
2 mapping (address => unit) public balances ;
3

4 function deposit () public payable {
5 balances [msg. sender] += msg.value
6 }
7

8 function withdraw (uint amount) public {
9 require (balances [msg. sender] >= amount);

10 (bool sent ,) = msg. sender .call{value: _amount }("");
11 balances [msg. sender] -= amount ;
12 }
13 }

Listing 3.1: Victim smart contract.

To understand how the re-entrancy attack works in practice, an example of an exploitable
smart contract can be seen in the listing 3.1. Contract stores ETH for its users in the key-
value table called balances, seen on line 2. Every user of the contract has their address
mapped to the sum they have stored previously by calling the deposit function on line
4. Stored ETH is added to the balance of the contract account itself. The re-entrancy
vulnerability is in the function withdraw on line 8. On line 10, the contract transfers funds
to the caller of the function if it had enough balance in the balance table. This will trigger
the fallback function of the caller if it is a smart contract. Now the contract will wait for
this call to return before actually subtracting value in the balance table on line 11.

3.1. RE-ENTRANCY 17

If this contract would be deployed and had users store funds in it, it would be easily
exploitable by crafting a malicious smart contract. Such a contract can be seen in the
listing 3.2 and the exploit itself is executed by calling the attack function on line 10. To
start off, the attacker needs some balance on the balance table. This is done by storing
some value on the victim contract by simply calling its deposit function. The vulnerable
withdraw function is called after this.

1 contract Attacker {
2 Victim public victim ;
3

4 fallback () external payable {
5 if (victim . balance >= 1 ether) {
6 victim . withdraw (1 ether);
7 }
8 }
9

10 function attack () external payable {
11 require (msg.value >= 1 ether);
12 victim . deposit {value: 1 ether }();
13 victim . withdraw (1 ether);
14 }
15 }

Listing 3.2: Attacker smart contract.

Now the victim contract checks the balance from the table and transfers funds back, trig-
gering the fallback function on line 4. At this point the execution of the victim contract
is halted and balance is not yet subtracted. Attack contract abuses this halted state by
calling the withdraw function again and since the balance still checks out, funds are un-
intentionally transferred again. This triggers yet another fallback function execution,
which calls withdraw function again, et cetera. This cycle repeats recursively until balance
check on the line 5 informs that the attacker contract has drained the victim contract from
all its funds. After this the whole call stack unwinds and the balance is finally subtracted.

Above example is called cross-function re-entrancy, since originally called function and
repeatedly called function are different but share internal state. Variation where only one
function of victim contract is used is respectively called a single function re-entrancy [13].
From these two, the cross-function re-entrancy vulnerabilities are obviously much harder
to detect since they involve more components.

18 CHAPTER 3. SMART CONTRACT ATTACK TYPES

Mitigations: Better coding practices. To mitigate re-entrancy exploitation, there
are few things that can be done. First thing is that developers should understand how
re-entrancy works and pay more attention to the code they are writing. A great practice
for developers, listed in Ethereum documentation, is to simply design contracts so that
they “neither send ETH nor call untrusted contracts”. By doing this, the control of
execution stays within the trusted contracts and malicious code never even has a chance
to recursively call back. If sending ETH or calling untrusted contracts must still be
done, then it is really up to the developer to check the control flow so that possibility
for exploitation is mitigated. [17] For example, to fix the code in listing 3.1, one could
subtract balance first and only send ETH after this. This solution also follows what
blockchain company ConsenSys recommends for re-entrancy prevention [13]. They state
that all internal work, including state changes, should be completed prior to calling any
external function, including sending ETH. Other possible way to fix the example would
be to check that the caller is never a smart contract [17]. This would however limit the
usefulness of the contract.

Mitigations: Technology changes. Smart contract technologies seem to not be in-
herently able to prevent re-entrancy exploits, as they are designed to be as versatile as
possible. A simple solution would be to allow locking of the contract or function for the
duration of the execution so it cannot be called again. However, this can already be done
by coding and would be hard to implement on the technology level unless the blockchain
is brand new.

Mitigations: Tools. One prominent way to prevent re-entrancy bugs, that is also widely
used for conventional coding, is automated tools. Current tools range from static analysis,
to dynamic and symbolic analyzers and fuzzers [43]. Even deep learning have been pro-
posed and studied as one solution in catching smart contract bugs and vulnerabilities [41].
Automated tools have already found their place as an irreplaceable help in writing secure
smart contracts.

3.2 Timestamp Dependence

When a miner proposes a new block to be added into the blockchain, it must assign a
timestamp to it. The timestamp of the block will have to fulfil two conditions to be
accepted by the network. It can never be earlier than the timestamp of the previous
block. [17] It should also not be too far in the future. For example, popular Ethereum

3.3. FRONT-RUNNING 19

implementations Geth and Parity reject timestamps that are more than 15 seconds after
the timestamp of the previous block [13]. Within these limits the timestamp is still fully
controlled by the node mining the given block.

Allowing an arbitrary node to decide the block timestamp may not sound that critical in
general, but problems can arise when the timestamp is used in smart contract code. In
Ethereum, the timestamp can be accessed via global variable called “block.timestamp” [17].
A common example where the usage of this variable might be problematic is when it is
used as a seed for a random number. Now the node that mined the block can pick any
timestamp in the valid time window and try to find one that favours the outcome it wants.
Or even worse, the node can pick a timestamp that gives the exact outcome it wants. [43]
Block timestamps should therefore never be considered truly random or exact, and critical
operations should never trust on them [31].

Mitigations: Better coding practices. To promote better coding practices, ConsenSys
recommends something called “the 15-second rule” [13]. What this means is that times-
tamp should only be used in a way that 15 second variation in the timestamp does not
affect the outcome. This essentially makes it impossible for a miner to affect the result of
the code execution even if it would tamper with the timestamp. Another suggestion is to
use block numbers instead of timestamps, since in most cases the block number multiplied
by block produce time serves the same purpose as the block timestamp [31]. Note that it is
impossible for a node to modify the block number as it is simply a count of all the blocks in
the blockchain. However, this solution is susceptible to chain reorganisations and changes
in block produce time, so for example Smart Contract Weakness Classification Registry
(SWC Registry) do not recommend it [46]. Instead, they recommend developers to take
caution when using block values like block number and timestamp, as they are not precise,
or to use oracles. Oracles are services which act as interfaces between non-deterministic
real world and deterministic on-chain smart contracts [9]. They aim to solve the problem
of accessing off-chain data or delivering data off-chain in a deterministic way.

Mitigations: Technology changes. Because timestamp is mainly needed by miners for
block validation, one viable solution would be to restrict smart contracts from accessing
it altogether [31]. Being able to access timestamp is not essential for smart contracts as
there are better ways to obtain random seeds.

20 CHAPTER 3. SMART CONTRACT ATTACK TYPES

3.3 Front-Running

Front-running as a term originates from the financial world. In that context it means
trading of an asset by a broker, which tries to benefit from knowing about an upcoming
transaction that is going to affect the asset price [35]. Broker can use this knowledge to
execute its own transaction first, hence the term “front-running”. For example, if a stock
broker gets a large order from a client to buy stock “X”, it can first buy the same stock
itself, and then sell right after the client’s buy order is executed, thus making instant
profit from a price difference. This works because typically the asset price increases if it
is bought a lot.

In a cryptocurrency world, “front-running” has a bit broader definition and can be thought
of as an umbrella term for many different activities. However, the main idea remains that
some actor cuts in line of other transactions to gain benefit, most of the time based on
some vital knowledge about those other transactions [13].

It is good to note at this point that although front-running is highly illegal in traditional
finance, with cryptocurrencies it is generally considered acceptable and in some cases even
beneficial for the common good. Good examples are arbitrage and sandwich trading, which
are explained in more detail later in section 3.3.1. Arbitrage can ensure that all users get
the best and most correct prices for their tokens. On the other hand, sandwich trading
makes the price worse for users, and benefits only the front-runner. [17] Because of this,
when the term “attack” is used in front-running context, it refers more to some action
leveraging front-running than an action with a malicious purpose. Morality of practicing
front-running is therefore not dependent on the technical details.

What makes front-running so easy with common cryptocurrency protocols is that anyone
can see all the transactions that are requested as they are in transaction pool waiting to
be included in a block [17]. Then to actually cut in line, one can offer miners a really high
tip to improve the chances that their transaction is run before the others [13]. This is the
usual way that front-runners operate. These type of actors are also commonly referred as
“searchers”, as they are often bots that hunt for front-running opportunities. Searchers
can also front-run other searchers by searching the transaction pool for their font-running
attempts and then copy and outbid them. This type of searchers are called generalized
front-runners. Because of this bidding competition, a big part of the value that searchers
make is actually going to miners as tips. And as bidding gets more competitive and
searchers become more optimized, they are willing to sacrifice bigger margins just to get
their transactions executed. [17]

3.3. FRONT-RUNNING 21

Another possible way to do front-running is to actually be the miner that mines the block,
as the miner has all the power to decide which transactions to include in the generated
block and in which order. Extra value generated by miners by doing front-running and
reorganizing transactions is called Miner Extractable Value or Maximum Extractable Value
(MEV), and it includes all the value generated from block production apart from block
reward and gas fees. Value generated by searcher bots is usually also counted as MEV,
since it is gained by front-running and ordering of transactions. [17]

On top of exploiting the ordering of transactions inside the block, miners can also gain
value from trying to rewrite the tip of the blockchain and rewind history [16]. This way
they can benefit from previous MEV opportunities as well as generate new ones from
reorganising the whole chain. Reorganizing of blocks is a serious concern with potential
to destabilize entire protocols. Two cases of reorganization attacks, Time-Bandit Attack
and Undercutting Attack, will be discussed section 3.3.3.

Now that the basics of front-running are explained, one could argue that front-running
is actually not a smart contract attack, since it is the cryptocurrency protocol itself,
together with miners and transaction bidding, that makes cutting in line possible in the
first place. However, targets of front-running are in practice always smart contracts,
and the vulnerability itself lies in the fact that outcome of contract execution is usually
dependent on order of transactions [16]. This is why the vulnerability itself that front-
running exploits is called Transaction Ordering Dependence. General case of transaction
ordering dependence, with common examples is discussed in section 3.3.1 and a more
specific attack of Block Stuffing in section 3.3.2.

3.3.1 Transaction Ordering Dependence

As the name suggests, Transaction Ordering Dependence means there exists some sort
of dependency between transactions, and the order they are executed has an effect on
the outcome. This creates race conditions, where firstly executed transactions can have
benefit over others [46]. In this context the dependence itself should be considered as a
vulnerability in the contract code, and front-running activities that try to exploit it are
the actual attacks. It is also good to note that practically every smart contract has some
potential for transaction ordering dependence, although most cases are benign. [16]

Attacks exploiting transaction ordering dependence can be further split into displacement
attacks and insertion attacks [13]. In displacement attacks all that matters is that the

22 CHAPTER 3. SMART CONTRACT ATTACK TYPES

attacker gets to execute first. It does not matter whether other users execute their trans-
actions or not. On the other hand, in insertion attacks, the profit is generated from the
other transactions that are run after or before the front-runner.

A common target for displacement attacks are contracts to which one can submit infor-
mation for a reward [46]. A typical example are bug bounties, where the front-runner can
copy the submission from transaction in the transaction pool and submit it itself to steal
the reward. Another typical target is registration services that work on the first-come,
first-served basis [13]. The front-runner can again simply steal the registration transaction
and execute it itself before the original one to reap the benefits.

Displacement attacks are still most known from arbitrage, which is type of attack that
front-running bots execute practically all the time. Arbitrage is a common activity in
traditional finance, so it is no surprise that the same principles also work with cryptocur-
rencies and decentralized finance (DeFi). Quite simply, “arbitrage” means purchasing the
same asset in one marketplace and selling it on another simultaneously, with the aim to
benefit from the price difference between marketplaces [20]. As DeFi is heavily built onto
decentralized exchanges, DEXes, which are token exchanges built on smart contracts, it
is relatively easy to find and benefit from arbitrage opportunities. What makes DEX
arbitrage even more tempting, is that it can be executed atomically and totally risk-
free. [17] This is done by coding the transactions into a smart contract, and because of
how blockchains and smart contracts work, those transactions will always be executed in
a all-or-none basis [16]. This means that it is impossible for the front-runner to end up
with unsold tokens if this kind of proxy contract is used.

To further boost the profits when using proxy contracts, one can use flash loans. The
basic idea of a flash loan is that borrower does not need to provide any collateral for the
loan since it is paid back in the same transaction [50]. For example, with the arbitrage,
this can be used in the contract code so that loan is taken right before the arbitrage and
paid back right after. Now, since the code is again executed on an all-or-none basis, the
lender is guaranteed to get its money back and the borrower gets a massive leverage to the
arbitrage with the loan. Flash loans are also commonly used in all sorts of other schemes
and attacks to boost the effectiveness.

Compared to displacement attacks, insertion attacks are more similar to what is meant by
front-running in traditional finance. Important distinction between displacement attacks
and insertion attacks is that in insertion attacks the target transaction have to be executed
for front-runner to be able to make profit [13]. When the front-runner’s transaction exe-

3.3. FRONT-RUNNING 23

cutes right after the target transaction, the attack is usually referred to as back-running
instead of front-running [48]. This can still be thought as a sub-case of front-running since
the actor front-runs other transactions in the transaction pool and uses information of
other transactions for its benefit.

As an example of an insertion attack, consider a scenario where the target transaction
wants to buy asset X for some given price. Now, if the front-runner can find the buying
opportunity, it can buy the same asset right before the target transaction and sell the
asset to the target at a higher price. [13] Other common example is sandwich trading. In
sandwich trading a searcher tries to find large trades in the transaction pool. If found,
it then tries to execute buy order right before the target transaction, and sell right after
it to benefit from the rise in the asset price. Insertion attacks in general are riskier than
displacement attacks because they cannot be executed atomically. [17]

In addition to previously mentioned examples, there are many other different ways for
profiting from transaction ordering dependence. Searchers and miners are also constantly
trying to find new MEV opportunities for exploiting other transactions and do front-
running to extract maximum profit for themselves.

Mitigations: Better coding practices. To mitigate the exploitation of transaction
ordering dependence, a few things can be done. In case of insertion attacks, it is enough
to ensure that when the transaction is actually executed, the state of the contract is the
same that the sender of the transaction expected it to be. In practice this means no
front-runner got to execute in between. This prevention can be done with a little bit of
extra information in the contract state and transaction. For example, if the contract state
has a counter for total transactions the contract has received, the sending transaction can
include the count it expects and the contract can reject the transaction if the two values
do not match [14].

Mitigating displacement attacks is a bit trickier and depends on the actual case. When
submitting information for a reward, a pattern called commit-reveal scheme is usable [54].
First the submitting party calculates a hash from the submission and some identifying
information, and then submits the hash. Only after the hash is mined into a block, the
actual submission is revealed. Now anyone can recalculate the hash and check that the
party posting the submission really was the original submitter. On the other hand, some
things like arbitrage, for example, are practically impossible to counter, even if it would
be desirable.

24 CHAPTER 3. SMART CONTRACT ATTACK TYPES

Mitigations: Tools. Front-running and MEV extraction has also some adverse side
effects like network congestion and high gas prices because of competing searchers and
front-runners. A popular Ethereum project aiming to ease the situation is called Flash-
bots [38]. One of their tools, MEV-Geth, expand the Ethereum miner software so that
the gas price bidding happens off-chain and in sealed manner. “Sealed” here means that
transactions are not exposed in to the public transaction pool or other searchers, which
makes generalized front-running impossible [17]. It also eases the congestion since only
the successful front-running attempts get mined [38].

3.3.2 Block Stuffing

Block Stuffing is a special subcase of front-running. Instead of gaining benefit from other
transactions or being first, the aim is simply to fill blocks with own transactions and
prevent other transactions from taking place [13]. This makes block stuffing also a denial
of service (DoS) attack.

Block stuffing works because blocks have a predefined maximum size based on network
congestion, denominated by block gas limit [17]. This is why the attack is also sometimes
called DoS with block gas limit [46]. The attacker places computationally heavy transac-
tions with high gas price, and essentially pays to fill the block gas limit and to prevent
other transactions from taking place. Block stuffing can also happen unintentionally if a
smart contract is programmed carelessly. For example, looping over unknown size arrays
can end up being really expensive and fill up the block gas limit [46].

A famous attack involving block stuffing was composed against a smart contract game
called Fomo3D in 2018 [13]. Fomo3D had a simple idea of rewarding the last address that
bought a spot in the game. Price to enter rose every time someone bought a spot and
all the buy-ins were added into the grand prize. Each buy-in also added some extra time
into a decreasing timer which marked the end of the game. Idea was that after no-one
would want to enter anymore and the timer reached zero, the last player who bought a
spot would win the game and the prize. The attack itself worked so that after buying
the last spot, the attacker filled the following blocks with transactions to specially crafted
attacking contracts. This in turn used up all the block gas limit in those blocks preventing
anyone else from buying a spot in the game. The attack cost around 10 thousand dollars
in the ETH at the time, but allowed the attacker to walk away with around 3 million
dollars worth of ETH [51].

3.3. FRONT-RUNNING 25

As the previous example demonstrates, block stuffing is an effective attack against any
contract that requires an action within a defined time limit. Another good example is
public auctions, where the highest bid wins after the timer ends. However, block stuffing
can be really expensive as the cost of the attack is directly proportional to how long the
attacker has to block other transactions, or in other words, it is directly proportional to
the number of blocks stuffed [13]. With current gas prices it can be expected to be really
expensive, so the reward must also be great for block stuffing to be profitable.

Mitigations: Better coding practices. Since the attack will cost the attacker a lot of
money, one good way to avoid getting attacked is to make the attack even more expensive.
This can be done, for example, by using bigger time intervals which would require the
attacker to stuff more blocks. Another way is to make it harder for other contracts and
external parties to access the contract data, so they cannot use it for their benefit. For
example, Fomo3D attacker used the game contract to find out whether they were the last
participant. Without that information the attack would have been much harder. [51]

To avoid accidental block stuffing via badly designed contracts, one must simply be more
cautious. For example, looping over unknown size or dynamic data structures should be
avoided [46].

3.3.3 Block Reorganization Attacks

Apart from reordering transactions, another way to create value and do MEV extraction
is to reorganize whole blocks. This type of activities can be categorized as Block Reorga-
nization Attacks. Successfully reorganizing blocks will naturally require consensus of the
network. Obvious way of achieving this is the 51%-attack which was briefly discussed in
section 2.2.1. However, instead of actually owning half of the mining power of the network,
the attacker can also incentivise other miners to accept the attacker’s version of the chain
or downright pay the miners to attempt reorganization. Block reorganization attacks will
also require forking of the blockchain as the idea is to “rewrite history” by replacing the
current tip of the chain by the one the attacker wants. This is why block reorganization
attacks also count as forking attacks.

First and less serious of the two examples of block reorganization attacks is the Undercut-
ting Attack. As with all block reorganization, undercutting attacks can only be performed
by miners. If the last mined block is profitable enough, instead of trying to mine the new
block after it, a miner can try to “undercut” the last block [8]. It does that by forking

26 CHAPTER 3. SMART CONTRACT ATTACK TYPES

the high profit block and trying to mine it again itself. If successful, the miner can then
include only some of the high value transactions, leaving some of the profits as incentive
for other miners. Other miners can then decide if they want to build onto original chain
or the undercutting fork, which will now likely have more profits to take as transaction
fees.

In practice, Undercutting Attacks only affect the last block of the blockchain as it is not
practical for miners to attempt to mine the fork if the original chain is already ahead.
Therefore Undercutting Attacks can also only leverage MEV from new blocks for their
benefit. On the other hand, it is also possible to “rewind” history and exploit old MEV
opportunities in the old blocks as well as steal the MEV already extracted by others. This
is called a Time-Bandit Attack [16].

The idea itself is really simple. If the profit from stealing and extracting MEV from the
old blocks exceed the rewards for mining a new block and the cost of the attack, the
time-bandit attack is feasible [16]. Like with undercutting attack, to be successful, the
time-bandit attack requires consensus of the network to accept this new rewound version of
the blockchain as a trusted one. Now that many blocks need to be re-mined instead of just
the last one, the attacker will need more than just its own computing power and leftover
transaction fees to make this happen. In reality, what is needed to alter the consensus
is for majority of miners to team up and fork the blockchain from the point wanted and
then mine up to the height of the original chain [16].

Example of a successful time-bandit attack can be seen in figure 3.1. In upper diagram a),
the miners participating in the attack, colored in red and labeled as “bad”, have forked
the blockchain at the block number 9001 and have started to reorganize all the blocks and
transactions from that point. Legitimate miners, colored in green and labeled as “legit”,
continue to mine the longest version of the blockchain at block number 9003. If the bad
miners mine enough blocks so that the fork becomes longer than the original chain, the
attack is successful and all the legitimate miners will also switch to the new fork. This can
be seen in the lower diagram b). Note that this will render the tip of the original chain
and all blocks and transactions in it invalid. In the figure these are blocks number 9002
and 9003. Attackers also reorganize old transactions and place new ones to get maximum
profit from attack. For example, second transaction with hash 0x424a is same in both
original block 9002 and fork’s block 9002b, but the first transaction before it is changed.
Transaction 0x424a can then cause, for example, an increase in a price of an asset and the
new transaction 0xb28b executes attacker’s own buy order right before it.

3.3. FRONT-RUNNING 27

Block#9001

tx1: 0x83fc...

tx2: 0x5bef...

etc...

Block#9002

tx1: 0x3d2a...

tx2: 0x424a...

etc...

legit

legit

legit

bad

bad

bad

Block#9003

Being mined..

Block#9002b

Being mined..

Block#9000

tx1: 0x9762...

tx2: 0xbc0c...

etc...

bad

Block#9002b

tx1: 0xb28b...

tx2: 0x424a...

etc...

Block#9003b

tx1: 0x8f02...

tx2: 0x3d2a...

etc...

Block#9004

tx1: 0x36c6...

tx2: 0xf45c...

etc...

Block#9005

Being mined..

Block#9001

tx1: 0x83fc...

tx2: 0x5bef...

etc...

Block#9002

tx1: 0x3d2a...

tx2: 0x424a...

etc...

Block#9003

tx1: 0x36c6...

tx2: 0xb28b...

etc...

Block#9000

tx1: 0x9762...

tx2: 0xbc0c...

etc... legit legit

legit

badbad

bad

bad

a) Start of time-bandit
attack

b) State after successful time-bandit attack

Figure 3.1: Phases of successful time-bandit attack. Diagram a) shows the starting state where miners
participating in the attack fork the blockchain at the wanted point and start to mine this new fork.
Diagram b) shows the state after successful attack, where the attacker’s fork has become the longest one.
Now all miners accept it as the most trusted version of the blockchain and start mining new blocks to it.

Previously, the risk of time-bandit attack happening was considered slim, since it was
thought that miners would not want to destabilize the whole protocol and tank the price
of the token by participating in the attack [28]. After all, it is the miners who benefit the
most from the healthy protocol via block rewards and fees. However, minor time-bandit
attacks have already happened and nowadays even tools have been built that allow paying
miners for an attack via smart contracts in case the attack were to be successful [26]. One
example of such a tool, Request for Reorg [1], works by locking in some amount of ETH as
reward in a smart contract with the rewind request itself. Then, when miners rewind the
blockchain, they include this request transaction as the first one (because the blockchain
state is rolled back), and when they have mined enough blocks on this new fork, they can

28 CHAPTER 3. SMART CONTRACT ATTACK TYPES

claim the reward. For the rewards to be of any use, the rewound fork must also become
the longest and therefore most trusted version of the blockchain. This adds an incentive
for participating miners to keep mining blocks to this new fork. It is also good to note
that it is not possible to rewind past the block containing the reward contract deployment
as the reward function itself would not exist in that case.

To give an idea of what a real life time-bandit attack could look like, the authors of the
famous “Flash Boys 2.0” -article [16] gave a theoretical example of MEV opportunity via
DEX rewinding: Considering a scenario where the price of an token rose from 1 USD to
3 USD with 1M USD in trade volume, a theoretical 2M USD in MEV can be made with
the price difference (1M * (3 USD - 1 USD) = 2M USD). To do so, the attacker can buy
mining power to rewind the history so that it is on the buy-side of the trades before the
spike, netting the 2M USD gross profit for itself. If the cost of buying the mining power
is less than 2M USD, the attacker makes profit.

Nowadays the scale of time-bandit attack would most likely be much larger since the
cost of buying the required mining power is really high. Tracking site for 51%-attack
costs, Crypto51, estimates that renting enough mining power for an one hour attack on
Ethereum with prices at the end of January 2022 would cost around 1,5M USD [15]. The
attack would also require that enough miners were willing to participate in this kind of
action. From this it follows that time-bandit attacks are more likely to happen on smaller
protocols since there are less miners and it is cheaper to buy the mining power. This has
been seen in practice since there have recently been successful attacks on smaller chains like
Bitcoin Gold [15]. A big portion of mining power rental cost can, however, be subsidized
by stealing all the other MEV opportunities and block rewards from the past blocks, so
attacks on big protocols like Ethereum are still possible [16]. Also the built-in decrease
in block mining rewards makes it increasingly compelling for miners to participate in this
kind of MEV extraction [19][8].

Mitigations: Technology changes. Out of all attacks explained in this thesis, block
reorganization attacks pose the biggest threat to any blockchain protocol as they directly
compromise the whole idea of blockchain immutability. Time-bandit attack is also such a
large-scale attack that the mitigations must be done on the technology level.

The most prominent mitigation is moving away from Proof of Work -algorithms, where
miners have the power to do block reorganization. For example, at the time of writing
this, Ethereum is planning on migrating to Proof of Stake -type of consensus algorithm. In
Ethereum’s version of Proof of Stake, a pseudorandomly sampled set of nodes is picked as a

3.4. INTEGER OVERFLOW AND UNDERFLOW 29

committee, where one node proposes a new block and rest of the committee validates it [17].
As the committee is picked randomly from all the nodes, it is really hard for an attacker
to get majority of the validators and perform even one block reorganization [27]. This
makes undercutting attacks much harder than in Proof of Work based protocols. Time-
bandit attacks are also much harder since blocks deeper than 64 blocks in the blockchain
are considered “finalized” and truly immutable, so any conflicting blocks would cause
a broken system [27]. Reorganizing up to past 64 blocks is still possible, but it would
require that enough nodes controlled by the attacker are randomly picked so that they
form the majority of validators for all those blocks. To further discourage bad behaviour,
Ethereum’s Proof of Stake uses a slashing mechanism that penalises those validators who
do not follow the rules. If validator is caught on behaving badly, it can lose part of or all
of its stake which is the amount of ETH they locked in as collateral in the protocol when
becoming a validator [6].

Another way, closely related to the Proof of Stake, is called MEV smoothing. Loosely
speaking, this means reducing the variance of extracted MEV so that validator rewards
are as uniform as possible [21]. This would in turn discourage validators for misbehaving
for their own benefit when they compete for the best rewards.

There are also a few extra things that can be done to mitigate undercutting attacks. First
one, already implemented in Bitcoin, is adding a parameter for required block height to a
transaction [37]. This makes it harder to include high fee transactions in an undercutting
fork as the height of the fork would need to match the block height set in the transaction.
Another miner specific mitigation measure is to set aside some free-to-claim value in the
block for other miners to grab to discourage undercutting attempts [37]. In a sense, this
is equivalent for the miner undercutting itself.

3.4 Integer Overflow and Underflow

Integer Overflow and Integer Underflow are fairly simple vulnerabilities and very common
in conventional coding. With smart contracts the idea is the same. As variables in
any system have a maximum number of bits they can store, all variables will also have
a maximum and minimum integer value they can represent. When a value of variable
goes over the maximum or under the minimum via arithmetic operations, if the code is
vulnerable, the value will “loop back”. This means overflow will loop back to minimum
value and underflow to the maximum value. [40]

30 CHAPTER 3. SMART CONTRACT ATTACK TYPES

In Ethereum, integers can be up to 256 bits long. With Solidity, it is also possible to
define integers in smaller sizes starting from 8 bits [45]. Integers can be signed or unsigned,
which simply defines if negative integers are allowed or not. Signing does not affect overflow
mechanics per se, but it changes the maximum and minimum values that can be expressed
and therefore also the values where integer loops around.

Overflows and underflows have been a real issue for smart contracts. For example, in
2018, an Ethereum smart contract and token called BeautyChain, (BEC), got attacked
with overflow attack where the attacker stole a high amount of tokens via an overflow bug
in the contract [22]. The vulnerable function itself can be seen in the listing 3.3.

1 function batchTransfer (address [] _receivers , uint256 _value) public
whenNotPaused returns (bool) {

2 uint cnt = _receivers . length ;
3 uint256 amount = uint256 (cnt) * _value ;
4 require (cnt > 0 && cnt <=20);
5 require (_value >0 && balances [msg. sender]>= amount);
6 ...
7 return true;
8 }

Listing 3.3: Vulnerable function in BeautyChain (BEC) smart contract. [22]

The vulnerability itself lies in the fact that anyone can fully control the calculated variable
amount on line 3 by simply setting the function parameters _receivers and _value. This
is because it is simply the multiple of _value and number of addresses in the _receivers

-array. In the case of the actual attack, the attacker chose two addresses it controlled
and the value 0x8000...000 (63 0s). Now, when the amount was calculated, it caused an
overflow because it is actually one over the maximum value that 256-bit integer can hold.
Because the type is unsigned integer, the amount incorrectly looped back to zero and the
balance check on line 5 passed. This caused the _value amount of tokens to be sent to
both attacker-controlled addresses even when there was no balance.

Mitigations: Tools. A good way to battle overflows and underflows is to use libraries
that check for too big or small integers automatically [13]. This way the invalid value
will cause a run-time error if it does not fit the variable and exploitation will be impos-
sible. This is equivalent to Java integer overflow errors, for example. There is also tools
that check for overflow and underflow vulnerabilities on existing smart contracts [22][43].
However, at least for Ethereum smart contracts and when coding in Solidity, these kind of
tools are nowadays mostly redundant. This is because, as of version 0.8.0, Solidity auto-

3.5. DOS WITH REVERT 31

matically checks arithmetic operations for overflows and underflows and returns run-time
assertion error if found [45]. This will also revert the running transaction. Automatic
checking can still be disabled if so wanted.

Mitigations: Better coding practices. One can also take caution when coding, to
prevent overflows and underflows. For example, one good practice is paying attention to
who has an authority to make changes to the given variable. If anyone can make the
changes, there is a higher risk of exploitation. It is also good to think of how the value
actually changes and if there is a risk of reaching maximum or minimum value. In the
case of maximum value, smaller data-types like uint8 or uint16 are also more prone to
exploitation since the maximum value is more easily reached.

3.5 DoS With Revert

One specific characteristic of smart contract capable blockchains is that if a transaction
fails for one reason or another, the protocol state must be reverted to the stable one right
before the transaction. This is what is meant by atomic transactions, meaning they either
execute fully or not at all. Reason for this is that the blockchain state must always be
handled in a deterministic manner for the consensus algorithm to work and therefore the
state cannot be ambiguous.

An attacker can leverage this reverting property by deliberately causing a transaction to
fail and preventing a smart contract from functioning properly. This may also prevent
other users from using the smart contract, which is why the attack is called Denial of Ser-
vice With Revert or DoS With Revert. As with block stuffing (section 3.3.2), the contract
malfunction can of course happen also by accident if a transaction fails unintentionally [42].

To cause a transaction to fail, the attacker must get control of the execution. The best way
of doing this is by utilizing the fallback function of smart contracts [42]. This is done in
the same manner as explained when discussing the re-entrancy vulnerability in section 3.1.
This is also the most common way of getting control since revert vulnerability is usually
found in contracts which send ETH to user defined addresses, and fallback function is
always triggered if a contract receives ETH [41]. Another way to get control would be if
the target contract called random contracts and their functions, but this does not seem
plausible.

32 CHAPTER 3. SMART CONTRACT ATTACK TYPES

To cause the revert, the attacker can craft a malicious smart contract which has a fallback
function that will always throw an error. Then when the target contract wants to send
ETH to the malicious contract’s address, the fallback function will be called and the
transaction will always fail and revert because of the error. If the ETH transfer must be
successful for contract to function properly, this will also cause a denial of service [42].

To give an example, consider a batch refund function seen in listing 3.4. The refundAll

function iterates through a list of addresses which will be refunded their full balance based
on some internal state. However, as function execution and transactions are atomic and
the require function will throw an error on failure, even if only one of the send calls
on line 3 fails, the whole execution will fail and none of the addresses will receive any
funds. All the attacker has to do is to get the address of the malicious smart contract in
the _refundAddresses -array to cause everyone else to be incapable of receiving refunds.
The malicious attack contract itself can simply use throw in fallback function to manually
throw an error and revert the whole execution.

1 function refundAll (address [] _refundAddresses) public {
2 for(uint i; i < _refundAddresses . length ; i++) {
3 require (_refundAddresses [x]. send(balances [_refundAddresses [x]]))
4 }
5 }

Listing 3.4: Refund function with revert vulnerability.

Mitigations: Better coding practices. Since it is always possible that a transaction
fails, even by accident, it is not recommended to build contracts that depend on successful
transactions to uncontrolled addresses. Therefore, the same principle as with re-entrancy
applies here, that if avoidable, smart contracts should “neither send ETH nor call untrusted
contracts” [17]. One good way to avoid calling untrusted contracts or rely on sending
ETH is by isolating external calls to own transactions which users can then initiate. Then
they can safely fail without affecting anything else. [46] This practice is often referred as
pull over push, since it is usually done with payments where users “pull” the funds by
withdrawing instead of contract “pushing” them via sending.

If external calls or sending funds must still be done, there are some good practices to
mitigate the risk. First, one should avoid combining multiple calls into a single transaction,
especially when they are executed as part of a loop [46]. This was the mistake done in
listing 3.4, which caused one failing call to fail all the others. This mistake also proves
the second rule that one should always assume that external calls can fail. Therefore it is

3.6. INSUFFICIENT GAS GRIEFING 33

vital to implement logic to handle failed calls [46]. This is equivalent to error handling in
conventional coding.

3.6 Insufficient Gas Griefing

Insufficient Gas Griefing is an attack on contracts that accept data and use this data in
a sub-call on another contract [46]. The target of the attack is the party that submits the
data and the attacker is the one placing the transaction which would execute the sub-call.
The basic idea is that if the contract is vulnerable and not enough gas is provided, the
sub-call will fail but the attackers transaction will not. This can in turn result in an
unwanted state where data gets passed but the intended underlying call will fail.

A typical example of this type of vulnerable contract is a relayer contract which allows
executing transactions on behalf of another party [13]. This can be desired, for example,
if the original user does not have enough gas to execute the transaction by itself. The
user can then pass the wanted transaction off-chain to some other user, which will in turn
call the relay contract with the transaction data that original user has signed. The relay
contract will record the data and try to execute the relayed transaction as a sub-call. If
the sub-call fails and failure is not handled, i.e., the relay contract execution continues
and does not revert, the relay contract can end up in a state where relayed transaction is
marked as executed by the relay contract when it has in fact failed. The attacker can then
utilize this misbehaviour by providing just enough gas to pass on the signed data but fail
the sub-call, thus essentially preventing transactions from happening. [46]

The attack does not directly benefit the attacker in any way and it will cost gas [23].
However, it might still have some indirect benefits by preventing other users from placing
transactions. Even if not beneficial, it still causes harm, or grief, to the victim as it makes
it harder for them to use the system. This is why the attack is called insufficient gas
griefing, or simply Griefing [13]. Preventing other users from using the system as intended
makes insufficient gas griefing also a denial of service -attack.

Mitigations: Better coding practices. First thing that can be done to prevent griefing
is to make sure that the party that forwards the transaction has enough gas [13]. This
can be done by checking the gas left against an user set gas limit in the sub-call function.
If the underlying contract cannot be changed, then one solution is to only allow execution
for trusted users [46]. This check can be done in the relay contract.

34 CHAPTER 3. SMART CONTRACT ATTACK TYPES

3.7 Forcibly sending Ether To A Contract

A common misconception with Ethereum smart contracts is that they can only obtain
ETH via functions defined as payable [33]. Payable functions also include fallback function
which is typically executed when a contract receives ETH and was already discussed with
re-entrancy (section 3.1) and DoS with revert (section 3.5). However, there are ways to
force ETH balance on to contracts without executing any code on them.

The first way force ETH to a target contract is to craft a contract with a built-in selfde-
struct function [33]. When a contract uses selfdestruct with a defined target address, the
contract code will be wiped from the contract address and its ETH balance will be sent
to the target address. If the target address belongs also to a smart contract, this ETH
transfer will not trigger that contracts fallback function. Now, to force ETH onto target
contract, one can simply make own contract, send ETH to it, and then call selfdestruct
with the target contract’s address.

Another way to force ETH on to the target contract is to pre-load its address with ETH
before the contract is even deployed [33]. Addresses are calculated in a deterministic way
so it is possible to calculate the contract address beforehand, send ETH to it, and cause
the contract to have a non-zero balance when created.

Where this forcibly receiving ETH might become problematic, is when a smart contract
assumes a specific ETH balance and that it can only be altered via contract functions [46].
For example, consider a hypothetical case where a contract assumes that its balance in-
creases and decreases in fixed size increments defined by contract functions. Let us assume
it can only change in 1 ETH steps. Now, if the exact values are used in conditional checks
in the contract logic, the malicious party can force some fraction of ETH on the contract
balance, thus making reaching the exact value via contract functions impossible. In the
worst case, this type of situations can lead to total denial of service where the whole
contract is rendered unusable because of an unexpected balance [46].

Mitigations: Better coding practices. The mitigation for this is simple. One should
simply avoid using strict equality checks against contract balance [46]. If condition checks
must be used, the unexpected balances should be accounted for [33].

3.8. ORACLE MANIPULATION 35

3.8 Oracle Manipulation

The last discussed vulnerability is possible because of the deterministic nature of the
blockchain. Smart contracts cannot inherently interact with the outside world because it
would make execution ambiguous and unpredictable. Therefore some interface is needed
if any off-chain data is wished to be used. Oracles are designed to solve this problem
and act as an interface service between data source and smart contracts [9]. Serving data
from outside world to smart contracts is the main use case, but oracles can also provide
information from the blockchain itself, such as token prices in the decentralized exchanges
(DEXes).

All oracles are smart contracts which provide some useful data that is kept up to date.
They can be off-chain or on-chain. Off-chain means that the data that oracle serves
comes from outside of the blockchain, and respectively on-chain means the data comes
from inside the blockchain. Oracles can also be centralized or decentralized, which simply
means difference between central authority that keeps data up to date or if anyone can
participate in updating the data. [18]

If a malicious party can manipulate an oracle and a smart contract relies on its data,
the consequences can be bad [13]. A typical example smart contracts that are oracle
dependent are DeFi contracts that rely on token price data. Being able to manipulate
price information of the tokens that the project uses can lead to exploitation and massive
financial losses. [18]

The method of the manipulation depends on the type of the oracle in question. Off-chain
oracles that use off-chain data feeds can be manipulated by attacking the data source.
Centralized oracles, on the other hand, can be manipulated by hacking the central author-
ity. This can be via leaked password or a hacked wallet, for example. From the blockchain
perspective the interesting type of oracles are however the decentralized on-chain oracles,
since they can be more or less manipulated by anyone and everything happens on-chain.

Typical manipulation attack is done against a DeFi project that uses price data calculated
from a DEX. In this type of attack a Defi project uses a DEX as a decentralized on-chain
oracle [18]. DEXes typically allow trading of tokens via token-pair liquidity pools, so it
is easy to calculate prices for tokens. Token-pair liquidity pool simply means a pool of
cryptocurrency tokens which a smart contract holds. That smart contract then allows
users to trade these tokens against a calculated price based on the ratio of the tokens in
the pool.

36 CHAPTER 3. SMART CONTRACT ATTACK TYPES

For example, if pool is with ETH/USD -pair and there are 1 000 ETH and 20 000 USD
in the pool, the price of ETH can be calculated as (20 000/1 000) USD = 2 000 USD.
However, as anyone can affect the amount of tokens in the liquidity pool by simply trading
them, anyone can also easily manipulate the price in this case [18].

There are many ways to benefit from the manipulation, and in practice the effect depends
on the target smart contract. One example is lending protocols which require placing
tokens as collateral to cover the losses if the borrowed money cannot be paid back or
prices change too much [18]. If the attacker can manipulate the token price when the loan
is taken, it can make the collateral seem much more valuable than its true value. This
allows the attacker to borrow much more than the initial value of the collateral, and in
practice steal money. Other common manipulation exploits include arbitrage, liquidations,
DoS, etc. [13].

Mitigations: Better coding practices. First mitigation that can be applied when
using on-chain decentralized oracles is some sort of validation on the data. For example,
calculated price data can be compared against previously known good rates [18]. If DEXes
are used as a data source, as was the case in the example before, it is also good to make
sure that there is enough liquidity in the liquidity pool [18]. This makes price manipulation
via trading harder and more expensive as the manipulator would have to do bigger trades
to have meaningful effect on the price data. One can also make an oracle a bit more
centralized and trustworthy by allowing only a trusted set of accounts to update it [18].
This would mean that the attacker would have to wait for the authorized account to
update the manipulated data before they can execute the exploit. There is however an
disadvantage in that this will likely decrease update frequency.

Mitigations: Tools. Existing tools and oracles can be used to mitigate the manipulation
risk. Many of them rely on time-weighted averages and multiple sources to make it almost
impossible to manipulate the data [13]. One such an oracle is called Uniswap Time-
Weighted Average Price (TWAP), provided by DEX market leader Uniswap [18]. Many
of these oracles also rely on the trusted set of users to update the data [18]. One popular
oracle like that is Chainlink, which has a set of nodes that update token prices and after
the update the oracle aggregates the data. In this approach one must however trust third
parties to be honest with the updated prices. In the end many of these solutions have
their own pros and cons and there is always a trade-off between update frequency and
correctness of the data. Open and decentralized solutions where everyone can update the
data are much faster to update, but also easier to manipulate since changes propagate
right away. Finding to right tool for the job then boils down to the actual use case.

4 Discussion

Now that all the covered attacks and vulnerabilities are explained, it is useful to categorize
and analyze them a bit to get a better understanding of the bigger picture of smart contract
attacks and their related security issues.

First way to create a categorization is by the place where the actual vulnerability or prop-
erty lies that allows exploitation. This classification was already presented at the start of
chapter 3, but to recap, the vulnerability itself may be in smart contract code, it may be
in some property of the blockchain technology, or the exploitation may need both com-
bined. Attacks leveraging both the technology properties and vulnerable smart contract
code are Re-entrancy, Timestamp Dependence, Transaction Ordering Dependence, DoS
With Revert, Insufficient Gas Griefing, Forcibly sending Ether To A Contract and Ora-
cle Manipulation. Attacks leveraging only the underlying blockchain technology and its
properties are Block Stuffing and Block Reorganization Attacks. And the only attack that
exploits just the contract code is Integer Overflow and Underflow. This categorization can
be seen in the middle column of the table 4.1.

Majority of the discussed attacks leverage both technology properties and vulnerable smart
contract code. This implies that blockchain and smart contract technologies bring up to-
tally new kind of challenges that make designing secure smart contracts hard. Many of the
vulnerabilities from conventional coding are also present, which is understandable because
smart contract capable technologies are usually Turing-complete. These more conven-
tional vulnerabilities only lie in smart contract code and are not affected by blockchain
technology per se. Integer overflow and underflow are examples of this case.

On top of security issues in the code or in the technology, the immutability of the
blockchains makes patching badly designed code really hard. Therefore it is vital to
pay extra attention to security when designing smart contracts. [24]

One useful way to look at software security is via its lifecycle. With smart contracts it can
be roughly split into security design, security implementation, testing before deployment
and monitoring and analysis [24].

Security design is done before anything is implemented. It includes all kinds of useful cod-
ing practices and principles that are can be good against specific problems or in designing

38 CHAPTER 4. DISCUSSION

Attack/Vulnerability Vulnerability location Mitigations*
Re-entrancy Code/Technology BCP/T/TC
Timestamp dependence Code/Technology BCP/TC
Transaction Ordering
Dependence

Code/Technology BCP/T

Block Stuffing Technology BCP
Block Reorganization
Attacks

Technology TC

Integer Overflow and
Underflow

Code BCP/T

DoS With Revert Code/Technology BCP
Insufficient Gas Griefing Code/Technology BCP
Forcibly Sending Ether
to a Contract

Code/Technology BCP

Oracle Manipulation Code/Technology BCP/T

Table 4.1: Attacks and vulnerabilities categorized by location of the vulnerability and by possible mitiga-
tions. *Mitigation abbreviations: BCP = Better Coding Practices, T = Tools, TC = Technology Changes.

smart contracts in general. As an example, consider pull over push -pattern against Dos
With Revert and Re-entrancy or preparing for failure when coding smart contracts in
general. Many of the patterns and principles suggested against attacks in the chapter 3
belong to the security design phase. [24]

Security implementation happens in parallel to the smart contract implementation as it is
tied within the actual coding process. Apart from following practices and implementing
design patterns, automated tools can be used at this point to help in creating secure code.
These tools include things like analysis tools, IDE expansions and secure libraries, for
example. Both implementation phase and design phase can also include security modeling,
which aims to prove the correctness of the code and help in eliminating errors. [24]

Tools are often used also in the last two lifecycle phases, testing before deployment and
monitoring and analysis [24]. Therefore it is safe to say that proper smart contract security
uses all the same practices that are familiar from conventional coding. However, the
security is usually much more in focus with smart contracts as they are immutable, visible
for all, and often deal with huge amounts of capital as tokens [49].

39

Apart from coding practices and tools, smart contract security can also be improved by
making changes to the underlying blockchain technology. In the best case, changes to the
underlying technology can eliminate a security issue altogether. For example, timestamp
dependence exploits can be fully mitigated by hiding block timestamp from smart contracts
altogether so it cannot be used. Technology changes can also be partially effective in
mitigating a security issue. One example of this is mitigating block reorganization attacks
by moving to the Proof of Stake -algorithm, which was explained in the section 3.3.3.
However, in practice changes to whole blockchain protocols are really hard to implement
if the blockchain has already been launched, because the majority of the nodes would
need to switch to a new version before the change can happen. Also changes cannot be
too restrictive as it would limit the usefulness of smart contracts. In some special cases,
tools can be used to mitigate the problem without the need for bigger changes. Flashbots
expansion for Ethereum nodes is one such tool, which aims to help with front-running
problems. It was briefly explained in the section 3.3.1.

Based on the smart contract security concerns above, three classes of threat mitigation
are identified: better coding practices, automated tools and technology changes. Therefore
attacks in chapter 3 can also be indirectly categorized with the suggested mitigations
against them. Note that this categorization is not complete by any means and it is likely
that mitigations from each of these classes can to some extent be used against all threats.
However, this categorization still represents suggested types of mitigations against given
threat at the time of writing. These categories can be seen in the third column of the
table 4.1. For the abbreviations in the mitigation column, “BCP” means better coding
practices, “T” means tools and “TC” means technology changes.

One point that stands out is that all the discussed attacks except block reorganization
attacks can be mitigated by following better coding practices, at least to some extent. This
seems to indicate that it is crucial for developers to pay attention to security issues in the
design and implementation phases. This is also in line with earlier research where it was
found out that smart contract developers tend to value security more than practitioners
in other software areas [49].

Tools and technology changes can be useful against specific threats. Tools will most likely
be even more widely used when more sophisticated and advanced tools are designed.
Development of smart contracts can then move more towards conventional coding where
much of the security issues are covered via automated tools like scanners and analyzers.
On the other hand, technology changes can often be something that is not wanted even

40 CHAPTER 4. DISCUSSION

if those changes would counter some threats. This is because the changes might restrict
smart contracts too much, they might be too hard or laborious to implement, or there
might simply be a better and easier solution to the problem they would mitigate. The
most notable technology change that will counter some issues is moving away from the
Proof of Work -consensus algorithm. However, even this change is mainly done because of
energy usage and scaling issues, not because of security issues. Therefore, it can be said
that most smart contract security issues are not something that underlying blockchain
technology should address and those issues should be addressed in the smart contract
code instead.

4.1 Future Views

As one of the hottest and most prominent topics in the tech industry, blockchain technolo-
gies seem to have a very bright future ahead. Therefore, the surge in smart contracts and
their adaptation is also expected to continue. This naturally brings up many new topics
to be studied and discussed, along with new security issues.

The most urgent topic at the time of writing is probably the Proof of Stake -algorithm,
as Ethereum is currently in the middle of the migration process to change their consensus
algorithm to it. At the same time Ethereum community is also designing and implementing
so called “sharding”, which simply means splitting blockchain to multiple “shards” to make
it scale and perform better [17]. As these changes make the protocol more complicated,
they will no doubt bring up new security challenges. This is an area that will need further
study.

Another hot topic with smart contracts is MEV extraction. One cornerstone idea behind
blockchain technologies is game theory, which in the blockchain context means that the
“rules” of the protocol should be made so that behaving correctly is always the optimal
choice for everyone. In other words, it is assumed that users behave selfishly so selfish acts
should be allowed and the protocol designed so that selfish act is also the optimal act. This
also means that MEV extraction, as a selfish act, is expected, and should be mitigated on
the technology level instead of being regulated or punished outside the protocol. This will
bring up a lot of new topics when new types of MEV extraction and their mitigations are
invented.

Outside of strictly technical topics, regulation and legal issues of cryptocurrencies are also
discussed actively. El Salvador made Bitcoin a legal tender as the first country in the world

4.1. FUTURE VIEWS 41

in June 2021 [47]. At the same time many countries are discussing how cryptocurrencies
should be regulated and some countries have already banned them, most notably China [5].
As huge amounts of money are invested and involved in the cryptocurrencies, the need
for better understanding is urgent. Therefore the whole cryptocurrency space has massive
research potential also in other fields like economy, politics or sociology.

5 Conclusions

Smart contracts expand the utility of blockchains by allowing storing and executing code
in the blockchain. This brings up many new interesting use cases when on top of value
transactions, users can also verify and execute deployed code. This added utility also
brings up many new security challenges which are of the utmost importance with smart
contracts since a lot of money is involved.

In this thesis we give an up-to-date review on smart contract security issues. We discuss the
most common attacks and vulnerabilities as well as suggested mitigations against them.
Then the findings are summed up and analysed to give a big picture of the current state
of smart contract security. We find out that many of the attacks could be avoided or at
least severely mitigated if the developers followed good coding practices and used design
patterns that are proven to be good. Another finding is that changing the underlying
blockchain technology to counter the issues is usually not the best way, as it is hard and
troublesome to do and might restrict the usability of contracts too much. Issues may also
be so specific to the use case that changing underlying technology would be an overkill.
However, many of the attacks still leverage the behaviour of the underlying technology in
addition to the vulnerable smart contract code, so the technology aspect should not be
overlooked. Lastly, we find out that new automated tools for security are being developed
and emerging all the time, which indicates movement towards more conventional coding
where automated tools like scanners and analysers are being used to cover a large set of
security issues.

As a new topic under active development, smart contract security will no doubt need more
research in the future. This is especially true since smart contracts find new use cases all
the time and security issues will no doubt emerge along them. Also, the way the protocols
and smart contracts are designed in the online communities brings up its own challenges
since, as discussed in the thesis, the scientific field is now the one that has to keep up
with the real world and not the other way around. Therefore it is vital for smart contract
security research to also keep up with the pace.

Bibliography

[1] 0xbunnygirl. Request for Reorg (RFR). GitHub repository. [accessed 26-May-2022].
url: https://github.com/0xbunnygirl/request-for-reorg.

[2] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. McCallum, and
A. Peacock. “Blockchain technology in the energy sector: A systematic review of
challenges and opportunities”. In: Renewable and Sustainable Energy Reviews 100
(2019), pp. 143–174. doi: 10.1016/j.rser.2018.10.014.

[3] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on Ethereum smart
contracts (SoK). Vol. 10204 LNCS. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics). 2017, pp. 164–186. doi: 10.1007/978-3-662-54455-6_8.

[4] L. M. Bach, B. Mihaljevic, and M. Zagar. “Comparative analysis of blockchain
consensus algorithms”. In: 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Pro-
ceedings. 2018, pp. 1545–1550. doi: 10.23919/MIPRO.2018.8400278.

[5] P. Bajpai. Countries Where Bitcoin Is Legal and Illegal. News article. [accessed 20-
March-2022]. 2021. url: https : / /www . investopedia . com /articles / forex /

041515/countries-where-bitcoin-legal-illegal.asp.

[6] V. Buterin, D. Reijsbergen, S. Leonardos, and G. Piliouras. “Incentives in ethereum’s
hybrid casper protocol”. In: ICBC 2019 - IEEE International Conference on Blockchain
and Cryptocurrency. 2019, pp. 236–244. doi: 10.1109/BLOC.2019.8751241.

[7] V. Buterin. Ethereum Whitepaper. Whitepaper. ethereum.org, 2013. url: https:

//ethereum.org/en/whitepaper/.

[8] M. Carlsten, H. Kalodner, A. Narayanan, and S. M. Weinberg. “On the instability
of Bitcoin without the block reward”. In: Proceedings of the ACM Conference on
Computer and Communications Security. Vol. 24-28-October-2016. 2016, pp. 154–
167. doi: 10.1145/2976749.2978408.

[9] Chainlink. What Is a Blockchain Oracle? Web page. [accessed 26-May-2022]. url:
https://chain.link/education/blockchain-oracles.

https://github.com/0xbunnygirl/request-for-reorg
https://doi.org/10.1016/j.rser.2018.10.014
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.23919/MIPRO.2018.8400278
https://www.investopedia.com/articles/forex/041515/countries-where-bitcoin-legal-illegal.asp
https://www.investopedia.com/articles/forex/041515/countries-where-bitcoin-legal-illegal.asp
https://doi.org/10.1109/BLOC.2019.8751241
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1145/2976749.2978408
https://chain.link/education/blockchain-oracles

44 CHAPTER 5. CONCLUSIONS

[10] Y. Chen and C. Bellavitis. “Blockchain Disruption and Decentralized Finance: The
Rise of Decentralized Business Models”. In: Journal of Business Venturing Insights
13 (2020), e00230. doi: 10.1016/j.jbvi.2019.e00151.

[11] K. Christidis and M. Devetsikiotis. “Blockchains and Smart Contracts for the Inter-
net of Things”. In: IEEE Access 4 (2016), pp. 2292–2303. doi: 10.1109/ACCESS.

2016.2566339.

[12] CoinGecko. Top Smart Contract Platform Coins by Market Capitalization. Web
page. [accessed 26-May-2022]. url: https://www.coingecko.com/en/categories/

smart-contract-platform.

[13] ConsenSys. Ethereum Smart Contract Best Practices. Web page. [accessed 26-May-
2022]. url: https://consensys.github.io/smart-contract-best-practices/

attacks/.

[14] C. Coverdale. Solidity: Transaction-Ordering Attacks. Blog post. [accessed 26-May-
2022]. 2018. url: https://medium.com/coinmonks/solidity- transaction-

ordering-attacks-1193a014884e.

[15] Crypto51. Ethereum (ETH)| Crypto51. Web page. [accessed 26-May-2022]. url:
https://www.crypto51.app/coins/ETH.html.

[16] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A.
Juels. “Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable
value, and consensus instability”. In: Proceedings - IEEE Symposium on Security and
Privacy. Vol. 2020-May. 2020, pp. 1106–1120. doi: 10.1109/SP40000.2020.00040.

[17] ethereum.org. Ethereum development documentation. Protocol documentation. [ac-
cessed 26-May-2022]. url: https://ethereum.org/en/developers/docs/.

[18] Extropy.IO. Price Oracle Manipulation. Blog post. [accessed 17-February-2022]. 2021.
url: https://extropy-io.medium.com/price-oracle-manipulation-d46fd413cc17.

[19] A. Feign. How Much Energy Does Bitcoin Use? News article. [accessed 23-May-
2022]. 2021. url: https://www.coindesk.com/business/2021/08/18/how-much-

energy-does-bitcoin-use/.

[20] J. Fernando. Arbitrage. Investopedia article. [accessed 26-May-2022]. 2022. url:
https://www.investopedia.com/terms/a/arbitrage.asp.

[21] fradamt. Committee-driven MEV smoothing. Blog post. [accessed 02-February-2022].
2021. url: https://ethresear.ch/t/committee-driven-mev-smoothing/10408.

https://doi.org/10.1016/j.jbvi.2019.e00151
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://www.coingecko.com/en/categories/smart-contract-platform
https://www.coingecko.com/en/categories/smart-contract-platform
https://consensys.github.io/smart-contract-best-practices/attacks/
https://consensys.github.io/smart-contract-best-practices/attacks/
https://medium.com/coinmonks/solidity-transaction-ordering-attacks-1193a014884e
https://medium.com/coinmonks/solidity-transaction-ordering-attacks-1193a014884e
https://www.crypto51.app/coins/ETH.html
https://doi.org/10.1109/SP40000.2020.00040
https://ethereum.org/en/developers/docs/
https://extropy-io.medium.com/price-oracle-manipulation-d46fd413cc17
https://www.coindesk.com/business/2021/08/18/how-much-energy-does-bitcoin-use/
https://www.coindesk.com/business/2021/08/18/how-much-energy-does-bitcoin-use/
https://www.investopedia.com/terms/a/arbitrage.asp
https://ethresear.ch/t/committee-driven-mev-smoothing/10408

45

[22] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen. “EASYFLOW: Keep ethereum
away from overflow”. In: Proceedings - 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Companion, ICSE-Companion 2019. 2019, pp. 23–26.
doi: 10.1109/ICSE-Companion.2019.00029.

[23] R. Horrocks. What does griefing mean? Forum post. [accessed 23-May-2022]. 2018.
url: https://ethereum.stackexchange.com/questions/62829/what- does-

griefing-mean.

[24] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi. “Smart contract security: A
software lifecycle perspective”. In: IEEE Access 7 (2019), pp. 150184–150202. doi:
10.1109/ACCESS.2019.2946988.

[25] IBM. What is blockchain technology? Web page. [accessed 23-May-2022]. url: https:

//www.ibm.com/topics/what-is-blockchain.

[26] C. Kim. Valid Points: The Problem With MEV on Ethereum. News article. [accessed
26-May-2022]. 2021. url: https://www.coindesk.com/tech/2021/07/14/valid-

points-the-problem-with-mev-on-ethereum/.

[27] G. Konstantopoulos and V. Buterin. Ethereum Reorgs After The Merge. Blog post.
[accessed 01-February-2022]. 2021. url: https://www.paradigm.xyz/2021/07/

ethereum-reorgs-after-the-merge#post-merge-ethereum-with-proof-of-

stake.

[28] G. Konstantopoulos and L. Zhang. Ethereum Blockspace - Who Gets What and Why.
Blog post. [accessed 26-May-2022]. 2021. url: https://research.paradigm.xyz/

ethereum-blockspace.

[29] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. “Hawk: The Blockchain
Model of Cryptography and Privacy-Preserving Smart Contracts”. In: Proceedings -
2016 IEEE Symposium on Security and Privacy, SP 2016. 2016, pp. 839–858. doi:
10.1109/SP.2016.55.

[30] P. Kostamis, A. Sendros, and P. Efraimidis. “Exploring Ethereum’s Data Stores:
A Cost and Performance Comparison”. In: 2021 3rd Conference on Blockchain Re-
search and Applications for Innovative Networks and Services, BRAINS 2021. 2021,
pp. 53–60. doi: 10.1109/BRAINS52497.2021.9569804.

https://doi.org/10.1109/ICSE-Companion.2019.00029
https://ethereum.stackexchange.com/questions/62829/what-does-griefing-mean
https://ethereum.stackexchange.com/questions/62829/what-does-griefing-mean
https://doi.org/10.1109/ACCESS.2019.2946988
https://www.ibm.com/topics/what-is-blockchain
https://www.ibm.com/topics/what-is-blockchain
https://www.coindesk.com/tech/2021/07/14/valid-points-the-problem-with-mev-on-ethereum/
https://www.coindesk.com/tech/2021/07/14/valid-points-the-problem-with-mev-on-ethereum/
https://www.paradigm.xyz/2021/07/ethereum-reorgs-after-the-merge#post-merge-ethereum-with-proof-of-stake
https://www.paradigm.xyz/2021/07/ethereum-reorgs-after-the-merge#post-merge-ethereum-with-proof-of-stake
https://www.paradigm.xyz/2021/07/ethereum-reorgs-after-the-merge#post-merge-ethereum-with-proof-of-stake
https://research.paradigm.xyz/ethereum-blockspace
https://research.paradigm.xyz/ethereum-blockspace
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/BRAINS52497.2021.9569804

46 CHAPTER 5. CONCLUSIONS

[31] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor. “Making smart contracts
smarter”. In: Proceedings of the ACM Conference on Computer and Communica-
tions Security. Vol. 24-28-October-2016. 2016, pp. 254–269. doi: 10.1145/2976749.

2978309.

[32] S. MacKenzie. Bitcoin’s biggest upgrade in four years just happened – here’s what
changes. News article. [accessed 23-May-2022]. 2021. url: https://www.cnbc.com/

2021/11/14/bitcoin-taproot-upgrade-what-it-means-for-investors.html.

[33] A. Manning. Solidity Security: Comprehensive list of known attack vectors and com-
mon anti-patterns. Blog post. [accessed 16-February-2022]. 2018. url: https://

blog.sigmaprime.io/solidity-security.html#ether.

[34] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher, R. Sanayhie,
H. M. Kim, and M. Laskowski. “Understanding a revolutionary and flawed grand
experiment in blockchain: The DAO attack”. In: Journal of Cases on Information
Technology 21 (1 2019), pp. 19–32. doi: 10.4018/JCIT.2019010102.

[35] C. Mitchell. Front-Running. Investopedia article. [accessed 26-May-2022]. 2022. url:
https://www.investopedia.com/terms/f/frontrunning.asp.

[36] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Whitepaper. bit-
coin.org, 2009. url: https://bitcoin.org/bitcoin.pdf.

[37] F. Nieto. Can Undercutting attacks be Mitigated? Forum post. [accessed 23-May-
2022]. 2019. url: https://bitcoin.stackexchange.com/questions/67697/can-

undercutting-attacks-be-mitigated.

[38] A. Obadia. Flashbots: Frontrunning the MEV Crisis. Blog post. [accessed 26-May-
2022]. 2020. url: https://medium.com/flashbots/frontrunning- the- mev-

crisis-40629a613752.

[39] I. G. A. Pernice and B. Scott. “Cryptocurrency”. In: Internet Policy Review 10 (2
2021). doi: 10.14763/2021.2.1561.

[40] H. Poston. Integer overflow and underflow vulnerabilities. Blog post. [accessed 03-
February-2022]. 2020. url: https://resources.infosecinstitute.com/topic/

integer-overflow-and-underflow-vulnerabilities/.

[41] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang. “Towards Automated Reen-
trancy Detection for Smart Contracts Based on Sequential Models”. In: IEEE Access
8 (2020), pp. 19685–19695. doi: 10.1109/ACCESS.2020.2969429.

https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://www.cnbc.com/2021/11/14/bitcoin-taproot-upgrade-what-it-means-for-investors.html
https://www.cnbc.com/2021/11/14/bitcoin-taproot-upgrade-what-it-means-for-investors.html
https://blog.sigmaprime.io/solidity-security.html#ether
https://blog.sigmaprime.io/solidity-security.html#ether
https://doi.org/10.4018/JCIT.2019010102
https://www.investopedia.com/terms/f/frontrunning.asp
https://bitcoin.org/bitcoin.pdf
https://bitcoin.stackexchange.com/questions/67697/can-undercutting-attacks-be-mitigated
https://bitcoin.stackexchange.com/questions/67697/can-undercutting-attacks-be-mitigated
https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752
https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752
https://doi.org/10.14763/2021.2.1561
https://resources.infosecinstitute.com/topic/integer-overflow-and-underflow-vulnerabilities/
https://resources.infosecinstitute.com/topic/integer-overflow-and-underflow-vulnerabilities/
https://doi.org/10.1109/ACCESS.2020.2969429

47

[42] N. F. Samreen and M. H. Alalfi. “SmartScan: An approach to detect Denial of Service
Vulnerability in Ethereum Smart Contracts”. In: Proceedings - 2021 IEEE/ACM 4th
International Workshop on Emerging Trends in Software Engineering for Blockchain,
WETSEB 2021. 2021, pp. 17–26. doi: 10.1109/WETSEB52558.2021.00010.

[43] S. Sayeed, H. Marco-Gisbert, and T. Caira. “Smart Contract: Attacks and Protec-
tions”. In: IEEE Access 8 (2020), pp. 24416–24427. doi: 10.1109/ACCESS.2020.

2970495.

[44] A. T. Sherman, F. Javani, H. Zhang, and E. Golaszewski. “On the Origins and
Variations of Blockchain Technologies”. In: IEEE Security & Privacy 17 (1 2019),
pp. 72–77. doi: 10.1109/MSEC.2019.2893730.

[45] Solidity. Solidity documentation. Programming language. [accessed 26-May-2022].
url: https://docs.soliditylang.org/en/latest/.

[46] SWC Registry. Smart Contract Weakness Classification and Test Cases. Web page.
[accessed 26-May-2022]. url: https://swcregistry.io/.

[47] J. Tidy. Fear and excitement in El Salvador as Bitcoin becomes legal tender. News
article. [accessed 20-March-2022]. 2021. url: https : / / www . bbc . com / news /

technology-58473260.

[48] M. Van Der Wijden. Backrunning in DeFI. Blog post. [accessed 23-February-2022].
2020. url: https://medium.com/@m.vanderwijden1/backrunning-in-defi-

301f3cade30a.

[49] Z. Wan, X. Xia, D. Lo, J. Chen, X. Luo, and X. Yang. “Smart Contract Security: A
Practitioners’ Perspective: The Artifact of a Paper Accepted in the 43rd IEEE/ACM
International Conference on Software Engineering (ICSE 2021)”. In: Proceedings
- International Conference on Software Engineering. 2021, pp. 227–228. doi: 10.

1109/ICSE-Companion52605.2021.00104.

[50] D. Wang, S. Wu, Z. Lin, L. Wu, X. Yuan, Y. Zhou, H. Wang, and K. Ren. “Towards
a first step to understand flash loan and its applications in defi ecosystem”. In: SBC
2021 - Proceedings of the 9th International Workshop on Security in Blockchain and
Cloud Computing, co-located with ASIA CCS 2021. 2021, pp. 23–28. doi: 10.1145/

3457977.3460301.

[51] I. Yalovoy. Why Fomo3d 10,469 ETH Block Stuffing Attack Is Important. Blog
post. [accessed 26-May-2022]. 2019. url: https://ylv.io/why-fomo3d-block-

stuffing-attack-is-important/.

https://doi.org/10.1109/WETSEB52558.2021.00010
https://doi.org/10.1109/ACCESS.2020.2970495
https://doi.org/10.1109/ACCESS.2020.2970495
https://doi.org/10.1109/MSEC.2019.2893730
https://docs.soliditylang.org/en/latest/
https://swcregistry.io/
https://www.bbc.com/news/technology-58473260
https://www.bbc.com/news/technology-58473260
https://medium.com/@m.vanderwijden1/backrunning-in-defi-301f3cade30a
https://medium.com/@m.vanderwijden1/backrunning-in-defi-301f3cade30a
https://doi.org/10.1109/ICSE-Companion52605.2021.00104
https://doi.org/10.1109/ICSE-Companion52605.2021.00104
https://doi.org/10.1145/3457977.3460301
https://doi.org/10.1145/3457977.3460301
https://ylv.io/why-fomo3d-block-stuffing-attack-is-important/
https://ylv.io/why-fomo3d-block-stuffing-attack-is-important/

48 CHAPTER 5. CONCLUSIONS

[52] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander. “Where is current research
on Blockchain technology? - A systematic review”. In: PLoS ONE 11 (10 2016). doi:
10.1371/journal.pone.0163477.

[53] Y. Yuan and F. Wang. “Blockchain: The state of the art and future trends”. In: Zi-
donghua Xuebao/Acta Automatica Sinica 42 (4 2016), pp. 481–494. doi: 10.16383/

j.aas.2016.c160158.

[54] K. Zipfel. Exploring Commit-Reveal Schemes on Ethereum. Blog post. [accessed 26-
May-2022]. 2020. url: https://medium.com/swlh/exploring-commit-reveal-

schemes-on-ethereum-c4ff5a777db8.

https://doi.org/10.1371/journal.pone.0163477
https://doi.org/10.16383/j.aas.2016.c160158
https://doi.org/10.16383/j.aas.2016.c160158
https://medium.com/swlh/exploring-commit-reveal-schemes-on-ethereum-c4ff5a777db8
https://medium.com/swlh/exploring-commit-reveal-schemes-on-ethereum-c4ff5a777db8

	Introduction
	Background on Smart Contracts
	Blockchain technology
	Cryptocurrencies
	Mining and Consensus Algorithms

	Smart Contracts
	Ethereum
	EVM and Native Token
	Accounts
	Transactions and Gas
	Ethereum Smart Contracts

	Smart Contract Attack Types
	Re-entrancy
	Timestamp Dependence
	Front-Running
	Transaction Ordering Dependence
	Block Stuffing
	Block Reorganization Attacks

	Integer Overflow and Underflow
	DoS With Revert
	Insufficient Gas Griefing
	Forcibly sending Ether To A Contract
	Oracle Manipulation

	Discussion
	Future Views

	Conclusions
	Bibliography

