
Master’s thesis
Master’s Programme in Data Science

Hyperparameters and neural architectures
in differentially private deep learning

Marlon Tobaben

June 13, 2022

Supervisor(s): Associate Professor Antti Honkela

Examiner(s): Associate Professor Antti Honkela
Doctor Razane Tajeddine

University of Helsinki
Faculty of Science

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki

Faculty of Science Master’s Programme in Data Science

Marlon Tobaben

Hyperparameters and neural architectures in differentially private deep learning

Master’s thesis June 13, 2022 65

differential privacy, deep learning, hyperparameter optimization, Bayesian optimization

Using machine learning to improve health care has gained popularity. However, most research in
machine learning for health has ignored privacy attacks against the models. Differential privacy
(DP) is the state-of-the-art concept for protecting individuals’ data from privacy attacks. Using
optimization algorithms such as the DP stochastic gradient descent (DP-SGD), one can train deep
learning models under DP guarantees. This thesis analyzes the impact of changes to the hyperpa-
rameters and the neural architecture on the utility/privacy tradeoff, the main tradeoff in DP, for
models trained on the MIMIC-III dataset. The analyzed hyperparameters are the noise multiplier,
clipping bound, and batch size. The experiments examine neural architecture changes regarding the
depth and width of the model, activation functions, and group normalization. The thesis reports
the impact of the individual changes independently of other factors using Bayesian optimization
and thus overcomes the limitations of earlier work. For the analyzed models, the utility is more
sensitive to changes to the clipping bound than to the other two hyperparameters. Furthermore,
the privacy/utility tradeoff does not improve when allowing for more training runtime. The changes
to the width and depth of the model have a higher impact than other modifications of the neural ar-
chitecture. Finally, the thesis discusses the impact of the findings and limitations of the experiment
design and recommends directions for future work.

ACM Computing Classification System (CCS):
Applied computing → Life and medical sciences → Health informatics
Computing methodologies → Machine learning
Security and privacy → Human and societal aspects of security and privacy → Privacy protections

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Degree programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

ii

Acknowledgements

I am grateful to my supervisor, Antti Honkela, and my other colleagues in the research
program Privacy-preserving and secure AI by the Finnish Center for Artificial Intelligence
(FCAI) for all the feedback and advice during this project. The DataLit project has
generously supported this work by providing my salary. DataLit is funded by the Strategic
Research Council at the Academy of Finland, decision number 336032. I wish to thank
the Finnish Computing Competence Infrastructure (FCCI) for supporting this project
with computational and data storage resources.

This thesis is the final project of my Master of Science in Data Science. I want to
thank both the student and teaching community for supporting my studies during these
exceptional times. Special thanks to the Data Science study program staff, especially
Professor Jussi Kangasharju and Doctor Pirjo Moen. They create an environment that
makes it easy to study. I would also like to thank Assistant Professor Luigi Acerbi,
with whom I worked during 2021 as a research assistant, for the opportunity to work in
research, the fruitful debates, and the gained new skills. TKO-äly ry and Hyde ry hosted
most of the events I attended during my studies. Thanks for the sauna evenings, sitsit,
and hikes. Finally, thanks to the friends that made my studies especially enjoyable. The
following is a list of some people: Anna, Aino, Bernardo, Dmitrijs, Elio, Mikko, Niclas,
Niko, Roope, Sandra and Sini.

Contents

1 Introduction 1

2 Differential Privacy 4
2.1 Differentially Private Machine Learning . 7
2.2 Differentially Private SGD . 9
2.3 Privacy Attacks against Machine Learning 11
2.4 Theoretical Privacy Boundaries in Practice 13

3 Adaptation of Deep Learning for Differential Privacy 15
3.1 Activation Functions . 17
3.2 Batch and Group Normalization . 19
3.3 Other Components . 20
3.4 Neural Network Architecture Search . 20

4 Experimental Setup 23
4.1 Dataset . 23
4.2 Benchmark Study and Models . 24
4.3 Bayesian Optimization . 26
4.4 Related Experiments . 29

5 Experiments 31
5.1 Exp. 1: Noise Multiplier . 31
5.2 Exp. 2: Clipping Bound . 36
5.3 Exp. 3: Batch Size . 37
5.4 Exp. 4: Runtime/Utility Tradeoff . 39
5.5 Exp. 5: Depth and Width . 40
5.6 Exp. 6: Activation Functions . 42
5.7 Exp. 7: Group Normalization . 44

iii

iv

6 Discussion 47
6.1 Analysis of Hyperparameters and Architecture 47
6.2 Performance of the DP models . 49
6.3 Limitations of the Experiments . 52

7 Conclusions 54

Bibliography 57

1. Introduction

Machine learning (ML) complements humans in most domains, with some applications
aiming to enhance human health. The last breakthrough in that direction is the second
version of AlphaFold [JEP+21] that solved large parts of the protein prediction chal-
lenge, which is essential for enhancing medicine. The trend of ML use expands gradually
into large-scale healthcare, where more and more hospitals adopt electronic health record
(EHR) systems, leading to sufficient data for machine learning. The scientific community
has already published databases originating from EHR systems that document complete
stays of patients in the hospital [JPS+16, JBP+21]. ML models can assist the medical
personnel by predicting different kinds of tasks such as the length of a stay in the hospital,
the probability of mortality, and in diagnosing diseases [PMCL18, HKK+19, WMC+20].
More sophisticated deep learning (DL) models originating from natural language process-
ing (NLP) can be applied to EHR data because both EHR and NLP data are sequen-
tial [KIS+21].

While the use of ML in healthcare is promising, the current work on ML in healthcare
often ignores one aspect, privacy, that will be the core of this master thesis. Due to ethical
reasons and laws like the General Data Protection Regulation (GDPR) in the European
Union, it is essential to protect the privacy of the patients when using their data. In
Finland, the use of healthcare data for secondary use cases has a long history, and a
dedicated data permit authority for the social and health care sector called Findata has
been founded [Fin21]. Such dedicated authority points out that while using data for
healthcare is considered an advantage for the population, it is crucial to address concerns
and risks.

Outside of healthcare, at least two cases in which releasing a dataset in good faith
resulted in privacy violations are commonly known. AOL released a subset of its search
logs to facilitate research in 2006. Even though AOL obscured the users’ identities,
journalists of the New York Times [BZ06] were able to identify and interview one of
the users within a few days after the release of the dataset. The journalists were able to
identify the user based on the search queries that included family names and location data.
Because some of the queries contained more sensitive information, such as illnesses, one
can easily understand the danger of releasing datasets without precautions. Nevertheless,

1

2

even if the queries had not contained such sensitive information, the users’ privacy would
have been violated.

The other example originates from the Netflix Prize. The Netflix Prize was a com-
petition by Netflix that encouraged researchers to propose recommender engines based
on a dataset containing time-stamped movie ratings of anonymized users. Narayanan
and Shmatikov [NS08] leveraged auxiliary information from the Internet Movie Database
(IMDb), including ratings for movies and the users’ names. Using this auxiliary infor-
mation, they identified users from the Netflix prize dataset using correlations between
the ratings from the two sources. As Narayanan and Shmatikov [NS08] point out, this
potentially harmless information about movie ratings can leak sensitive information such
as political views. Furthermore, this example shows that powerful attackers can easily
overcome trivial privacy protection mechanisms.

In order to protect datasets and machine learning models from privacy attacks, the
state-of-the-art approach is using differential privacy (DP) [DMNS06], which provides a
provable guarantee against privacy attacks. The US census is using DP to release its
dataset [Abo18]. Tech giants like Google [Gue21] and Microsoft [Kah20] are also conduct-
ing extensive research both on methods and application areas of DP. It is preferred over
previous approaches like k-anonymity [SS98], which has multiple disadvantages in com-
parison to DP, such as its unsuitability for data with a high number of dimensions [Agg05].

The central tradeoff in DP is between the provided privacy guarantee and the results’
utility [AGD+20]. In order to achieve the best utility with ML one has to determine the
best configuration. Determining this configuration is already challenging for the non-DP
case. It becomes more challenging when training under DP, because of the additional
privacy constraint and the observation that training a model under DP with an identical
configuration as in the non-DP case does not have to yield the best possible utility. Several
articles suggest that modifications to the ML process are necessary to obtain the best
tradeoff between privacy and utility [TB20, PTS+21]. Investigating those modifications
will be a significant part of this thesis. Further details of DP and possible modifications
to the ML process will be introduced in Chapters 2 and 3.

This Chapter 1 will introduce the research objectives of this thesis, and Chapter
7 will assess the completion of those research objectives. The thesis aims to fulfill the
following six research objectives:

1. Review the necessary background on differential privacy, adaptation of deep learn-
ing, and related works.

2. Analyse the impact of the hyperparameters introduced when training under differ-
ential privacy on the privacy/utility tradeoff.

3. Examine the efficacy of neural architecture changes proposed by previous work.

3

4. Propose a sensible experimental setup to measure objectives 2 and 3.

5. Compare the non-private baseline models to the private differential models and
assess the differentially private models’ feasibility.

6. Identify limitations of the thesis and directions for possible further work.

The remainder of this master’s thesis is structured as follows: The first two chapters
introduce the necessary background. Chapter 2 introduces Differential Privacy, especially
its adaptation to ML, a differentially private version of stochastic gradient descent, privacy
attacks, and theoretical privacy boundaries in practice. Chapter 3 focuses on Deep Learn-
ing under DP with a focus on activation functions, batch and group normalization, and
neural network architecture search. Afterward, the used dataset, the benchmark study,
the hyperparameter search strategy, and related experiments are reviewed in Chapter 4.
Subsequently, the conducted hyperparameter and neural architecture experiments are de-
scribed in Chapter 5. Finally, the thesis concludes with a discussion of the main findings
and limitations of the thesis in Chapter 6 and a conclusion in Chapter 7.

2. Differential Privacy

This chapter will first introduce the concept of DP in general and afterward discuss
methods for applying DP to ML, especially the differential private stochastic gradient
descent (DP-SGD). Furthermore, the chapter will motivate the need for DP by giving an
insight into selected privacy attacks. The chapter will conclude with the relation between
theoretical and empirical privacy bounds obtained by attacking models.

After decade-long but sparse research on the topic of privacy in databases, Dwork
et al. [DMNS06] formalized privacy guarantees using the concept of differential privacy
(DP)1 in 2006. This contribution allowed for subsequent research, e.g., improvements in
the privacy guarantees and applications to machine learning. Because of the extraordinary
impact of the concept, the authors received the Gödel prize in 20172.

A good starting point for understanding DP is the survey method randomized re-
sponse [War65, GASH69] originating from social sciences. Before answering an uncom-
fortable question, the survey participants figure out their answer in secret. They flip a
coin and only answer truthfully when the coin shows tails. When the coin shows heads,
the participants respond randomly by flipping another coin. The participants can al-
ways claim their answer was random, but the researchers can still estimate the actual
distribution among all participants [DR+14, p.15-16]

Nowadays, the (ε, δ)-DP [DKM+06] is being used most of the time. Definition 2.1
(taken in this form from Dwork and Roth [DR+14]) states this version of DP. For under-
standing the definition, two concepts have to be defined: First, a randomized mechanism
is an algorithm that includes randomness similar to the randomized response described
above [DR+14]. Second, adjacent inputs d, d′ depend on the application of DP. In ma-
chine learning, these can be, e.g., two training datasets that differ in one training exam-
ple [ACG+16].

The core idea behind DP looks at the ratio of the probabilities for obtaining any
output of a randomized mechanism for any pairs of adjacent inputs d, d′. The probability

1. This thesis will mainly use the acronym DP for differential privacy. The wording under DP means
that a mechanism is executed under differential privacy guarantees.

2. The 2017 Gödel Prize citation from the 2017 Gödel Prize committee is available online at https:
//sigact.org/prizes/gödel/citation2017.pdf (accessed on 13.04.2022)

4

https://sigact.org/prizes/g�del/citation2017.pdf
https://sigact.org/prizes/g�del/citation2017.pdf

5

is taken over the randomized mechanism. This ratio is bounded by eε where ε ∈ R≥0. The
number δ ∈ R≥0 introduces a small chance that the bound of eε is violated. The value of
δ should be δ < 1

d
where d is the size of the dataset [DR+14, ACG+16]. When δ = 0, the

definition is the same as the ε-DP proposed in the original DP article [DMNS06].

Definition 2.1 ((ε, δ)-differential privacy)
A randomized algorithm M with domain N|X | is (ε, δ)-diffentially private if for all

S ⊆ Range(M) and for all x, y ∈ N|X | such that ||x− y||1 ≤ 1:

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ

where the probability space is over the coin flips of the mechanismM.

Desfontaines [Des19] provides an intuitive example for interpreting the bounding by
ε in his blog on DP. Assume a strong attacker wants to attack a randomized mechanism
M : N|X | → R and knows the complete database but is unsure whether an entry is part
of the database or not. In other words, the attacker does not know if the database is d or
d′ but might have a prior probability of 0.5 that the database is d′. After observing the
output of M that satisfies ε = 1.1, the probability of the attacker can be at minimum
≈ 0.25 and ≈ 0.75 at maximum. With an ε that is twice the size (ε = 2.2), the probability
will be already at minimum ≈ 0.1 and ≈ 0.9 at maximum. This means that the higher
the ε is, the more the attacker can learn from the randomized mechanismM. For (ε, δ)-
DP [DKM+06] there is a probability of δ that the privacy bound does not hold and the
attacker can learn more, which is, as discussed previously, usually chosen to be tiny.

There are two properties of DP that build the foundation of the machine learning
algorithms that will be described in subsequent sections of the thesis. The first property is
that the composition of multiple differentially private mechanisms is also differentially pri-
vate. Theorem 2.1 states this fact and results from the analysis by Dwork et al. [DKM+06]
and is taken in this form from the comprehensive DP book The Algorithmic Foundations
of Differential Privacy by Dwork and Roth [DR+14]. The privacy loss of the combination
is at maximum, the sum of the individual (ε, δ) values. There are more advanced compo-
sition theorems that result in a lower privacy loss, and they can be found in Section 3.5
of the book from Dwork and Roth [DR+14].

Theorem 2.1 (Composition of (ε, δ)-mechanisms)
Let Mi : N|X | → Ri be an (εi, δi)-differential private algorithm for i ∈ [k]. Then

if M[k] : N|X | → ∏k
i=iRi is definied to be M[k](x) = (M1(x)), ...,Mk(x)), then M[k] is

(∑k
i=1 εi,

∑k
i=1 δi)-differential private.

The second property clarifies that a (ε, δ)-mechanism cannot be less private when
applying postprocessing. Theorem 2.2 formalizes this and can be found in the book from
Dwork and Roth [DR+14, p.19].

6

Theorem 2.2 (Postprocessing of a (ε, δ)-mechanism)
Let M : N|X | → R be a randomized algorithm that is (ε, δ)-differentially private.

Let f : R → R′ be an arbitrary randomized mapping. Then f ◦ M : N|X | → R′ is
(ε, δ)-differentially private

One might ask how to achieve (ε, δ)-DP. A simple method to achieve DP of a function
uses the Laplace mechanism, proposed by Dwork et al. [DMNS06]. Before applying the
Laplace mechanism, the `1 sensitivity of the underlying function has to be determined,
which can be found in Definition 2.2 (taken from Dwork and Roth [DR+14]). The `1

sensitivity is the maximum amount the result can change when one entry of the input
dataset is present or absent. The `1 sensitivity for the sum over {0, 1} is 1 [DMNS06].

Definition 2.2 (`1 sensitivity)
The `1 sensitivity of a function N|X | → Rk is:

∆f = max
x,y∈N|X |

||x−y||1=1

||f(x)− f(y)||1

After determining the `1 sensitivity, one must add noise in proportion to it. The noise
will be drawn from a Laplace distribution as can be seen in Definition 2.3. The definition
of the Laplace mechanism has been taken from the book by Dwork and Roth [DR+14].
The Laplace mechanism can be used to achieve (ε, δ = 0)-DP.

Definition 2.3 (Laplace Mechanism)
Given any function f : N|X | → Rk, the Laplace mechanism is defined as

ML(x, f(·), ε) = f(x) + (Y1, ..., Yd)

where Yi are i.i.d. random variables drawn from Lap(∆f/ε).

An example is useful for understanding the Laplace mechanism. When imagining
a function with an `1 sensitivity of 2, one can apply Definition 2.3. For achieving (ε =
0.5, δ = 0) noise from the Laplace distribution scaled to b = 2

0.5 = 4 has to be added. The
noise required for reaching (ε = 1, δ = 0) has a scale of b = 2

1 = 2.
There are other mechanisms besides the Laplace mechanism. The Gaussian mecha-

nism, for example, adds noise sampled from a Gaussian distribution, where the noise for
that is scaled by a so-called `2 sensitivity. Section 3.5.3 of the book from Dwork and Roth
elaborates on the differences between Laplace and Gaussian distribution [DR+14].

2.1. Differentially Private Machine Learning 7

2.1 Differentially Private Machine Learning

This subsection will discuss methods to perform machine learning under DP, which is
complex as various modifications can transform non-DP learning into DP learning. The
changes can happen during preprocessing, training, or afterwards [PMSW18]. This section
will discuss the methods of input perturbation, objective perturbation, output perturba-
tion, noisy gradient-based optimization, and private aggregation.

Input perturbation

In input perturbation, each user keeps their data locally and adds noise before transmitting
it to a central party that conducts the learning. Thus, the complete training runs on
perturbed inputs. While there have been previous ideas leading in a similar direction,
adding noise locally has been formulated in a DP-way called local DP in [KLN+11].
The advantages of input perturbation are that the central party is not required to be
trustworthy. Additionally, every party can decide on the amount of locally added noise
and consequently on the privacy guarantee [ACPP18]. The disadvantage is that to ensure
privacy, each party has to add a lot of noise, resulting in a high loss of utility. Thus, local
privacy is infeasible in many applications. It is, however, viable in applications where a
lot of data is available, e.g., in use-cases of Google and Apple [ACPP18].

Objective perturbation

Objective perturbation accomplishes DP by adding noise to the objective function in-
stead. The goal of the training is to minimize the noisy objective function, and then the
model parameters that minimize the noisy objective function will be released [ZZX+12].
Objective perturbation is limited to specific models: linear and logistic regression models
can be optimized under DP using objective perturbation, but, e.g., cases where the loss
function is non-convex are unsuitable for objective pertubation [ZZX+12, CMS11, JE19].
As will be discussed in Chapter 3, non-convex loss functions are standard in deep learning
models. There are techniques to replace a non-convex loss function with a convex loss
function, but this requires further analysis, more changes to the model, and might limit
the performance of the model [JE19].

Output pertubation

Adding noise to the output of a function before releasing the output is known as output
perturbation [DMNS06]. The output perturbation idea can be used in machine learning
as well. Complicated analysis is necessary to figure out the necessary amount of noise

2.1. Differentially Private Machine Learning 8

to add to the outputs [CMS11]. Consequently, it will not be further considered in this
thesis.

Noisy gradient-based optimisation

Another direction of research is to add noise to the gradients during gradient-based opti-
mization as done for example in DP-SGD [RA12, SCS13, ACG+16]. Modifying a non-DP
approach that optimizes a model with a gradient-based algorithm such as stochastic gra-
dient descent towards a model that uses DP-SGD is trivial. Only the optimizer has to be
changed, and no model-specific analysis is required. In practice this can be done out of
the box with privacy libraries like Opacus [YSS+21] for Pytorch [PGM+19] or TensorFlow
Privacy for TensorFlow [ABC+16].

However, to achieve optimal utility with DP-SGD, further analysis is required, and
also the model may have to be modified. Section 2.2 will elaborate on DP-SGD in more
detail as it is the differential private machine learning method that this thesis will use.

Private aggregation

The private aggregation of teacher ensembles (PATE) [PAE+17, PSM+18] is another
approach that yields high utility with the constraint that it requires to have additional
public data.

The sensitive data is split into n non-overlapping datasets, and in total n so-called
teacher models are trained on them (one teacher model per dataset). There are no re-
strictions on the algorithm used to train the teachers as long as it is suitable for the
underlying dataset. The teachers form an ensemble that votes together on the label of
a data point, and then the noise is added to this aggregated prediction. The teacher
ensemble returns the label with the highest (noisy) count. The teachers are being utilized
to perform semi-supervised learning with unlabelled publicly available data and train a
student model. The number of predictions from the teacher is limited as otherwise, the
privacy loss would further increase. Only the student model is being released and could
be attacked [PSM+18].

Further enhancements and subsequent work are out of scope for this thesis because
PATE is unsuitable for the thesis even though the idea is promising. PATE depends on
the availability of public data and which is not available in the setup of this master thesis
(see Section 4.1 for details on the used dataset).

2.2. Differentially Private SGD 9

2.2 Differentially Private SGD

A line of work [RA12, SCS13, ACG+16] introduced differentially private stochastic gra-
dient descent (DP-SGD), which is a modification of the widely used stochastic gradient
descent (SGD) to allow for optimization of models under DP. DP-SGD consists of two
sub-concepts that will be introduced in this section. The first sub-concept includes the
changes to the SGD and the newly introduced hyperparameters. The second sub-concept
deals with accounting for privacy and is the so-called privacy accountant.

Changes from SGD to DP-SGD

To understand the differences between the default SGD and DP-SGD, the most straight-
forward way is to go through the DP-SGD algorithm from Abadi et al. [ACG+16] as
displayed in Algorithm 1 and highlight the aspects that differ between SGD and DP-
SGD. Several hyperparameters are only part of DP-SGD. These are the subsampling
ratio, the clipping bound, and the noise multiplier. The additional hyperparameters will
also be addressed when discussing the differences between the algorithms.

Algorithm 1 Differentially private stochastic gradient descent (DP-SGD)
(The algorithm is almost identical to the one in [ACG+16].)

Input: data points {x1, ..., xN}, loss function L(θ) = 1
N

ΣiL(θ, xi))
Hyperparameters: learning rate ηt, noise multiplier σ2, group size L, clipping bound C
1: Initialize θ0 randomly.
2: for t ∈ [T] do
3: Take a random sample Lt with sampling probability L/N
4: Compute gradient
5: For each i ∈ Lt compute gt(xi)← ∇θtL(θt, xi)
6: Clip gradient
7: g̃t(xi)← gt(xi)/max(1, ||gt(xi)||2

C
)

8: Add noise
9: g̃t ← 1

|Lt|(Σig̃t(xi) +N (0, σ2C2I))
10: Descent
11: θt+1 = θt − ηtg̃t
12: end for
Output: θT and overall privacy cost (ε, δ) computed using a privacy accountant.

The initialization of DP-SGD does not differ from SGD, and also, the loop over
multiple steps does not differ. The first difference is in line 3 of Algorithm 1: In SGD, the
batches are selected with a fixed size and are non-overlapping within one epoch, but in

2.2. Differentially Private SGD 10

DP-SGD, batches are selected with a probability which is also called subsampling ratio q.
The random selection implies that each sample has a probability of q = L/N to be chosen
for the batch in every optimization step [ACG+16]. While being unlikely, one sample
could be part of every optimization step. This subsampling has an effect on privacy
accounting which will be discussed later.

After computing the so-called per-example gradients, the gradients will be clipped
to have a maximum L2-norm of the clipping bound C (see line 7 of Algorithm 1). The
gradient clipping is necessary to bound the sensitivity of the individual samples.

The clipping bound C also influences the amount of noise added to the gradients in
a later step. Choosing the clipping bound is not a trivial task as a too low C will reduce
the usefulness of the gradient, whereas a too high clipping bound C results in a lot of noise
being added [ACG+16]. As discussed by Chen et al. [CWH20], the effects of the clipping
bound depend on the distribution of the gradients, and thus general claims are difficult.
In practice, one should try out different clipping bounds C or use more sophisticated
techniques such as the adaptive clipping proposed by Andrew et al. [ATMR21]. The
adaptive clipping bound is based on setting the clipping norm to a DP estimated quantile
of the gradient’s L2-norm distribution in every optimizer step.

One can find the last difference between DP-SGD and SGD in line 9 of the Algorithm
1 where noise is added to the clipped gradients. The noise is drawn from a Gaussian
distribution with a variance of σ2C2. The variance is a product of the clipping bound
C and the so-called noise multiplier σ2. The noise multiplier is inversely related to the
privacy loss ε, meaning increasing the noise multiplier decreases the privacy loss per
update [ACG+16].

Privacy Accountant

A privacy accountant computes the privacy budget spent during the optimization of the
algorithm. One can set the noise multiplier so that each step of the optimizer would
spend exactly (ε, δ)-privacy. But when taking into account that the sample for each step
is taken randomly with a subsampling ratio q = L

N
, according to the so-called privacy

amplification theorem [KLN+11, BBKN14], each step is (O(qε), qδ)-private.
The moments accountant from Abadi et al. [ACG+16] reaches a tighter bound on

the privacy loss than previous works. For Algorithm 1 it results in a (O(qε
√
T), δ)-privacy

loss. The Rényi DP (RDP) [Mir17] formulizes the ideas of the moments accountant. The
accountant of the privacy library opacus uses this RDP-accountant1, and thus the RDP-
accountant will also be used in this thesis. Another technique uses Fast Fourier transforms

1. Privacy Engine in the documentation of Opacus [YSS+21] available at https://opacus.ai/api/
privacy_engine.html (accessed on 06.04.2022)

https://opacus.ai/api/privacy_engine.html
https://opacus.ai/api/privacy_engine.html

2.3. Privacy Attacks against Machine Learning 11

(FFT) to compute tighter bounds than RDP [KJH20].

2.3 Privacy Attacks against Machine Learning

This thesis discusses DP which is essential to protect against privacy attacks. Thus,
to understand the importance of the contributions of this thesis, knowledge of privacy
attacks is vital. This section will give a brief overview of the fundamentals of privacy
attacks.

In practice, privacy attacks depend on the application area, the machine learning
method, and access to the model. The latter can be distinguished between either a black-
box or a white-box scenario. In a black-box scenario, the attacker1 can use the trained
model to make predictions, e.g., using an API. The inference is also possible in the white-
box scenario; however there the attacker has full access to the model. Both access types
to models are commercially offered on marketplaces as some users are providing access
to their trained model through an API, and others are even enabling downloading the
trained model [FJR15].

The following paragraphs will outline two privacy attacks: membership inference
and attribute inference. Those attacks are closely connected to DP [JE19]. Also, a brief
overview of other attacks will be given.

Membership inference

The goal of a membership inference attack is to infer whether an individual’s data has
been used during the training of the machine learning model or not. The idea behind the
attack is that machine learning models react differently when inferring a data point based
on the fact whether it has been part of the training set or not [SSSS17].

One might question why membership inference is harmful. One realistic scenario
where membership inference is dangerous is when the attacked model concerns drug re-
sponse in cancer research. The knowledge that individuals have been part of a dataset
that deals with drug response in cancer research can expose the fact that the individual
had/has cancer [SSSS17].

The initial membership inference attack uses so-called shadow models, which are
models that are architecture-wise similar to the attacked model. The models are trained
on comparable but available data. These shadow models are used for training an attack
model in a supervised manner. The attack model can then distinguish whether or not a
data point has been a part of the training data or not. The number of shadow models
increases the efficiency of the attack [SSSS17].

1. This thesis uses the words attacker and adversary synonymously.

2.3. Privacy Attacks against Machine Learning 12

While the shadow model attack is efficient according to the evaluations of Shokri
et al. [SSSS17], it requires a high amount of computation. Subsequent work advanced
the initial attack: For example, the attack of Yeom et al. [YGFJ18] requires significantly
less computational power but the additional information about the loss function and
achieves slightly worse results. Membership inference is used in privacy research because
it resembles precisely the attack that DP tries to protect against [JE19].

Attribute inference

The attribute inference attack aims at extracting unknown attribute values using known
attribute values of the same data subject. Fredrikson et al. [FLJ+14] call the attack
model inversion attack and formalize the general idea, which previous authors already
observed. For instance, Korolova [Kor10] attacked the Facebook system for microtargeted
advertisements and Calandrino et al. [CKN+11] recommender systems.

It is also possible to attack more complicated systems. For example, Fredrikson et
al. [FJR15] attacked a face recognition system. One can find an example reconstruction
from this attack in the figure from Fredrikson et al. [FJR15, p.1323]. It is surprising
how accurate the reconstruction is given that the adversary only has access to the facial
recognition model, the returned class confidence scores, and the individual’s label.

Formally, the attack works as follows: A black-box attack for a modelM : X → Y ,
that maps inputs X to outputs Y , requires that the adversary possesses some information
about the targeted individual α and wants to extract unknown information about α that
is part of X. We will call this unknown information xαu . The information available to the
adversary includes the output of the model yα and either other data features of xα \ {xαu}
or information about the joint-distribution of the training set ofM [FLJ+14, p. 4].

The idea behind the attack is more straightforward when looking at an example
(highly related to the attack on warfarin dosing described by Fredrikson et al. [FLJ+14]).
The modelM predicts the dosage of a drug that an individual α takes based on height,
age, weight, and genetic information. An attacker would have to know the dosage of the
drug that α takes and other information xαu such as weight, age, and height. The attacker
could then try to infer which genetic information α has.

It is debatable if model inversion is always the essential part of the privacy violation
or if knowing the dosage of a drug and utilizing publically available statistical information
would lead to the same results [McS16].

Practically the attack can use a maximum a posteriori (MAP) estimator. It is then
possible to find xαu that is most likely to have been observed given the known values.
While one can apply this approach to various models, it requires trying out all possible
values of xαu in a brute-force manner and is thus not feasible in all contexts. For black-box

2.4. Theoretical Privacy Boundaries in Practice 13

attacks concerning image recognition, both the number of features and the fact that the
value ranges are interval-based make the MAP algorithm impractical. Thus, they require
more advanced algorithms [FJR15].

Other attacks

Some other methods for attacking ML are model stealing, hyperparameter stealing, and
property inference attacks, which are all not directly related to DP [JE19]. DP can prevent
memorization attacks, as studied by Carlini et al. [CLE+19]. Furthermore, poisoning and
adversarial training attacks that interfere with the training process threaten the integrity
of the model [JE19].

2.4 Theoretical Privacy Boundaries in Practice

The theoretical privacy losses obtained by DP analysis suppose that a powerful adversary
will attack the model. For example, in DP-SGD, the theoretical analysis is computed as
if the adversary not only can access the final model but would also be able to leverage
the intermediate computations of the optimization. Even though this is unrealistic, there
is no improved theoretical analysis for the case that the intermediate calculations are
unknown to the adversary [NST+21].

One way to obtain more realistic privacy loss estimates is to empirically measure the
privacy loss by attacking the model with privacy attacks. Two recent contributions from
Malek et al. [MEMP+21], and Nasr et al. [NST+21] show in more detail how privacy
loss can be empirically measured. Especially noteworthy is the contribution of Nasr et
al. [NST+21] that show how the practical epsilon compares in different scenarios, as can
be seen in Figure 2.1.

Figure 2.1: Empirically measured privacy loss by adversaries with different powers. The figure is
unmodified from the arXiv:2101.04535 version of Nasr et al. [NST+21, p.867] (CC BY 4.0 licence).

https://arxiv.org/abs/2101.04535
https://creativecommons.org/licenses/by/4.0/

2.4. Theoretical Privacy Boundaries in Practice 14

The weakest adversary has only access to the model via an API, and thus there, the
empirical privacy loss is the lowest. Stronger adversaries have, e.g., access to the model
gradients and can modify them. The red line shows the theoretically estimated privacy
bound, which is also measured when the most powerful attacker is attacking.

Empirically measuring the privacy led to the discovery that stochastic gradient de-
scent using gradient clipping without adding noise to the clipped gradient results in a
weakened performance of privacy attacks [JUO20]. Researchers have also discovered
mistakes and bugs in privacy implementations by attacking presumably highly private
models [TTS+22].

3. Adaptation of Deep Learning for
Differential Privacy

Related ideas to Deep Learning (DL) in the field of artificial intelligence (AI) have been
a more or less active research field for roughly half a century. Their popularity varied,
and there have been decades where most researchers focused on other areas. The current
popularity of DL in research and industry applications started around a decade ago due to
more available training data, sophisticated software, and powerful hardware. Researchers
discovered only then that methods developed in the 1980s work because it was not fea-
sible to use them before. Nowadays, DL algorithms are the backbone of state-of-the-art
machine learning solutions for computer vision, natural language processing, and other
domains [GBC16, pp. 11–28]. The DL models used in this thesis and in many applications
follow the concept of a multilayer perceptron (MLP), a kind of neural network (NN).

The remainder of this chapter follows two general ideas. On the one hand, it will
discuss the necessary fundamentals of DL and, on the other hand, introduce proposed
adaptations of DL to allow for a maximized utility under DP guarantees because research
suggests altering the model architecture is necessary [TB20, PTS+21]. After an introduc-
tion to basic ideas of DL, the sections will cover activation functions, group and batch
normalization, and other NN components. The chapter will conclude with an overview of
neural network architecture search.

An MLP approximates a function f ∗(x) from inputs x to outputs y using the ap-
propriate parameters θ for a function f(x; θ) = y. The function f(x; θ) = y consists of a
chain of multiple intermediate functions, e.g. two functions f (2)(f (1)(x)). The intermedi-
ate functions are called layers which means that f (1) is the first layer. Because the training
dataset does not contain the anticipated values for the layers apart from the output layer,
the other layers are called hidden layers.

In contrast to other kinds of neural networks like recurrent neural networks (RNNs),
the information in MLPs flows in one direction from inputs to outputs [GBC16, pp. 168-
171]. In the thesis, the number of hidden layers plus the output layer is the depth of the
model; the dimensionality of the layers is called width. Figure 3.1 shows an MLP with a
depth of three and two hidden layers with a width of five and four.

15

16

Figure 3.1: A MLP with a depth of three and two hidden layers that have a width of five and four (own
illustration by the author).

MLPs overcome traditional linear models by applying non-linear transforma-
tions [GBC16, pp. 169–170]. According to the so-called universal approximation theo-
rem [HSW89], an MLP with at least one hidden layer and a so-called squashing function
(sigmoid and tanh, but not ReLu)1 can represent any function. Achieving an adequate
representation of the function and the generalization of the MLP depends on the size of
the hidden layer and the learning algorithm [GBC16, pp. 198–199].

The optimization of MLPs (and NNs in general) is more challenging than the opti-
mization of linear models because the most popular cost functions of NNs are non-convex.
The non-convexity results in the fact that the training of NNs most of the time aims for a
local minimum of the cost function and thus a good enough minimum of the cost function
and not the best possible optimum. The algorithms used to optimize NNs are regularly
based on gradient descent [GBC16, pp. 177–178]. The experiments of this thesis use
an adaptive stochastic gradient descent variant called Adam introduced by Kingma and
Ba [KB14].

It is important to mention that larger DL models behave differently under DP
than in the non-DP case: The dimensionality d of both non-DP algorithms as well as
DP algorithms influences the error rate of the respective algorithms [SS21, BGM21].
Singhal and Steinke [SS21] introduce a toy example of mean estimation for a distribution
supported on [0, 1]d. For this toy example, the relationship between d and the error rate,
when n is the number of samples is Θ(

√
d
n

) for the DP case and for the non-private case
Θ(

√
log(d)
n

). It depends on the loss function how bad the relationship in practice is, e.g.,
Bassily et al. [BGM21] distinguish their analysis between smooth and non-smooth, convex
and non-convex. One can improve the dependence on d by making assumptions, e.g., that
some d do not matter, and introducing a k << d. This assumption is applicable in DL
because the gradients often tend to follow k and not d [SS21]. These considerations are

1. Refer to the paper of Hornik et al. [HSW89] for more details.

3.1. Activation Functions 17

outside of the scope of this master thesis. The conclusion that is important for the rest
of this thesis is that in comparison to smaller models, larger models are harder to train
under DP than they would be in a non-DP setting.

3.1 Activation Functions

Activation functions are used in neural networks to apply non-linear transforma-
tions [GBC16, pp. 169–170]. There are dozens of possible activation functions but re-
cently the rectified linear unit (ReLU) became the state-of-the-art in DL [RZL17]. The
equation of the ReLU is simple; as can be seen in Equation (3.1), it returns the value if
it is positive and otherwise returns a 0.

ReLU(x) = max(x, 0) (3.1)

Before the widespread use of ReLUs, the sigmoid function (Equation (3.2)) has been
widely used. In many cases, using a sigmoid activation functions is challenging because
they are only sensitive to values close to 0. They are still used in some architectures, e.g.,
certain kinds of autoencoders, because in those cases, ReLUs cannot be used [GBC16,
p.195].

σ(x) = 1
1 + e−x

(3.2)

Another alternative is using the tanh activation function (Equation (3.3)), which
can be rewritten using the sigmoid activation function. It regularly performs better than
sigmoids [GBC16, p.195].

tanh(x) = ex − e−x

ex + e−x
= 2σ(2x)− 1 (3.3)

Many alternatives to the above-listed activation functions have been proposed, but
none of them seems to be generally better. In the majority of cases, the above-listed
three activation functions are used [RZL17, GBC16]. A list of some other relatively
widespread activation functions can be found in Section 6.3.3 of the book Deep Learning
from Goodfellow et al. [GBC16].

When proposing a new activation function, the main question is how to prove that
it is generally better than others. Ramachandran et al. [RZL17] conducted extensive
automatic search for new activation functions and proposed an alternative to ReLUs.
The article got declined from the ICLR conference because it is hard to prove that the
proposed alternative is better1. Still, the article has been cited more than 1500 times

1. ICLR 2018 reviews of the Searching for Activation Functions article [RZL17]. Online available at
https://openreview.net/forum?id=SkBYYyZRZ (accessed on 08.03.2022)

https://openreview.net/forum?id=SkBYYyZRZ

3.1. Activation Functions 18

until today, which indicates some relevance of the proposed ideas. One of the problems
is understanding what is generally good for an activation function.

While ReLUs are the state-of-the-art for non-DP models, it does not necessarily fol-
low for DP models. Papernot et al. [PTS+21] propose using tempered sigmoids (Equation
(3.4)) which are a generalized version of sigmoids that have additional three parameters
that can be optimized. These are the inverse temperature T , scale s and offset o. The
sigmoid function can be written as a tempered sigmoid with the parameters s = 1, T = 1
and o = 0 and the tanh with s = 2, T = 2 and o = 1. In Figure 3.2 different tempered
sigmoids and the ReLU are visulized.

tempered sigmoid(x) = s

1 + e−Tx
− o (3.4)

Equation (3.4): The parameters are s=scale, T= inverse temperature and o=offset.

−4 −2 0 2 4 6
−1

0

1

2

3

4

5

6 s=2, T=2, o=1 (tanh)
s=5, T=2, o=1
s=2, T=6, o=1
s=2, T=2, o=0
ReLU

Figure 3.2: Example values for different tempered sigmoids (specified by the tuple [scale=s, inverse
temperature=T, offset=o)] and the ReLU activation function in the range of [-4, 6]. The blue line is the
tanh activation function. The figure has been modified from Papernot et al. [PTS+21, p.9314] to include
the ReLU activation function.

Papernot et al. [PTS+21] claim that tempered sigmoids are better when training
models under DP. Their contribution aims at solving the issue of choosing the clipping
parameter C in DP-SGD. When the parameter C is too low, it results in a bias that
changes the objective, and when it is too high, the noise added also results in inferior
training performance. They argue that the inverse temperature T resolves this issue and
observe that using tempered sigmoids prevents exploding gradients. Their results showed
significant performance improvements on MNIST, Fashion-MNIST, and CIFAR10. One
downside is that there are three more hyperparameters per tempered sigmoid unit. The
authors found that tanhs are the best performing tempered sigmoids in their example and
thus claim just replacing ReLUs with tanhs is sufficient [PTS+21].

3.2. Batch and Group Normalization 19

It is important to tune the other hyperparameters of the model in order to correctly
measure the performance difference between ReLUs and tempered sigmoids [PTS+21]. In
Section 5.6 a comparison of different activation functions with extensive hyperparameter
tuning will be conducted.

3.2 Batch and Group Normalization

Batch normalization is a reparametrization trick to improve the optimization of (deep)
neural networks. It has been proposed by Ioffe and Szegedy [IS15] who report improved
performance on ImageNet classification using batch normalization. Equation (3.5) dis-
plays batch normalization as one equation in comparison to the original paper, which uses
two equations. For every dimension k of the mini-batch, the input x(k) is first normalized
to zero mean and unit variance. In order to preserve the ability of the layer to represent
functions, two additional trainable parameters γ(k) and β(k) are added. This means that
the unnormalized version of x(k) can be represented if γ(k) =

√
Var[x(k)] and β(k) = E[x(k)],

but also other choices are trainable. Both the original paper [IS15] as well as Section 8.7.1
of the book from Goodfellow et al. [GBC16] provide further insights into the method and
why it improves learning significantly in some cases.

y(k) = γ(k)x
(k) − E[x(k)]√

Var[x(k)]
+ β(k) (3.5)

Even though batch normalization is a promising method in many models, it can not be
used in this thesis because it is not compatible with DP. In batch normalization, a sample
depends on the other samples in the batch and will be normalized to a different value
if the content of the batch is different1. The maintainers of opacus suggest using the
normalization method group normalization [WH18] instead, which will be introduced in
the remainder of this section.

In contrast to batch normalization, group normalization normalizes the inputs by
looking at each sample independently from the others and not looking at a batch. The
vector with all features will have zero mean and unit variance for every sample.

The term group comes from specifying which features should be normalized together;
when the number of groups is one, all features are normalized together. This case of the
group norm is called layer Norm. The term for when the number of features equals the
number of groups is instance norm. Figure 3.3 shows the difference between batch, layer,
instance, and group norm.

1. validators/batch_norm.py in Opacus [YSS+21] GitHub (accessed on 02.03.2022)

https://github.com/pytorch/opacus/blob/096fe02e6c67b91cae6913468b4cf933b163640e/opacus/validators/batch_norm.py

3.3. Other Components 20

N

K
Batch Norm

N
K

Layer Norm

N

K

Instance Norm

N

K

Group Norm

Figure 3.3: Different normalization methods. Each plot displays an input to the normalization method
with a batch size of N and a dimensionality of K. The elements highlighted in blue are normalized by
the same mean and variance. For the group norm, the group size is 2. The plot is simplified from Wu
and He [WH18, p. 4] because the original plot is intended for computer vision applications.

3.3 Other Components

Apart from the previously discussed neural components, the neural network architecture
can contain more possible components. When comparing the list of the available com-
ponents in the Pytorch [PGM+19] documentation1 to the proposed changes, it becomes
obvious that this chapter introduced sensible components for training the dataset of the
thesis under DP.

Convolutional neural networks, commonly used in computer vision applications,
utilize pooling, padding, and convolutional components. These and the other vision com-
ponents are unsuitable for the dataset used in this thesis (see Section 4.1). Even though
the thesis could use recurrent and transformer layers, it is up to future work to use them
as they significantly increase the model’s complexity. Recall that more complex models
are more challenging to train under DP than without DP, and thus it remains to be seen
if those components beneficial. Finally, the thesis does not consider dropout layers due
to constraints on the time available for performing experiments.

3.4 Neural Network Architecture Search

The term network architecture denotes the overall structure of a neural network, which
has to be optimized similarly to the hyperparameters of the learning process [GBC16,
p. 197-198]. The automatic search of architectures for neural networks is called neural
network search (NAS) [HSG89, PDDC09]. NAS is becoming more used in practice be-
cause it outperforms hand-designed architecture. Elsken et al. [EMH19] have published
a comprehensive survey on NAS; this section will introduce some of its concepts. The

1. TORCH.NN in the Pytorch [PGM+19] documentation. Online available at https://pytorch.org/
docs/stable/nn.html (accessed on 10.05.2022)

https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.html

3.4. Neural Network Architecture Search 21

topic is highly relevant to the thesis as one of the goals is to find the best model under
DP. A NAS algorithm consists of three components: the search space, search strategy,
and performance estimation strategy [EMH19]. The following paragraphs will describe
the three components in more detail. They are also visualized in Figure 3.4.

Search space Search strategy Performance
estimation strategy

Bayesian optimization test utility after
complete training runs

depth & width,
activation functions,
group normalization

Figure 3.4: Abstract illustration of the neural network search conducted in this thesis. The figure is
heavily inspired by the illustration from Elsken et al. [EMH19, p.2].

First, the search space describes the set of architectures that the NAS algorithm
can select. The search space has a high dimensionality as it includes the depth of the
architecture, components, and hyperparameters. All dimensions of the search space are
dependent on each other. For example, including batch normalization in one of the layers
requires the specification of the number of groups. There is a tradeoff regarding the
size of the search space: One can limit the size of the search space by incorporating
knowledge regarding possibly reasonable architectures. Reducing the size of the search
space can result in inferior performance because it might exclude suitable architectures.
There are techniques to reduce the complexity of the search space, e.g., by optimizing
sub-architectures. This thesis will focus on a small search space that only changes the
depth and width of the model besides introducing different activation functions and group
normalization.

Second, the search strategy is the method that picks the models from the search
space. An ideal search strategy finds an optimal architecture fast, but as this is unrealistic,
the strategy balances finding good architectures with the total run time of the NAS.
Different search strategies are possible: evolutionary algorithms, reinforcement learning,
gradient-based, and Bayesian optimization. Bayesian optimization with recent techniques
is promising and is also the backbone of the experiments conducted in this thesis. Details
on the technique are listed in Section 4.3. One can find a comprehensive overview of the
advantages and disadvantages of different search techniques in Section 3 of the survey by
Elsken et al. [EMH19].

Third, a naive performance estimation strategy estimates the performance of
a model architecture by training the model entirely and reporting the test set perfor-
mance. This naive approach is computationally expensive and led to early articles on
NAS consuming decades of GPU computation. Thus improvements are necessary. One

3.4. Neural Network Architecture Search 22

can estimate the performance earlier, e.g., by training shorter or on less data or by ex-
trapolating the learning curve. Other approaches use pre-trained weights or a large model
consisting of smaller models that share their weights. All these approaches can result in
worse architectures than the naive way, but the tradeoff in computation might be worth it
[EMH19]. This thesis only uses the naive way and reports the test utility after complete
training runs.

Some libraries perform NAS for Machine Learning, such as Auto-Pytorch1 [ZLH21]
for Pytorch or Auto-Sklearn2 [FKE+15] for scikit-learn that claim to be usable out-of-the-
box. The NAS libraries use similar APIs as the underlying basic libraries on top. Still,
Auto-Pytorch, which would be the applicable library for the experiments in this thesis,
seems to be not mature enough. When writing the thesis (March 2022), the version of
Auto-Pytorch is 0.1.1, and it would require substantial effort to make it work with the
underlying libraries and models. It seems like a promising direction for future work as
NAS can widen the search space while reducing the computational complexity.

1. Auto-Pytorch GitHub https://github.com/automl/Auto-PyTorch (accessed on 10.05.2022)
2. Auto-sklearn GitHub https://github.com/automl/auto-sklearn (accessed on 10.05.2022)

https://github.com/automl/Auto-PyTorch
https://github.com/automl/auto-sklearn

4. Experimental Setup

This chapter describes the required knowledge for the experiments. It starts by introduc-
ing the dataset and the non-DP baseline benchmark library. Finally, the last two sections
discuss the hyperparameter optimization method and related experiments.

4.1 Dataset

All experiments in this thesis use the MIMIC-III dataset [JPS+16, JPM16] in version 1.4
retrieved from PhysioNet [GAG+00]. It contains patient data from Beth Israel Deaconess
Medical Center in Boston, Massachusetts, the USA, of more than 40,000 admissions to
critical care units. Access to the MIMIC-III dataset is credentialed and confidential but
can be obtained by completing a credential process and agreeing to the terms. The open-
access policy makes it easier to reproduce scientific contributions by other researchers
than when using other datasets [JPS+16].

According to the Health Insurance Portability and Accountability Act (HIPAA),
the publishers de-identified the dataset. The dataset contains information from various
sources such as demographic information, information from the bedside monitoring and
laboratory results. Furthermore, it contains information that is of different structures:
One table contains free form notes from nurses and doctors, which are not structured,
and another one procedures that have been recorded using standardized codes. More
details on the dataset and the preprocessing can be found in the article from Johnson
et al. [JPS+16]. In general, understanding the dataset is not trivial and thus this thesis
relies on already existing benchmark libraries that extract features from the MIMIC-III
databases. More details can be found in the next section.

In 2021, MIMIC-IV [JBP+21] was released. It is a successor to MIMIC-III and
contains more data and other improvements. While some non-DP models using MIMIC-
IV like the one from Kumar et al. [KIS+21] have been proposed, the availability of source
code and articles is still too limited in comparison to MIMIC-III.

23

4.2. Benchmark Study and Models 24

4.2 Benchmark Study and Models

Multiple libraries provide code for open-source benchmarks for ML models on MIMIC-III,
such as the ones from Purushotham et al. [PMCL18]1, Harutyunyan et al. [HKK+19]2 and
Wang et al. [WMC+20]3. All these benchmarks do not take DP into account. This thesis
uses the preprocessing, and the model comparison from Harutyunyan et al. [HKK+19].
The main reasons for choosing that benchmark suite are that the influence, measured in
citations and GitHub stars, is higher for that benchmark suite than the others. Further-
more, the code base is better maintained, and other researchers of the PROBIC group
work with it.

The benchmark study from Harutyunyan et al. [HKK+19] contains multiple different
tasks with both preprocessing scripts and benchmark models provided. These tasks are in-
hospital mortality prediction, decompensation prediction, length-of-stay prediction, and
phenotype classification. The thesis will focus on the task of the phenotype classification,
a multi-label classification with 25 sub-tasks that are different diseases like pneumonia or
acute myocardial infarction (heart attack). One patient can have multiple diagnoses at
the same time [HKK+19]. The phenotyping task is also part of other research projects in
the PROBIC group.

Harutyunyan et al. [HKK+19] suggest using the receiver operating characteristics
(ROC) metric for the phenotyping task. The ROC space is a two-dimensional space in
which classifiers are placed according to their false positive rate (FPR) and true positive
rate (TPR). In Equation (4.1) one can find the estimation of the FPR and in Equation
(4.2) the estimation of the TPR [Faw06].

FPR ≈ negatives incorrectly classified
total negatives (4.1)

TPR ≈ positives correctly classified
total positives (4.2)

For classifiers that output a probability, one can vary the threshold at which a proba-
bility is resulting in the first or second binary class and produce a curve with that [Faw06].
Figure 4.1 shows different AUC curves (red, green and orange) in the ROC space. The
dotted blue line resembles the curve for a random classifier.

As one can easily see from Figure 4.1, it is challenging to compare different classifiers
using the curves. While it is trivial to see that the orange curve is worse than the
green and red curve, it is hard to distinguish between red and green. Thus, the area

1. Purushotham et al. code can be found at https://github.com/USC-Melady/
Benchmarking_DL_MIMICIII

2. Harutyunyan et al. code can be found at https://github.com/YerevaNN/mimic3-benchmarks
3. Wang et al. code can be found at https://github.com/MLforHealth/MIMIC_Extract

https://github.com/USC-Melady/Benchmarking_DL_MIMICIII
https://github.com/USC-Melady/Benchmarking_DL_MIMICIII
https://github.com/YerevaNN/mimic3-benchmarks
https://github.com/MLforHealth/MIMIC_Extract

4.2. Benchmark Study and Models 25

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 4.1: Illustration of different ROC curves. This figure has been created by the author.

under the curve (AUC) for the ROC is often determined. The best possible classifier
has an AUC-ROC of 1, whereas a random classifier (blue dotted line) has an AUC-
ROC of 0.5 [Faw06]. The comprehensive article An introduction to ROC analysis by
Fawcett [Faw06] contains more technical details on AUC-ROC. The benchmarking library
from Harutyunyan et al. [HKK+19] outputs an AUC-ROC for each of the 25 phenotyping
tasks. The primary metric of the complete task is a macro averaged AUC-ROC [HKK+19].
The macro averaged AUC-ROC is an unweighted average of the AUC-ROC scores for the
25 tasks and thus gives every task the same importance. Other methods such as the micro
averaged AUC-ROC do not give all tasks the same importance1.

The thesis uses the preprocessing from Harutyunyan et al. [HKK+19] and does
not modify it. The preprocessing outputs 714 features based on the studies by Pollack
et al. [PPR96] and Lipton et al. [LKEW17]. Pollack et al. [PPR96] propose 17 hand-
engineered features, which include e.g. coma, blood pressure and abnormal pupillary
reflexes. For each of them, six statistics such as minimum, maximum and mean are
computed. This is done for seven intervals of each time series, resulting in the 17 ∗ 6 ∗ 7 =
714 features [HKK+19].

While some research suggests that machine learning under DP requires better fea-
tures [TB20], changing the preprocessing is not in the scope of this thesis. Feature en-
gineering demands a deep understanding of the dataset and is likely to have similar
complexity as this thesis.

The used preprocessing contains a hard-coded test/train split, and it is not immedi-
ately obvious what the criterium for the split is. To ensure that the split is not favorable

1. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
(accessed on 09.06.2022)

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html

4.3. Bayesian Optimization 26

for specific hyperparameter combinations, one experiment aims at determining the stan-
dard derivation between the macro averaged AUC-ROC scores for different splits. For the
best non-DP MLP hyperparameter combination, the standard deviation is 0.0010. The
low standard deviation suggests that the utility is not prone to different test/train splits,
and thus the experiments will use the default split.

Figure 4.2 shows the results for the phenotyping for multiple different models from
Harutyunyan et al. [HKK+19] which display a similar diagram in their paper. This figure
has been recreated to integrate a non-DP version of the MLP used in this thesis’s exper-
iments. This MLP itself is not part of the benchmark suite but has been created from
scratch and optimized with Optuna [ASY+19]. The confidence intervals are computed by
bootstrapping the test set 10000 times.

0.74 0.75 0.76 0.77 0.78
Macro AUC-ROC

Logistic Regression

Multilayer Perceptron

standard LSTM

standard LSTM + deep supervision

channel-wise LSTM

channel-wise LSTM + deep supervision

multitask standard LSTM

multitask channel-wise LSTM

m
od
el

Figure 4.2: Comparison of the performance of the different models of the benchmark study. The figure
is an own figure based on the Figure 2 of Harutyunyan et al. [HKK+19, p.6]. Please note that the MLP
has been added by the author and is not part of the publication of Harutyunyan et al. [HKK+19].

The figure shows that in the non-DP setting, more complex models like LSTMs
perform better than simpler models such as logistic regression or the newly proposed
MLP. Recall that optimizing large models under DP is challenging due to the curse of
dimensionality (see Section 3). Furthermore, the training time of LSTMs is significantly
larger than for much smaller MLPs. Thus this thesis focuses on MLPs. Possible following
work could extend the work towards more complex models.

4.3 Bayesian Optimization

Finding the (nearly) optimal hyperparameters is essential for comparing different methods
and determining the influence of hyperparameters. As previously noted in Section 3.1
when discussing different activation functions, it is essential to tune the other factors to

4.3. Bayesian Optimization 27

allow for a fair comparison. There are several methods for optimizing hyperparameters,
and this section will give an overview of them.

The common methods listed by Bergstra and Bengio [BB12] are manual search, grid
search, random search, and Bayesian optimization. The latter three methods are visual-
ized in Figure 4.3. Manual search relies on the research to optimize the hyperparameters
by making informed choices and is thus laborious and hard to reproduce, but requires not
much overhead and allows the researcher to gain insight into the effect of different hyper-
parameters [BB12]. For selecting the hyperparameters in this thesis, a manual search is
infeasible.

Hyperparameter 1

Hy
pe

rp
ar

am
et

er
 2

Grid Search

Hyperparameter 1

Hy
pe

rp
ar

am
et

er
 2

Random Search

Hyperparameter 1
Hy

pe
rp

ar
am

et
er

 2

Bayesian Optimization

Figure 4.3: Illustration of the differences between Grid Search, Random Search and Bayesian Optimiza-
tion using a toy example. The figure has been created by the author using the 2D-histograms provided
by the Python visualization library corner.py [FM16].

Grid search works by spanning a grid over the hyperparameter space and evaluating
every combination of the hyperparameters. The method is easy to set up but has multiple
drawbacks: The number of trails grows exponentially, e.g., when assuming that there are
five hyperparameters with ten possible values each, the number of trails would be already
105. A significant amount of those trails do not provide any more insights as they explore
uninteresting areas of the hyperparameter space [BB12]. The inefficiency can be, e.g.,
seen when looking at the left column of points evaluated in Figure 4.3. The value of
hyperparameter 1 is suboptimal and will result in a bad result no matter the value of
hyperparameter 2. Still, three trails with different values of hyperparameter 2 will be
executed. Both grid and manual search are widely used in research, but as there are more
efficient methods, this thesis will not use them [BB12].

Random search works as the name suggests. Random points in the hyperparameter
space are evaluated, and a good combination is discovered by chance. Despite its simplic-
ity, random search outperforms grid search and manual search while additionally allowing
for easy parallelization and fault tolerance since the trials are i.i.d. [BB12].

Bayesian optimization is a promising approach that uses Bayesian surrogate models

4.3. Bayesian Optimization 28

to make informed choices about the regions to explore. It naturally trades off between ex-
ploring areas of the space that seem most promising and areas that have not been explored
yet. Bayesian optimization has shown better performance in some experiments [SLA12].
The overhead of the Bayesian optimization is larger than in the previous methods.

In this thesis, Bayesian optimization with the Python library Optuna [ASY+19] is
used. Optuna uses the tree-structured Parzen Estimator (TPE) [BBBK11] by default
which outperforms other techniques [ASY+19]. While there are more complex algorithms
for neural architecture search (NAS) like the library Auto-Pytorch [ZLH21], Optuna is
used as it can be easily adapted to perform NAS shown in the documentation1, this
reduces the complexity of the implementation.

The Bayesian optimization library Optuna not only provides methods to optimize
hyperparameters but additionally contains tools to visualize the optimization runs. Fig-
ure 4.3 shows a slice plot obtained during an optimization run prior to the experiments
displayed in Section 5. The x-axis shows the hyperparameter values, and the y-axis shows
the achieved utility. The points are the results of different trials. Their brightness visu-
alizes the ordering of the trials. The darker the point is, the later Optuna executed the
trial.

Figure 4.4: Slice plot of the hyperparameters batch size and noise multiplier obtained during a Bayesian
optimization run with the library Optuna [ASY+19]. The basic visualization was created using Op-
tuna [ASY+19] but enhanced by the author.

Figure 4.4 serves two purposes: First, it shows that Bayesian Optimization indeed
efficiently focuses on the optimal regions of the hyperparameter space. For both hyper-
parameters, the Bayesian optimization explores all regions of the hyperparameter space.
Still, most of the evaluations are in the region with a batch size of around 2000 and a
noise multiplier of about 4.2. Second, the user can assess if the search space of the hy-
perparameters is sufficient. For example, when Optuna primarily evaluates values close

1. optuna-examples/pytorch/pytorch_simple.py in Optuna [ASY+19] GitHub (accessed on 02.03.2022)

https://github.com/optuna/OPTUNA-examples/blob/117f1fe3f258612de1789443bc4f4f32bc79254b/pytorch/pytorch_simple.py

4.4. Related Experiments 29

to the bounds of the hyperparameter space, the user might want to extend the bounds to
obtain more optimal results.

4.4 Related Experiments

This section will provide an overview of related hyperparameter optimization experiments
in other works. Almost every paper in DP research contains experiments, which require
choosing hyperparameters. This section gives valuable insight into the techniques used
in research to optimize hyperparameters. Future work should aim at providing a survey
extending the work here.

The selection of hyperparameters leaks privacy, and this additional cost is ignored
in some experiments [TB20, PTS+21] while approaches exist to account for this privacy
leakage [LT19, MSH+21, PS21]. This work also ignores the privacy leakage occurring
through the selection of hyperparameters. Ignoring the leakage makes sense because this
work’s experiments aim to provide insights into the effect of hyperparameter choices.

Out of the considered experiments, most experiments perform grid search with dif-
ferent grid densities and sizes. Among those experiments are the experiments from Tramer
and Boneh [TB20], Mohapatra et al. [MSH+21] and Jagielski et al. [JUO20]. Tramer and
Boneh [TB20] report that some of the hyperparameters show ideal performance at the
boundaries of the grid. Despite that extending the grid is easily possible in a grid search,
the authors argue that extending the grid is not necessary because the choice of the hy-
perparameter does not matter much. One distinctive approach by Avent et al. [AGD+20]
uses a Bayesian optimization technique to efficiently find the best tradeoffs between util-
ity and privacy. The authors show, similar to the claims made in Section 4.3 that their
Bayesian optimization approach outperforms both random and grid search.

The related works all use widely popular ML datasets. The MNIST dataset
is used by many experiments [AGD+20, TB20, JUO20, PTS+21, MSH+21]. Three
experiments [TB20, JUO20, PTS+21] also report results on the alternative Fashion-
MNIST, two [TB20, PTS+21] look at CIFAR-10 and the same number of experi-
ments [AGD+20, MSH+21] work with the Adult dataset.

Out of the hyperparameters of DP-SGD, the clipping norm is often not optimized,
or the articles provide no insights on the performance for different clipping bounds. Ja-
yaraman and Evans [JE19] and Tramer and Boneh [TB20] fix the clipping bound to 1/0.1
and claim that the choice does not matter much. Jagielski et al. [JUO20] try out clipping
bounds of 0.5, 1 and 2. Only Avent et al. [AGD+20] tune the clipping bound extensively
with values in the interval [0.1, 4] and for a few experiments [0.1, 12].

Mohapatra et al. [MSH+21] show a relationship between the optimal learning rate
and the clipping bound when training with a non-adaptive optimizer. This relationship is

4.4. Related Experiments 30

not there when training with an adaptive optimizer such as a DP version of Adam [KB14].
For hyperparameter tuning Mohapatra et al. [MSH+21] recommend using an adaptive
optimizer. This work will use Adam [KB14].

The first set of experiments, with whom Papernot et al. [PTS+21] report the in-
creased performance of their newly proposed activation function, use the same set of hy-
perparameters for both activation functions. They argue that using the same set means
that the comparison is fair and introduce a second set with optimized hyperparameters
(that are not the same) to support the claim. It is up to the reader to follow the reasoning
and form their own opinion. This work will optimize all hyperparameters to ensure that
the reported performance gain is independent of a seemingly arbitrary hyperparameter
choice.

Tramer and Boneh [TB20] provide insight into the robustness of their models towards
different value choices of hyperparameters. Setting batch size, learning rate, and the
number of epochs to a fixed value have a low impact as long as the other hyperparameters
are adapted appropriately.

5. Experiments

This chapter presents the experiments of the Master’s thesis. The first half of the ex-
periments focus on hyperparameter optimization and gives insight into three of the main
hyperparameters of DP-Adam, which is used in replacement to DP-SGD as discussed in
Section 4.4. These are the noise multiplier (Section 5.1), the clipping bound (Section
5.2), and the batch size (Section 5.3). Section 5.4 will assess the tradeoff between utility
and training runtime. The last three experiments evaluate changes in the architecture
to obtain better utility. Section 5.5 elaborates on changing the width and depth of the
MLP, the Section 5.6 on different activation functions, and finally, Section 5.7 on group
normalization.

The experiments are run on cluster nodes equipped with an NVIDIA V100 GPU
with 32 GB VRAM, two CPU cores, and 32 GB RAM. While the runtime depends on the
hyperparameters and the model architecture, the hardware is sufficient to perform hyper-
parameter optimization. There is a tradeoff between obtaining the best configuration and
the total runtime of the experiments. The source code for running the experiments with
the MIMIC-III dataset is available on GitHub1.

5.1 Exp. 1: Noise Multiplier

The first experiment looks at the DP-Adam hyperparameter that controls the amount
of noise added to the gradients. The goal is to look at the optimal noise multiplier for
different levels of privacy guarantee ε. Due to the experimental setup, explained in the
following paragraph, it is possible to look at the noise multiplier independent of other
hyperparameters.

Preliminary experiments suggest that running experiments for the ε values [1, 2, 4, 9]
is sufficient. Thus, the experiment consists of independent optimization studies with 400
optimization trails with three seeds for each combination of the noise multiplier and the
four different ε values. The Bayesian optimization library Optuna [ASY+19] is optimizing
all other hyperparameters, and the architecture of the MLP does not differ between the

1. https://github.com/PROBIC/hyperparameters-neural-architectures-in-dp-dl

31

https://github.com/PROBIC/hyperparameters-neural-architectures-in-dp-dl
https://github.com/PROBIC/hyperparameters-neural-architectures-in-dp-dl

5.1. Exp. 1: Noise Multiplier 32

different trials of the experiment. See Algorithm 2 for a more details on the optimization
run. The algorithm has been executed for each combination of the four ε values and noise
multiplier values.

Algorithm 2 Optimization run for fixed hyperparameter and target ε combination
Input: possible values of hyperparameters H, evaluation function E , seeds S,

number of trials T , target epsilon ε
1: Initialize best hyperparameter configuration C ← ∅
2: Initialize best macro averaged AUC-ROC A ← 0.5
3: for t ∈ [T] do
4: Get hyperparameter configuration candidate O from optuna
5: O ← optuna(H)
6: Evaluate the configuration for each seed and return average score
7: if E(O,S, ε) > A then
8: Save score and configuration if better than previous ones
9: C ← O

10: A ← E(O,S, ε)
11: end if
12: end for
Output: best score A, best hyperparameter configuration C

Figure 5.1 displays the result of this experiment. On the x-axis, the various noise
multiplier values are displayed, and on the y-axis, the macro averaged AUC-ROC (utility)
of the best result. The different lines display the results for different levels of ε.

One can make two observations when looking at Figure 5.1: First, a low amount
of noise (noise multiplier = 1) results in worse utility than a medium or high amount of
noise (noise multiplier > 1.5). Second, the utility does not improve significantly after a
certain threshold. It is worth looking at the values of the other hyperparameters for the
optimal trails displayed in the above figure to understand why this might be the case.

Figure 5.2 displays the number of epochs and the batch size for the trails with the
best utility for the respective noise multiplier values. Roughly the following correlation
holds for both batch size and iterations: the higher the noise multiplier, the larger the
number of epochs and batch size.

When recalling the theory from Section 2.2, it is clear why the batch size and
iterations can be larger with higher noise given a fixed privacy budget. A higher noise
multiplier decreases the privacy spent per step of the optimizer. Thus, training with the
same privacy budget can accommodate a higher batch size (subsampling ratio) and more
epochs. In terms of the utility/privacy tradeoff, a moderate noise multiplier gives better
results than a small noise multiplier. Training for more epochs or a larger batch size

5.1. Exp. 1: Noise Multiplier 33

1 2 3 4 5
noise_multiplier

0.70

0.71

0.72

0.73

0.74

0.75

av
e_

au
c_

m
ac

ro

Figure 5.1: Comparison of the best utility for different noise multiplier values and the privacy budgets.

compensates for the added noise.
The most interesting tradeoff in DP is not between the different hyperparameters

and the utility but between the utility and the runtime of the training. Figure 5.3 shows
this tradeoff. The flaw of Figure 5.3 is that the results are from the noise multiplier
experiment, which has not been designed to assess this tradeoff. The Bayesian optimizer
does not freely modify the noise multiplier, but the number of possible values of the
noise multiplier is finite. In Section 5.4 an experiment will be conducted without this
restriction.

After a certain threshold, additional runtime does not result in improved utility. The
utility plummets after a certain runtime for the privacy levels of ε = 1 and 2. While it is
hard to analyze the reasons due to the high dimensional parameter space, possible causes
include the fact that a high runtime is hard to achieve with these low epsilon values. It
is possible that the experiment is not sufficient for looking at this tradeoff. More details
will be discussed in Section 5.4 when a dedicated experiment for looking at this aspect is
conducted.

Figure 5.4 displays the optimal clipping bound for the optimal trails obtained in the
noise multiplier experiment. Interestingly, the optimal clipping bound and the epsilon
value correlate. Even though the experiment has not been designed to look at this relation,
one can still observe that the optimal clipping bound for ε = 1 lies around 0.7. In contrast,
the optimal clipping bound for ε = 9 is between 0.9 and 1.0. The following Section 5.2
will look at the clipping bound in more detail.

5.1. Exp. 1: Noise Multiplier 34

1 2 3 4 5
noise_multiplier

0

50

100

150

200

250

300

nu
m

_e
po

ch
s

num_epochs (best: ave_auc_macro)

1 2 3 4 5
noise_multiplier

0

500

1000

1500

2000

2500

3000

ba
tc

h_
si

ze

batch_size (best: ave_auc_macro)

Figure 5.2: Comparison of the number of iterations and batch size of the hyperparameter combination
with the best value for different noise multiplier values for the privacy budgets ε = [1, 2, 4, 9].

0 20 40 60 80 100
estimated runtime in seconds

0.70

0.71

0.72

0.73

0.74

0.75

av
e_

au
c_

m
ac

ro

Figure 5.3: Runtime comparison for different privacy budgets based on the noise multiplier experiment.

5.1. Exp. 1: Noise Multiplier 35

1 2 3 4 5
noise_multiplier

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cl
ip

pi
ng

_b
ou

nd

clipping_bound (best: ave_auc_macro)

Figure 5.4: Clipping bound of the hyperparameter combination with the best utility for different noise
multiplier values and the privacy budgets.

5.2. Exp. 2: Clipping Bound 36

5.2 Exp. 2: Clipping Bound

The second experiment evaluates the effect of the clipping bound on the utility of the
models. Recall from Section 2.2 that the clipping bound should be optimized similar to
the other hyperparameters of DP-Adam.

Before looking at the optimal clipping bounds, it makes sense to look at the cumula-
tive distribution function of the pre-clipped L2-norms of the gradients. This will put the
later obtained optimal clipping bounds into perspective. Figure 5.5 shows the cumulative
distribution function of the pre-clipped L2-norms of the gradients for the clipping bound
values 0.001, 1 and 10. As one can see, the vast majority of the L2-norms is smaller than
two, and for the clipping bound of 0.001, the majority is even smaller than one.

0.0 0.5 1.0 1.5 2.0 2.5
L2-norm

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

clipping_bound 0.001

0.0 0.5 1.0 1.5 2.0 2.5
L2-norm

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

clipping_bound 1

0.0 0.5 1.0 1.5 2.0 2.5
L2-norm

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

clipping_bound 10

Figure 5.5: Cumulative distribution function of pre-clipped L2-norms of gradients.

The remainder of this section will describe the clipping bound experiment. The setup
of the second experiment is identical to the one of the first experiment: The Bayesian
optimizer tunes all hyperparameters but the clipping bound and runs the same number
of trails (400) with three seeds each per an independent study that represents one com-
bination of ε and clipping bound value. Figure 5.6 shows the result of this experiment.
Note that the right subplot displays a detail from the left with different scales.

The left subplot of Figure 5.6 visualizes that neither a tiny nor an enormous clipping
bound are optimal. As discussed in Section 2.2, a tiny clipping bound will result in
gradients with nearly no useful information, and an enormous one results in a high amount
of noise. The optimal clipping bound (marked by a dot) for all ε is around one, but to
distinguish the optimal clipping bound for the different ε, looking at the right subplot is
necessary.

5.3. Exp. 3: Batch Size 37

0 2 4 6 8 10
clipping_bound

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
av

e_
au

c_
m

ac
ro

0.4 0.6 0.8 1.0 1.2
clipping_bound

0.71

0.72

0.73

0.74

0.75

0.76

av
e_

au
c_

m
ac

ro
Figure 5.6: Comparison of the best utility for different clipping bounds and privacy budgets. The right
subplot shows a detail from the left subplot.

As can be seen from the right subplot of Figure 5.6 the optimal clipping bound is
correlated with ε, which could already be observed in Figure 5.4 of the previous section.
The higher the ε is, the higher the optimal clipping bound. As described in Section 2.2,
the noise drawn from the Gaussian distribution depends on both the noise multiplier and
the clipping bound. It seems that with higher ε more noise originating from the clipping
bound can be tolerated.

Finally, one can now combine the information from Figures 5.5 and 5.6. The optimal
clipping bounds are equivalent to clipping at the L2-norm quantiles of roughly 0.6 for ε = 1
and 2 and 0.9 for ε = 9. Likely, adaptive clipping, as described in Section 2.2, provides
additional interesting insights, but unfortunately, the implementation is only available in
Tensorflow Privacy and suffers from runtime problems. Fixing those runtime problems,
e.g., by implementing adaptive clipping in opacus or streamlining it lies outside the scope
of this thesis. Future work can extend the work of the thesis here.

5.3 Exp. 3: Batch Size

The third and final experiment regarding the hyperparameters of DP-Adam looks at the
effect of the batch size. In the library opacus the batch size is the average batch size and
thus influences the probability of choosing a sample within one step of DP-Adam. Please
see Section 2.2 for more details on the batch size.

This experiment optimizes the other hyperparameters in the same way as the other

5.3. Exp. 3: Batch Size 38

experiments. Please note that due to the higher memory consumption compared to SGD
resulting from keeping track of single sample gradients, the maximum batch size is 3000.
The university has NVIDIA A100 GPUs available that provide up to 80 GB of VRAM
and would allow for larger batch sizes, but this requires adapting the packages to the
respective drivers. Future work could extend this work here. Figure 5.7 shows the results
of the experiment.

0 500 1000 1500 2000 2500 3000
batch_size

0.70

0.71

0.72

0.73

0.74

0.75
av

e_
au

c_
m

ac
ro

Figure 5.7: Comparison of the best utility for different batch sizes and privacy budgets.

Similar to the findings in Section 5.1 that looked at the noise multiplier, the batch
size does not have a significant effect on the utility of the models. After surpassing the
batch size of 128, the utility does not differ much. One can observe a slightly improved
utility in the area of a batch size of 500 for ε = 1 and at a bit larger batch size for the
larger epsilons. Especially when looking at the scale of these differences, this area of
higher utility does not appear to be as significant. It would be interesting to see how the
utility behaves when increasing the batch size to the point where the optimizer uses the
whole training dataset in every step. However, as discussed previously, this requires using
GPUs with higher memory capacity.

The more thorough analysis of the batch size experiment did not result in insights
that provide value to the reader. However, one outcome of this experiment is that it is
worth optimizing the batch size as it makes a difference, even though the difference did
not seem to be as significant.

5.4. Exp. 4: Runtime/Utility Tradeoff 39

5.4 Exp. 4: Runtime/Utility Tradeoff

The main observation regarding the tradeoff between utility and runtime under DP from
the noise multiplier experiment in Section 5.1 and Figure 5.3 was that after a certain
threshold, more runtime does not yield more utility. Recall that the main limitation of
that observation was that the experiment had not been designed to look at this tradeoff.
It was a by-product of the noise multiplier experiment where the Bayesian optimization
algorithm does not freely modify the noise multiplier. The experiment in this section
overcomes this limitation by running independent Bayesian optimization studies for each
combination of ε = [1, 2, 4, 9] and the runtime of the training [10, 20, 30, ..., 100]. In Figure
5.8 one can find the results of this experiment.

0 20 40 60 80 100
measured runtime in seconds

0.70

0.71

0.72

0.73

0.74

0.75

av
e_

au
c_

m
ac

ro

Figure 5.8: Comparison of the best utility for different training run times and privacy budgets.

Figures 5.3 (based on noise multiplier experiment) and 5.8 (dedicated runtime exper-
iment) do not differ much. The general observation that more runtime does not improve
the utility holds for both figures. The only difference between the two figures is that in
comparison to the noise multiplier experiment, the utility for ε = 2 does not plummet with
more than 70 seconds runtime. Additionally, some results differ slightly, e.g., the utility
of ε = 1 decreases earlier, but this can also be attributed to a varying time measurement
method and using a slightly different configuration for running the experiment1.

1. The technical specifications of the cluster nodes are the same, but the machines had to be taken out
of a different pool of cluster nodes due to scheduling issues on the previously used pool.

5.5. Exp. 5: Depth and Width 40

5.5 Exp. 5: Depth and Width

The previous experiments provided insights into the hyperparameters of DP-Adam and
the tradeoff between the utility and the model’s runtime. As discussed in Section 3, it
is not sufficient to tune the hyperparameters, but changes to the architecture can also
provide improvements in the utility. The experiments of this section focus on the most
general changes to the architecture. The first experiment will provide insight into the effect
of the depth of the model (the number of layers), and the second experiment changes the
model’s width with the optimal depth obtained in experiment one.

The Bayesian optimizer is optimizing the hyperparameters in these experiments.
Keeping the hyperparameters unfixed results in insights about the architecture unbi-
ased by any hyperparameter choices. In the first experiment, independent optimization
studies are run for each combination of the number of layers [1, 2, 3, 4, 6, 8, 10] and the
ε = [1, 2, 4, 9]. Per optimization run, 500 trails are run, and the width of the respective
layers is also being optimized. In Figure 5.9 one can see the results of this experiment.

2 4 6 8 10
n_layers

0.69

0.70

0.71

0.72

0.73

0.74

0.75

av
e_

au
c_

m
ac

ro

Figure 5.9: The best utility for different number of layers, which are counted as the number of hidden
layers plus the output layer, and privacy budgets..

As one can see from Figure 5.9, two layers seem to be optimal, but models with
three layers yield almost the same utility. In fact, for ε = 4, the utility is slightly better
with three layers than with two layers. A model with one layer, which means that it has
no hidden layer, performs worse. Increasing the number of layers above three decreases
the utility. The result of this experiment is that the number of layers matters and that
the optimal number of layers is two. Notably, the utility does not seem to be as sensitive
to the number of layers as to the hyperparameters.

5.5. Exp. 5: Depth and Width 41

The previous experiment showed that using two layers is optimal. It is interesting to
analyze what width the model should have. The following experiment is almost equivalent
to the setup of the previous experiment but fixes the model’s depth to two layers. The
independent runs then result from the combination of ε = [1, 2, 4, 9] and different widths
of the hidden layer. The Figure 5.10 shows the result of this experiment.

0 100 200 300 400 500 600 700
width

0.710

0.715

0.720

0.725

0.730

0.735

0.740

0.745

0.750

av
e_

au
c_

m
ac

ro

Figure 5.10: Comparison of the best utility for different network widths and privacy budgets.

A model with a hidden layer with a small width performs worse than a model with
a hidden layer of 81 units. Increasing the width above this threshold decreases the utility
again. A model with a hidden layer of approximately 700 units has a similar utility as a
model with a small width.

Interestingly, a high width has a lower negative effect on the utility when the ε is
higher. This can be seen in Figure 5.10 where the lines for ε = 1 and 2 are plummeting for
higher width, whereas the lines for ε = 4 and 9 decrease more slowly. One could suspect
that the higher ε allows for more beneficial hyperparameters, which could positively affect
the utility. Still, it is hard to analyze this in more detail. Because the optimal width is
the same across all ε, analyzing this effect in more detail can be left for future work.

Even though the reader might assume otherwise due to the ordering of the exper-
iments, the hyperparameter experiments in the Sections 5.1 to 5.4 include the findings
that have been made in this experiment because they have been rerun with the optimal
width (81) and depth (two).

5.6. Exp. 6: Activation Functions 42

5.6 Exp. 6: Activation Functions

As described in Section 3.1 so-called tempered sigmoids have been proposed as an easy way
to improve the utility of a model when optimized under DP. Recall that the authors of the
tempered sigmoid article [PTS+21] claimed that replacing ReLU activation functions with
tempered sigmoids significantly improves the utility. Furthermore, the authors observed
that the tanh activation function, which is one specific tempered sigmoid, also yields good
performance. As the activation function used in this thesis is a ReLU, it is straightforward
to try to reproduce the results. As there is no tempered sigmoid implementation available
in Pytorch, the author had to implement and unit test a tempered sigmoid himself.

The following experiment optimized the model’s hyperparameters using Bayesian
optimization for the different ε = [1, 2, 4, 9]. Independent optimization has been performed
for each of the activation functions. The tempered sigmoid activation function has three
additional hyperparameters: the offset, inverse temperature, and scale. One can find the
results of this experiment in Figure 5.11.

2 4 6 8
epsilon

0.715

0.720

0.725

0.730

0.735

0.740

0.745

0.750

av
e_

au
c_

m
ac

ro

tanh
Tempered Sigmoid
ReLU

Figure 5.11: Comparison of best utility when using the activation functions tempered sigmoids, ReLU
and tanh for different privacy budgets.

In contrast to the findings reported by Papernot et al. [PTS+21] in the tempered
sigmoid article, using the tempered sigmoids does not result in significant performance
improvements in comparison to the ReLU. While this might be due to the already good
performance of the DP model, one has to note that three more hyperparameters have to
be tuned to obtain a slightly better utility. It is not sufficient to use the tanh activation
function as it has only a slightly better performance when looking at ε = 1, 2 but at
the same time a worse performance for ε = 9. Thus, contrary to the findings reported
in the tempered sigmoid article [PTS+21], the best hyperparameter combination of the

5.6. Exp. 6: Activation Functions 43

tempered sigmoid is not a tanh.
Figure 5.12a extracted from the article by Papernot et al. [PTS+21] suggests that

using tempered sigmoids prevents exploding gradients that otherwise occur when training
with DP-SGD.

(a) Comparison when using SGD/DP-SGD (Figure from Papernot et
al. [PTS+21])

0 500 1000 1500 2000 2500 3000
Training Steps

0.1

0.2

0.3

0.4

0.5

2
no

rm
 o

f t
he

 g
ra

di
en

t

ReLU (SGD)
ReLU (DP-Adam)
tempered sigmoid (SGD)
tempered sigmoid (DP-Adam)

(b) Comparison when using SGD/DP-Adam with the MIMIC-III MLPs.

Figure 5.12: Comparison of the L2-norm of the gradients recorded at every training step for models
with ReLU and tempered sigmoids. Moving averages have been applied.

As the experiment in this thesis suggests that tempered sigmoids are not beneficial
for the MLP used, it makes sense to reproduce the figure of Papernot et al. with the
MLP. Figure 5.12b shows the L2-norms of the gradients for each combination of SGD
and DP-Adam with tempered sigmoids and with ReLUs. Similar to the Figure 5.12a of
Papernot et al. a moving average smoothes the graph.

The L2-norms of the model that uses DP-Adam and ReLUs are larger than the
model’s norms that use tempered sigmoids. They are both bigger than the models that
use SGD. Still, in comparison to the Figure 5.12a by Papernot et al. [PTS+21] which
shows a magnitude of a difference between the L2-norms of DP-Adam with ReLUs and

5.7. Exp. 7: Group Normalization 44

tempered sigmoids, the difference is negligible. The general scale of the gradient norms is
different, which suggests that no exploding gradients can be observed in the MLP model
of this thesis.

5.7 Exp. 7: Group Normalization

Using group normalization instead of the popular batch normalization that cannot be
used to optimize models under DP has been proposed in Section 3.2. Recall that group
normalization normalizes the inputs within groups of equal size. Thus, the following ex-
periment uses a width of 120 for the hidden layer. This allows for running experiments
with group sizes of [1, 2, 4, 8, 12, 20, 30, 60, 120]. Due to the findings in Section 5.5, the
depth of the MLP is two. As in the previous experiments, independent studies are exe-
cuted for each combination of group size and ε = [1, 2, 4, 9]. Additionally, a benchmark
experiment that uses all other assumptions but does not use group normalization at all is
being executed. Each study consists of 600 trials that evaluate three seeds each. Figure
5.13 reports the results of the experiment. Note that the right subplot shows a detail of
the left subplot and has a different scale. The horizontal lines that are dashed and labeled
with NG show the baseline that does not use group normalization.

0 20 40 60 80 100 120
n_group

0.50

0.55

0.60

0.65

0.70

0.75

av
e_

au
c_

m
ac

ro

0 10 20 30 40
n_group

0.715

0.720

0.725

0.730

0.735

0.740

0.745

0.750

0.755

av
e_

au
c_

m
ac

ro

Figure 5.13: Comparison of the best utility for a different number of groups and ε = [1, 2, 4, 9]. The
solid lines are the results for different numbers of groups, whereas the dotted lines that are also marked
with NG are the results without group normalization. The right subplot shows a detail of the left subplot.

There are two main insights that this experiment provides. First, the lower groups
are being used across all privacy budgets, the better the utility is. Second, with the same
number of groups as the number of inputs (120), the macro averaged AUC-ROC drops to

5.7. Exp. 7: Group Normalization 45

0.5, the same as random. The lousy performance makes sense as a number of groups of
120 means that every input of every sample is normalized to zero mean and unit variance,
which does not make much sense.

The difference between using group normalization with a small number of groups
and not using group normalization is more apparent in the right subplot than in the left
subplot. One can see that using group normalization with a few groups is better than not
using group normalization. The number of groups for which the utility with group norm
is worse than without group norm differs. However, group normalization with up to 12
groups is better than not using group normalization for all privacy budgets. Using only
one group called layer norm shows the best performance across all privacy budgets. The
utility gain differs between 0.01 for the macro averaged AUC-ROC for ε = 1 and 0.03 for
ε = 9. The utility gain might seem to be slight, but the utility with one group (layer
norm) and ε = 1 is significantly closer to the ε = 2 utility without group norm than the
ε = 1 without group norm.

In General, one can conclude from this experiment that across all ε, group normal-
ization with one group (layer norm) is superior to not using any group normalization.
This section will introduce two subsequent experiments: First, it makes sense to validate
if the observation that layer norm is beneficial holds for different widths. The experiment
will compare the findings from Section 5.5 that looked at the utility across different widths
of the MLP with the same setup but additionally using layer norm.

The setup for the layer norm experiment is equivalent to the experiment in Section
5.5. Please find the details there. The only difference between the two experiments is that
additional studies that use group normalization complement the results of the experiment
in Section 5.5. One can find the results of the experiment in the left plot of Figure 5.14.

As one can see from the left plot of Figure 5.14 using layer normalization is beneficial
for all evaluated widths. Future work could validate this observation over multiple datasets
and models.

The second experiment compares the effect of layer normalization in the DP case
with the effects when training without DP. DP research must always validate positive
effects to the setup without DP because it might be that the layer norm is also beneficial
for the non-DP model. Then the gained utility resulting from using the layer norm is not
connected to the effects of applying DP-Adam but rather something that has to do with
the model itself.

The experiment setup does not differ from the previous experiments, apart from the
noticeable changes due to using SGD instead of DP-Adam. Not using DP-SGD reduces
the number of hyperparameters, which might affect the performance of the optimization.
Besides evaluating layer normalization, the experiment will look at batch normalization,
which is not possible to use with Opacus as discussed in Section 3.2. The right plot of

5.7. Exp. 7: Group Normalization 46

0 100 200 300 400 500 600 700
width

0.71

0.72

0.73

0.74

0.75
av

e_
au

c_
m

ac
ro

0 100 200 300 400 500 600 700
width

0.72

0.73

0.74

0.75

0.76

0.77

av
e_

au
c_

m
ac

ro

no norm (= 9)
layer norm (= 9)
batch norm (=)
layer norm (=)
no norm (=)

Figure 5.14: Left plot: Comparison of the utility with layer normalization (dotted lines, denoted by
LN) and without layer normalization for different widths of the network. Right plot: The figure compares
the utility with and without DP for different widths of the models. Some models contain batch or layer
normalization.

Figure 5.14 displays the results from this experiment.
The non-DP model without normalization (purple line) achieves better utility across

all model widths than the DP models (orange and blue lines). Especially for a width of 700,
the difference is slight, which would suggest that the DP model with layer normalization
is almost as good as the non-DP model. The non-DP with batch normalization (green
line) and with layer norm (red line) have a better utility than the non-DP model without
normalization (purple line). Thus, the boost in utility is not limited to the training under
DP but rather beneficial for both training under DP and without DP. In contrast to the
claims regarding the tempered sigmoids by Papernot et al. [PTS+21] one cannot conclude
that this architecture change might make up for drawbacks from DP-SGD.

6. Discussion

This chapter will discuss the experiments of this thesis on a higher level than in the
previous Chapter 5. First, Section 6.1 elaborates on the effect of hyperparameters and
the architecture on the utility of the model. Second, Section 6.2 will compare the utility
of the DP and non-DP models. Third, Section 6.3 discusses the most obvious limitations
that future work should aim to overcome.

6.1 Analysis of Hyperparameters and Architecture

Sections 5.1 to 5.3 assessed the effect of different choices for the hyperparameters noise
multiplier, clipping bound, and batch size. The observations are independent of other
hyperparameter choices due to the experiment design. This section will start by dis-
cussing the sensitivity of the utility to choices of the hyperparameters, which is shown in
Figure 6.1. The new figure is necessary to compare the sensitivity toward the different
hyperparameters.

As one can observe in Figure 6.1, the utility is less sensitive to choices of the hy-
perparameters noise multiplier and batch size than to choices of the clipping bound. The
high sensitivity to choices of the clipping bound is especially noteworthy as some previous
work mainly focuses on optimizing the other hyperparameters and not the clipping bound
(see the overview regarding related experiments in Section 4.4). Furthermore, the optimal
clipping bound and ε are correlated, as observed in Figure 5.6. Given that state-of-the-art
articles already include sophisticated hyperparameter optimization, it is not difficult to
add the clipping bound to the optimized hyperparameters to obtain ideal privacy/utility
tradeoffs.

Throughout the hyperparameter experiments, a tradeoff between the different hy-
perparameters was apparent. For example, a larger noise multiplier allowed for training
more epochs and with bigger batch size. The utility for most of these configurations was
nearly the same. However, the exact hyperparameter values get less attention when ap-
plying DP to industry applications than the tradeoffs between the privacy guarantee, the
utility, and other characteristics. These other characteristics include the training time
of the model and the model’s size. Section 5.4 briefly examined the tradeoff between

47

6.1. Analysis of Hyperparameters and Architecture 48

1 2 3 4 5
noise_multiplier

0.70

0.71

0.72

0.73

0.74

0.75
av

e_
au

c_
m

ac
ro

0 1 2 3
clipping_bound

0 1000 2000 3000
batch_size

Figure 6.1: The effect of noise multiplier, clipping bound, and batch size on the utility. Please note
that this figure is a composition of the Figures 5.1, 5.6 and 5.7, but the plots have been slightly adapted
to better show to sensitivity of the utility towards different hyperparameter values.

privacy, utility, and runtime and observed that after a certain threshold, added runtime
does not increase the utility much more. Subsequent work could further extend this work
by assessing the tradeoff for different models and datasets.

After comparing the effect of the different hyperparameters, the rest of this section
will focus on the examined architecture changes. Figure 6.2 contrasts the impact on
the utility of changing the depth of the network (left), the width and introducing layer
normalization (middle), and different activation functions (right).

As one can see from Figure 6.2, it is first and foremost essential to optimize the depth
and width of the network. In comparison to introducing different activation functions or
layer normalization, the utility gain of optimizing these two is more significant.

In contrast to the claims by Papernot et al. [PTS+21], discussed in Section 3.1,
introducing tempered sigmoids only yields a minor utility improvement for some ε and no
improvement for others. It is questionable if this improvement is worth it since three more
hyperparameters have to be optimized. The tanh performs mostly worse than the ReLU.
This debate shows similarities to the dilemma of introducing new activation functions as
they have to outperform traditional ones to be accepted by the community.

For the models in this thesis, one can observe a far more significant boost in utility
by introducing group normalization. Group normalization with one group, called layer
normalization, outperforms models without it across all ε and widths. In contrast to
the introduction of tempered sigmoids, the improvement is so significant that, e.g., the
performance of a network with layer normalization and ε = 4 exceeds the performance

6.2. Performance of the DP models 49

2 4 6 8 10
n_layers

0.71

0.72

0.73

0.74

0.75

0.76
av

e_
au

c_
m

ac
ro

depth

0 200 400 600
width

width and layer norm (LN)

tanh Tempered Sigmoid ReLU

activation function

Figure 6.2: The effect of changes to the depth and width of the network compared to introducing a layer
norm normalization and changing the activation function. Please note that this figure is a composition of
the Figures 5.9, 5.11 and 5.14, but the plots have been slightly adapted to allow for a better comparison.

of one without it but with a higher privacy loss (ε = 9). As discussed in the final part
of Section 5.7, the boost in utility is not limited to the DP model but instead applies to
non-DP models as well. Thus, the effect does not seem to help overcome the drawbacks
of DP-SGD.

6.2 Performance of the DP models

As discussed in the previous chapters, the principal aspect of research concerning DP is the
tradeoff between utility and privacy. This section will look at two details of this tradeoff.
First, the section will compare the models of this thesis with the best utility/privacy
tradeoff and the non-DP models reported by Harutyunyan et al. [HKK+19]. Second,
it will show using one example how the per-task performance compares. The per-task
performance considers the AUC-ROC for each of the 25 diseases of the phenotyping task
and does not look at the macro averaged AUC-ROC as the other sections did.

Figure 6.3 compares the utility of different models considered in the thesis. The blue
dots represent models trained without DP, and the orange dots show the utility of models
trained with DP-SGD. The MLPs trained with a high epsilon (ε = 9) show a better utility
than the logistic regression from Harutyunyan et al. [HKK+19]. This observation shows
that, at least for this task, training with DP does not have to be worse than training
without DP. The logistic regression cannot capture the complexity of the task and is thus

6.2. Performance of the DP models 50

0.71 0.72 0.73 0.74 0.75 0.76 0.77
Macro AUC-ROC

Logistic Regression (=)
MLP without norm (= 1)

MLP with layer norm (= 1)
MLP without norm (= 9)

MLP with layer norm (= 9)
MLP without norm (=)

MLP with layer norm (=)
standard LSTM (=)

channel-wise LSTM (=)

m
od

el

Figure 6.3: Comparision of the AUC-ROC for different models considered in this thesis. Note that the
results for the Logistic Regression and LSTMs are from Harutyunyan et al. [HKK+19].

unsuitable. While it makes sense from a complexity argument to prefer simple models over
more complex models, the training time of the MLP is shorter than one minute. It would
be interesting to attack both models with privacy attacks and see how the empirically
measured epsilon (see Section 2.4) compares between the two models.

Another observation is that adding layer normalization improves the performance
across all models. Interestingly, such a minor improvement can boost the utility signifi-
cantly. In the non-DP regime, the MLP with layer normalization yields almost the same
utility as the LSTM. At the same time, the LSTM is more complex than the two-layer
MLP. Future work could build on these findings, add more DP models, and compare them
to existing ones. It would be exciting to compare privacy, runtime, and utility, e.g., by
introducing three-dimensional visualizations.

The Figures 6.4 and 6.5 compare the per-task performance of models trained without
DP and with DP (ε = 1/ε = 9). The models are identical MLPs without any architecture
changes. Only the hyperparameters are optimal and thus might vary between the models.
Similar to Figure 4.2 of this thesis and Figure 2 of Harutyunyan et al. [HKK+19, p.6] the
test set has been 10000 times bootstrapped to obtain the 95% confidence interval.

One can see in Figure 6.4 that while the macro averaged AUC-ROC differs signifi-
cantly between the model trained under DP and the non-DP model, the 95% confidence
interval of some tasks like tasks one, two, and 15 are partially overlapping. The means
are wider apart for some tasks than for others. One potential reason for this is that given
a relatively strict ε of one, some tasks are easier to solve for a DP model than others.
The varying difficulty of the tasks is also evident in the fact that the AUC-ROC differs
significantly between the different tasks. While the DP model yields a near-random utility
(≈ 0.57) for task 19, the AUC-ROC for tasks 2 and 23 is more optimal (≈ 0.84). When
training without DP, the same effect is apparent. Note that contrary to the observations

6.2. Performance of the DP models 51

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
mean

task 1
task 2
task 3
task 4
task 5
task 6
task 7
task 8
task 9
task 10
task 11
task 12
task 13
task 14
task 15
task 16
task 17
task 18
task 19
task 20
task 21
task 22
task 23
task 24
task 25

macro avg

AU
C

-R
O

C
 o

f

mlp (=)
mlp_dp (=1, =1e-5)

Figure 6.4: Comparison of the per-task performance for identical MLPs trained with/without DP
(ε =∞/ε = 1).

regarding the best LSTM reported by Harutyunyan et al. [HKK+19], the worst-performing
two tasks are also the ones with the lowest number of occurrences in the dataset. How-
ever, task 14, which is among the worst-performing tasks, occurs the most times in the
dataset.

Figure 6.5 makes the same comparison as Figure 6.4 but for ε = 9. Compared to
the previous findings, the per-task performance for ε = 9 shows almost indistinguishable
utility for some tasks. The 95%-confidence intervals of all tasks are overlapping. For
most tasks, the means of the AUC-ROC lie in the confidence interval of each other. For
task 21, the means of the AUC-ROC for training without DP and with DP are almost
identical. Future work could further analyze the tradeoffs between the different tasks
when optimizing for a macro averaged AUC-ROC.

6.3. Limitations of the Experiments 52

0.60 0.65 0.70 0.75 0.80 0.85 0.90
mean

task 1
task 2
task 3
task 4
task 5
task 6
task 7
task 8
task 9
task 10
task 11
task 12
task 13
task 14
task 15
task 16
task 17
task 18
task 19
task 20
task 21
task 22
task 23
task 24
task 25

macro avg

AU
C

-R
O

C
 o

f

mlp (=)
mlp_dp (=9, =1e-5)

Figure 6.5: Comparison of the per-task performance for identical MLPs trained with/without DP
(ε =∞/ε = 9).

6.3 Limitations of the Experiments

The experiments have several limitations that subsequent work could overcome. This
section will describe and discuss some of the significant limitations.

First, the experiments are limited to only one dataset as they only focus on the
phenotyping MIMIC-III task. Thus, the experiments do not provide insights into the
behavior of DL models for other MIMIC-III tasks or on other datasets such as MNIST,
Fashion-MNIST, or Adult, which are often used in other works (see Section 4.4). Con-
ducting and analyzing the experiments for this scenario provides sufficient material for one
Master’s thesis. However, the main contributions of this work are the methods, codebase,
and experiments necessary to conduct further experiments. In comparison to setting up
the experiments for the first time, it is substantially simpler to conduct a selection of the
experiments of this thesis for more datasets and tasks. Future work could aim at repeat-
ing some experiments for more datasets and models. Especially the obtained marginals
of the DP-SGD hyperparameters and the tradeoff between runtime and utility under DP
could provide exciting avenues for future research.

Second, the experiments look at simple models and do not aim at training more
complex models such as the LSTMs provided by the benchmark study of Harutyunyan et

6.3. Limitations of the Experiments 53

al. [HKK+19] under DP. Although training more complex models under DP could yield
better utility than the simple models considered in this thesis, there are several reasons
why the experiments focussed on simpler models. Besides the longer training time of
complex models, more complex models are harder to train under DP (refer to Section
3 for details). As discussed in Section 6.2, the simple models trained under DP already
yield nearly the same utility as the non-DP models. It did not seem necessary to extend
the work of the thesis in this direction. However, when looking at more complex datasets
or tasks in subsequent work, introducing more complex models might be required.

Third, the neural network architecture search is limited in his thesis. Similar
to Section 3.4, the following paragraphs will discuss the limitations regarding the search
space, search strategy, and performance estimation strategy. In this thesis, Bayesian
optimization is the search strategy used, and there are no apparent limitations to it.

The experiments’ search space contained various architecture modifications, such
as the width, depth, different activation functions, and group normalization. However,
most architecture experiments aim to measure the effect of changing one aspect of the
architecture at a time which might not result in the best overall architecture. For example,
the group normalization proposed in Section 5.7 yielded good results across a wide range of
widths. Future work could assess how deeper networks benefit from group normalization
or if introducing group normalization with a new activation function yields better results
than only changing one of the two. Furthermore, as mentioned in Section 3.4, the search
space can always be more extensive and could contain more modifications, although the
most promising ones have been used as discussed in Section 3.3.

Arguably the most significant limitation of the NAS in this thesis is the performance
estimation strategy because the NAS does not use sophisticated methods to assess the
performance of a model. Instead, performance evaluation results from fully training the
model and reporting the test error over multiple seeds. Neither early stopping nor shared
weights are part of the performance estimation strategy. Not using any sophisticated
method does not appear to be harmful in the thesis due to the models’ small size and
training time. However, future work should evaluate more sophisticated strategies before
using more complex models.

7. Conclusions

The thesis started by introducing the necessary theoretical background. Chapter 2 intro-
duced DP [DMNS06], which is a state-of-the-art concept to prevent privacy attacks and
has preferable properties in comparison to previous concepts. DP bounds the amount of
information an attacker can retrieve about single entries of a database while at the same
time allowing for learning about the complete database. The most common version of DP
is (ε, δ)-DP [DKM+06]. The thesis introduced several methods for performing ML under
DP that inject noise at different parts of the learning process.

DP-SGD [RA12, SCS13, ACG+16], which injects noise into the gradients of the
loss function, is preferable for the experiments in this thesis. One has to optimize the
hyperparameters of DP-SGD and the model’s architecture as heuristics, and non-DP
model architectures do not always yield the ideal utility. The tightness of the privacy
guarantees returned by DP methods depends on the accounting method. The privacy
guarantees are pessimistic compared to empirically measuring privacy loss obtained by
launching more realistic attacks that do not have access to the complete training process.

The models used in this thesis are deep learning models, and Chapter 3 concentrated
both on the theory of deep learning and adaptations to the model architecture that
can yield better utility. Noteworthy is that larger DL models are more challenging to
optimize under DP than without DP. The discussed alternations reported by previous
works concern the width and depth of the model, the activation function, and introducing
group normalization, which is related to batch normalization. As discussed in Section
3.4, optimizing the architecture is a complex task that requires the use of sophisticated
techniques.

As clarified in Chapter 4, the thesis uses the phenotyping task by Harutyunyan et
al. [HKK+19] based on the MIMIC-III ICU patient dataset. Bayesian optimization using
the library Optuna is preferable over a manual, grid, or random search to obtain ideal
hyperparameters under limited use of computation power. Previous related experiments
only perform grid search, show the utility/privacy tradeoff without specifying it regarding
selected hyperparameters or even fix some important hyperparameters. These are all
drawbacks this thesis overcame. The previously summarized Chapters 2 to 4 fulfilled the
first research objective, which has been to review the necessary background on differential

54

55

privacy, adaptations of deep learning, and related works.
The first half of the experiments (Sections 5.1 to 5.3) analyzed the effect of the

hyperparameters noise multiplier, clipping bound, and batch size. As discussed in Section
6.1, the utility is particularly sensitive to the clipping bound, whereas the experiments
for noise multiplier and clipping bound reported wide intervals that result in similar
utility. As a result of these observations, Section 5.4 described another experiment that
investigates the tradeoff between training runtime and utility. The utility is not sensitive
to the training runtime for the thesis’ models, but subsequent work is necessary to confirm
this observation for more datasets and models.

The second half of the experiments (Sections 5.5 to 5.7) performed a neural archi-
tecture search and examined changes to the depth and width of the network as well as
introduced different activation functions and group normalization. Recall from the dis-
cussion in Section 6.1 that changing the width and depth of the network has a higher
impact on the utility than the other architecture changes. Contrary to existing work by
Papernot et al. [PTS+21] neither tempered sigmoids nor tanhs result in significant util-
ity improvements. However, layer normalization improves the utility for the DP models,
but this improvement does not seem to be limited to training under DP, as subsequent
experiments revealed.

Together with the discussions in Section 6.1, Chapter 5 reached the research objec-
tives two, three and four. The second and third research objective aimed at analyzing
the impact of the hyperparameters introduced by DP-SGD on the privacy/utility tradeoff
and examining the efficacy of neural architecture changes proposed by previous work. In
order to fulfill the previous two research objectives, the thesis had to propose a sensible
experimental setup to measure them, which Chapters 4 and 5 described.

Chapter 6 discussed that the models trained under DP yield relatively high utility
in comparison to the non-DP models reported by Harutyunyan et al. [HKK+19]. The
performance of some tasks is almost indistinguishable when considering a high epsilon
(ε = 9). Furthermore, limitations of the experiments that could be the subject of future
work are the topic of Section 6.3. The experiments’ main limitations are the focus on
only one dataset and simple models. Future work could extend neural network architec-
ture search. Because Section 6.3 discussed the limitations in-depth, this conclusion does
not discuss them further but refers to that section. This chapter reached the fifth and
sixth research objectives. Recall that the objectives formulated the need to compare the
non-private baseline models to the private differential models and assess the differentially
private models’ feasibility and identify limitations of the thesis and directions for possible
further work.

This thesis overcame the limitations of previous work by conducting the experiments
in a way that allows for accessing the impact of changes of hyperparameter and neural

56

architecture independent from other factors. Thus, this thesis is only a starting point for
future work in the area. Extending the work to a broader set of models and datasets could
provide additional information for both future research as well as industry applications.

Bibliography

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. TensorFlow: A system for large-scale machine learning. In
12th USENIX symposium on operating systems design and implementation
(OSDI 16), pages 265–283, 2016.

[Abo18] John M. Abowd. The U.S. census bureau adopts differential privacy. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, page 2867, New York, NY, USA, 2018.
Association for Computing Machinery.

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 308–318, New York, NY,
USA, 2016. Association for Computing Machinery.

[ACPP18] Mário Alvim, Konstantinos Chatzikokolakis, Catuscia Palamidessi, and
Anna Pazii. Local differential privacy on metric spaces: optimizing the
trade-off with utility. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pages 262–267. IEEE, 2018.

[AGD+20] Brendan Avent, Javier González, Tom Diethe, Andrei Paleyes, and Borja
Balle. Automatic discovery of privacy–utility Pareto fronts. Proceedings on
Privacy Enhancing Technologies, 4:5–23, 2020.

[Agg05] Charu C Aggarwal. On k-anonymity and the curse of dimensionality. In
VLDB, volume 5, pages 901–909, 2005.

[ASY+19] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2019.

57

Bibliography 58

[ATMR21] Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ra-
maswamy. Differentially private learning with adaptive clipping. Advances
in Neural Information Processing Systems, 34, 2021.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of machine learning research, 13(2), 2012.

[BBBK11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for hyper-parameter optimization. Advances in neural information
processing systems, 24, 2011.

[BBKN14] Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nis-
sim. Bounds on the sample complexity for private learning and private data
release. Machine learning, 94(3):401–437, 2014.

[BGM21] Raef Bassily, Cristóbal Guzmán, and Michael Menart. Differentially private
stochastic optimization: New results in convex and non-convex settings.
Advances in Neural Information Processing Systems, 34, 2021.

[BZ06] Michael Barbaro and Tom Zeller. A face is exposed for AOL searcher no.
4417749. The New York Times, 09.08.2006. https://www.nytimes.com/
2006/08/09/technology/09aol.html.

[CKN+11] Joseph A. Calandrino, Ann Kilzer, Arvind Narayanan, Edward W. Felten,
and Vitaly Shmatikov. "you might also like:" privacy risks of collaborative
filtering. In Proceedings - 2011 IEEE Symposium on Security and Privacy,
SP 2011, Proceedings - IEEE Symposium on Security and Privacy, pages
231–246, 2011.

[CLE+19] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song.
The secret sharer: Evaluating and testing unintended memorization in neu-
ral networks. In 28th USENIX Security Symposium (USENIX Security 19),
pages 267–284, 2019.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differ-
entially private empirical risk minimization. Journal of Machine Learning
Research, 12(3), 2011.

[CWH20] Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient
clipping in private SGD: A geometric perspective. Advances in Neural In-
formation Processing Systems, 33:13773–13782, 2020.

https://www.nytimes.com/2006/08/09/technology/09aol.html
https://www.nytimes.com/2006/08/09/technology/09aol.html

Bibliography 59

[Des19] Damien Desfontaines. Differential privacy in (a bit) more detail. In
Ted is writing things. On privacy, research, and privacy research., 20-
02-2019. https://desfontain.es/privacy/differential-privacy-in-
more-detail.html.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,
and Moni Naor. Our data, ourselves: Privacy via distributed noise genera-
tion. In Annual international conference on the theory and applications of
cryptographic techniques, pages 486–503. Springer, 2006.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-
brating noise to sensitivity in private data analysis. In Shai Halevi and Tal
Rabin, editors, Theory of Cryptography, pages 265–284, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[DR+14] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differ-
ential privacy. Foundations and Trends in Theoretical Computer Science,
9(3-4):211–407, 2014.

[EMH19] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. The Journal of Machine Learning Research, 20(1):1997–
2017, 2019.

[Faw06] Tom Fawcett. An introduction to ROC analysis. Pattern recognition letters,
27(8):861–874, 2006.

[Fin21] Findata - Finnish Social and Health Data Permit Authority. How
to ensure efficient and secure use of health data beyond borders?
France and Finland collaborating to find answers. In findata.fi/news,
23.11.2021. https://findata.fi/en/news/how-to-ensure-efficient-
and-secure-use-of-health-data-beyond-borders-france-and-
finland-collaborating-to-find-answers/.

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion
attacks that exploit confidence information and basic countermeasures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, pages 1322–1333, New York, NY, USA, 2015.
Association for Computing Machinery.

[FKE+15] Matthias Feurer, Aaron Klein, Jost Eggensperger, Katharina Springenberg,
Manuel Blum, and Frank Hutter. Efficient and robust automated machine

https://desfontain.es/privacy/differential-privacy-in-more-detail.html
https://desfontain.es/privacy/differential-privacy-in-more-detail.html
https://findata.fi/en/news/how-to-ensure-efficient-and-secure-use-of-health-data-beyond-borders-france-and-finland-collaborating-to-find-answers/
https://findata.fi/en/news/how-to-ensure-efficient-and-secure-use-of-health-data-beyond-borders-france-and-finland-collaborating-to-find-answers/
https://findata.fi/en/news/how-to-ensure-efficient-and-secure-use-of-health-data-beyond-borders-france-and-finland-collaborating-to-find-answers/

Bibliography 60

learning. In Advances in Neural Information Processing Systems 28 (2015),
pages 2962–2970, 2015.

[FLJ+14] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and
Thomas Ristenpart. Privacy in pharmacogenetics: An end-to-end case study
of personalized warfarin dosing. In Proceedings of the 23rd USENIX Con-
ference on Security Symposium, SEC’14, pages 17–32, USA, 2014. USENIX
Association.

[FM16] Daniel Foreman-Mackey. corner.py: Scatterplot matrices in Python. The
Journal of Open Source Software, 1(2):24, jun 2016.

[GAG+00] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and
H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: Compo-
nents of a new research resource for complex physiologic signals. Circu-
lation, 101(23):e215–e220, 13.06.2000. Circulation Electronic Pages: http:
//circ.ahajournals.org/content/101/23/e215.full PMID:1085218; doi:
10.1161/01.CIR.101.23.e215.

[GASH69] Bernard G. Greenberg, Abdel-Latif A. Abul-Ela, Walt R. Simmons, and
Daniel G. Horvitz. The unrelated question randomized response model:
Theoretical framework. Journal of the American Statistical Association,
64(326):520–539, 1969.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[Gue21] Miguel Guevara. How we are helping developers with differen-
tial privacy. In Google Developers Blog. Google LLC, 28.01.2021.
https://developers.googleblog.com/2021/01/how-were-helping-
developers-with-differential-privacy.html.

[HKK+19] Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg,
and Aram Galstyan. Multitask learning and benchmarking with clinical
time series data. Scientific data, 6(1):1–18, 2019.

[HSG89] Steven Harp, Tariq Samad, and Aloke Guha. Designing application-specific
neural networks using the genetic algorithm. Advances in neural information
processing systems, 2, 1989.

http://circ.ahajournals.org/content/101/23/e215.full
http://circ.ahajournals.org/content/101/23/e215.full
https://developers.googleblog.com/2021/01/how-were-helping-developers-with-differential-privacy.html
https://developers.googleblog.com/2021/01/how-were-helping-developers-with-differential-privacy.html

Bibliography 61

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International con-
ference on machine learning, pages 448–456. PMLR, 2015.

[JBP+21] A. Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. A. Celi, and R. Mark.
MIMIC-IV (version 1.0). PhysioNet, 2021.

[JE19] Bargav Jayaraman and David Evans. Evaluating differentially private ma-
chine learning in practice. In Proceedings of the 28th USENIX Conference
on Security Symposium, SEC’19, pages 1895–1912, USA, 2019. USENIX
Association.

[JEP+21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction
with AlphaFold. Nature, 596(7873):583–589, 2021.

[JPM16] A. Johnson, T. Pollard, and R. Mark. MIMIC-III clinical database (version
1.4). PhysioNet, 2016.

[JPS+16] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling
Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G Mark. MIMIC-III, a freely accessible critical care
database. Scientific data, 3(1):1–9, 2016.

[JUO20] Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differen-
tially private machine learning: How private is private SGD? Advances in
Neural Information Processing Systems, 33:22205–22216, 2020.

[Kah20] John Kahan. How differential privacy enhances Microsoft’s privacy and
security tools: SmartNoise early adopter acceleration program launched.
In blogs.microsoft.com. Microsoft Corporation, 10.12.2020. https:
//blogs.microsoft.com/on-the-issues/2020/12/10/differential-
privacy-smartnoise-early-adopter-acceleration-program/.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

https://blogs.microsoft.com/on-the-issues/2020/12/10/differential-privacy-smartnoise-early-adopter-acceleration-program/
https://blogs.microsoft.com/on-the-issues/2020/12/10/differential-privacy-smartnoise-early-adopter-acceleration-program/
https://blogs.microsoft.com/on-the-issues/2020/12/10/differential-privacy-smartnoise-early-adopter-acceleration-program/

Bibliography 62

[KIS+21] Yogesh Kumar, Alexander Ilin, Henri Salo, Sangita Kulathinal, Maarit K
Leinonen, and Pekka Marttinen. Medical SANSformers: Training self-
supervised transformers without attention for electronic medical records.
arXiv preprint arXiv:2108.13672, 2021.

[KJH20] Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing tight differen-
tial privacy guarantees using FFT. In International Conference on Artificial
Intelligence and Statistics, pages 2560–2569. PMLR, 2020.

[KLN+11] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya
Raskhodnikova, and Adam Smith. What can we learn privately? SIAM
Journal on Computing, 40(3):793–826, 2011.

[Kor10] A. Korolova. Privacy violations using microtargeted ads: A case study. In
2010 IEEE International Conference on Data Mining Workshops, volume 1,
pages 474–482, 2010.

[LKEW17] Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzel. Learn-
ing to diagnose with LSTM recurrent neural networks. International Con-
ference on Learning Representations, 2017.

[LT19] Jingcheng Liu and Kunal Talwar. Private selection from private candidates.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 298–309, 2019.

[McS16] F. McSherry. Statistical inference considered harmful. https://
github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md,
2016. Accessed: 2022-04-13.

[MEMP+21] Mani Malek Esmaeili, Ilya Mironov, Karthik Prasad, Igor Shilov, and Flo-
rian Tramer. Antipodes of label differential privacy: PATE and ALIBI.
Advances in Neural Information Processing Systems, 34, 2021.

[Mir17] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer secu-
rity foundations symposium (CSF), pages 263–275. IEEE, 2017.

[MSH+21] Shubhankar Mohapatra, Sajin Sasy, Xi He, Gautam Kamath, and
Om Thakkar. The role of adaptive optimizers for honest private hyper-
parameter selection. arXiv preprint arXiv:2111.04906, 2021.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large
sparse datasets. In 2008 IEEE Symposium on Security and Privacy (sp
2008), pages 111–125. IEEE, 2008.

https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md

Bibliography 63

[NST+21] Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot, and
Nicholas Carlin. Adversary instantiation: Lower bounds for differentially
private machine learning. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 866–882, 2021.

[PAE+17] Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Ku-
nal Talwar. Semi-supervised knowledge transfer for deep learning from pri-
vate training data. In International Conference on Learning Representations
(ICLR), 2017.

[PDDC09] Nicolas Pinto, David Doukhan, James J DiCarlo, and David D Cox. A
high-throughput screening approach to discovering good forms of biologically
inspired visual representation. PLoS computational biology, 5(11):e1000579,
2009.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran As-
sociates, Inc., 2019.

[PMCL18] Sanjay Purushotham, Chuizheng Meng, Zhengping Che, and Yan Liu.
Benchmarking deep learning models on large healthcare datasets. Journal
of Biomedical Informatics, 83:112–134, 2018.

[PMSW18] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Well-
man. Sok: Security and privacy in machine learning. In 2018 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), pages 399–414. IEEE,
2018.

[PPR96] Murray M Pollack, Kantilal M Patel, and Urs E Ruttimann. PRISM III: an
updated pediatric risk of mortality score. Critical care medicine, 24(5):743–
752, 1996.

[PS21] Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with Renyi
differential privacy. arXiv preprint arXiv:2110.03620, 2021.

Bibliography 64

[PSM+18] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal
Talwar, and Úlfarlfar Erlingsson. Scalable private learning with PATE. In
International Conference on Learning Representations (ICLR), 2018.

[PTS+21] Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úl-
far Erlingsson. Tempered sigmoid activations for deep learning with differen-
tial privacy. Proceedings of the AAAI Conference on Artificial Intelligence,
35(10):9312–9321, May 2021.

[RA12] Arun Rajkumar and Shivani Agarwal. A differentially private stochastic gra-
dient descent algorithm for multiparty classification. In Neil D. Lawrence
and Mark Girolami, editors, Proceedings of the Fifteenth International Con-
ference on Artificial Intelligence and Statistics, volume 22 of Proceedings
of Machine Learning Research, pages 933–941, La Palma, Canary Islands,
21–23 Apr 2012. PMLR.

[RZL17] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

[SCS13] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic
gradient descent with differentially private updates. In 2013 IEEE Global
Conference on Signal and Information Processing, pages 245–248, 2013.

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian op-
timization of machine learning algorithms. Advances in neural information
processing systems, 25, 2012.

[SS98] Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclos-
ing information: k-anonymity and its enforcement through generalization
and suppression. Technical report, SRI International, 1998.

[SS21] Vikrant Singhal and Thomas Steinke. Privately learning subspaces. Ad-
vances in Neural Information Processing Systems, 34, 2021.

[SSSS17] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-
bership inference attacks against machine learning models. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 3–18, 2017.

[TB20] Florian Tramer and Dan Boneh. Differentially private learning needs better
features (or much more data). In International Conference on Learning
Representations, 2020.

Bibliography 65

[TTS+22] Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew
Jagielski, and Nicholas Carlini. Debugging differential privacy: A case study
for privacy auditing. arXiv preprint arXiv:2202.12219, 2022.

[War65] Stanley L. Warner. Randomized response: A survey technique for elimi-
nating evasive answer bias. Journal of the American Statistical Association,
60(309):63–69, 1965. PMID: 12261830.

[WH18] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the
European conference on computer vision (ECCV), pages 3–19, 2018.

[WMC+20] Shirly Wang, Matthew B. A. McDermott, Geeticka Chauhan, Marzyeh
Ghassemi, Michael C. Hughes, and Tristan Naumann. MIMIC-Extract: A
data extraction, preprocessing, and representation pipeline for MIMIC-III.
In Proceedings of the ACM Conference on Health, Inference, and Learn-
ing, CHIL ’20, pages 222–235, New York, NY, USA, 2020. Association for
Computing Machinery.

[YGFJ18] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy
risk in machine learning: Analyzing the connection to overfitting. In 2018
IEEE 31st computer security foundations symposium (CSF), pages 268–282.
IEEE, 2018.

[YSS+21] Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testug-
gine, Karthik Prasad, Mani Malek, John Nguyen, Sayan Ghosh, Akash
Bharadwaj, Jessica Zhao, Graham Cormode, and Ilya Mironov. Opa-
cus: User-friendly differential privacy library in PyTorch. arXiv preprint
arXiv:2109.12298, 2021.

[ZLH21] Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-PyTorch tabular:
Multi-fidelity metalearning for efficient and robust AutoDL. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, pages 3079 – 3090,
2021. also available under https://arxiv.org/abs/2006.13799.

[ZZX+12] Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett.
Functional mechanism: Regression analysis under differential privacy. Proc.
VLDB Endow., 5(11):1364–1375, jul 2012.

https://arxiv.org/abs/2006.13799

	Introduction
	Differential Privacy
	Differentially Private Machine Learning
	Differentially Private SGD
	Privacy Attacks against Machine Learning
	Theoretical Privacy Boundaries in Practice

	Adaptation of Deep Learning for Differential Privacy
	Activation Functions
	Batch and Group Normalization
	Other Components
	Neural Network Architecture Search

	Experimental Setup
	Dataset
	Benchmark Study and Models
	Bayesian Optimization
	Related Experiments

	Experiments
	Exp. 1: Noise Multiplier
	Exp. 2: Clipping Bound
	Exp. 3: Batch Size
	Exp. 4: Runtime/Utility Tradeoff
	Exp. 5: Depth and Width
	Exp. 6: Activation Functions
	Exp. 7: Group Normalization

	Discussion
	Analysis of Hyperparameters and Architecture
	Performance of the DP models
	Limitations of the Experiments

	Conclusions
	Bibliography

